Data analysis and graphics with R

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

MEAP Edition
Manning Early Access Program

Copyright 2009 Manning Publications

For more information on this and other Manning titles go to
WWW.manning.com

© Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forum|D=578

Download from Wow! eBook <www.wowebook.com>

Part 1 Preparing the data

1 Introduction to R

2 Creating a dataset

3 Basic data management

4 Advanced data management

Part 2 Basic statistics and graphs
5 Basic statistics
6 Basic graphs

Part 3 Intermediate statistics and graphs
7 Multiple (linear) regression

8 Analysis of variance

9 Resampling statistics and bootstrapping
10 Power analysis

11 Intermediate graphs

Part 4 Advanced statistics and graphs

12 Generalized linear models

13 Principal components and factor analysis
14 Other multivariate methods

15 Advanced methods for missing data

16 Advanced graphs

Appendix A: Graphical user interfaces for R
Appendix B: Customizing the startup environment
Appendix C: Exporting data from R

Appendix D: Creating publication quality output
Appendix E: Matrix algebra in R

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Introduction to R

This Chapter covers:
= |nstalling R
= Understanding the R language
= Running programs

How we analyze data has changed dramatically in recent years. With the advent of personal
computers and the internet, the sheer volume of data we have available has grown
enormously. Companies have terabytes of data on the consumers they interact with, while
governmental, academic, and private research institutions have extensive archival and
survey data on every manner of research topic. Gleaning information (let alone wisdom)
from these massive stores of data has become an industry in itself. At the same time,
presenting the information in easily accessible and digestible ways has become increasingly
challenging.

The science of data analysis (statistics, psychometrics, econometrics, machine learning)
has kept pace with this explosion of data. Before personal computers and the Internet, new
statistical methods were developed by academic researchers who published their results as
theoretical papers in professional journals. It could take years for these methods to be
adapted by programmers and incorporated into the statistical packages widely available to
the data analysts. Today, new methodologies appear daily. Statistical researchers publish
new and improved methods, along with code to produce them, on easily accessible websites
And the code is typically written for, or easily adapted to freely available statistical packages
like R.

The advent of personal computers had another effect on the way we analyze data. When
data analysis was carried out on mainframe computers, computer time was precious and

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

difficult to come by. Analysts would carefully set up a computer run with all the parameters
and options thought to be needed. When the procedure ran, the resulting output could be
dozens or hundreds of pages long. The analyst would sift through this output, extracting
useful material and discarding the rest. With the cheap and easy access afforded by personal
computers, data analysis now follows a different paradigm.

Rather than setting up a complete data analysis at once, the process has become highly
interactive, with the output from each stage serving as the input for the next stage An
example of a typical analysis is presented in figure 1.1. At any point, the cycles may include
transforming the data, imputing missing values, adding or deleting variables, and looping
back through the whole process again. The process stops when the analyst believes he or
she understands the data intimately and has answered all the relevant questions that can be

Import data

answered.

»{ Prepare, explore, and clean data ‘

H Fit a statistical model ‘4

—{ Evaluate model fit }4

‘ Cross-validate the model }—

Y

Evaluate model prediction on new data ‘

Produce report

Figure 1.1 Steps in a typical data analysis

The advent of personal computers (and especially the availability of high resolution
monitors) has also had an impact on how results are understood and presented. A picture

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

really can be worth a thousand words, and human beings are very adept at extracting useful
information from visual presentations. Modern data analysis increasingly relies on graphical
presentations to uncover meaning and convey results.

Today's data analysts need to be able to access data from a wide range of sources
(database management systems, text files, statistical packages, and spreadsheets), merge
them together, clean and annotate them, analyze them with the latest methods, present the
findings in meaningful and graphically appealing ways, and incorporate the results into
attractive reports that can be distributed to stakeholders and the public. As you will see in
the following pages, R is a comprehensive software package that is ideally suited to
accomplish these goals.

1.1 Why use R?

R is a language and environment for statistical computing and graphics, similar to the S
language originally developed at Bell Labs. It is an open source solution to data analysis that
is supported by a large and active worldwide research community. R has many features to
recommend it:

= Most commercial statistical software platforms cost thousands, if not tens of
thousands of dollars. R is free! If you are a teacher or a student, the benefits
are obvious.

= Rruns on a wide variety of platforms including Windows, UNIX and MacOS X.

= R is a comprehensive statistical platform, offering all manner of data analytic
techniques.

= R has state-of-the-art graphics capabilities.

= R provides an unparalleled platform for programming new statistical methods
in an easy and straightforward manner.

= R contains advanced statistical routines not yet available in other packages.

An example of R's graphic capabilities can be seen in figure 1.2. This graph, created with
a single line of code, describes the relationships between income, education, and prestige for
blue collar, white collar, and professional jobs. Technically, it is a scatterplot matrix with
groups displayed by color and symbol, two types of fit lines (linear and loess), confidence
ellipses, and two types of density display (kernel density estimation, and rug plots). If these
terms are unfamiliar to you, don't worry. We will cover them in later chapters. For now, trust
me that they are really cool (and that the statisticians reading this are salivating).

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

ar

R |

@

Lo

Figure 1.2 Relationships between income, education, and prestige for blue collar, white collar, and
professional jobs. Source: car package written by John Fox.

Basically, this graph indicates that:
= Education, income and job prestige are linearly related.

= In general, blue collar jobs involve lower education, income and prestige,
while professional jobs involve higher education, income, and prestige. White
collar jobs fall in between.

= There are some interesting exceptions. Ministers (the point labeled 1) have
high prestige and low income. RR Engineers (the point labeled 2) have high
income and low education.

= Education (and possibly prestige) are distributed bimodally, with more scores
as the high end and low end, than in the middle.
© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

We will have much more to say about this type of graph in chapter 5.

Unfortunately, R can have a steep learning curve. Because it can do so much, the
documentation and help files available can be voluminous. Additionally, because much of the
functionally comes from optional modules created by independent contributors, this
documentation can be scattered and difficult to locate. In fact, getting a handle on all that R
can do is a challenge.

The goal of this book is to make access to R quick and easy. We will tour the many
features of R, covering enough material to get you started on your data, with pointers on
where to go when you need to learn more. Let's begin by installing the program.

1.2 Obtaining and installing R

R is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-
project.org. Precompiled binaries are available for Linux, MacOS X, and Windows. Follow
directions for installing the base product on the platform of your choice. Later we'll talk
about adding additional functionality through optional modules called packages (also
available from CRAN).

1.3 Working with the R interface

R is a case-sensitive, interpreted language. You can enter commands one at a time at the
command prompt (>) or run a set of commands from a source file. There are a wide variety
of data types, including vectors, matrices, dataframes (similar to datasets), and lists
(collections of objects). We will discuss each of these data types in chapter 2.

Most functionality is provided through built-in and user-created functions and all data
objects are kept in memory during an interactive session. Basic functions are available by
default. Other functions are contained in packages that can be attached to a current session
as needed.

Statements consist of functions and assignments. R uses the symbol <- for assignments,
rather than the typical = sign. For example, the statement

X <- rnorm(5)

creates a vector named x containing 5 random deviates from a standard normal
distribution. Comments are preceded by the # symbol. Any text appearing after the # is
ignored by the R interpreter.

1.3.1 Getting Started

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/
http://cran.r-project.org/

If you are using Microsoft Windows, launch R from the Start Menu. On a Mac, double click
the Ricon in the Applications folder. For Linux, type R at the command prompt of a terminal
window. This will start the R interface (see figure 1.3 for an example).

I R Console
File Edit Misc Packages Help

R wversion 2.9.0 [(2009-04-17)
Copyright (C) 2009 The R Foundation for Statistical Cowmputing
ISBN 3-200051-07-0

E is free software and comes with ABSOLUTELY NO WARRANTY.

Tou are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
HNatural language support but running in an English locale

FE iz a collskborative project with many contributors.

Type 'contributors()' for mwore information and

'pitation()' on how to cite R or R packages in publications.

Type 'demo()' for some dewos, 'help()' for on-line help, or

'help.start () ' for an HTHL bhrowser interface to help.

Type 'g()1' to cuit E.

[FPreviously saved workspace restored]

> |

Figure 1.3 Example of the R interface on Microsoft Windows XP.

To get a feel for the interface, let's work through a simple contrived example. Let's say
that we are studying physical development and we have collected the ages and weights of 10
infants in their first year of life (see table 1.1). We are interested in the distribution of the
weights and their relationship to age.

Table 1.1 The heights and weights of ten infants.

Age (mo.) Weight (kg.)
01 4.4
03 5.3

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

05 7.2

02 52
11 8.5
09 7.3
03 6.0
09 104
12 10.2
03 6.1

Note: These are fictional data.

We will enter the age and weight data as vectors, using the function c(), which combines
its arguments into a vector or list. Then we will get the mean and standard deviation of the
weights, the correlation between age and weight, and plot the relationship between age and
weight so that we can inspect any trend visually. The q() function will end the session and
allow us to quit.

Listing 1.1 A sample R session

> # A two variable example

> age <- ¢(1,3,5,2,11,9,3,9,12,3)
> weight <- ¢(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2 ,6.1)
> mean(weight)

[1] 7.06

> sd(weight)

[1] 2.077498

> cor(age,weight)

[1] 0.9075655

> plot(age,weight)

>q()

We can see from listing 1.1, that the mean weight for these 10 infants is 7.06 kilograms,
that the standard deviation is 2.08 kilograms, and that there is strong linear relationship
between age in months and weight in kilograms (correlation = 0.91). The relationship can
also be seen in scatterplot in figure 1.4. Not surprisingly, as infants get older, they tend to
weigh more.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

10

weight

age

Figure 1.4 Scatterplot of infant age (mo) by weight (kg).
DEMONSTRATIONS
To get a sense of what R can do graphically, enter demo(gr aphics). A sample of the
graphs produced is included in figure 1.5. Other demonstrations include demo(Hershey),

demo(persp), and demo(image). To see a complete list of demonstrations, enter demo()
without parameters.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

dor i A - d 7 - i oy

S 2 ¥ -. ST

b bt b

I; ..-lr r _..F
i -hll__ |i'.'

_ .

__"'-- didi o ..r'l

e £ [-r.ll. _.Iv..-- [| |I.
2 !:.'- .'I': L il .', 1 :

U e L

Figure 1.5 A sample of the graphs created with the demo function

1.3.2 Getting help

R provides extensive help facilities and learning to navigate them will help you significantly in
your programming efforts. The built-in help system provides details, references, and
examples of any function contained in a currently installed package. Help is obtained using
the functions listed in table 1.2.

Table 1.2 R help functions.

Function Action
help.start() General help
help(foo) or Help on function foo

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

?foo

help.search("foo") or Search the help system for instances of the string
?7?foo foo (note the quotation marks)

example(foo) Examples of function foo

RSiteSearch("foo") Search for the string foo in help manuals and

archived mailing lists (note the quotation marks)

vignette() List all available vignettes for currently installed
packages
vignette("'foo") Display specific vignettes for topic foo (note
the quotation marks)
The function help.start() opens a browser window with access to introductory and

advanced manuals, FAQs, and reference materials. The RSiteSearch() function searches
for a given topic in online help manuals and archives of the R-Help discussion list and returns
the results in a browser window. The vignettes returned by the vig nette() function are
practical introductory articles provided in PDF format. Not all packages will have vignettes.
As you can see, R provides extensive help facilities and learning to navigate them will
definitely aid your programming efforts.

1.3.3 The workspace

The workspace is your current R working environment and includes any user-defined objects
(vectors, matrices, functions, dataframes, lists). At the end of an R session, you can save an
image of the current workspace that is automatically reloaded the next time R starts.
Commands are entered interactively at the R user prompt. You can use the up and down
arrow keys to scroll through your command history. This allows you to select a previous
command, edit it if desired, and resubmit it using the enter key.

The current working directory is the directory R will read files from and save results to by
default. You can find out what the current working directory is by using the get wd()
function. You can set the current working directory by using the set wd() function. If you
need to input a file that is not in the current working directory, use the full path name in the
call. Always enclose the names of files and directories from the operating system in quote
marks.

Some standard commands for managing your workspace are listed in table 1.3.

Table 1.3 Functions for managing the R workspace

Function Action

etwd
9 0 List the current working directory

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Is()
setwd("mydirectory")

List the objects in the current workspace

Change the current working directory to
mydirector 'y

help(options . .
p(options) Learn about available options
options)) .
ptions() View or set current option settings
history(#)

Display your last # commands (default = 25)

hi "mvfile” _
savehistory(‘myfile") Save the commands history to nyfil e (default =

.Rhistory)

loadhi "myfile"
oadhistory("myfile") Reload a commands history (default =

.Rhistory)

i "myfile"
save.image("myfile’) Save the workspace to myfile (default = .RData)

save(objectlist file="myfile) Save specific objects to a file

load("myfile")
Load a workspace into the current session (default

= .RData)
q()

Quit R. You will be prompted to save the
workspace.

To see these commands in action, take a look at listing 1.2.

Listing 1.2 An example of commands used to manage the R workspace

setwd(“C:/myprojects/project1”) 1
options() 2
options(digits=3)

X <- runif(20) 3
summary(x) 4
hist(x)

savehistory() 5
save.image()

q0

1 Set the current working directory to C:/myprojects/projectl

2 View currently set options and set numbers to display with 3 digits after the decimal place

3 Create a vector with 20 uniform random deviates

4 Print summary statistics and a histogram

5 Save a your commands history to the file .Rhistory and your workspace (including the vector x) to
the file .RData

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Note the forward slashes in the path name of the setwd() command. R treats the
backslash "\" as an escape character. Even when using R on a Windows platform, use
forward slashes in path names. Also note that the setwd() function will not create a
directory that does not exist. If necessary, you can use the dir.c reate() function to
create a directory, and then use setwd() to change to its location.

It is a good idea to keep your projects in separate directories. | typically start an R
session by issuing the setw d() command with the appropriate path to a project, followed by
the load() command without options. This lets me start up where | left off in my last session
and keeps the data and settings separate between projects. On Windows and MacOS X
platforms it is even easier. Just navigate to the project directory and double click on the
saved image file. This will start R, load the saved workspace, and set the current working
directory to this location.

1.3.4 Input and Output

By default, launching R starts an interactive session with input from the keyboard and output
to the screen. However, you can also process commands from a script file (a file containing R
statements) and direct output to a variety of destinations.

INPUT

The source ("filename") function submits a script to the current session. If the
filename does not include a path, the file is assumed to be in the current working directory.
For example, source("myprog") runs a set of R statements contained in file myprog.

TEXT OUTPUT

The sink(" filename") function redirects output to the file filen ame By default, if
the file already exists, its contents are overwritten. Include the option append=TRUE to
append text to the file rather than overwriting it. Including the option split=TRU E will send
output to both the screen and the output file. The command sin k() by itself, returns
output to the terminal.
GRAPHIC OUTPUT

Although si nk() redirects text output, it has no effect on graphic output. To redirect
graphic output use one of the functions listed in table 1.4. Use dev.off() to return output
to the terminal.

Table 1.4 Functions for Saving Graphic Output

Function Output
pdf(“filename.pdf") pdf file
win.metafile("filename.wmf") windows metafile
png(“filename.pgn™) png file
jpeg("filename.jpg") jpeg file
bmp(“filename.bmp") bmp file
postscript("filename.ps") postscript file

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Let’s put it all together by looking at the example in listing 1.3

Listing 1.3 Using various input and output in an R session

source("myfile1l") 1

sink(“myoutput”, append=TRUE, split=TRUE)
pdf(“mygraphs.pdf”)

source(“myfile2”) 2
sink()

dev.off()

source(“myfile3”) 3

In the code above, R statements from myfilel are submitted to the current session # 1
and the results appear on the screen. When the statements from myfile 2 are submitted
#2, results appear on the screen, the text output is appended to the file myoutpu t, and the
graphic output is saved to mygraphs.pd f. Finally the statements from myfile 3 are
submitted # 3 and the results appear on screen.

R provides quite a bit of flexibility and control over where input comes from and where it
goes. In section 1.5 we will see how to run a program in batch mode.

1.4 Packages

R comes with extensive capabilities right out of the box. However, some of its most exciting
features are available as optional modules that you can download and install. There are over
1800 user contributed modules called packages that you can download from http://cran.r-
project.org/web/packages. They provide a tremendous range of new capabilities, from the

analysis of geostatistical data to protein mass spectra processing to the analysis of
educational tests! We will use many of these optional packages in this book.

1.4.1 What are packages?

Packages are collections of R functions, data, and compiled code in a well-defined format.
The directory where packages are stored on your computer is called the library. The function
libPaths() will show you where your library is located, while the function libr ary()
will show you what packages you have saved in your library.

As we've said, R comes with a standard set of packages, while others are available for
download and installation. Once installed, they have to be loaded into the session in order to
be used. The command sear ch() will tell you which packages are loaded and ready to use.

1.4.2 Installing a package

There are a number of R functions that let you manipulate packages. To install a package for
the first time, wuse the insta | lpackages() command. For example,
install.packages() without options will bring up a list of CRAN mirror sites. Once you
select a site, you will be presented with a list of all available packages. Selecting one will

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages

download and install it. If you know what package you want to install, you can do so directly
by providing it as an argument to the function. For example, the gcl us package contains
functions for creating enhanced scatter plots. You can download and install the package with
the command install.packages("glus").

You only need to install a package once. However, like any software, packages are often
updated by their authors. Use the command update.packages() to update any packages
that you have installed. To see details on your packages, you can use the
installed.packages() command. It will list the packages you have, along with their
version numbers, dependencies, and other information.

1.4.3 Loading a package

Installing a package downloads it from a CRAN mirror site and places it in your library. To
actually use it in an R session, you need to load the package using the library() command.
For example, to use the packaged gclus , issue the command libra ry(gclus). Of course,
you must have installed a package before you can load it. You will have to load a package
once in each session you want to use it. However, you can customize your start-up
environment to automatically load the packages you use most often. Customizing your start-
up is covered in appendix Xx.

1.4.4 Learning about a package

When you load a package, a new set of functions and datasets become available. Small
illustrative datasets are provided along with sample code, allowing you to try out the new
functionalities. The help system contains a description of each function (along with
examples), and information on each dataset included. Entering help (package= "name"
will provide a brief description of the package named and an index of the functions and
datasets included. Using help() with any of these function or dataset names will provide
further details. The same information can be downloaded as a PDF manual from CRAN.

Common mistakes in R programming

There are some common mistakes made frequently by both beginning and experienced R
programmers. If your program generates an error be sure the check for the following:

Using the wrong case. help (), Help(), and HELP() are three different functions (only
the first will work).

Forgetting to use quote marks when they are needed. inst all.packages("gclus")
will work, while install.Lpa ckages(gclus) will generate an error.

Forgetting to include the parentheses in a function call. hel p() rather than help . Even
if there are no options, you still need the ().

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Using the \ in a path name on Windows. R sees the backslash character as an escape

character. set wd("c:\\mydata") will generate an error. Use setwd("c:/mydata”)
or setwd("c:\\mydata") instead.
Using a function from a package that is not loaded. The function order.clusters() is

contained in the gclus package. If you try to use it before loading the package, you will
get an error.

The error message in R can be cryptic, but if you are careful to follow the points above,
you should avoid seeing many of them.

In the sidebar above, these should be bullet points, with the text
of the first sentence bolded for each. Bullets start with "Using the
wrong case" and end with "Using a function".

1.5 Batch Processing

Most of the time, you will be running R interactively, entering commands at the command
prompt and seeing the results of each statement as it is processed. Occasionally, you may
want to run an R program in a repeated, standard, and possibly unattended fashion. For
example, you may need to generate the same report once a month. You can write your
program in R and run it in batch mode.

How you run R in batch mode depends on your operating system. On Linux or MacOS X
systems, you can use the following command in a terminal window:

R CMD BATCH options infile outfile

where infi | e isthe name of the file containing R code to executed, outfile is name
of the file receiving the output and options lists options that control execution. By
convention, the infile is given extension .R and the outfile is given extension .Rout .

For Windows, use

"C:\Program Files\R\R-2.9.0\bin\R.exe" CMD BATCH [C A]
--vanilla --slave "c:\my projects\myscript.R"

adjusting the paths to match the location of your R.exe binary and your script file. For
more details on how to invoke R, including command line options, see an "Introduction to R"
from CRAN (http://cran.r-project.org).

1.6 Using output as input - Reusing results

One of the most useful design features of R is that the output of analyses can easily be
saved and used as input to additional analyses. Let's walk through an example. If you don't
understand the statistics involved, don't worry. We are focusing on the general principle
here.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/

This following code will run a simple linear regression of miles per gallon (mpg) on car
weight (wt) using the dataset mtcars. Results are sent to the screen. Nothing is saved.

Im(mpg~wt, data=mtcars)

This time, the same regression is performed but the results are saved under the name fit.
fit <- Im(mpg~wt, data=mtcars)

No output is sent to the screen. However, you now can manipulate the results.

The assignment has actually created a list called "fit" that contains a wide range of
information from the analysis (including the predicted values, residuals, regression
coefficients, and more). Typing summary(fit) provides details of the analysis, while
plot(fit) produces diagnostic plots. You can generate and save influence statistics with
cook<-cooks.distance(fit). plot(cook) will graph these influence statistics. To
predict miles per gallon from car weight in a new set of data use predi ct(fit ,
mynewdata) .

To see what a function returns, look at the value section of the online help for that
function. Here we would look at help(Im). This will tell you what is saved when you assign
the results of that function to a name.

1.7 Working through an example

We will finish this chapter with an example that ties many of these ideas together. Here is
the task:

1. Open up the general help and look at the Introduction to R section.

2. Install the vcd package (a package for visualizing categorical data that we will be
using in future chapters).

List the functions and datasets available in this package.
Load the package and read the description of the dataset Arthritis.

Print out the Arthritis data set (entering the name of an object will list it).

o 0 M W

Run the example that comes with the Arthritis dataset. Don't worry if you don't
understand the results. It basically shows that arthritis patients receiving treatment
improved much more than patients receiving a placebo.

7. Quit

The code required is provided in listing 1.4, with a sample of the results displayed in figure
1.6.

Listing 1.4 Working with a new package

help.start() # look at introduction and preliminari es
install.packages("vcd")

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

help(package="vcd")
library(vcd)
help(Arthritis)
Arthritis
example(Arthritis)
a0

Do e sty 8 R [

w1 e L mw

Figure 1.6 Output from listing 1.4

As this short exercise demonstrates, you can accomplish a great deal with a small
amount of code.

1.8 Summary

In this chapter, we have looked as some of the strengths that make R an attractive
option for students, researchers, statistician, and data analysts trying to understand the
meaning of their data. We have walked through the program's installation and talked about
how to enhance R's capabilities by downloading additional packages. We have explored the
basic interface, running programs interactively and in batch, and produced a few sample
graphs. We have also learned how to save our work to both text and graphic files. Since R
can be a complex program, we have spent some time looking at how to access the extensive

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

help that is available. Hopefully, you're getting a sense of how powerful this freely available

software can be.

Now that we have R up and running, it's time to get our data into the mix. In the next
chapter, we will look at the types of data R can handle and how to import them into R from
text files, other programs, and database management systems.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Creating a dataset

This Chapter covers:
= R data structures
= Data entry
= Importing data
= Annotating datasets

The first step in any data analysis is the creation of a dataset containing the information to
be studied, in a format that meets our needs. In R, this will involve

= Selecting a data structure to hold our data
= Entering or importing our data into the data structure

The first part of this chapter (sections 2.1-2.2) describes the wealth of structures that R can
use for holding data. In particular, section 2.2 describes scalars, vectors, matrices,
dataframes, factors, and lists. Understanding these structures (and the notation used to
access elements within them) will be help tremendously in understanding how R works. You
might want to take your time working through this section.

The second part of this chapter (section 2.3) covers the many methods available for
importing data into R. Data can be entered manually, or imported from an external source.
These data sources can include text files, spreadsheets, statistical packages, and database
management systems. For example, the data that | work with typically come from SQL
databases. However, on occasion, | receive data from legacy DOS systems, and from current
SAS and SPSS databases. It is likely that you will only have to use one or two of the
methods described in this section, so feel free to pick and choose those that fit for your
situation.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Once a dataset is created, we will typically annotate it, adding descriptive labels for
variables and variable codes. The third portion of this chapter will look at annotating
datasets (2.4) and reviews some useful functions for working with datasets (2.5). Let's start
with the basics.

2.1 Understanding datasets

A dataset is usually a rectangular array of data with rows representing observations and
columns representing variables. An example of a hypothetical patient dataset is given in
table 2.1

Table 2.1 A patient dataset

PatientID AdmDate Age Diabetes Status

1 10/15/2009 25 Typel Poor

2 11/01/2009 34 Type2 Improved
3 10/21/2009 28 Typel Excellent
4 10/28/2009 52 Typel Poor

Different traditions have different names for the rows and columns of a dataset.
Statisticians refer to them as observations and variables, database analysts call them records
and fields, and those from the data mining/machine learning disciplines call them examples
and attributes. We will use the terms observations and variables throughout the rest of this
book.

We can distinguish between the structure of the dataset (in this case a rectangular array)
and the contents or data types included. In the dataset above, Patie ntID is a row or case
identifier, AdnDate is a date variable, Age is a continuous variable, Diabete s is nominal
variable, and Statu s is an ordinal variable.

R contains a wide variety of structures for holding data including scalars, vectors, arrays,
dataframes, and lists. The table above corresponds to a dataframe in R. This diversity of
structures provides the R language with a great deal of flexibility in dealing with data.

The data types or modes that R can handle include numeric, character, logical
(TRUE/FALSE), complex (imaginary numbers), and raw (bytes). In R, PatientiD , AdmDate,
and Age would be numeric variables, while Diabete s and Statu s would be character
variables. Additionally, we will need to tell R that Patie ntID is a case identifier, AdnDate
contains dates, and that Diabete s and Statu s are nominal and ordinal variables,
respectively. R refers to case identifiers as rownames and categorical variables (nominal,
ordinal) as f actors . We will cover each of these in the next section. Dates will be discussed
in chapter 3.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

2.2 Data structures

As we have said, R has a wide variety of objects for holding data, including scalars, vectors,
matrices, dataframes and lists. They differ in terms of the type of data they can hold, how
they are created, their structural complexity, and the notation used to identify and access
individual elements. Figure 2.1 presents a diagram of these data structures.

(a) scalar (b) vector (c) matrix (d)array

O

(e) dataframe
scalars

vectors

(f) list — arrays

dataframes

Columns can be differentmodes | ists

Figure 2.1 R data structures

We will look at each structure in turn, starting with vectors.

Some Definitions
There are several terms that are idiosyncratic to R, and thus confusing to new users.

In R, an object is anything that can be assigned to a variable. This includes constants,
data structures, functions, and even other objects. Objects have a mode (which describes
how the object is stored), and a class (which tells generic functions like print, how to
handle it).

A dataframe is a structure in R that holds data and similar to the datasets found in
standard statistical packages (e.g., SAS, SPSS, and Stata). The columns are variables
and the rows are observations. We can have variables of different types (e.g., numeric,

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

character) in the same dataframe. Dataframes are the main structures we will use to
store datasets.

Factors are nominal or ordinal variables. They are stored and treated specially in R. We
will have much to say about factors in section 2.2.5.

Most other terms should be familiar and follow the terminology used in statistics and

computing in general.

2.2.1 Vectors
Vectors are one dimensional arrays that can hold numeric data, character data, or logical
data. The combine function c() is used to form the vector (see listing 2.1).

Listing 2.1 Creating vectors

a numeric vector
a<-c¢(1,2,5,3,6,-2,4)

a character vector
b <- c("one", "two", "three")

a logic vector
¢ <- ¢(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE)

Note that the data in a vector must only be one type or mode (numeric, character, or
logical). You cannot mix modes in the same vector.

SCALARS

Scalars are simply one element vectors. Examples include f<- 3, g<-"US " and h
<- TRUE . They are used to hold constants.

You can refer to elements of a vector using a numeric vector of positions within brackets.
For example a[c(2, 4)] refer to the 2nd and 4th element of vector a. The following code
provides examples (listing 2.2).

Listing 2.2 Using vector subscripts

>a<-c(1,2,5,3,6,-2,4)
> a[3]

[115

> a[c(1, 3, 5)]

[1]156

> a[2:6] 1

[1] 253 6-2

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

#1 In this example we use the colon operator, which takes the form from:t 0. For
example:

a<-c¢(2:6)

is equivalent to

a<-c¢(2,3,4,5,6).

2.2.2 Matrices

A matrix is a two dimensional array where each element has the same mode (numeric,
character, or logical). Matrices are created with the matrix function. The general format is

myymatrix <- matrix(vector, nrow=r, ncol=c, byrow=logical_valu e,
[CA] dimna nes=list(char_vector_rownames, char_vector_colnames))

where vect or contains the elements for the matrix, r and C give the row and column
dimensions, and dimnames contains optional row and column labels. The option byrow
indicates whether the matrix should be filled in by row (byrow=T RUE) or by column
(byrow=FAL SE). The default is by column. Listing 2.3 demonstrates the matri x function.

Listing 2.3 Creating Matrices

> # create 5 x 4 matrix
>y <- matrix(1:20, nrow=5, ncol=4)

>y

L1121 [3] [4]
1] 1 6 11 16
2] 2 7 12 17
3] 3 8 13 18
4] 4 9 14 19
5] 5 10 15 20

> # create a 2 x 2 matrix with labels
> # fill in the matrix by rows
>cells <-¢(1,26,24,68)
>rnames <-c("R1", "R2")
> cnames <-c("C1", "C2")
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=T RUE [CA]
dimnames=list(rnames, cnames))
> mymatrix
cic2
R1 126
R2 24 68

> # this time fill in the matrix by columns
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=F ALSE, [CA]
dimnames=list(rnames, chnames))

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

> mymatrix
cic2

R1 124

R2 26 68

You can identify rows, columns or elements of a matrix by using subscripts and brackets.
X[i,] refers to the ith row of matrix X, while X[j] refers to jth column, and X[i]
refers to the ijth element respectively. The subscripts i and j can be numeric vectors in order
to select multiple rows or columns. Examples are given in listing 2.4.

Listing 2.4 Using matrix subscripts

> X <- matrix(1:10, nrow=2)
> X

(11021 [.3] [4] [.5]
1] 1 3 5 7 9

2] 2 4 6 8 10

> # selecting the 2nd row
>X[2]
[11 2 4 6 810

> # selecting the 2nd column
> x[,2]
[1]134

> # selecting the 1st row, 4th column element
> x[1,4]

7

> # selecting the first row, 4 & 5th columns

> x[1, ¢(4,5)]
[1179

Matrices are two dimensional and, like vectors, can contain only one data type. When
there are more than two dimensions, we will use arrays (section 2.2.3). When there are
multiple modes of data, we will use dataframes (section 2.2.4).

2.2.3 Arrays

Arrays are similar to matrices but can have more than two dimensions. They are created
with an array function of the following form:

myarray <- array(vector, dimensions, dimnames)
where vecto r contains the data for the array, dimension s is a numeric vector giving

the maximal index for each dimension, and dimnames is an optional list of dimension labels.
Listing 2.5 gives an example of creating a three dimensional (2 x 3 x 4) array of numbers.

Listing 2.5 Creating an array

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

> diml <- c("A1", "A2")

> dim2 <- ¢("B1", "B2", "B3")

> dim3 <- ¢("C1", "C2", "C3", "C4")

>z <- array(1:24, c(2,3,4), dimnames=list(dim1,dim 2,dim3))
>z

., Cl

w

Bl
11
22

INFRES
oo @

A
A
. C2

B1 B2 B3
Al 7 911
A2 81012

,, C3

B1 B2 B3
A1131517
A2 141618

,,C4

B1 B2 B3
A1192123
A2 202224

As you can see, arrays are a natural extension of matrices. They can be very useful in
programming new statistical methods. Like matrices, they must be a single mode.
Identifying elements follows what we have seen for matrices. In the example above, the
z[1,2,3] element is 15.

2.2.4 Dataframes

A dataframe is more general than a matrix, in that different columns can contain different
modes of data (numeric, character, etc.). It is similar to the datasets you would typically see
in SAS, SPSS, and Stata. Dataframes are the most common data structure we will deal with
in R.

The patient dataset in table 2.1 consists of numeric and character data. Because there
are multiple modes of data, we cannot contain this data in matrix. In this case, a dataframe
would be the structure of choice.

A dataframe is created with the datafram e function:

mydata <- data.frame(coll, col2, col3,...)

where coll, col2, col3, ... are column vectors of any type (character, numeric, logical,
etc.). Names for each column can be provided with the names function. An example (listing
2.6) will make this clear.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Listing 2.6 Creating a dataframe

> patientID <- c¢(1, 2, 3, 4)

> age <- ¢(25, 34, 28, 52)

> diabetes <- c("Typel", "Type2", "Typel", "Typel")

> status <- c("Poor", "Improved", "Excellent", "Poo)

> patientdata <- data.frame(patientlD, age, diabete s, status)
> patientdata

patientID age diabetes status
125 Typel Poor
2 34 Type2 Improved
3 28 Typel Excellent
4 52 Typel Poor

A WONBE

Each column must have only one mode. However, you can put columns of different
modes together to form the dataframe. Since dataframes are very close to what analysts
typically think of as datasets, we will use the terms columns and variables interchangeably
when discussing dataframes.

There are several ways to identify the elements of a dataframe. You can use the subscript
notation we have used previously (e.g. with matrices) or you can specify column names.
Take a look at the following three examples in listing 2.7.

Listing 2.7 Specifying elements of a dataframe

> # continuing the last example
> patientdata[1:2]

patientID age
125
2 34
328
4 52

A WNPE

non

> patientdata[c("diabetes","status")]

diabetes status
1 Typel Poor
2 Type2 Improved
3 Typel Excellent
4 Typel Poor

> patientdata$age 1

[1] 25 34 28 52

#1 The $ notation in the third example is new. It is used to indicate a particular variable
from a given dataframe. For example, if you want to get descriptive statistics on the

variables age, diabete s, and statu s from the patientdat a dataframe, you could use
the following code:

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

summary(patientdata$age, patientdata$diabetes, pati entdata$status)

This can get tiresome to type, so a shortcut available.

attach(patientdata)
summary(age, diabetes, status)

The attac h function adds the dataframe to the R search path. When a variable name is
encountered, dataframes in the search path are checked in order to locate the variable. We
will use the attach function often.

CASE IDENTIFIERS

In the patient data example, patientl Dis used to identify individuals in the dataset. In R,
case identifiers can be specified with a rowname option in the dataframe function. For
example, the statement

patientdata <- data.frame(patientlD, age, diabetes, status,
[CA] rownames=patientID)

specifies patientID as the variable to use in labeling cases on various printouts and
graphs produced by R.

2.2.5 Factors

As we have seen, variables can be described as nominal, ordinal, or continuous. Nominal
variables are categorical, without an implied order. Diabetes (Typel, Type2) is an example of
a nominal variable. Even if Typel is coded as a 1 and Type2 is coded as a 2 in the data, no
order is implied. Ordinal variables imply order but not amount. Status (poor, improved,
excellent) is a good example of an ordinal variable. We know that a patient with a "poor"
status is not doing as well as a patient with an "improved" status, but not by how much.
Continuous variables can take on any value within some range and both order and amount is
implied. Age in years is a continuous variable and can take on values such as 14.5 or 22.8
and any value in between. We know that someone who is fifteen is one year older than
someone who is fourteen.

Many R functions will handle data differently if one or more variables are nominal or
ordinal rather than continuous. Categorical (nominal) and ordered categorical (ordinal)
variables in R are called factors. The function factor stores the categorical values as a
vector of integers in the range [1... k] (where k is the number of unique values in the
nominal variable), and an internal vector of character strings (the original values) mapped to
these integers.

For example, assume that we have the vector

diabetes <- c("Typel”, "Type2", "Typel”, "Typel")

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

The statement diabetes <- factor(diabetes) stores this vector as (1, 2, 1, 1) and
associates it with 1=Typel and 2=Type2 internally (the assignment is alphabetical). Any
analyses performed on the vector diabet es will treat the variable as nominal and select the
statistical methods appropriate for this level of measurement.

For vectors representing ordinal variables, we add the parameter ord ered=TRUE to the
facto r function. For the vector

status <- c("Poor", "Improved", "Excellent", "Poor")

The statement status <- factor(status, ordered=TRUE) will encode the vector
as (3, 2, 1, 3) and associate these values internally as 1=Excellent, 2=Improved, and
3=Poor. Additionally, any analyses performed on this vector will treat the variable as ordinal
and select the statistical methods appropriately. For compatibility with the S language, the
statement above could also have been written as statu s <- ordered(status).

Listing 2.8 demonstrates how specifying factors and ordered factors impact data
analyses.

Listing 2.8 Using factors

> # enter the variables as vectors

> patientID <- c¢(1, 2, 3, 4)

> age <- ¢(25, 34, 28, 52)

> diabetes <- c("Typel", "Type2", "Typel", "Typel")

> status <- c("Poor", "Improved", "Excellent", "Poo)

> # specify the vectors as factors
> diabetes <- factor(diabetes)
> status <- factor(status, order=TRUE)

> # create the dataframe
> patientdata <- data.frame(patientID, age, diabete s, status)

> # view the structure of the dataframe
> str(patientdata)

‘data.frame': 4 obs. of 4 variables: 1
$ patientlD: num 1234
$age :num 25342852

$ diabetes : Factor w/ 2 levels "Typel","Type2": 1 211
$ status : Ord.factor w/ 3 levels "Excellent"<"| mproved'<..:3213
> # get summary statistics on the variables 2

> summary(patientdata)

—

NP E

patientIlD age diabetes sta

Min. :1.00 Min. :25.00 Typel:3 Excellent
1st Qu.:1.75 1st Qu.:27.25 Type2:1 Improved
Median :2.50 Median :31.00 Poor
Mean :2.50 Mean :34.75

3rd Qu.:3.25 3rd Qu.:38.50

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Max. :4.00 Max. :52.00

The function str(object) #1 provides information on an object in R (the dataframe in
this case). It clearly shows that diabete s is a factor and status in an order factor, along
with how it is coded internally. Note that the summary function #2 treats the variables
differently. It provides the minimum, maximum, mean, and quartiles for the continuous
variable age, and frequency counts for the categorical variables diabetes and status.

2.2.6 Lists

Lists are the most complex of the R data types. Basically, a list is an ordered collection of
objects (components). A list allows you to gather a variety of (possibly unrelated) objects
under one name. For example, a list may contain a combination of vectors, matrices,
dataframes, and even other lists. A list is created with the list function:

mylist <- list(objectl, object2, ...)

where the objects are any of the structures we have seen so far. Optionally, you can name
the objects in a list.

mylist <- list(hamel=objectl, name2=object2, ...)

An example is given in listing 2.9.

Listing 2.9 Creating a list

Example of a list with 4 components -
a string, a numeric vector, a matrix, and charact er vector

> g <- "My First List"

> h <- ¢(25, 26, 18, 39)

> j <- matrix(1:10, nrow=>5)

>k <- ¢("one", "two", “three")

> mylist <- list(title=g, ages=h, j, k)

> print the contents
> mylist

S$title
[1] "My First List"

$ages
[1] 25 26 18 39

(31
(102
] 16

[
2] 2 7

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

[3] 3 8
4] 4 9
5] 5 10
> mylist[[2]]

[1] 25 26 18 39

> mylist[["age"]]
[[1] 25 26 18 39

This simple example shows that any number of objects can be combined and saved as a
list. You can specify elements of the list by specifying a component number or a name within
double brackets. In this example, mylis t[[2]] and nylist[[*ages"]] both refer to the
same 4 element numeric vector. Lists are very important R structures for two reasons. First,
they allow you to organize and recall disparate information in a simple way. Second, the
results of many R functions return lists. It is up to the analyst to pull out the components
that are needed. We will see numerous examples of this in later chapters.

2.3 Data input

Now that we have data structures, we need to put some data in them! As data analysts, we
are typically faced with data that comes to us from a variety of sources and in a variety of
formats. Our task is to import the data into our tools, analyze the data, and report on the
results. R provides a wide range of tools for importing data.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Statistical Packages

SPSS Stata Systat

ANYY
re)—+ (R) +— b
PARNN

SQL MySQL Oracle Excel Access

Database Management Systems

Figure 2.2 Sources of data that can be imported into R

As you can see from figure 2.2, R can import data from the keyboard, from flat files, from
Microsoft products such as Excel and Access, from popular statistical packages, and from a
variety of relational database management systems. Since we never know where our data

will come from next, we will cover all of them here.

2.3.1 Entering data from the keyboard

Perhaps the simplest method of data entry is from the keyboard. The edit
invoke a text editor that will allow us to enter our data manually. The steps are:

function in R will

8. Create an empty dataframe (or matrix) with the variable names and modes you want

to have in the final dataset.

9. Invoke the text editor on this data object, enter your data, and save the results back

to the data object.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

In the following example, we will create a dataframe named mydata with three variables:
age (numeric), gender (character), and weight (numeric). We will then invoke the text
editor, add our data, and save the results (see listing 2.10).

Listing 2.10 Entering data in R via text editor

mydata <- data.frame(age=numeric(0), [CA] 1
gender=character(0), weight=numeric(0))

mydata <- edit(mydata) 2

#1 Assignments like age=numeric(0) create a variable of a specific mode, but without actual
data. #2 Note that the result of the editing is assigned back to the object itself. The edit
function actually operates on a copy of the object. If you do not assign it a destination, all of

your edits will be lost!

On a Windows platform, the results of invoking the edit function can be seen in Figure
2.3.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

=- duts. framm [spremmmeric (O], gesdsc-charsctsc [0 ;| s=sighi=ommeics (O] |
L= mdit |mpduts|

fendec | exight
0 163

i 11k

I 10

Figure 2.3 Entering data via text editor on a Windows platform.

In this figure, I've taken the liberty of adding some data. If we click on a column title, the
editor gives us the option of changing the variable name and type (numeric, character). We
can add additional variables by clicking on the titles of unused columns. When the text editor
is closed, the results are saved to the object assigned (mydata in this case). Invoking
mydata <- edit(mydata) again allows us to edit the data we have have entered and to
add new data. A shortcut for mydata <- edit(mydata) is simply fi x(mydata).

This method of data entry works well for small datasets. For larger datasets, you will
probably want to use one of the methods we will describe next - namely importing data from
existing text files, Excel spreadsheets, statistical packages, or database management
systems.

2.3.2 Importing data from a (comma) delimited text file
We can import data from comma delimited text files using the read. t abl e, a function that
reads a file in table format and saves it as a dataframe. The syntax is

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

mydataframe <- read.table(file, header = logical_value,
sep="delimiter", row.names = "name")

where file is a delimited ASCII file, header is a logical value indicating whether the
first row contains variable names (TRUE) or not (FALSE), sep specifies the delimiter
separating data values, and row.name S is an option parameter specifying one or more
variables to represent row identifiers.

For example, the statement

grades <- read.table("studentgrades.csv", header=TRUE, sep=",",
row.names="STUDENTID")

reads a comma delimited file named studentgrades.cs v from the current working
directory, gets the variable names from the first line of the file, specifies the variable
STUDENTD as the row identifier, and saves the results as a dataframe named grade s.

Note that the sep parameter allows us to import files that use a symbol other than a
comma to delimit the data values. To import a tab delimited file, you could use sep=""
which denotes whitespace (one or more spaces, tabs, new lines, or carriage returns). The
read.tabl e function has many additional options for fine tuning the data import. See
help(read.table) for details.

2.3.3 Importing data from Excel
The best way to read an Excel file is to export it to a comma delimited file from within Excel
and import it to R using the method above. On Windows systems you can also use the
RODBC package to access Excel files. The first row of the spreadsheet should contain
variable/column names.

First, download and install the RODBC package

install.packages("RODBC")

You can then use the following code to import the data.

library(RODBC)

channel <- odbcConnectExcel("myfile.xls")
mydataframe <- sglFetch(channel, "mysheet”)
odbcClose(channel)

Here, myfil e.xl s is an Excel file, mysheet is the name of the Excel worksheet to read
from the workbook, channel is an RODBC connection object returned by obcConnect, and
mydataframe is the resulting dataframe. RODBC can also be used to import data from
Microsoft Access. See help (RODBC for details.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

2.3.4 Importing data from SPSS

SPSS datasets can be imported into R by the read.sps s function in the foreig n package.

However, we will be using the spss.ge t function in the Hmisc package instead. spss.get is

a wrapper function that sets many parameters of read.spss for us automatically and

makes the transfer easier and more consistent with what data analysts expect as a result.
First, download and install the Hmisc package (the foreign package is already installed

by default).

install.packages("Hmisc")

Then use the following code to import the data.

library(Hmisc)
mydataframe <- spss.get("mydata.sav", use.value.labels=TRUE)

In the code above, mydata.sav is the SPSS datafile to be imported,
use.value.labels=TRUE tells the function to convert variables with value labels into R
factors with those same levels, and mydat afram e is the resulting R dataframe.

2.3.5 Importing data from SAS

There are a number of functions in R designed to import SAS datasets, including rea d.ssd
in the fore i gn package and sas.ge t in the Hmisc package. Unfortunately, if you are
using a recent version of SAS (say SAS 9.1 or higher), you are likely to find that these
functions do not work for you because R has not caught up with changes in SAS file
structures. There are two solutions that | would recommend.

You can save the SAS dataset as a comma delimited text file from within SAS using PROC
EXPORT, and read the resulting file into R using the method described in section 2.3.1. An
example is given in listing 2.11.

SAS program

proc export data= mydata

outfile= "mydata.csv"
dbms=csv;

run;

R program

mydata <- read.table("mydata.csv", header=TRUE, sep =""

Alternatively, there is a commercial product call Stat Transfer (described in section 2.3.9)
that does an excellent job of saving SAS datasets (including any existing variable formats) as
R dataframes.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

2.3.6 Importing data from Stata

Importing data from Stata to R is straightforward. The necessary code is

library(foreign)
mydataframe <- read.dta("mydata.dta")

Here, mydat a.dt a is the Stata dataset and mydatafram e is the resulting R dataframe.

2.3.7 Importing data from Systat

Similar to Stata, the code to import Systat data in R is simple.

library(foreign)
mydataframe <- read.systat("mydata.syd")

Again, mydat a.sy d is the Systat dataset and mydatafram e is the resulting R
dataframe.

2.3.8 Accessing Database Management Systems (DBMS)

There are a number of R packages that provide access to relational database management
systems including MS SQL, Oracle, and MySQL.

THE ODBC INTERFACE

The RODBC package provides access to databases (including Microsoft Access and Microsoft
SQL Server) through an ODBC interface. If you have not previously installed the RODBC
package, you can do so with the instal | .packages("RODBC") command. The primary
functions included with this package are listed in table 2.2.

Table 2.2 RODBC functions

Function Description

odbcConnect(dsn, uid="", pwd="") Open a connection to an ODBC database

sqlFetch(channel, sqtable) Read a table from an ODBC database into a
dataframe

sqlQuery(channel, query) Submit a query to an ODBC database and return
the results

sglSave(channel, mydf, tablename = Write or update (append=TRUE) a dataframe to a

sqtable, append = FALSE) table in the ODBC database

sqglDrop(channel, sqtable) Remove a table from the ODBC database

close(channel) Close the connection

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

The RODBC package allows two-way communication between R and an ODBC connected
SQL database. This means that you can not only read data from a connected the database
into R, but you can use R to alter the contents of the database itself. In the following
example (listing 2.12) we will import two tables (Crime and Punishment) from a DBMS into
two R dataframes and called crimedat and pundat, respectively.

Listing 2.12 Accessing a DBMS through an ODBC interface

library(RODBC) 1
myconn <-odbcConnect("mydsn", uid="Rob", pwd="aardv ark™) 2
crimedat <- sqglFetch(myconn, Crime) 3
pundat <- sqlQuery(myconn, "select * from Punishmen t") 4
close(myconn) 5

After loading the RODBC package #1, we open a connection to the ODBC database #2
through a registered data source name (nmydsn) with a security UID (rob) and password
(aardvar k). The connection string is passed to sglFetc h #3, which copies the table
Crime into the R dataframe crimeda t. In #4 we run the SQL sele ct statement against
table Punis hment and save the results to the dataframe pundat. Finally, we close the
connect #5.

The sq@lQue ry function is very powerful because any valid SQL statement can be
inserted. This allows us to select specific variables, subset the data, create new variables,
and recode and rename existing variables.

OTHER INTERFACES

R provides other interfaces to DBMS. The RMySQLpackage provides an interface to MySQL,
the ROracl e package provides an interface to Oracle, and the RIJDBC package provides
access to databases through a JDBC interface. Documentation for each package is available
on CRAN (http://cran.r-project.org). With variations, they are similar to the RODB(ackage
we have just seen.

2.3.9 Importing data via Stat/Transfer

Before ending our discussion of data importing, it is worth mentioning a commercial product
that can make the task significantly easier. Stat/Transfer (www.stattransfer.com) is a stand-
alone application that can transfer data between 34 data formats, including R (see figure
2.4)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

http://www.stattransfer.com/

" Stat/Transfer E| |Elg|
Transfer l‘u’ariable&l Dbaewatiun&] O ptions ['l]] Optionz [2]] Optionz [3]] O ptions [4]] Log] About l

Input File Type: [543 =l 7]

Y

File Specification: [SAS for Unis - Browze. ..
545 CPORT J
SA5 Transpart .
5-PLUS e
SPSS Data File
Al Yariables - 20 tatal - havi SPSS Partable File

Stata il

Output File Type: |H Workspace ﬂ ﬂ

File 5pecification: |I::'\patientdata.rdata ﬂ Browse. .

Table; |patientdata

Tranzfer E xit | Help |

Figure 2.4 Stat/Transfer main dialog on Windows.

It is available for Windows, Mac, and UNIX platforms and supports the latest versions of the
statistical packages we have discussed so far, as well as ODBC accessed DBMS such as
Oracle, Sybase, Informix, and DB/2.

2.4 Annotating datasets

Data analysts typically annotate datasets to make the results easier to interpret. Typically
annotation includes adding descriptive labels to variable names and value labels to the codes
used for categorical variables. For example, for the variable age, we might want to attach
the more descriptive label "Age at hospitalization (in years)". For a new variable gender code
1 or 2, we might want to associate the labels "male" and "female".

2.4.1 Variable labels

Unfortunately, R's ability to handle variable labels is limited. One approach is to use the
variable label as the variable's name and then refer to the variable by its position index.
Using the example above, let's say that we have a dataframe containing patient data. The
third column, named age, contains the ages at which individuals were first hospitalized. The
code

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

names(patientdata)[3] <- "Age at hospitalization (i n years)"

renames age to "Age at hospitalization (in years) ". Clearly this new name is
too long to type repeatedly. Instead, we can refer to this variable as patientdata[3] and
the string "Age at hospi t alization (in years) " will print wherever age would have
originally. Obviously, this is not an ideal approach, and you may be better off simply trying
to come up with better names (e.g. admissionAge).

2.4.2 Value labels

The facto r function can be used to create value labels for categorical variables. Continuing
the example above, we could use the code

patientdata$gender <- factor(patientdata$gender , [CA
levels = ¢(1,2),
labels = c("male", "female"))

Here level s indicate the actual values of the variable, and labels refer to a character
vector containing the desired labels.

2.5 Useful functions for working with data objects

We will end this chapter with a brief summary of useful functions for working with data
objects (see table 2.3).

Table 2.3 Useful functions for working with data objects

Function Action

length(object) number of elements/components
dim(object) dimensions of an object

str(object) structure of an object

class(object) class or type of an object
mode(object) how an object is stored
names(object) names of components in an object
c(object,object,...) combines objects into a vector
chind(object, object, ...) combines objects as columns
rbind(object, object, ...) combines objects as rows

object prints the object

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

head(object) list the first part the object

tail(object) list the last part of the object

IsQ) list current objects

rm(object) delete an object

newobject <- edit(object) edit object and save as newobject
fix(object) edit in place

We have already discussed most of these functions. The functions head and tail are
useful for quickly scanning large datasets. For example, head(patientdata) lists the first
six rows of our dataframe, while tail(patientdata) lists the last six. We will cover
functions such as length, cbind, and rbind, in the next chapter. They are gathered here as a
reference.

2.6 Summary

One of the most challenging tasks in data analysis is data preparation. We have made a
good start in this chapter by outlining the various structures that R provides for holding data
and the many methods available for importing data from both keyboard and external
sources. In particular, we will use the definitions of mode, vector, matrix, dataframe, and list
again and again in later chapters. Our ability to specify elements of these structures via the
bracket notation will be particularly important in selecting, subsetting, and transforming
data.

Once we get our datasets into R, it is likely that we will have to manipulate them into a
more conducive format (I find guilt works well). In the next chapter, we will explore ways of
creating new variables, transforming and recoding existing variables, merging datasets, and
selecting observations.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Basic data management

This Chapter covers:
= Manipulating dates and missing values
= Data type conversions
= (Creating and recoding variables
= Sorting, merging, and subsetting datasets
= Selecting and dropping variables

In the last chapter, we covered a variety of methods of importing data into R. Unfortunately,
getting our data in the rectangular arrangement of a matrix or dataframe is just the first step
in preparing it for analysis. To paraphrase Captain Kirk in "A Taste of Armageddon" (and
proving my geekiness once and for all) "Data is a messy business - a very, very messy
business." In my own work, as much as 60% of the time | spend on data analysis is actually
spent preparing the data for analysis. | will go out a limb and say that this is probably true in
one form or another for most real-world data analysts. Let's take a look at an example.

3.1 A Working Example

One of the topics that | study in my current job is how men and women differ in the ways
that they lead their organizations. Typical questions might be:

= Do men and women in management positions differ in the degree to which
they defer to superiors?

= Does this vary from country to country, or are these gender differences
universal?

One way to address these questions is to have bosses in multiple countries rate their
managers on deferential behavior, using questions like the one below.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

This manager asks my opinion before making personnel decisions.

1 2 3 4 5
strongly disagree neither agree agree strongly
disagree nor disagree agree

The numbers and anchor text in the cells above should be
centered.

The resulting data might resemble those in table 3.1. Each row represents the ratings a
manager by his or her boss.

Table 3.1 Gender differences in leadership behavior

manager date country gender age ql q2 q3 q4 q5
1 10/24/08 US M 32 5 4 5 5 5
2 10/28/08 US F 45 3 5 2 5 5
3 10/01/08 UK F 25 3 5 5 5 2
4 10/12/08 UK M 39 3 3 4

5 05/01/09 UK F 99 2 2 1 2 1

Here, each manager is rated by their boss on five statements (ql to g5) related to
deference to authority. For example, Manager 1 is a 32 year old male working in the US and
is rated very deferential by his boss, while manager 5 is a female of unknown age (99
probably indicates missing) working in the UK and is rated by low on deferential behavior.
The date column captures when the ratings were made. Although a dataset might have
dozens of variables and thousands of observations, we have only included 10 columns and 5
rows to simplify our examples. Additionally, we have limited the number of items pertaining
to the managers' deferential behavior to five. In a real-world study, we would probably use
10-20 such items to improve the reliability and validity of the results.

In attempting to address the questions of interest, there are several data management
issues to be addressed. Here is a partial list:

= The five ratings (q1 to g5) will need to be combined, yielding a single mean
deferential score from each manager.

® |n surveys, respondents often skip questions. For example, the boss rating
manager 4 skipped questions 4 and 5. We will need a method of handling
incomplete data. We will also need to recode values like 99 for age to missing.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

= There may be hundreds of variables in a dataset, but we may only be
interested in a few. To simplify matters, we will want create a new dataset
with only the variables of interest.

= Past research suggests that leadership behavior may change as a function of
the manager's age. To examine this, we may want to recode the current
values of age into a new categorical age grouping (e.g., young, middle aged,
elder).

= Leadership behavior may change over time. We might want to focus on
deferential behavior during the recent global financial crisis. To do this, we
may want to limit the study to data gathered during a specific period of time
(say January 1, 2009 to December 31, 2009).

We will work through each of these issues in the current chapter,
as well other basic data management issues such as combining
and sorting datasets. Then in chapter 4 we will look at some
advanced topics. 3.2 Creating new variables

In a typical research project, we will need to create new variables and transform existing
ones. We will use statements of the form

variable <- expression

A wide array of operators and functions can be included in the expressio n portion of the
statement. Table 3.2 lists R's arithmetic operators. We will use arithmetic operators when
developing formulas.

Table 3.2 Arithmetic Operators

Operator Description
+ Addition
Subtraction
* Multiplication
/ Division
~or ** Exponentiation
x%%y Modulus (x mod y) 5%%2is 1
x%/%y Integer division 5%/%2is 2

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Let's say that we have a dataframe named mydata, with variables x1 and x2, and we
want to create a new variable sumx that adds these two variables and new variable called
meanx that averages the two variables. If we use the following code

sumx <- x1 + x2
meanx <- (x1 + x2)/2

we will get an error, because R does not know that X1 and X2 are from dataframe mydata .
If we use the code below instead

sumx <- mydata$x1 + mydata$x2
meanx <- (mydata$x1 + mydata$x2)/2

the statements will succeed but we will end up with a dataframe (mydata), and two
separate vectors(Sumx and nmeanx) . This is probably not what we want. Ultimately, we want
to incorporate new variables into the original data frame. Listing 3.1 provides three separate
ways to accomplish this. The one you choose is up to you - the results will be the same.

Listing 3.1 Creating new variables

Three examples for doing the same computations

mydata$,sumx <- mydata$x1 + mydata$x2
mydata$meanx <- (mydata$xl + mydata$x2)/2

attach(mydata)
mydata$sumx <- x1 + x2
mydata$meanx <- (x1 + x2)/2
detach(mydata)

mydata <- transform(mydata,
sumx = x1 + x2,
meanx = (x1 + x2)/2

)

Personally, | prefer the third method, exemplified by use of the trans form function. It
simplifies inclusion of as many new variables as desired and saves the results to the
dataframe.

3.3 Recoding variables

Recoding involves creating new values of a variable conditional on the existing values of the
same and/or other variables. For example, we may want to:

= change a continuous variable into a set of categories
= replace miscoded values with correct values
= create a pass/fail variable based on a set of cut-off scores.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

In order to recode data, we can use one or more of R's logical operators (see table 3.3).
Logical operators are expressions that return TRUE or FALSE.

Table 3.3 Logical Operators

Operator Description

< Less than

<= Less than or equal to
> Greater than

> Greater than or equal to
== Exactly equal to

1= Not equal to

IX Not x

x|y Xory

X&Yy xandy

iISTRUE(x) Test if x is TRUE

Let's say that we want to recode the ages of the managers in our leadership dataset from
year to age category (Young, Middle Aged, Elder). We could use the code in listing 3.2

Listing 3.2 Recoding variables

Create 3 age categories from the age variable
attach(leadership)
leadership$agecat[age > 75] <- "Elder"

leadership$agecat[age > 45 & age <= 75] <- "Middle Aged"

leadership$agecat[age <= 45] <- "Young"

detach(leadership)

The statement variable expr essio n will only make the

assignment when condit

We have included the dataframe name in

leadership$ageca t to ensure that the new variable is saved back to the dataframe. We

used the at tach(leadership

) statement so that we could write age rather than

leadership $age. We chose middle aged to be between 45 and 75 so that | wouldn't feel so

old.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

3.4 Renaming variables

If we are not happy with our variable names, we can change them interactively or
programmatically. Let's say that we wanted to change the variables manager to
managerl Dand date totestDat e. We could use the statement

fix(leadership)

to invoke an interactive editor, click on the variable names, and rename them in the dialog

= opdwts - et frena (speemmreric (O, gerdscecharsctar [O] s oghtenoesrie (O] |
opdwnts =- =dit |mpdeis)]

gender | eeight
i L&a
b LiG
1]

L
&
3
1
5
a
7
]

boxes that are presented (see figure 3.1).

Figure 3.1 Renaming variables interactively using the fix function

Programmatically, the resh ape package has a rename function that is very useful for
altering the names of variables. The format of the rename function is

rename(dataframe, c(oldname="newname", oldname="new name",...))
© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

An example is given in listing 3.3.

Listing 3.3 Renaming variables with the reshape package

rename programmatically
library(reshape)
leadership <- rename(leadership,
c¢(manager="managerID", date="testDate")

)

Since the re shape package is not installed by default, you will need to install on first use
using the in stall.packages("reshape") command. The reshape package has a very
powerful set of functions for altering the structure of a dataset. We will explore several in
chapter 4.

Finally, you can rename variables by re-entering the variable name in order, while
changing the ones that need to be altered. For example:

names(leadership) <- c("testDate", "country", "gend er, "age",
"managerlD", "q1", "q2', "q3", "g4", "q5")

The limitation of this approach is the need to enter all the variable names, not just those
that we want to rename. If there are dozens or hundreds of variables, this becomes
impractical.

3.5 Missing values

In a project of any size, data is likely to be incomplete, because of missed questions, fautly
equipment, or improperly coded data. In R, missing values are represented by the symbol NA
(not available). Impossible values (e.g., dividing by zero) are represented by the symbol NaN
(not a number). Unlike programs like SAS, R uses the same missing values symbol for
character and numeric data.

In our leadership example, we could use the code in listing 3.4 to read the data from a
tab delimited text file.

Listing 3.4 Reading data with missing values

> leadership <- read.table("leadership.csv", header =TRUE, sep="\t")
> leadership
manager date country gender age g1 g2 g3 g4 g 5
1 110/24/08 US M 325455 5
2 210/28/08 US F 453525 5
3 310/01/08 UK F 253555 2
4 410/12/08 UK M 39 3 3 4NAN A
5 505/01/09 UK F 992212 1

Note that when blank values are read into a dataframe, they are automatically converted to
missing values.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

R provides a number of functions for identifying observations containing missing values.
The function i s.na allows us to test for the presence of missing values. Assume that we
have a vector

y <-c(1, 2, 3, NA)

then the function

is.na(y) returns c(FALSE, FALSE, FALSE, TRUE).

Notice how the is.na function works on an object. It returns an object of the same size,
with the entries replaced by TRUEf the element is a missing value, and FALSE if the
element is not a missing value. Using our leadership example in listing 3.5:

Listing 3.5 Applying the is.na function

> is.na(leadership[,6:10])

gl 92 g3 g4 g5
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE TRUE TRUE
[5,] FALSE FALSE FALSE FALSE FALSE

Here, leade rship[,6:10] limited the dataframe to all rows, and columns 6 to 10,
while is.na identified which values are missing.

IMPORTANT NOTE

Missing values are considered non-comparable, even to themselves. This means that you
cannot use comparison operator to test for the presence of missing values. For example,
the logical test myvar == N A'is never TRUE. Instead, you have to use missing values
functions, like those in this section, to identify the missing values in R data objects.

3.5.1 Recoding values to missing

We can use assignments to recode values to missing. In our leadership example, missing age
values were coded as 99. Before analyzing this dataset, we need to let R know that the
value 99 means missing in this case (otherwise the mean age for this sample of bosses will
be way off!). We can accomplish this with the following code.

recode 99 to missing for the variable age
attach(leadership)
leadership[age==99, "age"] <- NA

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

The code fragment lead ership[age==99, "age"] selects the age column in the
dataframe le adershi p and within this column, the rows in which age is equal to 99. The
assignment <- NAthen sets these age values to missing. Be sure that any missing data is
properly coded as missing before analyzing the data or the results will be meaningless.

3.5.2 Excluding missing values from analyses

We need to eliminate missing values in some way before analyzing our data. This is because
arithmetic expressions and functions that contain missing values yield missing values. For
example

x <- ¢(1,2,NA,3)
y <- c[1] + c[2] + c[3] + c[4] # y returns NA
Z <- sum(x) # z returns NA

Both y and z will be NA(missing) because the 3rd element of X is missing.
Luckily, most numerical functions have a na.rm=TRUE option that removes missing
values prior to calculations, and applies the function to the remaining values.

x <- ¢(1,2,NA,3)
sum(x, na.rm=TRUE) # returns 6

When using functions with incomplete data, be sure to check how that function handles
missing data by looking at its online help (e.g. help(su n)). The sum function is only one of
many functions we will consider in chapter 4. They allow us to transform data with flexibility
and ease.

We can remove any observation with missing data using the na.omit function. na.omit
deletes any rows with missing data. We apply this to our leadership dataset in listing 3.6.

Listing 3.6 Using na.omit to delete incomplete observations

create new dataset without missing data

> leadership

manager date country gender age q1 g2 g3 g4 q 5
1 110/24/08 US M 325455 5
2 210/28/08 US F 403525 5
3 310/01/08 UK F 253555 2
4 410/12/08 UK M 39 3 3 4NAN A
5 505/01/09 UK F 992212 1
> newdata <- na.omit(leadership) 1
> newdata

manager date country gender age g1 g2 g3 q4 g 5
1 110/24/08 US M 325455 5
2 210/28/08 US F 403525 5
3 310/01/08 UK F 253555 2

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

5 505/01/09 UK F 992212 1

Any rows containing missing data are deleted from lea dershi p before the results are
saved to newdata #1.

Deleting all observations with missing data (called listwise deletion) is one of several
methods of handling incomplete datasets. If there are only a few missing values or they are
concentrated in a small number of observations, listwise deletion can provide a good solution
to the missing values problem. However, if missing values are spread throughout the data,
or there is a great deal of missing data in a small number of variables, listwise deletion can
exclude a substantial percentage of our data. We will look at several more sophisticated
methods of dealing with missing values in chapter 15. Next, let's take a look at dates.

3.6 Date values

Dates are typically entered into R as character strings and then translated into date variables
that are stored numerically. The function as.Dat e is used to make this translation. The
syntax for is as.Date(x, "format"), where X is the character data and format gives the
appropriate format from table 3.4.

Table 3.4 Date formats

Symbol Meaning Example
%d day as a number (0-31) 01-31
%a abbreviated weekday Mon

%A unabbreviated weekday Monday
%m month (00-12) 00-12
%b abbreviated month Jan

%B unabbreviated month January
%y 2-digit year 07

%Y 4-digit year 2007

The default format is yyyy- nm-dd. Listing 3.7 provides two examples.
Listing 3.7 Converting character values to dates

convert character data in format 'mm/dd/yyyy' to dates
strDates <- ¢("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%d/%Y")

convert character data to dates using the default format
mydates <- as.Date(c("2007-06-22", "2004-02-13"))

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

When stored internally, dates are represented as the number of days since 1970-01-01,
with negative values for earlier dates. This lets us perform arithmetic operations on dates
such as the one in listing 3.8.

Listing 3.8 Calculations with with dates

> startdate <- as.Date("2004-02-13")
> enddate <- as.Date("2009-06-22")
>days <- enddate - startdate

> days

Time difference of 1956 days

In our leadership dataset, date is coded as a character variable in mm/dd/yy format.
We could use a commands to transform them into date values.

myformat <- “%m/%d/%y"
leadership$date <- as.date(leadership$date, myforma t)

Here, we use the specified format to read the character variable and replace it in the
dataframe as a date variable. Once in date format, we can analyze and plot the dates using
the wide range of analytic techniques that we cover in later chapters.

There are two useful functions that take no arguments, and return the current date
and/or time. Specifically

= Sys.Date() returns today's date
= Date() returns the current date and time.

We can use these functions to time stamp events, or to calculate the amount of time that
has passed between an event and the present. Listing 3.9 provides two examples of their
use.

Listing 3.9 Date functions and formatted printing

> # print today's date

> today <- Sys.Date()

> format(today, format="%B %d %Y") 1
[1] "July 07 2009"

> # day | was born (not really)

> dob <- as.Date(*1956-10-10")

> format(dob, format="%A") 2

[1] “Monday”

These examples also use the forma t function. The for mat function takes an argument (a
date in this case), and applies a format (in this case assembled from the symbols in table

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

3.2). This not only gives us control over the way the dates are printed # 1, but also allows us
to extract portions of the date values # 2.

3.6.1 Converting dates to character variables

Although less commonly used, we can also convert date variables to a character format.
Date values can be converted to character variables using the as.Cha r acte r function. For
example

convert dates to character data
strDates <- as.character(dates)

The conversion allows us to apply a range of character functions to the data values
(subsetting, replacement, concatenation, etc.). We will cover character functions in detail in
chapter 4.

3.6.2 Going further

To learn more about converting character data to dates, take a look at help(as.Date)
and help(strftime). To learn more about formatting dates and times, see
help(ISOdatetime). If you need to do complex calculations with dates, the fCal endar
package can help. It provides a myriad of functions for dealing with dates, can handle
multiple time zones at once, and provides sophisticated calendar manipulations that
recognize business days, weekends, and holidays.

3.7 Type conversions

In the previous section, we discussed how to convert character data to date values and vice-
versa. R provides a set of functions to identify an object's data type, and convert it to a
different data type.

Type conversions in R work in a similar fashion to those in other statistical programming
languages. For example, adding a character string to a numeric vector converts all the
elements in the vector to character values. We can use the functions listed in table 3.5 to
test for a data type and to convert that to a given type.

Table 3.5. Type conversion functions

Test Convert
is.numeric as.numeric
is.character as.character
is.vector as.vector
is.matrix as.matrix
is.data.frame as.data.frame

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Functions of the form is. dat atype return TRUEor FALSE while as. dat at ype converts
the argument to that type. Listing 3.10 provides an example.

Listing 3.10 Converting from one data type to another

>a<-c¢(1,2,3)
>a
[1]123

> is.numeric(a)
[1] TRUE

> is.vector(a)

[1] TRUE

> a <- as.character(a)
>a

[1] "1 "2 3"

> is.numeric(a)
[1] FALSE

> is.vector(a)

[1] TRUE

> is.character(a)

[1] TRUE

When combined with the flow controls (e.g., if-then) that we will discuss in chapter 4, the
is. datatype function can be a powerful tool, allowing us to handle data in different ways,
depending on its type. Additionally, some R functions require data of a specific type
(character or numeric, matrix or dataframe) and the as. datatype will allow us to transform
our data into the format required prior to analyses.

3.8 Sorting data

Sometimes, just viewing a dataset in a sorted order can tell us quite a bit about the data. For
example, which managers are most deferential? To sort a dataframe in R, use the orde r
function. By default, the sorting order is ASCENDING Prepend the sorting variable with a
minus sign to indicate a DESCENDINEorder. Some examples are provided in listing 3.11.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Listing 3.11 Sorting a dataset

sorting examples using the leadership dataset

sort by age
newdata <- leadership[order(age),] 1

sort by gender and age
newdata <- leadership[order(gender, age),] 2

#sort by gender (ascending) and age (descending) 3
newdata <-leadership[order(gender, -age),]

In #1 the dataset is sorted from youngest manager to oldest manager. In #2 the dataset
is sorted into female followed by male, and age is sorted (younger first) within each of the
gender groups. In # 3 age is sorted from oldest to youngest manager within each gender.

3.9 Merging datasets

If our data exist in multiple locations, we will need to combine them before moving forward.

3.9.1 Adding Columns

To merge two dataframes (datasets) horizontally, we use the merge function. In most cases,
two dataframes are joined by by one or more common key variables (i.e., an inner join).
Two examples are given in listing 3.12.

Listing 3.12 Merging datasets horizontally

merge two dataframes by ID
total <- merge(dataframeA,dataframeB,by="ID")

merge two dataframes by ID and Country
total <- merge(dataframeA,dataframeB,by=c("ID","Cou ntry"))

Horizontal joins like this are usually used to add variables to a dataframe.

NOTE

If you are simply joining two matrices or dataframes horizontally and do not need to
specify a common key, you can use the cbin d function:

total <- chind(A, B)

This will horizontally concatenate the objects A and B. For this to work properly, each
object has to have the same number of rows and be sorted in the same order.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

3.9.2 Adding Rows

To join two dataframes (datasets) vertically, use the rbi nd function. The two dataframes
must have the same variables, but they do not have to be in the same order (see listing
3.13).

Listing 3.13 Merging dataset vertically

merge two dataframes vertically
total <- rbind(dataframeA, dataframeB)

If dataframeA has variables that dataframeB does not, then either:
= delete the extra variables in dataframeA or
= create the additional variables in dataframeB and set them to NA (missing)

before joining them. Vertical concatenation is usually used to add observations to a
dataframe.

3.10 Subsetting datasets

R has powerful indexing features for accessing the elements of an object. These features can
be used to select and exclude variables, observations, or both. The following sections
demonstrate several methods for keeping or deleting variables and observations.

3.10.1 Selecting (Keeping) Variables

It is a common practice to create a new dataset from a limited number of variables chosen
from a larger dataset. Listing 3.14 describes three different ways of accomplishing the same
selection of variables.

Listing 3.14 Selecting variables

select variables q1, g2, 93, g4, g5 from the lead ership dataframe
method 1

newdata <- leadership[, c¢(6:10)] 1

method 2

myvars <- c("ql", "gq2", "q3", "g4", "q5") 2
newdata <-leadership[myvars]

method 3
myvars <- paSte("q", 1.5, sep="" 3
newdata <- leadership[myvars]

In chapter 2, we saw that the elements of a dataframe are accessed using the notation
dataframe[row indices, column indices]. In #1 we left the row indices blank (,)
which selected all rows by default. For the column indices, we selected columns 6 through
10 which translated to variables ql through g5. In #2, we entered variable names (in

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

quotes) as column indices, thereby selecting those columns. When variable names are
entered as column indices, the row indices are assumed and can be left out. Finally, in #3,

we used the paste function to create the same character vector as in the previous example.
The past e function will be covered in chapter 4.

3.10.2 Excluding (dropping) Variables

There

are many reasons to exclude variables. For example, if a variable has many missing

values, we may want to drop the entire variable prior to further analyses. Several methods
of excluding variables are presented in listing 3.15.

Listing 3.15 Dropping variables

exclude variables g3 and g4 three different ways

myvars <- names(leadership) %in% c("q3", "q4") 1
newdata <- leadership[!myvars]

exclude 8th and 10th variable
newdata <- leadership[c(-8,-9)] 2

delete variables g3 and g4
leadership$g3 <- leadership$g4 <- NULL 3

In order to understand why #1 works, we need to break it down:

10.

11.

12.

13.

names(leadership) produces a character vector containing the variable names.
c("managerID","testDate","country","gender","age","q1","q2",

'93"'q4""¢5")

names(leadership) %ini% c("g3", "g4") returns a logical vector with TRUE
for each element in names(| eadership)that matches 3 or g4 and FALSE
otherwise.

Cc(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE,

FALSE)

The not (!) operator reverses the logical values
¢(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)

leadership[c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE,
FALSE, TRUE)] selects columns with TRUE logical values, so q3
and g4 are excluded.

The code in #2 works because prepending a column index with a minus sign (-) excludes

that column. The third example #3 accomplishes the same goal by setting the columns g3
and g5 to undefined (NULL). Note that NULL is not the same as NA (missing).

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Dropping variables is simply the converse of keeping variables. The choice will depend on
which is easier to code. If there are many variables to drop, it may be easier to keep the
ones that remain, or vice versa.

3.10.3 Selecting Observations

Selecting or excluding observations (rows) is typical a key aspect of successful data
preparation and analysis. Several examples are given in listing 3.16.

Listing 3.16 Selecting observations

first 5 observerations
newdata <- leadership[1:5,] 1

based on variable values
newdata <- leadership[which(leadership$gender=="M" 2
& leadership$age > 30),]

#or

attach(leadership)

newdata <- leadership[which(gender=="M' & age > 30) J 3
detach(leadership)

In each of these examples, we provide the row indices and leave the column indices blank
(therefore choosing all columns). In #1 we ask for rows 1 through 5 (the first 5
observations). We need to break # 2 down to understand it:

14.The logical comparison le adership$gender=="F " produces the vector
c(TRUE, FALSE, FALSE, TRUE, FALSE)

15. The logical comparison le adership$age > 30 produces the vector
¢(TRUE, TRUE, FALSE, TRUE, TRUE)

16.The logical comparison
c¢(TRUE, FALSE, FALSE, TRUE, TRUE) & c(TRUE, TRUE, FALSE, TRUE,
TRUE) produces the vector c(TRUE, FALSE, FALSE, TRUE, FALSE)

17. The function which gives the indices of a vector that are TRUE. Thus

which(c(TRUE, FALSE, FALSE, TRUE, FALSE)) produces the vector
c(1, 4)
18.leadership[c(1,4),] selects the first and fourth observations from the

dataframe. This matches our criteria.

#3 is identical to # 2 but uses the attac h function so that we do not have to prepend the
variable names with the dataframe names.

At the beginning of this chapter, we suggested that we might want to limit our analyses
to observations collected between January 1, 2009 and December 31, 2009. How can we do
this? One solution is presented in listing 3.17.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Listing 3.17 Selecting observations based on dates

select observations recorded between Jan 1 2009 a nd Dec 31 2009
leadership$date <- as.Date(leadeship$date, "%m/%d/% y") 1
startdate <- as.Date("2009-01-01") 2

enddate <- as.Date("2009-01-31")
newdata <- leadership[which(leadership$date >= star tdate & [CA] 3
leadership$date <= enddate),]

#1 We convert the date values read in originally as character values to date values using
the format midd/lyy . #2 We create starting and ending dates. Since the default for the
as.Dat e function is yyyy - mm-dd, we don't have to supply it here. #3 Finally, we select
cases meeting our desired criteria as we did in the previous example.

3.10.4 The Subset Function

The examples in the previous two sections are important because they help describe the
ways in which logical vectors and comparison operators are interpreted within R.
Understanding how these examples work will go a long way to making R more
understandable for you. Now that we have done things the hard way, let's look at a shortcut.

The subse t function is probably the easiest way to select variables and observation. Two
examples are given in listing 3.18.

Listing 3.18 Using the subset function

using subset function
newdata <- subset(leadership, age >= 35 | age < 24, 1
select=c(ql, g2, g3, g4))

using subset function (another example)
newdata <- subset(leadership, sex=="M" & age > 25, 2
select=gender:q4)

In #1 we select all rows that have a value of age greater than or equal to 35 or age less
than 24. We keep the variables q1 through gq4. In the second example # 2, we select all men
over the age of 25 and we keep variables gender through g5 (gender, g4, and all columns
between them). We have seen the colon operator fro mto in chapter 2. Here, it provides
all variables in a dataframe between the to variable and the from variable, inclusive.

3.10.5 Random Samples

Sampling from larger datasets is common practice in data mining and machine learning. For
example, we may want to select two random samples, creating a predictive model from one,
and validating its effectiveness on another. The sample function allows us to take a random
sample (without or without replacement) of size n from a dataset. An example is provided in
listing 3.19.

Listing 3.19 Taking a random sample

take a random sample of size 50 from the leadersh ip dataset

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

sample without replacement
mysample <- leadership[sample(1:nrow(leadership), 5 o,[cA 1
replace=FALSE),]

#1 The first argument to the sampl e function is a vector listing elements to be randomly
chosen from. Here, the vector is 1 to the number of observations in the dataframe. The
second argument is indices to be selected, and the third argument indicates sampling
without replacement. The sample function returns the randomly sampled indices, which are
then used to select rows from the dataframe.

GOING FURTHER

R has extensive facilities for sampling, including drawing and calibrating survey samples (see
the sampl e package) and analyzing complex survey data (see the survey package).
Bootstrapping is described in appendix d.

3.11 Summary

We have covered a great deal of ground in this chapter. We have looked at the way R
stores missing and date values and explored various ways of handling them. We have seen
how to determine the data type of an object and how to convert it to other types. We have
used simple formulas to create new variables and recode existing variables. We have sorted
our data and renamed our variables. We have seen how to merge our data with other
datasets both horizontally (adding variables) and vertically (adding observations). Finally, we
have seen how to keep or drop variables and how to select observations based on a variety
of criteria.

Actually, we have only scratched the surface when it comes to handling incomplete data.
In the next chapter, we will address the "missing value problem" in more detail and discuss
more sophisticated methods of dealing with it. Then we will look at the myriad of arithmetic,
character, and statistical functions that R makes available for creating and transforming
variables. After exploring ways of controlling program flow, we will see how to write our own
functions. Finally, we will explore how we can use these functions to aggregate and
summarize our data.

By the end of chapter 4 you will have most of the tools necessary to manage complex
datasets. (And you will be the envy of data analysts everywhere!)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Advanced data management

This Chapter covers:
= Mathematical and statistical functions
= Character functions
= Looping and conditional execution
= User-written functions
= Aggregating and reshaping data

In chapter 3, we reviewed the basic techniques used for managing datasets within R. In this
chapter, we will focus on advanced topics. The chapter is divided into three basic parts. In
the first part we will take a whirlwind tour of R's many functions for mathematical, statistical,
and character manipulation. In order to give this section relevance, we begin with a data
management problem that can be solved using these functions. After covering the functions
themselves, we will look at one possible solution to the problem we raised.

In the second part we will look at how we can write our own functions to accomplish data
management and analysis tasks. First, we will look at ways of controlling program flow,
including looping and conditional statement execution. Then we will look at the structure of
user-written functions and how to invoke them once created.

In the third part, we will look at ways of aggregating and summarizing our data, along
with methods of reshaping and restructuring our datasets. When aggregating data, we can
specify the use of any appropriate built-in or user-written function to accomplish the
summarization, so the topics we learned in the first two parts of the chapter will provide real
benefit.

Finally, we will pause for a well deserved rest.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

4.1 A data management challenge

In order to motivate our discussion of numerical and character functions, we will start with a
data management problem. A group of students have taken exams in Math, Science and
English. We want to combine these scores in order to determine a single performance
indicator for each student. Additionally, we want to assign an “A” to the top 20% of students,
“B” to the next 20%, etc. Finally, we want to sort the students alphabetically. The data are
presented in table 4.1.

Table 4.1 Student exam data

Student Math Science English
John Davis 502 95 25
Angela Williams 600 99 22
Bullwinkle Moose 412 80 18
David Jones 358 82 15
Janice Markhammer 495 75 20
Cheryl Cushing 512 85 28
Reuven Ytzrhak 410 80 15
Greg Knox 625 95 30
Joel England 573 89 27
Mary Rayburn 522 86 18

Looking at this dataset, several obstacles are immediately evident. First, scores on the
three exams are not comparable. They have widely different means and standard deviations,
so simply averaging them does not make sense. We must transform the exam scores into
comparable units before combining them. Second, we will need a method of determining a
student's percentile rank on this score, in order to assign a grade. Third, there is single field
for name, complicating the task of sorting students. We will need to break apart their names
into first name and last name in order to sort them properly.

Each of these tasks can be accomplished through the judicious use of R's numerical and
character functions. After we work through the functions described next section, we will
consider a possible solution to this data management challenge.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

4.2 Numerical and character functions

In this section we will review functions in R that can be used as the basic building blocks for
manipulating data. We can divide them into numerical (mathematical, statistical, probability)
and character functions. After we review each type, we will look at how to apply functions to
the columns (variables) and rows (observations) of matrices and dataframes.

4.2.1 Mathematical functions

Table 4.2 lists common mathematical functions along with short examples.

Table 4.2 Mathematical functions

Function Description
abs(x) Absolute value
abs(-4) is4
sqrt(x) Square root
sqrt(25) is5
ceiling(x) Smallest integer not less than x
ceiling(3.475) is4
floor(x) Largest integer not greater than x
floor(3.475) is3
trunc(x) Integer formed by truncating values in x toward 0O

round(x, digits=n)

signif(x, digits=n)

cos(x), sin(x), tan(x)

acos(x), asin(x), atan(x)

cosh(x), sinh(x), tanh(x)

acosh(x), asinh(x), atanh(x)

log(x,base=n)

trunc(5.99) is5

Round x to the specified number of decimal places
round(3.475, digits=2) is 3.48

Round x to the specified number of significant digits
signif(3.475, digits=2) is 3.5

Cosine, sine, and tangent
cos(2) is-0.416

Arc-cosine, arc-sine, and arc-tangent
acos(-0.416) is2

Hyperbolic cosine, sine, and tangent
sinh(2) is 3.627

Hyperbolic arc-cosine, arc-sine, and arc-tangent
asinh(3.627) is2

Logarithm of X to the base n

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

log(x) For convenience

log10(x) log(x) s the natural logarithm
log1l0(x) is the common logarithm
log(10) is 2.3026
log10(10) is1

exp(x) Exponential function
exp(2.3026) is 10

Data transformation is one of the primary uses for these functions. For example, we often
transform positively skewed variables such as income to a log scale before further analyses.
Mathematical functions will also be used as components in formulas, in plotting functions
(e.g., x vs. sin(x)) and in formatting numerical values prior to printing.

4.2.2 Statistical Functions
Common statistical functions are presented in table 4.3. Many of these functions have
optional parameters that affect the outcome. For example

y <- mean(x)
provides the arithmetic mean of the elements in object x, while

z <- mean(x, trim = 0.5, na.rm=TRUE)

provides the trimmed mean, dropping the highest and lowest 5% of scores and any missing
values. Use the help function to learn more about each function and its arguments.

Table 4.3 Statistical functions

Function Description
mean(x) Mean

mean(c(1,2,3,4)) is 2.5
median(x) Median

median(c(1,2,3,4)) is2.5

sd(x) Standard deviation
sd(c(1,2,3,4) is 1.29
var(x) Variance
variance (c(1,2,3,4)) is 1.67
mad(x) Median absolute deviation
mad(c(1,2,3,4)) is 1.48

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

quantile(x, probs)

range(x)

sum(x)

diff(x, lag=1)

min(x)

max(x)

scale(x, center=TRUE, scale=TRUE)

Quantiles where X is the numeric vector whose
quantiles are desired and probs is a numeric
vector with probabilities in [0,1].

30th and 84th percentiles of x

y <- quantile(x, c(.3,.84))

Range

x<-¢(1,2,3,4)
range(x) isc(l,4)
diff(range(x)) is 3

Sum
sum(c(1,2,3,4) is 10

Lagged differences, with lag indicating which lag to
use. The default lag is 1.

x<-c(1, 5, 23, 29)

diff(x) is c(4,18,6)

Minimum
min(c(1,2,3,4))is1
Maximum

max(c(1,2,3,4) is 4

Column center (center=TRU E) or standardize
(center=TRUE, scale=TRU E) data object x.
An example is given in listing 4.2.

To see these functions in action, look at listing 4.1. Here we demonstrate two ways to

calculate the mean and standard deviation of a vector of numbers.

Listing 4.1 Calculating the mean and standard deviation

>x <-¢(1,2,3,4,5,6,7,8)
> mean(x)

[1]14.5
> sd(x)
[1] 2.449490

> # same thing the hard way
> n <- length(x)

> meanx <- sum(x)/n

> ¢ss <- sum((x - meanx)**2)
> sdx <- sgrt(css / (n-1))

> meanx

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

[1]4.5
> sdx

[1] 2.449490

#1 It is instructive to view how the corrected sum of squares (css) is calculated step by
step:

19.x equalsc(1, 2,3,4,5,6,7,8) and meanx equals 4.5

20. (x—meanx) subtracts 4. 5 from each element of X resulting in
c(-3.5,-2.5,-1.5,-0.5,0.5, 1.5, 2.5, 3.5)

21.(x—meanx)** 2 squares each element of (X - meanx) resulting in
c(12.25, 6.25, 2.25, 0.25, 0.25, 2.25, 6.25 12.25)

22.sum((x-meanx)**2) sums each of the elements of (X- meanx)**2) resulting in 42

Writing formulas in R has much in common with matrix manipulation languages such as
MATLAB (we will look more specifically at solving matrix algebra problems in appendix E).

By default, the scale function standardizes the columns of a matrix or dataframe to a
mean of zero and a standard deviation of one. To standardize each column to an arbitrary
mean and standard deviation you could use code similar to listing 4.2.

Listing 4.2 Standardizing the columns of a dataset

standardize columns of a dataset to mean=0 and st andard deviation=1
newdata <- scale(mydata)

standardize columns of a dataset to an arbitrary
mean M and standard deviation SD
newdata <- scale(mydata)*SD + M

We will use this approach as one step in solving our learning example (section 4.2.7).

4.2.3 Probability Functions
You may wonder why probability functions are not listed with the statistical functions above
(it was really bothering you, wasn't it?). Although probability functions are statistical by
definition, they are unique enough to deserve their own section. Probability functions are
often used to generate simulated data with known characteristics and to calculate probability
values within user written statistical functions.

In R, probability functions take the form

[dpgr]distribution_abbreviation
where the first letter refers to the aspect of the distribution returned:

d= density

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

p = distribution function
g = quantile function
r=r andom generation (random deviates)

The common probability functions are listed in table 4.4.

Table 4.4 Probability distributions

Distribution Abbreviation Distribution Abbreviation
Beta beta Logistic logis
Binomial binom Multinomial multinom
Cauchy cauchy Negative binomial nbinom
Chi-Squared chisq Normal norm
(noncentral)

Exponential exp Poisson pois

F f Wilcoxon Signed Rank signrank
Gamma gamma T t
Geometric geom Uniform unif
Hypergeometric hyper Weibull weibull
Lognormal Inorm Wilcoxon Rank Sum wilcox

To see how these work, we will look at functions related to the normal distribution. If we
do not specify a mean and a standard deviation, the standard normal distribution is assumed
(mean=0, sd=1). Examples of the density (dnorm), distribution (pnor m, quantile (qnor m
and random deviate generation (rnorm) functions are given in table 4.5.

Table 4.5 Normal distribution functions

Problem Solution

Plot the standard normal curve on the interval [-3,3] X <- pretty(c(-3,3), 30)
(see below) y <- dnorm(x)
plot(x, y,
type =T,
xlab = Normal Deviate",
ylab = "Density",

yaxs ="i

)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Density
0.3

0.2

0.1

Normal Deviate

What is the area under the standard normal curve to the pnorm(1.96) equals 0.975
right of z = 1.96?

What is the value of the 90th percentile of a normal gnorm(.9, mean=500, sd=100)
distribution with a mean of 500 and a standard deviation equals 628.16

of 100?

Generate 50 random normal deviates with a mean of 50 rnorm(50, mean=50, sd=10)

and a standard deviation of 10.

Don't worry if the plot function options are unfamiliar. We will cover them in detail in later
chapters.

SETTING THE SEED FOR RANDOM NUMBER GENERATION

Each time we generate pseudo-random deviates, a different seed and therefore different
results, are produced. In order to make our results reproducible, we can specify the seed
explicitly, using the set.se ed function. An example is given in listing 4.3.

Listing 4.3 Generating pseudo-random numbers from a uniform distribution

> # generate 5 uniform random deviates

> runif(5)
[1] 0.8725344 0.3962501 0.6826534 0.3667821 0.92559 09
> runif(5)
[1] 0.4273903 0.2641101 0.3550058 0.3233044 0.65849 88

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

> set.seed(1234) 1
> runif(5)

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.86091 54

> set.seed(1234) 1
> runif(5)

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.86091 54

#1 By setting the seed manually, we are able to reproduce our results. This can be very
helpful in creating examples we can access at a future time and share with others.

GENERATING MULTIVARIATE NORMAL DATA

In simulation research and Monte Carlo studies, we often want to draw data from
multivariate normal distribution with a given mean vector and covariance matrix. The
mvrnor mfunction in the MASS package makes this easy. The function call is

mvrnorm(n, mean, sigma)

where n is the desired sample size, mean is the vector of means, and sigma is the variance-
covariance (or correlation) matrix. In listing 4.4 we will sample 500 observations from a 3-
variable multivariate normal distribution with

Mean Vector 230.7 146.7 3.6

Covariance Matrix 15360.8 6721.2 -47.1
6721.2 4700.9 -16.5
-47.1 -16.5 0.3

Listing 4.4 Generating data from a multivariate normal distribution

> mean <- ¢(230.7, 146.7, 3.6) 1
> sigma <- (¢(15360.8, 6721.2, -47.1, 2
6721.2, 4700.9, -16.5,
-47.1, -16.5, 0.3), nrow=4, nco 1=4)
> set.seed(1234) 3
> mydata <- mvrnorm(500, mean, sigma) 4
> mydata <- as.data.frame(mydata) 5
> names(mydata) <- c("y","x1","x2") 6
> dim(mydata 7
[1] 500 3
> head(mydata, n=10) 8
y x1 x2

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

98.8 41.24.33
244.5 205.2 3.57
375.7 186.7 3.66
-59.2 11.24.23
313.0111.02.92
288.8 185.14.14
134.8 165.0 3.69
171.7 97.43.80
167.3 101.0 3.99
0121.1 94.53.76

POoO~NOUWNE

In the listing above, we are generating 500 observations from a multivariate normal
distribution with a given #1 mean vector, and #2 variance-covariance matrix. Since a
correlation matrix is a covariance matrix too, we could have specified the correlations
structure directly here. We have # 3 set a random number seed so that we can reproduce our
results later. We #4 generate the pseudo-random data, #5 convert it to a dataframe from a
matrix, and #6 name the variables. Finally, we #7 confirm that we have 500 observations
and 3 variables, and # 8 print out the first 10 observations.

The probability functions in R allow us to generate simulated data, sampled from
distributions with known characteristics. Statistical methods that rely on simulated data have
grown exponentially in recent years and we will see several examples of these in later
chapters.

4.2.4 Character functions

While mathematical and statistical functions operate on numerical data, character functions
extract information from textual data, or reformat textual data for printing and reporting. For
example, we may want to concatenate a person’s first name and last name, ensuring that
the first letter of each is capitalized. Or we may want to count the instances of obscenities in
open ended feedback. Some of the most useful character functions are listed in table 4.6.

Table 4.6 Character Functions

Function Description

nchar(x) Counts the number of characters of x
x <- c(“ab”, “cde”, “fghij”)
length(x) is 3

nchar(x[3]) is5
substr(x, start, stop) Extract or replace substrings in a character vector.
x <- "abcdef"
substr(x, 2, 4) is bed”
substr(x, 2, 4) <- "22222 "is
"a222ef"
grep(pattern, x, ignore.case=FALSE, Search for patter n in x. If fixed=FALS E then

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

fixed=FALSE)

sub(pattern, replacement, x,
ignore.case=FALSE, fixed=FALSE)

strsplit(x, split)

paste(..., sep="")

toupper(x)

tolower(x)

pattern is a regular expression. If fixed=TRU E
then pattern is a text string. Returns matching
indices.

grep("A", c("b","A","c"),

fixed=TRUE) returns 2

Find pattern in X and substitue with
replacement text. If fixed =FALSE then
pattern is a regular expression. If fixed=TRU E
then pattern is a text string.

sub("\s",".","Hello There") returns
Hello.Ther e

Split the elements of character vector x at split
strsplit("abc", ™) returns
c("a""b" e)

Concatenate strings after using sep string to
separate them.

paste("x", 1:3, sep="") returns
c("x1", "x2", "x3")

paste("x",1:3,sep="M") returns
c("xM1","xM2" "xM3")

paste("Today is", date()) returns
Today is Thu Jun 25 14:17:32 201 1
(I changed the date to appear more current)

Uppercase
toupper("abc") returns "ABC"

Lowercase
tolower("ABC") returns "abc"

Note that the functions gr ep and sub can search for a text string (fixed=TRUE) or a
regular expression (fixed=FALSE). Regular expressions provide a clear and concise syntax
for matching a pattern of text. For example, the regular expression

Ahc]?at

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

http://regexlib.com/CheatSheet.aspx

matches any string that starts with zero or one occurrences of “h” or “c”, followed by
“at”. The expression therefore matches "hat", "cat", and "at", but not “bat”. To learn more,
see the regular expression entry in Wikipedia.

4.2.5 Other useful functions
The functions in table 4.7 are also quite useful for data management and manipulation, but
they don't fit cleanly into the other categories.

Table 4.7 Other useful functions

Function Description
length(x) Length of object x
x<-¢(2,5,6,9)
length(x) is4
seq(from , to, by) Generate a sequence
indices <- seq(1,10,2)
#indicesis c(1, 3,5, 7,9)
rep(x, ntimes) Repeat x n times
y <-rep(1:3, 2)
#yisc(1,2,3,1,2,3)
cut(x, n) Divide continuous variable x into factor with n levels

y <-cut(x, 5)

pretty(x, n) Create pretty breakpoints. Divides a continuous
variable X into n intervals, by selecting n+ 1
equally spaced rounded values. Often used in

plotting.

cat(...) Concatenates the objects in ... and outputs them
firstname <- c("Jane")
cat("Hello" , firstname, "\n")

The last example demonstrates the use of escape characters in printing. Use \n for new
lines, \t for tabs, and \' for a single quote, \b for backspace and so forth. For example, the
code:

name <- "Bob"
cat("Hello", name, "\b.\n", “Isn\'t R", "\t", "GRE AT?\n")

produces

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Hello Bob.
Isnt R GREAT?

Note that the second line is indented one space. When cat concatenates objects for output,
it separates each by a space. That is why we included the backspace (\b) escape character
before the period. Otherwise it would have produced "Hello Bob ."

How we apply the functions we have covered so far to numbers, strings, and vectors is
intuitive and straightforward, but how do we apply them to matrices and dataframes? That is
the subject of the next section.

4.2.6 Applying functions to matrices and dataframes

One of the interesting features of R functions is that they can be applied to a variety of data
objects (scalars, vectors, matrices, arrays, and dataframes). An example is given in listing
4.5.

Listing 4.5 Apply functions to data objects

>a<-5
> sqrt(5)

[1] 2.236068

> b <-¢(1.243, 5.654, 2.99)
> round(b)

[1]163
> log(c)

L1 [2] [3] [4]
[1,] 0.0000000 1.386294 1.945910 2.302585
[2,] 0.6931472 1.609438 2.079442 2.397895
[3,] 1.0986123 1.791759 2.197225 2.484907
> mean(c)

[1] 6.5

Notice that the mean of matrix ¢ in the example above results in a scalar (6.5). The mean
function took the average of all 12 elements in the matrix. But what if we wanted the 3 row
means or the 4 column means?

R provides a function named apply that allows us to apply an arbitrary function to any
dimension of a matrix, array, or dataframe. The format for the apply function is

apply(x, MARGIN, FUN, ...)

where X is our data object, MARGN is the dimension index, FUNis a function we specify,
and . . . are any parameters we want to pass to FUN In a matrix or dataframe

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

MARGIN=1 indicates rows and MARGIN=2 indicates columns. Let's take a look at the
examples in listing 4.6.

Listing 4.6 Applying a function to the rows (columns) of a matrix

> # create some data
> mydata <- matrix(rnorm(30), nrow=6)
> mydata

L1 [2] [3] [4] [5]
[1,] 1.138-1.413-0.187 0.9849 -0.788
[2,] 0.475 1.318-0.246 -1.0987 0.504
[3,] 1.444-0.174 2.269 0.4378 0.195
[4,] -0.631 0.493 1.179 -0.4615 2.645
[5,] -0.458 0.180-0.760 0.0759 -0.577
[6,] 0.485 0.158 0.369 -0.1272 0.669

> apply(mydata, 1, mean) 1
[1] -0.0531 0.1905 0.8344 0.6448 -0.3078 0.3106

> apply(mydata, 2, mean) 2
[1] 0.4088 0.0936 0.4372-0.0315 0.4415

> apply(mydata, 2, mean, trim=.4) 3

[1] 0.4799 0.1689 0.0906 -0.0256 0.3495

In #1, we are calculating the 6 row means. In #2 we get the 5 column means. Finally, in
#3, we get the column means, but this time we pass the option tr i m=0.4 to the mean
function, resulting in trimmed means.

Since FUN can be any R function, including a function that we write ourselves (see section
4.4), apply is a very powerful mechanism. While apply applies a function over the
margins of an array, lapp |y and sapply apply a function over a list. We will see an
example of sapply (which is actually a user-friendly version of lappy) in the next section.

We now have all the tools we need to solve the data challenge in section 4.1, so let's give
it atry.

4.3 A solution for our data management challenge

Our challenge from section 4.1 is to combine subject test scores into a single performance
indicator for each student, grade each student from A to F based on their relative standing
(top 20%, next 20%, etc.), and sort the roster students last name, followed by first name. A
solution is given in listing 4.7.

Listing 4.7 A solution to the learning example

tranform student roster
options(digits=2)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

obtain performance scores
z <- scale(roster[,2:4])

score <- apply(z, 1, mean)
roster <- chind(roster, score)

grade students

y <- quantile(score, c(.8,.6,.4,.2))
roster$grade[score >= y[1]] <- "A"
roster$grade[score < y[1] & score >= y[2]] <- "B"
roster$grade[score < y[2] & score >=y[3]] <- "C"
roster$grade[score < y[3] & score >= y[4]] <- "D"
roster$grade[score < y[4]] <- "F"

extract first and last name

name <- strsplit((roster$Student), " ")
lastname <- sapply(name, "[*, 2)

firstname <- sapply(name, "[", 1)

roster <- chbind(firstname,lastname, roster[,-1])

sort by last and first name
roster <- roster[order(lastname,firstname),]

display results

> roster
Firsthname Lastname Math Science English score grade

6 Cheryl Cushing 512 85 28 0.35 C
1 John Davis 502 95 25 0.56 B
9 Joel England 573 89 27 0.70 B
4 David Jones 358 82 15-1.16 F
8 Greg Knox 625 95 30 1.34 A
5 Janice Markhammer 495 75 20-0.63 D
3 Bullwinkle Moose 412 80 18-0.86 D
10 Mary Rayburn 522 86 18-0.18 C
2 Angela Wiliams 600 99 22 0.92 A
7 Reuven Ytzrhak 410 80 15-1.05 F

The code is dense so let's walk through the solution step by step.

Stepl. The original student roster is given below. The options(digits=3) just limits the
number of digits printed after the decimal place and makes the printouts easier to read.

> options(digits=3)
> roster

Student Math Science English
1 John Davis 502 95 25
2 Angela Wiliams 600 99 22
3 Bullwinkle Moose 412 80 18
4 David Jones 358 82 15
5 Janice Markhammer 495 75 20
6 Cheryl Cushing 512 85 28
7 Reuven Ytzrhak 410 80 15

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

8 Greg Knox 625 95 30
9 Joel England 573 89 27
10 Mary Rayburn 522 86 18

Step 2. Since the Math, Science, and English tests are reported on different scales (with
widely differing means and standard deviations), we need to make them comparable before
combining them. One way to do this is to standardize the variables so that each test is
reported in standard deviation units, rather than in their original scales. We can do this with
the scale function.

> z <- scale(roster[,2:4])
>z

Math Science English
[1,] 0.013 1.078 0.587
[2,] 1.143 1.591 0.037
[3,]-1.026 -0.847 -0.697
[4,]-1.649 -0.590 -1.247
[5,]-0.068 -1.489 -0.330
[6,] 0.128 -0.205 1.137
[7,]-1.049 -0.847 -1.247
[8,] 1.432 1.078 1.504
[9,] 0.832 0.308 0.954
[10,] 0.243 -0.077 -0.697

Step 3. We can then get a performance score for each student by calculating the row
means using the mean function and add it to the roster using the cbind function.

> score <- apply(z, 1, mean)
> roster <- chind(roster, score)
> roster
Student Math Science English score
John Davis 502 95 25 0.559
Angela Williams 600 99 22 0.924
Bullwinkle Moose 412 80 18-0.857
David Jones 358 82 15-1.162
Janice Markhammer 495 75 20-0.629
Cheryl Cushing 512 85 28 0.353
Reuven Ytzrhak 410 80 15-1.048
Greg Knox 625 95 30 1.338
Joel England 573 89 27 0.698
0 Mary Rayburn 522 86 18-0.177

P OO~NOUWNE

Step 4. The quantile function will give us the percentile rank of each student's
performance score. We see that the cutoff for an Ais .74, for a B is .44, and so on.

>y <- quantile(roster$score, c(.8,.6,.4,.2))
>y

80% 60% 40% 20%

0.74 0.44-0.36 -0.89

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Step 5. Using logical operators, we can recode students' percentile ranks into a new
categorical grade variable. This creates variable grad e, in the roste r dataframe.

> roster$grade[score >= y[1]] <- "A"

> roster$grade[score < y[1] & score >= y[2]] <- "B"
> roster$grade[score < y[2] & score >= y[3]] <- "C"
> roster$grade[score < y[3] & score >= y[4]] <- "D"
> roster$grade[score < y[4]] <- "F"

> roster

Student Math Science English score gr ade
1 John Davis 502 95 25 0.559 B
2 Angela Wiliams 600 99 22 0.924 A
3 Bullwinkle Moose 412 80 18-0.857 D
4 David Jones 358 82 15-1.162 F
5 Janice Markhammer 495 75 20 -0.629 D
6 Cheryl Cushing 512 85 28 0.353 C
7 Reuven Ytzrhak 410 80 15-1.048 F
8 Greg Knox 625 95 30 1.338 A
9 Joel England 573 89 27 0.698 B
10 Mary Rayburn 522 86 18-0.177 C

Step 6. We will use the st r split function to break student names into first name and
last name at the space character. Applying strsplit to a vector of strings, returns a list.

> name <- strsplit((roster$Student), " ")
> name

(11
[1] "John" "Davis"

[[21]
[1] "Angela" "Williams"

(311
[1] "Bullwinkle" "Moose"

([41]

[1] "David" "Jones"

(1]

[1] "Janice" "Markhammer"

[[61]
[1] "Cheryl" "Cushing"

(7n
[1] "Reuven" "Ytzrhak"

(81
[1] "Greg" "Knox"

(1
[1] "Joel" "England"

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

[[10]]
[1] "Mary" "Rayburn"

Step 7. We can use the sapply function to take the first element of each component and
put it in a firstname vector, and the second element of each component and put it in a
lastname vector. We will use chind to add them to the roster. Since we no longer need the
student variable, we will drop it (with the -1 in the roster index).

> Firstname <- sapply(name, "[", 1)

> Lastname <- sapply(name, "[", 2)
> roster <- cbind(firsthame,lastname, rosterf,-1])

> roster
Firstname Lastname Math Science English scor e grade

1 John Davis 502 95 25 0.55 9 B
2 Angela Wiliams 600 99 22 0.92 4 A
3 Bullwinkle Moose 412 80 18-0.85 7 D
4 David Jones 358 82 15-1.16 2 F
5 Janice Markhammer 495 75 20-0.62 9 D
6 Cheryl Cushing 512 85 28 0.35 3 C
7 Reuven Ytzrhak 410 80 15-1.04 8 F
8 Greg Knox 625 95 30 1.33 8 A
9 Joel England 573 89 27 0.69 8 B
10 Mary Rayburn 522 86 18-0.17 7 C

Step 8. Finally, we can sort the dataset by first and last name using the order function.
> roster[order(Lastname,Firstname),]

Firstname Lastname Math Science English score grade
Cheryl Cushing 512 85 28 0.35
John Davis 502 95 25 0.56
Joel England 573 89 27 0.70
David Jones 358 82 15-1.16
Greg Knox 625 95 30 1.34

Janice Markhammer 495 75 20-0.63
Bullwinkle Moose 412 80 18-0.86
0 Mary Rayburn 522 86 18-0.18
Angela Williams 600 99 22 0.92
Reuven Ytzrhak 410 80 15-1.05

NNPRP WA oONORO®
T>O00>TMITTO

Voila! Piece of cake!

There are many other ways to accomplish these tasks, but this code helps capture the
flavor of these functions. Now it is time to look at control structures and user-written
functions.

4.4 Control flow

In the normal course of events, the statements in an R program are executed sequentially
from the top of the program to the bottom. However, there are times that we will want to

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

execute some statements repetitively, while only executing other statements if certain
conditions are met. This is where control-flow constructs come in.

R has the standard control structures you would expect to see in a modern programming
language. First we will go through the constructs used for conditional execution, followed by
the constructs used for looping.

In the syntax examples throughout this section

= statement is a single R statement or a compound statement (a group of R
statements enclosed in curly braces { } and separated by semicolons).

= cond is an expression that resolves to TRUE or FALSE
= expr is a statement that evaluates to a number or character string
= seq is a sequence of numbers or character strings

After we discuss control-flow constructs, we will look at writing our functions.

4.4.1 Repetition and looping

Looping constructs repetitively execute a statement or series of statements until a condition
is not true. These include the for and while structures.

FoRrR
The for loop executes a statement repetitively until a variable's value is no longer contained
in the sequence seq . The syntax is

for (var in seq) statement

In following example

for (i in 1:10) print("Hello")

the word Hello is printed 10 times.

WHILE
A while loop executes a statement repetitively until the condition is no longer TRUE. The
syntax is

while (cond) statement

In our second example, the code

i=10
while (i > 0) {print("Hello"); i <-i- 1}

once again prints the word Hello 10 times.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Looping in R can be inefficient and time consuming when processing the rows or column
of large datasets. Whenever possible, it is better to use R's built-in numerical and character
functions in conjunction with the apply family of functions.

4.4.2 Conditional execution
In conditional execution, a statement or statements is only executed if a specified condition
is met. These constructs include if-els e, ifels e, and switch

IF-ELSE
The if-el se control structure executes a statement if a given condition is TRLE.
Optionally, a different statement is executed if the condition is FALSE. The syntax is

if (cond) statement
if (cond) statementl else statement2

Here is an example.
if (score > 90) grade ="'A"
if (gender=="M") print("This is a man") else print("This is a woman")

In the first instance, the grade assignment is only made if the value of score is greater than
90. In the second instance, one of two statements is executed. If gender is equal to "M" then
the first statement is executed. If not, the second statement is executed.

IFELSE
The ifelse construct is a compact version of the if-else construct we have seen above. The
sytax is

ifelse(cond, statementl, statement2)

The first statement is executed if cond is TRUE If cond is FALSE the second statement is
executed. Here is an example.

ifelse (score > 50, outcome <- "passed", outcome < - "failed")

We use ifel se when we want to take a binary action.

SWITCH
Switch chooses statements based on the value of the expression. The syntax is

switch(expr, ...)

where the . .. are statements tied to the possible outcome values of expr . It is easiest
to understand how switc h works with by looking at an example. An example is given in
listing 4.8.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Listing 4.8 A switch example

> feelings <- c("sad", "afraid")
> for (i in feelings)
print(
switch(i,
happy ="l am glad you are happy",
afraid = "There is nothing to fear",
sad ="Cheerup",
angry = "Calm down now"
)
)

[1] "Cheer up"
[1] "There is nothing to fear"

This is a silly example but shows the main features. We will see how to use switch a user-
written functions in the next section.

4.5 User-written functions

One of R's great strengths is the user's ability to add functions. In fact, many of the
functions in R are actually functions of existing functions. The structure of a function
is given below.

myfunction <- function(argl, arg2, ... {
statements
return(object)

Objects in the function are local to the function. The object returned can be any data type
from scalar to list. Let's take a look at an example.

We would like to have a function that calculates the central tendency and spread of data
objects. The function should give us a choice between parametric (mean and standard
deviation) and nonparametric (median and median absolute deviation) statistics. The results
should be returned as a named list. Additionally, the user should have the choice of
automatically printing the results or not. Unless unwise specified, the function's default
behavior should be to calculate parametric statistics and not print the results. One solution is
given in listing 4.9.

Listing 4.9 mystats: a user-written function for summary statistics

mystats <- function(x, parametric=TRUE, print=FALSE){
if (parametric) {
center <- mean(x); spread <- sd(x)
}else {
center <- median(x); spread <- mad(x)

if (print & parametric) {
cat("Mean=", center, "\n", "SD=", spread, "\n")

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

} else if (print & !parametric) {
cat("Median=", center, "\n", "MAD=", spread, "\ n")

result <- list(center=center, spread=spread)
return(result)

Now that we have our function, let's see it in action (listing 4.10).

Listing 4.10 mystats in action

create some data (random sample from a normal dis tribution)
set.seed(1234)
X <- rnorm(500)
y <- mystats(x)

no output is produced
y$center is the mean (0.001838821)
y$spread is the standard deviation (1.034814)

y <- mystats(x, parametric=FALSE, print=TRUE)

Median = -0.02070734
MAD = 1.000984

y$center is the median (-0.02070734)
y$spread is the median absolute deviation (1.0009 84)

Next, let's look at a user-written function that uses the switch construct (listing 4.11).
This function gives the user a choice regarding the format of today's date. The long format is
specified as the default.

Listing 4.11 mydate: a user-written function using switch

mydate <- function(type="long") {
switch(type,
long = format(Sys.time(), "%A %B %d %Y"),
short = format(Sys.time(), "%m-%d-%y"),
cat(type, "is not a recognized type\n") 1

}

Here is the function in action:
> mydate("long")

[1] "Saturday July 25 2009"

> mydate("short")

[1] "07-25-09"

> mydate()

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

[1] "Saturday July 25 2009"
> mydate("medium")

medium is not a recognized type

#1 Note that the cat function is only executed if the entered type does not match "long"
or "short". It is usually a good idea to have an expression that catches user supplied
arguments that have been entered incorrectly.

There are several functions than can help add error trapping and correction to your
functions. You can use the function warni ng to generate a warning message, message to
generate a diagnostic message, and sStop to stop execution of the current expression and
carry out an error action. See each function's online help for more details.

After creating our own functions, we may want to make them available in every session.
Appendix B describes how to customize the R environment so that our functions are loaded
automatically at start-up. We will look at additional examples of user-written functions in
chapters 5 and 7.

We can accomplish a great deal using the basic techniques provided in this section.
However, if you would like to explore the subtleties of function writing, or would like to write
professional level code that you can distribute to other, | would recommend two excellent
books:

= Venables, W. N., & Ripley, B. D. (2000). S Programming. New York: Springer.

= Chambers, J. M. (2008). Software for data analysis: Programming with R. New
York: Springer.
Together, they provide a level of detail, and breadth of examples that goes well beyond
what is possible in the current text.
Now that we have covered user-written functions, we will end this chapter with a
discussion of data aggregation and reshaping.

4.6 Aggregation and restructuring

R provides a number of powerful methods for aggregating and reshaping data. When we
aggregate data, we replace groups of observations with summary statistics based on those
observations. When we reshape data, we alter the structure (rows and columns) determining
how the data is organized. This section will describe a variety of methods for accomplishing
these tasks.

In the next two sections, we will use the nt cars dataframe that is included with the base
installation of R. This dataset, extracted from Motor Trend magazine (1974), describes the
design and performance characteristics (number of cylinders, displacement, horsepower,
mpg, etc.) for 34 automobiles. To learn more about the dataset, see help(mtcars).

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

4.6.1 Transpose

The transpose (reversing rows and columns) is perhaps the simplest method of reshaping a
dataset. Use the t function to transpose a matrix or a dataframe. In the later case, row
names become variable (column) names. An example is presented in listing 4.12.

Listing 4.12 Transposing a dataset

> cars <- mtcars[1:5,1:4] 1
> cars

mpg cyl disp hp
Mazda RX4 21.0 6 160 110
Mazda RX4 Wag 21.0 6 160110
Datsun 710 22.8 4 108 93
Hornet 4 Drive 21.4 6 258 110
Hornet Sportabout 18.7 8 360 175

> t(cars)
Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Dr ive Hornet Sportabout
mpg 21 21 22.8 2 14 18.7
cyl 6 6 4.0 6.0 8.0
disp 160 160 108.0 25 8.0 360.0
hp 110 110 93.0 11 0.0 175.0

#1 We are using a subset of the mtcars dataset in order to conserve space on the page. We
will see a more flexible way of transposing data when we look at the shape package later in
this section.

4.6.2 Aggregating data

It is relatively easy to collapse data in R using one or more BY variables and a defined
function. The format is

aggregate(x, by, FUN)

where X is the data object to be collapsed, by is a list of variables that will be crossed to
form the new observations, and FUN is the scalar function used to calculate summary
statistics that will make up the new observation values.

As an example, we will aggregate the nt cars data by number of cylinders and gears,
returning means on each of the numeric variables (see listing 4.13).

Listing 4.13 Aggregating data

> options(digits=3)
> attach(mtcars)

> aggdata <-aggregate(mtcars, by=list(cyl,gear), FU N=mean, na.rm=TRUE)
> aggdata

Group.1 Group.2 mpg cyl disp hp drat wt gsec vs amgearcarb 1
1 4 3215 4 120 97 3.70 2.46 20.0 1.00.00 31.00

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

2 6 319.8 6 2421082.923.3419.8 1.00.00 31.00
3 8 315.1 8 3581943.124.1017.1 0.00.00 33.08
4 4 426.9 4 103 764.11 2.38 19.6 1.00.75 4150
5 6 419.8 6 164116 3.913.09 17.7 0.50.50 44.00
6 4 528.2 4 108 1024.101.8316.8 0.51.00 52.00
7 6 519.7 6 1451753.622.77 15.5 0.01.00 56.00
8 8 515.4 8 326 300 3.88 3.37 14.6 0.01.00 56.00

#1 In these results, Group.l represents the number of cylinders (4,6, or 8) and Group.2
represents the number of gears (3, 4, or 5). For example, cars with 4 cylinders and 3 gears
have get a mean of 21.5 miles per gallon (mpg).

When using the aggregate function, the by variables must be in a list (even if there is
only one). The function specified can be any built-in or user provided function. This gives the
aggregate command a great deal of power. But when it comes to power, nothing beats the
reshap e package.

4.6.3 The reshape package

The reshape package is a tremendously versatile approach to both restructuring and
aggregating datasets. Because of this versatility, it can be a bit challenging to learn. We will
go through the process slowly and use a very small dataset so that it is clear what is
happening. Since reshap e is not included in the standard installation of R, we will need to
install it one time, using in stall.packages("reshape”).

Basically, we will "melt" data so that each row is a unique id-variable combination. Then
we "cast" the melted data into any shape we desire. During the cast, we can aggregate the
data with any function we wish.

The dataset we will be working with is in table 4.5.

Table 4.5 The original dataset (mydata)

ID Time X1 X2
1 1 5 6
1 2 3 5
2 1 6 1
2 2 2 4

In this dataset, the measurements are the values are the values in the last two columns
(5, 6, 3,5, 6,1, 2, and 4). Each measurement is uniquely identified by a combination of id
variables (in this case ID, Time, and whether the measurement is on X1 or X2). For example,
the measured value 5 in the first row is uniquely identified by knowing that it is from
observation (ID) 1, at Time 1, and on variable X1.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

MELTING

When we melt a dataset, we restructure it into a format where each measured variable is in
its own row, along with the id variables needed to uniquely identify it. If we melt the data
from table x.x, using the following code

Library(reshape)
md <- melt(mydata, id=(c("id", "time"))

we end up with the structure given in table 4.6.

Table 4.6 The melted dataset

ID Time Variable Value
1 1 X1 5
1 2 X1 3
2 1 X1 6
2 2 X1 2
1 1 X2 6
1 2 X2 5
2 1 X2 1
2 2 X2 4

Note that we have specified the variables needed to uniquely identify each measurement
(ID and Time) and that the variable indicating the measurement variable names (X1 or. X2)
is created for us automatically.

Now that we have our data in a melted form, we can recast it into any shape, using the
cast function.

CAsST
The cast function starts with melted data and reshapes using the it using a formula that we
provide, and an (optional) function used to aggregate the data. The format is

newdata <- cast(md, formula, FUN)

where mdis the melted data, formul a describes the desired end result, and FUNis the
(optional) aggregating function. The formula takes the form

rowvarl + rowvar2 + ... ~ colvarl + colvar2 + ...

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

In this formula, rowvarl + rowvar2 + ... define the set of crossed variables that define
the rows, while colvarl + colvar2 + .. define the set of crossed variables that
define the columns. This is easiest to see by looking at the examples in figure 4.1.

Reshaping a Dataset

With Aggregation Without Aggregation
mydata
D Time X1 X2 cast(md, id+time~variable)
1 1 5 6
ID Time X1 X2
1 2 3 5
_ _ 1 1 5 6
cast(md, id~variable, mean) 2 1 6 1
1 2 3 5
1 4 5.5 2 2 2 4
2 4 2.5
(d)

(a)

md <- melt(mydata, id=c("id", "time")) cast(md, id+variable~time)

cast(md, time~variable, mean) D Time Variable Value D Variable Timel Time 2
1 5.5 35 1 2 X1 3 1 X2 6 5
2 25 45 2 1 X1 6 2 X2 6 2
(b) ™~ 2 2 X1 2 / 2 x2 1 4
1 1 X2 6 (e)
1 2 X2 5
cast(md, id~time, mean) / 2 1 x2 1 \ cast(md, id~variable+time)
ID X1 X1 X2 X2
1 55 4 Timel Time2 Timel Time2
2 35 3 1 5 3 6 5
2 6 2 1 4

(c)
(f)

Figure 4.1 Reshaping data with the melt and cast functions

Since the formulas on the right side (d, e, and f) do not include a function, the data is
simply reshaped. In contrast, the examples on the left side (a, b, and c) specify the mean as
an aggregating function. Thus the data are not only reshaped but aggregated. For example
(a) gives the means on X1 and X2 averaged over time for each observation. Example (b)
gives the mean scores of X1 and X2 at Time 1 and Time 2, averaged over observations. In
(c) we have the mean score for each observation at Time 1 and Time 2, averaged over X1
and X2. As you can see, the flexibility of the reshap e functions is amazing.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

4.7 Summary

In this chapter, we have reviewed dozens of mathematical, statistical, and probability
functions that are useful for manipulating data. We have seen how to apply these functions
to a wide range of data objects, including vectors, matrices, and dataframes. We have
learned to use control-flow constructs for looping and branching to execute some statements
repetitively and execute other statements only when certain conditions are met. We then had
a chance to write our own functions and apply them to data. Finally, we have explored ways
of collapsing, aggregating, and restructuring our data.

Now that we have gathered the tools we need to get our data into shape (no pun
intended), we are ready to bid Part | goodbye for now, and enter the exciting world of data
analysis! In the next chapter, we will begin to explore the many statistical methods available
for turning data into understanding.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Basic Statistics

This Chapter covers:
= Descriptive statistics
= Frequency and contingency tables
= Correlations and covariances
= t-tests
= Nonparametric statistics

In previous chapters, we have seen how to import data into R and use a variety of functions
to organize and transform the data into a useful format. Our next step will be to examine the
distribution of each variable collected, followed by an exploration of the relationships among
the variables two at a time. The goal of the present chapter is to describe how to accomplish
these tasks in R.

First we will look at measures of location and scale for quantitative variables. Then we will
look at frequency and contingency tables (and associated Chi-square tests) for categorical
variables. Next, we will examine the various forms of correlation coefficients available for
continuous and ordinal variables. Finally, we will turn to a study of group differences via both
parametric (t-tests) and nonparametric (Mann-Whitney U test, Kruskal Wallis test) methods.
Although our focus is on numerical results, accompanying graphical methods for visualizing
these results will be described throughout.

5.1 What you need to know

In this chapter, we apply R programming techniques to the statistical methods typically
taught in a first year undergraduate statistics course. If these methodologies are unfamiliar,

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

two excellent references are McCall (2000), and Snedecor & Cochran (1989). Alternatively,
there are many informative resources available online (e.g. Wikipedia) for each of the topics
covered.

Whenever possible, we have separated the discussion of statistical methods and graphical
methods into separate chapters, with extensive cross-references between them. This allows
readers who are primarily interested in R as a language for creating graphs (and who may
have a less extensive statistical background) to focus on these aspects of the software. For
example, this chapter begins with statistical methods for summarizing data numerically,
while chapter 6 describes ways of presenting this information graphically. However, in some
later chapters (e.g., chapter 7), the statistical and graphical methods are so intertwined that
a separation will not be possible.

5.2 Descriptive statistics

In this section, we will look at measures of central tendency, variability, and distribution
shape for continuous variables. For illustrative purposes, we will use several of the variables
from the with the Motor Trend Car Road Tests (mtcar S) dataset we first saw in chapter 4.

> mt <- mtcars[c("mpg",
> head(mt)

mpg hp wtam
Mazda RX4 21.01102.62 1
Mazda RX4 Wag 21.01102.88 1
Datsun 710 228 93232 1
Hornet 4 Drive 21.41103.21 0
Hornet Sportabout 18.7 175 3.44 0
Valiant 18.11053.46 0

hp", "wt", "am")]

In this dataset, miles per gallon (mp), horse power (hp), and weight (wt) are
quantitative variables, and transmission (an) is a dichotomous variable coded O=automatic
and l=manual. We will use the am variable in section 5.2.2, when we look at generating
descriptive statistics for subgroups.

5.2.1 A menagerie of methods
When it comes to calculating descriptive statistics, R has an embarrassment of riches. Let's
start with functions that are included in the base installation. Then we will look at extensions
that are available through the use of user-contributed packages.

In the base installation, we can use the summary function to obtain descriptive statistics.
An example is presented in listing 5.1.

Listing 5.1 Descriptive statistics via sumrar y

> summary(mt)

mpg hp wt am
Min. :10.4 Min. :52.0 Min. :1.51 Min. :0.000
1st Qu.:15.4 1stQu.: 96.5 1stQu.:2.58 1st Qu.:0.000
Median :19.2 Median :123.0 Median :3.33 Medi an :0.000

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Mean :20.1 Mean :146.7 Mean :3.22 Mean :0.406
3rd Qu.:22.8 3rd Qu.:180.0 3rd Qu.:3.61 3rd Qu.:1.000
Max. :33.9 Max. :335.0 Max. :5.42 Max. :1.000

The summary function provides the minimum, maximum, quartiles, and the mean. We
can use the sapply or apply functions from chapter 4 to provide any descriptive statistics
we choose. For the sapply function, the format is

sapply(x, FUN)

where X is our dataframe (or matrix) and FUNis an arbitrary function. Typical functions that
we can plug in here are mean, sd, var, min, max, med range , and quanti |e. The
function fiv enum returns Tukey's five number summary (minimum, lower-hinge, median,
upper-hinge, and maximum).

Surprisingly, the base installation does not provide functions for skew and kurtosis, but
we can add our own. An example that provides several descriptive statistics, including skew
and kurtosis is given in listing 5.2.

Listing 5.2 Descriptive statistics via sappl y

> skew <- function(x)(sum((x-mean(x))**3/sqrt(var(x))**3)/length(x))
> kurtosis <- function(x)(sum((x-mean(x))**4/var(x) **2)/length(x) - 3)
> descript <- function(x)(c(mean=mean(x), stdev=sd(x), [CA

skew=skew(x), kurtosis=kurtosis(x))
> sapply(mt, descript)

mpg hp wt am
mean 20.091 146.688 3.2172 0.406
stdev 6.027 68.563 0.9785 0.499
skew 0.611 0.726 0.4231 0.364
kurtosis -0.373 -0.136 -0.0227 -1.925 1

#1 For cars in this sample, the mean mpg is 20.1, with a standard deviation of 6.0. The
distribution is skewed to the right (+0.61) and somewhat flatter than a normal distribution (-
0.37). This will be most evident when we graph the data in chapter 6.
EXTENSIONS

Several user-contributed packages offer functions for descriptive statistics, including
Hmisc, pastec s, and psych . Since these packages are not included in the base
distribution, you will need to install them on first use (see section 1.4).

The descri be function in the Hmisc package returns the number of variables and
observations, number of missing and unique values, mean, quantiles, and five highest and
lowest values. An example is provided in listing 5.3.

Listing 5.3 Descriptive statistics via descri be (Hri sc package)

> library(Hmisc)
> describe(mt)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

mt

4 Variables 32 Observations

mpg

n missing unique Mean .05 .10 .25 . 50 .75 .90 .95

32 0 25 20.09 12.00 14.34 15.43 19. 20 22.80 30.09 31.30
lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27 .330.432.433.9

hp

n missing unique Mean .05 .10 .25 . 50 .75 .90 .95
32 0 22 146.7 63.65 66.00 96.50 123. 00 180.00 243.50 253.55
lowest: 52 62 65 66 91, highest: 215 230 245 264 335

wt

n missing unigue Mean .05 .10 .25 . 50 .75 .90 .95
32 0 29 3.217 1.736 1.956 2.581 3.3 25 3.610 4.048 5.293
lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3. 845 4.070 5.250 5.345
5.424

am

n missing unigue Sum Mean
32 0 2 13 0.4062

The pastec s package offers a function named stat.d esc that provides a wide range of
descriptive statistics. The format is

stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0 .95)

If basic=TRU E (the default), the number of values, null values, missing values,
minimum, maximum, range and sum are provided. If desc=TRUE (also the default), the
median, mean, standard error of the mean, 95% confidence interval for the mean, variance,
standard deviation, and coefficient of variation are also provided. Finally, if norm=TRUE (not
the default), normal distribution statistics are returned, including skewness and kurtosis (and
their statistical significance), and the Shapiro-Wilks test of normality. The p value option is
used to calculate the confidence interval for the mean (.95 by default). An example is given
in listing 5.4.

Listing 5.4 Descriptive statistics via st at . desc (past ecs package)

> library(pastecs)
> stat.desc(mt)

mpg hp wt am
nbr.val 32.00 32.000 32.000 32.0000
nbr.null 0.00 0.000 0.000 19.0000
nbr.na 0.00 0.000 0.000 0.0000
min 10.40 52.000 1.513 0.0000

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

max 33.90 335.000 5.424 1.0000
range 23.50 283.000 3.911 1.0000

sum 642.90 4694.000 102.952 13.0000
median 19.20 123.000 3.325 0.0000
mean 20.09 146.688 3.217 0.4062

SE.mean 1.07 12.120 0.173 0.0882
Cl.mean.0.95 2.17 24.720 0.353 0.1799
var 36.32 4700.867 0.957 0.2490
std.dev 6.03 68.563 0.978 0.4990
coef.var 0.30 0.467 0.304 1.2283

As if this isn't enough, the psych package also has a function called describ e that
provides the number of non-missing observations, mean, standard deviation, median,
trimmed mean, median absolute deviation, minimum, maximum, range, skew, kurtosis, and
standard error of the mean. An example is given in listing 5.5.

Listing 5.5 Descriptive statistics via descr i be (psych package)

> library(psych)
Attaching package: ‘psych’

The following object(s) are masked from pac kage:Hmisc :
describe

> describe(mt)

n mean sdmediantrimmed mad min m ax range skew kurtosis
mpg 32 20.09 6.03 19.20 19.70 5.4110.40 33. 90 23.500.61 -0.37
hp 32 146.69 68.56 123.00 141.19 77.10 52.00 335. 00 283.000.73 -0.14
wt 32 3.22 0.98 3.33 3.15 0.77 1.51 5. 42 3.910.42 -0.02
am 32 0.41 0.50 0.00 0.38 0.00 0.00 1. 00 1.000.36 -1.92

se
mpg 1.07
hp 12.12
wt 0.17
am 0.09

| told you that it was an embarrassment of riches but you didn't believe me.

A NOTE ON MASKING

In the examples above, the packages psych and Hmisc both provided functions named
describ e. How does R know which one to use? Simply put, the package last loaded
takes precedence, as seen in listing 5.5. Here, psycC h is loaded after Hmisc , and a
message is printed indicating that the describe function in Hmisc is masked by the
function in psych. When you type in the describe function and R searches for it, it comes
to the psych package first and executes it. If we wanted the HmIiSC version instead, we
could have typed Hmisc::describe(mt) . The function is still there. We just have to
give R more information to find it.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Now that we know how to generate descriptive statistics for the data as a whole, let's
review how to obtain statistics by subgroups of the data.

5.2.2 Descriptive statistics by group
When comparing groups of individuals or observations, our focus is usually on the descriptive
statistics of each group, rather than the total sample. Again, there are several ways to
accomplish in R.

In chapter 4, we discussed methods of aggregating data. We could use the aggre gate
function (section 4.5.2) to obtain descriptive statistics by group (listing 5.6).

Listing 5.6 Descriptive statistics by group via aggr egat e

> aggregate(mt,by=list(mt$am),mean)
Group.1 mpg hp wtam

1 017.11603.77 0

2 1244127241 1

> aggregate(mt, by=list(mt$am),sd)
Group.1 mpg hp wtam

1 03.8353.90.777 0

2 16.1784.10.617 0

Unfortunately, aggregat e only allows us to use single value functions such as mean,
standard deviation, and the like in each call. It will not return several statistics at once. For
that task, we can use the by function. The format is

by(data, INDICES, FUN)

where data is a dataframe or matrix, INDICES is a factor or list of factors that define the
groups, and FUN is an arbitrary function. An example is given in listing 5.6.

Listing 5.6 Descriptive statistics by group via by

> by(mt,mt$am,function(x)(c(mean=mean(x),sd=sd(x))))

mt$am: 0

mean.mpg mean.hp mean.wt mean.am sd.mpg sd. hp sdwt sd.am

17.147 160.263 3.769 0.000 3.834 53.9 08 0.777 0.000

mt$am: 1

mean.mpg mean.hp mean.wt mean.am sd.mpg sd. hp sdwt sd.am

24.392 126.846 2.411 1.000 6.167 84.0 62 0.617 0.000
EXTENSIONS

The doBy package and the psyc package also provide functions for descriptive statistics
by group. Again, they are not distributed in the base installation, and must be installed
before first use. The summaryBYy function in the doBy package has the format

summaryBy(formula, data=dataframe, FUN=)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

The formula takes the form
varl+var2+var3+...+varN~groupvarl+groupvar2+...+group varN

where variables on the left of the ~ are the numeric variables to be analyze and variables on
the right are categorical grouping variables. An example using the descript function we
created in section 5.2.1 is given in listing 5.7.

Listing 5.7 Summary statistics by group via summar yBy (doBy package)

> library(doBy)
> summaryBy(mpg+hp+wt~am,data=mt,FUN=descript)

am mpg.mean mpg.stdev mpg.skew mpg.kurtosis hp.me an hp.stdev hp.skew
10 171 3.83 0.0140 -0.803 1 60 53.9-0.0142
21 244 6.17 0.0526 -1.455 1 27 84.1 1.3599

hp.kurtosis wt.mean wt.stdev wt.skew wt.kurtosis
1 -1210 3.77 0.777 0.976 0.142
2 0.563 241 0.617 0.210 -1.174

The descri be.b 'y function provided by the psych package provides the same
descriptive statistics as describ e, stratified by one or more grouping variables (see listing
5.8).

Listing 5.8 Summary statistics by group viadescri be. by (psych package)

> library(psych)
> describe.by(mt, mt$am)
0

n mean sdmediantrimmed mad min m ax range skew kurtosis
mpg 19 17.15 3.83 17.30 17.12 3.11 10.40 24. 40 14.00 0.01 -0.80
hp 19 160.26 53.91 175.00 161.06 77.10 62.00 245. 00183.00-0.01 -1.21
wt 19 3.77 0.78 3.52 3.75 0.45 2.46 5. 42 296 0.98 0.14
am 19 0.00 0.00 0.00 0.00 0.00 0.00 O. 00 0.00 NaN NaN

se
mpg 0.88
hp 12.37
wt 0.18
am 0.00
$

n mean sd mediantrimmed mad min m ax range skew kurtosis
mpg 13 24.39 6.17 22.80 24.38 6.67 15.00 33. 90 18.900.05 -1.46
hp 13 126.85 84.06 109.00 114.73 63.75 52.00 335. 00283.001.36 0.56
wt 13 2.41 0.62 2.32 2.39 0.68 1.51 3. 57 2.060.21 -1.17
am 13 1.00 0.00 1.00 1.00 0.00 1.00 1. 00 0.00 NaN NaN

se
mpg 1.71
hp 23.31
wt 0.17
am 0.00

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Unlike the previous example, the descri be.b y function does not allow us to specify an
arbitrary function, so it is less generally applicable. If there is more than one grouping
variable, we can write them as list(groupvarl, groupvar2, ... , gro upvarN) .
However, this will only work if there are no empty cells when the grouping variables are
crossed.

5.2.3 Visualizing results
Numerical summaries of a distribution's characteristics are important, but are no substitute
for a visual representation. For quantitative variables we have histograms (section 6.2),
density and dot plots (section 11.1), and boxplots (section 11.2). They can provide insights
that are easily missed by reliance on a small set of descriptive statistics.

The functions we have considered so far provide summaries of quantitative variables. The
functions in the next section allow us to examine the distributions of categorical variables.

5.3 Frequency and contingency tables

In this section we look at frequency and contingency tables from categorical variables, along
with tests of independence, measures of association, and methods for graphically displaying
results. We will be using functions in the basic installation, along with functions from the vcd
and gmodel s package. In the following examples, assume that A, B, and C represent
categorical variables.

The first example comes from the Arthriti s dataset included with the vcd package.
The data are from Kock & Edward (1988) and represents a double-blind clinical trial of new
treatments for rheumatoid arthritis. Here are the first few observations:

> library(ved)
> head(Arthritis)

ID Treatment Sex Age Improved
157 Treated Male 27 Some
246 Treated Male 29 None
377 Treated Male 30 None
417 Treated Male 32 Marked
536 Treated Male 46 Marked
6 23 Treated Male 58 Marked

Treatment (Placebo, Treated), Sex (Male, Female), and Improved (None, Some, Marked),
are all categorical factors. In the next section, we will look at creating frequency and
contingency tables (cross-classifications) for the data.

5.3.1 Generating frequency tables

R provides several methods for creating frequency and contingency tables. We will
look at simple frequencies, followed by two-way contingency tables, and multi-way
contingency tables.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

ONE WAY TABLES
We can generate simple frequency counts using the table function. For example

> attach(Arthritis)
> table(Improved)

Improved
None Some Marked
42 14 28

TWO WAY TABLES
For two-way tables, the format for the tab | e function is given below.

attach(mydata)
mytable <- table(A,B) # A will be rows, B will be ¢ olumns
mytable # print table

Alternatively, the xtabs function allows us to create a contingency table using formula style
input. The format is

mytable <- xtabs(~A+B, data=mydata)

In general, the variables to be cross classified appear on the right of the formula (i.e., to
the right of the ~) separated by + signs. If a variable is included on the left side of the
formula, it is assumed to be a vector of frequencies (useful if the data have already been
tabulated).

We can generate tables of proportions using the prop . tabl e function, and marginal
frequencies using margin.tabl e. The formats are given below.

margin.table(mytable, 1) # A frequencies (summed ov er B)
margin.table(mytable, 2) # B frequencies (summed ov erA)

prop.table(mytable) # cell proportions

prop.table(mytable, 1) # row proportions
prop.table(mytable, 2) # column proportion

As you can see, the first step is to create a table using the table or xtabs function. We
can then manipulate it using the other functions. Here is an example (listing 5.9).

Listing 5.9 Two-way contingency table

> attach(Arthritis)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

> mytable <- table(Treatment,Improved)

> mytable
Improved A
Treatment None Some Marked A
Placebo 29 7 7 A
Treated 13 7 21 A

> margin.table(mytable,1)

Treatment B

Placebo Treated B
43 41 B

> margin.table(mytable,2)

Improved C
None Some Marked C
42 14 28 C

> prop.table(mytable)

Improved D
Treatment None Some Marked D
Placebo 0.3452 0.0833 0.0833 D
Treated 0.1548 0.0833 0.2500 D

> prop.table(mytable,1)

Improved E
Treatment None Some Marked E
Placebo 0.674 0.163 0.163
Treated 0.317 0.171 0.512

mm

> prop.table(mytable,2)

Improved F
Treatment None Some Marked F
Placebo 0.690 0.500 0.250
Treated 0.310 0.500 0.750

T

A cell frequencies

B row marginals

C column marginals
D cell proportions

E row proportions

F column proportions

Looking at the row proportions, we can see that 16% of patients receiving the placebo
had some improvement. Looking at the column proportions, we see that 75% of those
patients with marked improvement were in the Treated group.

THE TABLE FUNCTION IGNORES MISSING VALUES

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

To include NA as a valid category in the frequency counts, include the table option
exclude=NUL L if the variable is a vector. If the variable is a factor, we have to replace
it with a new factor via newf actor <- factor(oldfactor, exclude=NULL).

A third method for creating two-way tables is the CrossTabl e function in the gmodel s
package. The CrossTabl e function produces two-way tables modeled after PROC FREQ in
SAS or CROSSTABS in SPSS. An example is given in listing 5.10.

Listing 5.10 Two-way table using Cr ossTabl e

> library(gmodels)
> CrossTable(Arthritis$Treatment, Arthritis$improve d)

Cell Contents
. N
| Chi-square contribution |
| N/ Row Total |
I
|

N/ Col Total |
N/ Table Total |

Total Observations in Table: 84

| Arthritis$improved

Arthritis$Treatment| None| Some| Ma rked | Row Total |

| | - . |
Placebo | 29| 7| 7| 43|
| 2616| 0.004] 3 752 | |

| 0.674] 0.163| O 163 | 0.512]
0.690	0.500	O .250	
0.345] 0.083] 0 .083			
	- R		
Treated | 13 7| 21| 41|

| 2.744| 0.004]| 3 935 |

0317] 0171] O 512	0.488		
0310 0500] O 750			
0.155] 0.083	O .250	
	b e e		
Column Total	42	14	28
0500	0.167	O .333	

The CrossTa bl e function has options to report percentages (row, column, cell), specify
decimal places, produce Chi-square, Fisher, and McNemar tests of independence, report
expected and residual values (Pearson, standardized, adjusted standardized), include
missing values as valid, annotate with row and column titles, and format as SAS or SPSS
style output! See help(C rossTable) for details. If we have more than two categorical
variables, we will be interested in multidimensional tables, which are considered next.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/web/packages/gmodels/index.html

MULTIDIMENSIONAL TABLES

Both the tab | e and xtabs function can be used generate multidimensional tables based
on three or more categorical variables. The margin . tabl e and prop.tabl e functions
extend naturally to more than two dimensions. The fta ble function can be used to print
multidimensional tables in a compact and attractive manner. An example is given in listing
5.11.

Listing 5.11 Three-way contingency table

> attach(Arthritis)
> mytable <- table(Treatment, Improved, Sex) 1
> ftable(mytable) 2

Sex Female Male
Treatment Improved

Placebo None 19 10
Some 7 0
Marked 6 1
Treated None 6 7
Some 5 2
Marked 16 5
> margin.table(mytable, 1) 3
Treatment
Placebo Treated
43 41
> margin.table(mytable, 2) 4
Improved
None Some Marked
42 14 28
> margin.table(mytable, c(1:2)) 5
Improved

Treatment None Some Marked
Placebo 29 7 7
Treated 13 7 21

> ftable(prop.table(mytable, c(1,2))) 6
Sex Female Male
Treatment Improved
Placebo None 0.655 0.345
Some 1.000 0.000
Marked 0.857 0.143
Treated None 0.462 0.538
Some 0.714 0.286
Marked 0.762 0.238

We could have also written #1 as

mytable <- xtabs(~Treatment+Improved+Sex,data=Arthritis)

and obtained the same results. The code in #2 produces cell frequencies for the 3-way
classification, while #3 and #4 produce the marginal frequencies for Treatment and

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Improved respectively. The code in #5 produces the marginal frequencies for the Treatment
X Improved classification, summed over Sex. The proportion of men and women for each
Treatment x Improved combination is provided in #6. In general, the proportions will add to
one over the indices not included in the pr op.tabl e call (the 3rd index or Sex in this case).
While contingency tables tell us the frequency or proportions of cases with each
combination of the variables that comprise the table, our interests usually extend to whether
the variables in the table are related or independent. This is the subject of the next section.

5.3.2 Tests of independence

R provides several methods of testing the independence of the categorical variables. The
three tests described in this section are the Chi-square test of independence, the Fisher
exact test, and the Mantel-Haenszel test. A fourth approach, log-linear models, will be
discussed in chapter 14.

CHI-SQUARE TEST OF INDEPENDENCE

The function chisquare.test can be applied to a two-way table in order to produce a Chi-
square test of independence of the row and column variables. An example is provided in
listing 5.12.

Listing 5.12 Chi-square test of independence

> mytable <- table(Treatment, Improved)
> chisg.test(mytable)

Pearson's Chi-squared test

data: mytable
X-squared = 13.1, df = 2, p-value = 0.001463 1

> mytable <- table(Improved, Sex)
> chisg.test(mytable)

Pearson's Chi-squared test

data: mytable
X-squared = 4.84, df = 2, p-value = 0.0889 2

Warning message:
In chisg.test(mytable) : Chi-squared approximation may be incorrect

From the results above, there appears to be a relationship between treatment received and
level of improvement (p<.01) #1, but not between patient sex and improvement (p>.05)
#2.

FISHER EXACT TEST

We can produce a Fisher's exact test via the fisher .tes t function. Fisher's exact test
evaluates the null hypothesis of independence of rows and columns in a contingency table
with fixed marginals. The format is fish er.test(mytable), where mytable is a two-
way table. An example is given in listing 5.13.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Listing 5.13 Fisher exact test

> mytable <- table(Treatment,Improved)
> fisher.test(mytable)

Fisher's Exact Test for Count Data

data: mytable
p-value = 0.001393
alternative hypothesis: two.sided

In contrast to many statistical packages, the fisher. test function can be applied to any
rxc table, not just a 2x2 table.

COCHRAN-MANTEL-HAENSZEL TEST

The mantelh aen.tes t function provides a Cochran-Mantel-Haenszel chi-squared test of
the null hypothesis that two nominal variables are conditionally independent in each stratum
of a third variable. Listing 5.14 tests the hypothesis that Treatment and Improved is
independent within each level Sex. The test assumes that there is no three-way (Treatment
X Improved x Sex) interaction.

Listing 5.13 Cochran-Mantel-Haenszel test

> mytable <- table(Treatment, Improved, Sex)
> mantelhaen.test(mytable)

Cochran-Mantel-Haenszel test

data: mytable
Cochran-Mantel-Haenszel M2 = 14.6, df = 2, p-value =0.0006647

The results suggest that the treatment received and the improvement reported is not
independent within each level of sex (i.e., treated individuals improved more than those
receiving placebos when controlling for sex).

5.3.3 Measures of association

The significance tests in the previous section evaluate whether or not there is sufficient
evidence to reject a null hypothesis of independence between variables. If we can reject the
null hypothesis, our interests turn naturally to measures of association in order to gauge the
strength of the relationships present. The assocstats function in the vcd package can be
used to calculate the phi coefficient, contingency coefficient, and Cramer's V for a two-way
table. An example of assoc stat s is given in listing 5.14.

Listing 5.14 Measures of association for a two-way table

> library(vcd)

> attach(Arthritis)

> mytable <- table(Treatment, Improved)
> assocstats(mytable)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/web/packages/vcd/index.html

XA2 df P(> X"2)
Likelihood Ratio 13.530 2 0.0011536
Pearson 13.055 2 0.0014626

Phi-Coefficient :0.394
Contingency Coeff.: 0.367
Cramer's V :0.394

In general, larger magnitudes indicated stronger associations. The vcd package also
provides a kappa function that can calculate Cohen's kappa and weighted kappa for a
confusion matrix (for example, the degree of agreement between two judges classifying a
set of objects into categories).

5.3.4 Visualizing results

R has mechanisms for visually exploring the relationships among categorical variables that
go well beyond those found in most other statistical platforms. We typically use bar charts to
visualize frequencies in one dimension (section 6.3). The vcd package has excellent
functions for visualizing relationships among categorical variables in multi-dimensional
datasets using mosaic and association plots (section 15.6). Finally, correspondence analysis
functions in the ca package allow us to visually explore relationships between rows and
columns in contingency tables (section 14.4) using various geometric representations. Feel
free to jump to those sections at any time!

5.3.5 Converting tables to flat files

We will end this section with a topic that is rarely covered in books on R, but that can be
very useful. What happens if we have a table, but need the original raw data file? For
example, we have

Sex Female Male
Treatment Improved

Placebo None 19 10
Some 7 0
Marked 6 1

Treated None 6 7
Some 5 2
Marked 16 5

but we need:

ID Treatment Sex Age Improved
157 Treated Male 27 Some
246 Treated Male 29 None
377 Treated Male 30 None
417 Treated Male 32 Marked
536 Treated Male 46 Marked
6 23 Treated Male 58 Marked
[78 more rows go here]

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

There are many statistical functions in R that expect the later format, rather than the
former. We can use the function provided listing 5.15 to convert an R table back into a flat
data file.

Listing 5.15 Converting a table into a flat file via t abl e2f | at

table2flat <- function(mytable) {
df <- as.data.frame(mytable)
rows <- dim(df)[1]
cols <- dim(df)[2]
x <- NULL
for (i in 1:rows){
for (j in 1:df$Freq[i]){
row <- dffi,c(1:(cols-1))]
X <- rbind(x,row)

}

row.names(x)<-c(1:dim(x)[1])
return(x)

}

This function takes an R table (with any number of dimensions) and returns a dataframe in
flat file format. We can also use this function to input tables from published studies. For
example, let's say that we came across table 5.1 in a journal and we wanted to save it into R
as a flat file.

Table 5.1 Contingency table for treatment vs. improvement from the Arthritis dataset

Treatment Improved

None Some Marked
Placebo 29 7 7
Treated 13 17 21

Listing 5.16 describes a method that would do the trick.

Listing 5.16 Using the t abl e2f | at function from published data

> treatment <- rep(c("Placebo", "Treated"), 3)

> improved <- rep(c("None","Some","Marked"), each=2)

> Freq <- ¢(29,13,7,7,7,21)

> mytable <- as.data.frame(cbind(treatment,improved , Freq))
> mydata <- table2flat(mytable)

> head(mydata)

treatment improved
1 Placebo None

2 Placebo None
3 Placebo None

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

4 Treated None
5 Placebo Some
6 Placebo Some
[12 more rows go here]

This will end our discussion of contingency tables, until we take up more advanced topics
in chapter 14. Next, let's look at various types of correlation coefficients.

5.4 Correlations

Correlation coefficients are used to explore relationships among quantitative variables. In
this section we will look at a variety of correlation coefficients, as well as tests of
significance. We will use is the state. x77 dataset available in the base R installation. It
provides data on the population, income, illiteracy rate, life expectancy, murder rate, and
high school graduation rate for the 50 US states in 1977. There are also temperature and
land area measures, but we'll drop them to save space. Use help(s t ate.x77) to learn
more about the file. In addition to the base installation, we will be using the psyc h and
ggm packages.

5.4.1 Type of correlations

R can produce a variety of correlation coefficients, including Pearson, Spearman, Kendall,
partial, polychoric, and polyserial. Let's look at each in turn.

PEARSON, SPEARMAN, AND KENDALL CORRELATIONS
The Pearson product moment correlation assesses the degree of linear relationship between
two quantitative variables. Spearman's Rank Order correlation coefficient assesses the
degree of relationship between two rank ordered variables. Kendall's Tau is also a
nonparametric measure of rank correlation.

The cor function produces these correlation coefficients, while the cov function provides
covariances. There are many options, but a simplified format for producing correlations is

cor(x, use=, method=)
where the options are described in table 5.2.

Table 5.2 cor/cov options

Option Description
X Matrix or dataframe
use Specifies the handling of missing data. The options are all.ob s (assumes no

missing data, missing data will produce an error), everythin g (any correlation
involving a case with missing values will be set to missing), compl ete.ob s
(listwise deletion), and pairwis e.complete.ob s (pairwise deletion)

method Specifies the type of correlation. The options are pearso n, spearman , or
© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

kendall

The default options are use="everything
given in listing 5.17.

Listing 5.17 Covariances and Correlations

> states<- state.x77[,1:6]
> cov(states)

and method="pearson ". An example is

Population Income llliteracy Life Exp M urder HS Grad
Population 19931684 571230 292.868 -407.842 56 63.52 -3551.51
Income 571230 377573 -163.702 280.663 -5 21.89 3076.77
llliteracy 293 -164 0.372 -0.482 158 -3.24
Life Exp -408 281 -0.482 1.802 -3.87 6.31
Murder 5664 -522 1.582 -3.869 13.63 -14.55
HS Grad -3552 3077 -3.235 6.313 - 1455 65.24

> cor(states)

Population Income llliteracy Life Exp Mu rder HS Grad
Population 1.0000 0.208 0.108 -0.068 0 .344 -0.0985
Income 0.2082 1.000 -0.437 0.340-0 .230 0.6199
llliteracy 0.1076 -0.437 1.000 -0.588 0 .703 -0.6572
Life Exp -0.0681 0.340 -0.588 1.000 -0 .781 0.5822
Murder 0.3436-0.230 0.703 -0.781 1 .000 -0.4880
HS Grad -0.0985 0.620 -0.657 0.582-0 .488 1.0000

> cor(states,method="spearman")

Population Income llliteracy Life Exp Mu rder HS Grad
Population 1.000 0.125 0.313 -0.104 0 .346 -0.383
Income 0.125 1.000 -0.315 0.324-0 .217 0.510
llliteracy 0.313-0.315 1.000 -0.555 0 .672 -0.655
Life Exp -0.104 0.324 -0.555 1.000 -0 .780 0.524
Murder 0.346 -0.217 0.672 -0.780 1 .000 -0.437
HS Grad -0.383 0.510 -0.655 0.524 -0 437 1.000

The first call produces the variances and covariances. The second provides Pearson
Product Moment correlation coefficients, while the third produces Spearman Rank Order
correlation coefficients. We can see, for example, that there is a strong positive correlation
between income and high school graduation rate, and a strong negative correlation between
illiteracy rates and life expectancy.

Notice, that we get square matrices by default (all variables crossed with all other
variables). We can also produce non-square matrices. An example is given in listing 5.18.

Listing 5.18 Correlating two sets of variables

> x <- states[,c("Population”,"Income","llliteracy” ,"HS Grad")]
>y <- states[,c("Life Exp", "Murder")]
> cor(X,y)

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Life Exp Murder
Population -0.068 0.344
Income 0.340 -0.230
llliteracy -0.588 0.703
HS Grad 0.582 -0.488

This version of the function is particularly useful when our interest centers on the
relationships between one set of variables and another. Notice that the results printed above
do not tell us if the correlations differ significantly from zero. For that, we need tests of
significance (section 5.4.2).

PARTIAL CORRELATIONS

A partial correlation is a correlation between two quantitative variables, controlling for one or
more other quantitative variables. The pcor function in the ggm package can be used to
provide partial correlation coefficients. The ggm package is not installed by default, so be
sure to install it on first use. The format is

pcor(u, S)
where U is a vector of numbers, with the first two numbers being the indices of the variables
to be correlated, and the remaining numbers being the indices of the conditioning variables
(i.e., the variables being partialled out). S is the covariance matrix among the variables. An
example (listing 5.19) will clarify this.

Listing 5.19 Partial correlations with the pcor function [ggmpackage]

> library(ggm)
> # partial correlation of population and murder ra te, controlling

> # for income, illiteracy rate, and HS graduation rate
> pcor(c(1,5,2,3,6), cov(states))

[1] 0.346 1

#1 0.346 is the correlation between population and murder rate, controlling for the influence
of income, illiteracy rate, and HS graduation rate. The use of partial correlations is common
in the social sciences.

OTHER TYPES OF CORRELATIONS

The hetco r function in the polyco r package can compute a heterogeneous correlation
matrix containing Pearson product-moment correlations between numeric variables,
polyserial correlations between numeric and ordinal variables, polychoric correlations
between ordinal variables, and tetrachoric correlations between two dichotomous variables.
Polyserial, polychoric, and tetrachoric correlations assume that the ordinal or dichotomous
variables are derived from underlying normal distributions. See the documentation that
accompanies this package for more information.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

5.4.2 Testing correlations for significance

Once we have generated correlation coefficients, how do we test them for statistical
significance? The typical null hypothesis is no relationship (i.e., the correlation in the
population is zero). We can use the cor .test function to test an individual Pearson,
Spearman, and Kendall correlation coefficient. A simplified format is

cor.test(x, y, alternative =, method =)

where alte rnativ e specifies a two-tailed or one-tailed test ("two . side ", "less" , or
"greater ") and method specifies the type of correlation ("pears on", "kenda I I" , or
"spearman "). An example is given in listing 5.20.

Listing 5.20 Testing a correlation coefficient for significance

> cor.test(states[,3],states[,5])
Pearson's product-moment correlation

data: states[, 3] and states[, 5]
t = 6.85, df = 48, p-value = 1.258e-08
alternative hypothesis: true correlation is not equ alto0
95 percent confidence interval:
0.528 0.821
sample estimates:
cor
0.703

This code tests the null hypothesis that the Pearson correlation between life expectancy
and murder rate is zero. We see that the sample correlation of 0.70 is large enough to reject
the null hypothesis at any reasonable alpha level (here p < .00000001).

Unfortunately, we can only test one correlation at a time using cor. test . Luckily, the
corrtes t function provided in the psych package allows us to go farther. The
corrtes t function produces correlations and significance levels for matrices of Pearson,
Spearman, orKendall correlations. An example is given in listing 5.21.

Listing 5.21 Correlation matrix and tests of significance viacorr .t est [psych package]

> library(psych)
> corr.test(states,use="complete")

Call:corr.test(x = states, use = "complete")
Correlation matrix

Population Income llliteracy Life Exp Mu rder HS Grad
Population 1.00 0.21 0.11 -0.07 0.34 -0.10 1
Income 0.21 1.00 -044 0.34 - 0.23 0.62
llliteracy 0.11 -0.44 1.00 -0.59 0.70 -0.66
Life Exp -0.07 0.34 -059 1.00 - 0.78 0.58
Murder 0.34 -0.23 0.70 -0.78 1.00 -0.49
HS Grad -0.10 0.62 -0.66 0.58 - 0.49 1.00

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

Sample Size

[1] 50
Probability value

Population Income llliteracy Life Exp Mu rder HS Grad
Population 0.00 0.15 0.46 0.64 001 05 1
Income 0.15 0.00 0.00 0.02 0.11 0.0
llliteracy 0.46 0.00 0.00 0.00 0.00 0.0
Life Exp 0.64 0.02 0.00 0.00 0.00 0.0
Murder 0.01 0.11 0.00 0.00 0.00 0.0
HS Grad 0.50 0.00 0.00 0.00 0.00 0.0

The use= options can be " pairwise " or "complete " (for pairwise or listwise deletion
of missing values respectively). The method= option is "pear son" (the default),
"spearman "
and high school graduation rate (-0.10) is not significantly different from zero (p=0.5).

, or "kendall ". #1 Here we see that the correlation between population size

OTHER TESTS OF SIGNIFICANCE

In section 5.4.1 we looked at partial correlations. The pcor.test function in the psych
package can be used to test the conditional independence of two variables controlling for one
or more additional variables, assuming multivariate normality. The format is

pcor.test(r, g, n)

where r is the partial correlation produced by the pcor function, q is the number of
variables being controlled, and n is the sample size.

Before leaving this topic, it should be mentioned that the r.tes t function in the psych
package also provides a number of useful significance tests. The function can be used to test
the significance of a correlation coefficient, the difference between two independent
correlations, the difference between two dependent correlations sharing one single variable,
and the difference between two dependent correlations based on completely different
variables. See help(r.test) for details.

5.4.3 Visualizing correlations

The bivariate relationships underlying correlations can be visualized through scatterplots and
scatterplot matrices (section 11.3), while corrgrams (section 15.7) provide a unique and
powerful method for comparing a large numbers of correlation coefficients in a meaningful
way.

5.5 Comparing Groups

The most common activity in research is the comparison of groups. Do patients receiving a
new drug show greater improvement than patients using an existing medication? Does one
manufacturing process produce fewer defects than another? Which of three teaching
methods is most cost effective? If our outcome variable is categorical, we can use the
methods described in section 5.3 or chapter 14. If the outcome variable is a survival time,
we would use the methods described in section 12.4. Here, we will focus on group

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

comparisons, where the outcome variable is continuous or ordinal. First we will look at the
two group case. Then we will consider designs involving more than two groups. Finally, we
will look at ways of visualizing our results.

5.5.1 Two Groups

To illustrate the two group case, we will use the UScrim e dataset distributed with the MASS
package. It contains information on the effect of punishment regimes on crime rates in 47
US states in 1960. The variables of interest will be Prob (the probability of imprisonment),
So (an indicator variable for southern states), Ul (the unemployment rate for urban males
age 14-24) and U2 (the unemployment rate for urban males age 35-39). The data have been
rescaled by the original authors. (Note: | considered naming this section "Crime and
Punishment in the Old South", but cooler heads prevailed.)

T-TESTS

Are we more likely to be imprisoned if we commit a crime in the South? The comparison of
interest is southern vs. non-southern states and the dependent variable is the probability of
incarceration. A 2-group independent t-test can be used to test the hypothesis that the two
population means are equal. Here, we assume that the two groups are independent and that
the data are sampled from normal populations. The format is either

t.test(y~x)

where Yy is numeric and X is a dichotomous factor or

t.test(yl,y2)

where y1 and y2 are numeric vectors (the outcome variable for each group). In contrast
to most statistical packages, the default test assumes unequal variance and applies the
Welsh degrees of freedom modification. We can add a var.equal=TRU E option to specify
equal variances and a pooled variance estimate. By default, a two-tailed alternative is
assumed (i.e., the means differ but the direction is not specified). We can add the option
alternative="less " or alternative="greater " to specify a directional test.

In listing 5.22, we compare southern (group 1) and non-southern (group 0) states on the
probability of imprisonment using a two-tailed test without the assumption of equal
variances.

> t.test(Prob~So)
Welch Two Sample t-test
data: Prob by So
t =-3.8954, df = 24.925, p-value = 0.0006506 1

alternative hypothesis: true difference in means is not equal to O

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

95 percent confidence interval:

-0.03852569 -0.01187439

sample estimates:

mean in group 0 mean in group 1
0.03851265 0.06371269

#1 We reject the hypothesis that southern states and non-southern states have equal
probabilities of imprisonment (p < .001).

Note: Since the outcome variable is a proportion, we might seek to transform it towards
normality before carrying out the t-test. In the current case, all reasonable transformations
of the outcome variable (Y/1-Y, log(Y/1-Y), arcsin(Y), arcsin(sqrt(Y)) would have led to the
same conclusions.

As a second example, we might ask if unemployment rate for younger males (14-24) is
greater than for older males (35-39). In this case, the two groups are not independent. We
would not expect the unemployment rate for younger and older males in Alabama to be
unrelated. When observations in the two groups are related, we have a dependent groups
design. Pre-post or repeated measures designs also produce dependent groups.

A dependent t-test assumes that the difference between groups is normally distributed.
In this case, the format is

t.test(yl, y2, paired=TRUE)

where y1 and y2 are the numeric vectors for the two dependent groups. The results are
provided in listing 5.23.

Listing 5.23 Dependent groups t-test

> sapply(UScrime[c("U1","U2")],function(x)(c(mean=m ean(x),sd=sd(x))))

Ul u2
mean 95.5 33.98
sd 18.0 8.45

> t.test(U1,U2,paired=TRUE)
Paired t-test

data: Ul and U2
t = 32.4066, df = 46, p-value < 2.2e-16 1
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
57.67003 65.30870
sample estimates:
mean of the differences
61.48936 1

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

#1 The mean difference (61.5) is large enough to warrant rejection of the hypothesis that
the mean unemployment rate for older and younger males is the same. Younger males have
a higher rate.

NONPARAMETRIC TESTS

If we are unable to meet the parametric assumptions of a t-test, we can turn to
nonparametric approaches. For example, if the outcome variables are severely skewed or
ordinal in nature, we may wish to use the techniques in this section.

If the two groups are independent, we can use the Wilcoxon rank sum test (more
popularly known as the Mann-Whitney U test) to assess whether the observations are
sampled from the same probability distribution (i.e., whether the probability of obtaining
higher scores is greater in one population than the other). The format is either

wilcox.test(y~x)

where Yy is numeric and X is a dichotomous factor or

wilcox.test(y1,y2)

where y1 and y2 are the outcome variables for each group. The default is a two-tailed test.
We can add the option exact to produce an exact test, and alter native="less " or
alternative="greater " to specify a directional test.

If we apply the Mann-Whitney U test to the question of incarceration rates from the
previous section, we would get the results in section 5.24.

Listing 5.24 Mann-Whitney U Test

> by(Prob,So,median)

So: 0
[1] 0.0382

So: 1
[1] 0.0556

> wilcox.test(Prob~So)
Wilcoxon rank sum test
data: Prob by So

W = 81, p-value = 8.488e-05 1
alternative hypothesis: true location shift is not equalto 0

#1 Again, we can reject the hypothesis that incarceration rates are the same in southern
and non-southern states (p<.001).

The Wilcoxon Signed Rank Test provides a nonparametric alternative to the dependent
sample t-test. It is appropriate in situations where the groups are paired and the assumption

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

of normality is unwarranted. The format is identical to the Mann-Whitney U test, but we add
the paired= TRLUE option. Let's apply it to the unemployment question from the previous
section (listing 5.25).

Listing 5.25 Wilcoxon Signed Rank Test

> sapply(UScrime[c("U1","U2")],median)

Ul u2
92 34

> wilcox.test(U1,U2,paired=TRUE)
Wilcoxon signed rank test with continuity ¢ orrection

data: Ul and U2
V = 1128, p-value = 2.464e-09 1
alternative hypothesis: true location shift is not equalto 0

#1 Again, we would reach the same conclusion reached with the paired t-test.

In this case, the parametric t-tests and their nonparametric equivalents reach the same
conclusions. When the assumptions for the t-tests are reasonable, the parametric tests will
be more powerful (more likely to find a difference if it exists). The non-parametric tests are
more appropriate when the assumptions are grossly unreasonable (e.g., rank ordered data).

5.5.2 More than two groups
When there are more than two groups to be compared, we must turn to other methods.
Consider the state.x77 dataset from section 5.4. It contains population, income, illiteracy
rate, life expectancy, murder rate, and high school graduation rate data for US states. What
if want to compare the illiteracy rates in four regions of the country (Northeast, South, North
Central, and West)? This is called a one-way design, and there are both parametric and
nonparametric approaches available to address the question.
ANALYSIS OF VARIANCE
If we can assume that the data are independently sampled from normal populations, we can
use analysis of variance (ANOVA) to compare groups. ANOVA is a comprehensive
methodology that covers many experimental and quasi-experimental designs. As such, it has
earned its own chapter. Feel free to abandon us and jump to chapter 8 at any time.
NONPARAMETRIC TESTS
If we can't meet the assumptions of ANOVA designs, we can use nonparametric methods to
evaluate group differences. If the groups are independent, a Kruskal-Wallis test will provide
us with a useful approach. If the groups are dependent (e.g., repeated measures or
randomized block design), the Friedman test is more appropriate.

The format for the Kruskal Wallis test is

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

kruskal.test(y~A)

where y is a numeric outcome variable and A is a group factor with 2 or more levels (if
there are two levels, it is equivalent to the Mann-Whitney U test). For the Friedman test, the
format is

friedman.test(y~A|B)

where y is the numeric outcome variable, Ais a group factor, and B is a blocking factor
that identifies matched observations.

Let's apply the Kruskal Wallis test to the illiteracy question above. First, we will have to
add the region designations to the dataset. These are contained in the dataset
state.regio n distributed with the base installation of R.

states <- as.data.frame(chind(state.region, state.x 77))

Now we can apply our test (see listing 5.26).

Listing 5.26 Kruskal Wallis test - One Way Anova by Ranks

> attach(states)
> kruskal.test(llliteracy~state.region)

Kruskal-Wallis rank sum test

data: states$llliteracy by states$state.region
Kruskal-Wallis chi-squared = 22.7, df = 3, p-value =4.726e-05 1

#1 The significance test suggests that the illiteracy rate is not the same in group of the four
regions of the country (p <.001).

Although we can reject the null hypothesis of no difference, the test does not tell us
which regions differ significantly from which others. To answer this question, we could
compare groups two at a time using the Mann-Whitney U test. A more elegant approach is to
apply a simultaneous multiple comparisons procedure that makes all pairwise comparisons,
while controlling the type | error rate (the probability of finding a difference that isn't there).
The npmc package provides the nonparametric multiple comparisons we need.

To be honest, we are stretching our definition of "Basic" in the chapter title quite a bit,
but since it really fits well here, | hope you will bear with me. First, be sure to install the
npmc package. The npmc function in this package expects input to be a two column
dataframe with a column named var (the dependent variable) and class (the grouping
variable). We can accomplish this with the code in listing 5.27.

Listing 5.27 Nonparametric multiple comparisons

> class <- state.region
> var <- state.x77[,c("llliteracy")]

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

> mydata <- as.data.frame(chind(class, var))
> summary(npmc(mydata, type="BF"))

$'Data-structure’
group.index class.level nobs

Northeast 1 Northeast 9

South 2 South 16

North Central 3 North Central 12

West 4 West 13

$ Results of the multiple Behrens-Fisher-Test’ 1
cmp effect lower.cl upper.cl p.value.1ls p.value.2 s

11-20.8750 0.66149 1.0885 0.000665 0.0013 5

21-30.1898 -0.13797 0.5176 0.999999 0.0654 7

31-40.3974 -0.00554 0.8004 0.998030 0.9200 4

42-30.0104 -0.02060 0.0414 1.000000 0.0000 0

52-40.1875-0.07923 0.4542 1.000000 0.0211 3

6 3-4 0.5641 0.18740 0.9408 0.797198 0.9843 0

> aggregate(mydata, by=list(mydata$class),median) 2
Group.1 class var

1 1 1110

2 2 2175

3 3 30.70

4 4 40.60

#1 The npmc call generates six statistical comparisons (Northeast vs. South, Northeast
vs. North Central, northeast vs. West, South vs. North Central, South vs. West, and North
Central vs. West). We can see from the two-sided p-values (p.value.2s) that the South
differs significantly from the other three regions, and that the other three regions do not
differ from each other. From # 2 we see that the South has a higher median illiteracy rate.

5.5.3 Visualizing group differences

Examining group differences visually is a crucial part of a comprehensive data analysis
strategy. It allows us to assess the magnitude of the differences, identify any distributional
characteristics that influence the results (e.g., skew, bimodality, outliers), and evaluate the
appropriateness of our test assumptions. R provides a wide range of graphical methods for
comparing groups including box plots (simple, notched, violin, and bagplots) covered in
section 11.2, overlapping kernel density plots, covered in section 11.1, and graphical
methods of assessing test assumptions, discussed in section 8.6.

5.6 Summary

In this chapter, we have reviewed the functions in R that provide basic statistical
summaries and tests. It has included sample statistics and frequency tables, tests of
independence and measures of association for categorical variables, correlations between
quantitative variables (and their associated significance tests), and comparisons of two or
more groups on a quantitative outcome variable.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:

Download from Wow! eBook <www.wowebook.com>

118 Robert |. Kabacoff / Rin Action Last saved: 8/10/2009

In the next chapter we take up the topic of basic graphs. They form a natural partnership
with the topics we have just covered. As we will see throughout this book, there is a yin and
a yang between numerical summaries and statistical tests, and visual depictions of
relationships and differences. However, the graphical chapters are more fun to look at.

References

Koch, G & S. Edwards, S. (1988), Clinical efficiency trials with categorical data. In K. E.
Peace (ed.), Biopharmaceutical Statistics for Drug Development, 403-451. Marcel Dekker,
New York.

McCall, R. B. (2000). Fundamental statistics for the behavioral sciences (8th ed.).
Wadsworth Publishing, New York.

Snedecor, G. W., & Cochran, W.G. (1988). Statistical methods (8th ed.). lowa State

University Press, lowa.

© Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forum|D=578

	1 Introduction to R
	1.1 Why use R?
	1.2 Obtaining and installing R
	1.3 Working with the R interface
	1.3.1 Getting Started
	1.3.2 Getting help
	1.3.3 The workspace
	1.3.4 Input and Output

	1.4 Packages
	1.4.1 What are packages?
	1.4.2 Installing a package
	1.4.3 Loading a package
	1.4.4 Learning about a package

	1.5 Batch Processing
	1.6 Using output as input - Reusing results
	1.7 Working through an example
	1.8 Summary

	2 Creating a dataset
	2.1 Understanding datasets
	2.2 Data structures
	2.2.1 Vectors
	2.2.2 Matrices
	2.2.3 Arrays
	2.2.4 Dataframes
	2.2.5 Factors
	2.2.6 Lists

	2.3 Data input
	2.3.1 Entering data from the keyboard
	2.3.2 Importing data from a (comma) delimited text file
	2.3.3 Importing data from Excel
	2.3.4 Importing data from SPSS
	2.3.5 Importing data from SAS
	2.3.6 Importing data from Stata
	2.3.7 Importing data from Systat
	2.3.8 Accessing Database Management Systems (DBMS)
	2.3.9 Importing data via Stat/Transfer

	2.4 Annotating datasets
	2.4.1 Variable labels
	2.4.2 Value labels

	2.5 Useful functions for working with data objects
	2.6 Summary

	3 Basic data management
	3.1 A Working Example
	We will work through each of these issues in the current chapter, as well other basic data management issues such as combining and sorting datasets. Then in chapter 4 we will look at some advanced topics. 3.2 Creating new variables
	3.3 Recoding variables
	3.4 Renaming variables
	3.5 Missing values
	3.5.1 Recoding values to missing
	3.5.2 Excluding missing values from analyses

	3.6 Date values
	3.6.1 Converting dates to character variables
	3.6.2 Going further

	3.7 Type conversions
	3.8 Sorting data
	3.9 Merging datasets
	3.9.1 Adding Columns
	3.9.2 Adding Rows

	3.10 Subsetting datasets
	3.10.1 Selecting (Keeping) Variables
	3.10.2 Excluding (dropping) Variables
	3.10.3 Selecting Observations
	3.10.4 The Subset Function
	3.10.5 Random Samples

	3.11 Summary

	4 Advanced data management
	4.1 A data management challenge
	4.2 Numerical and character functions
	4.2.1 Mathematical functions
	4.2.2 Statistical Functions
	4.2.3 Probability Functions
	4.2.4 Character functions
	4.2.5 Other useful functions
	4.2.6 Applying functions to matrices and dataframes

	4.3 A solution for our data management challenge
	4.4 Control flow
	4.4.1 Repetition and looping
	4.4.2 Conditional execution

	4.5 User-written functions
	4.6 Aggregation and restructuring
	4.6.1 Transpose
	4.6.2 Aggregating data
	4.6.3 The reshape package

	4.7 Summary

	5 Basic Statistics
	5.1 What you need to know
	5.2 Descriptive statistics
	5.2.1 A menagerie of methods
	5.2.2 Descriptive statistics by group
	5.2.3 Visualizing results

	5.3 Frequency and contingency tables
	5.3.1 Generating frequency tables
	5.3.2 Tests of independence
	5.3.3 Measures of association
	5.3.4 Visualizing results
	5.3.5 Converting tables to flat files

	 5.4 Correlations
	5.4.1 Type of correlations
	5.4.2 Testing correlations for significance
	5.4.3 Visualizing correlations

	5.5 Comparing Groups
	5.5.1 Two Groups
	5.5.2 More than two groups
	5.5.3 Visualizing group differences

	5.6 Summary
	References

