
© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

ht tp: / / www.m anning-sandbox.com / forum .j spa?forum I D= 578

MEAP Edition
Manning Early Access Program

Copyright 2009 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Part 1 Preparing the data ＠
1 Introduction to R ＠
2 Creating a dataset
3 Basic data management
4 Advanced data management ＠

Part 2 Basic statistics and graphs
5 Basic statistics ＠
6 Basic graphs ＠

Part 3 Intermediate statistics and graphs
7 Multiple (linear) regression
8 Analysis of variance
9 Resampling statistics and bootstrapping
10 Power analysis ＠
11 Intermediate graphs ＠

Part 4 Advanced statistics and graphs
12 Generalized linear models
13 Principal components and factor analysis
14 Other multivariate methods
15 Advanced methods for missing data
16 Advanced graphs ＠

Appendix A: Graphical user interfaces for R
Appendix B: Customizing the startup environment
Appendix C: Exporting data from R
Appendix D: Creating publication quality output
Appendix E: Matrix algebra in R

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

1
Introduction to R

This Chapter covers:

̇ Installing R ＠
̇ Understanding the R language

̇ Running programs

̇

How we analyze data has changed dramat ically in recent years. With the advent of personal

computers and the internet , the sheer volum e of data we have available has grown

enormously. Companies have terabytes of data on the consumers they interact with, while

governm ental, academ ic, and pr ivate research inst itut ions have extensive archival and

survey data on every m anner of research topic. Gleaning informat ion (let alone wisdom)

from these m assive stores of data has becom e an indust ry in it self. At the same t im e,

present ing the informat ion in easily accessible and digest ible ways has become increasingly

challenging.

The science of data analysis (stat ist ics, psychom etr ics, econometr ics, m achine learning)

has kept pace with this explosion of data. Before personal com puters and the I nternet , new

stat ist ical m ethods were developed by academ ic researchers who published their results as

theoret ical papers in professional journals. I t could take years for these m ethods to be

adapted by program m ers and incorporated into the stat ist ical packages widely available to

the data analysts. Today, new m ethodologies appear daily . Stat ist ical researchers publish

new and im proved m ethods, along with code to produce them , on easily accessible websites

And the code is typically writ ten for, or easily adapted to freely available stat ist ical packages

like R.

The advent of personal com puters had another effect on the way we analyze data. When

data analysis was carr ied out on m ainfram e com puters, com puter t im e was precious and

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

difficult to com e by. Analysts would carefully set up a com puter run with all the param eters

and opt ions thought to be needed. When the procedure ran, the result ing output could be

dozens or hundreds of pages long. The analyst would sift through this output , ext ract ing

useful m ater ial and discarding the rest . With the cheap and easy access afforded by personal

com puters, data analysis now follows a different paradigm.

Rather than set t ing up a com plete data analysis at once, the process has becom e highly

interact ive, with the output from each stage serving as the input for the next stage An

exam ple of a typical analysis is presented in figure 1.1. At any point , the cycles m ay include

t ransform ing the data, imput ing m issing values, adding or delet ing variables, and looping

back through the whole process again. The process stops when the analyst believes he or

she understands the data int imately and has answered all the relevant quest ions that can be

answered.

Figure 1.1 Steps in a typical data analysis

The advent of personal com puters (and especially the availabilit y of high resolut ion

m onitors) has also had an im pact on how results are understood and presented. A picture

Fit a statistical model

Evaluate model fit

Cross-validate the model

Import data

Prepare, explore, and clean data

Evaluate model prediction on new data

Produce report

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

really can be worth a thousand words, and hum an beings are very adept at ext ract ing useful

inform at ion from visual presentat ions. Modern data analysis increasingly relies on graphical

presentat ions to uncover m eaning and convey results.

Today's data analysts need to be able to access data from a wide range of sources

(database m anagem ent system s, text files, stat ist ical packages, and spreadsheets) , merge

them together, clean and annotate them , analyze them with the latest m ethods, present the

findings in m eaningful and graphically appealing ways, and incorporate the results into

at t ract ive reports that can be dist r ibuted to stakeholders and the public. As you will see in

the following pages, R is a com prehensive software package that is ideally suited to

accom plish these goals.

1.1 Why use R?
R is a language and environment for stat ist ical com put ing and graphics, sim ilar to the S

language or iginally developed at Bell Labs. I t is an open source solut ion to data analysis that

is supported by a large and act ive wor ldwide research comm unity. R has many features to

recom m end it :

̇ Most commercial statistical software platforms cost thousands, if not tens of
thousands of dollars. R is free! If you are a teacher or a student, the benefits
are obvious. ＠

̇ R runs on a wide variety of platforms including Windows, UNIX and MacOS X.

̇ R is a comprehensive statistical platform, offering all manner of data analytic
techniques.

̇ R has stateͲofͲtheͲart graphics capabilities. ＠
̇ R provides an unparalleled platform for programming new statistical methods

in an easy and straightforward manner. ＠
̇ R contains advanced statistical routines not yet available in other packages.

An example of R's graphic capabilit ies can be seen in f igure 1.2. This graph, created with

a single line of code, descr ibes the relat ionships between incom e, educat ion, and prest ige for

blue collar , white collar, and professional jobs. Technically , it is a scat terplot mat r ix with

groups displayed by color and sym bol, two types of fit lines (linear and loess) , confidence

ellipses, and two types of density display (kernel density est imat ion, and rug plots) . I f these

terms are unfam iliar to you, don't worry. We will cover them in later chapters. For now, t rust

m e that they are really cool (and that the stat ist icians reading this are salivat ing) .

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Figure 1.2 Relationships between income, education, and prestige for blue collar, white collar, and
professional jobs. Source: car package written by John Fox.

Basically , this graph indicates that :

̇ Education, income and job prestige are linearly related. ＠
̇ In general, blue collar jobs involve lower education, income and prestige,

while professional jobs involve higher education, income, and prestige. White
collar jobs fall in between.

̇ There are some interesting exceptions. Ministers (the point labeled 1) have
high prestige and low income. RR Engineers (the point labeled 2) have high
income and low education. ＠

̇ Education (and possibly prestige) are distributed bimodally, with more scores
as the high end and low end, than in the middle.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

We will have m uch m ore to say about this type of graph in chapter 5.

Unfortunately, R can have a steep learning curve. Because it can do so much, the

documentat ion and help f iles available can be volum inous. Addit ionally, because much of the

funct ionally comes from opt ional modules created by independent cont r ibutors, this

documentat ion can be scat tered and difficult to locate. I n fact , get t ing a handle on all that R

can do is a challenge.

The goal of this book is to make access to R quick and easy. We will tour the many

features of R, covering enough m aterial to get you star ted on your data, with pointers on

where to go when you need to learn m ore. Let 's begin by installing the program .

1.2 Obtaining and installing R
R is freely available from the Comprehensive R Archive Network (CRAN) at ht tp: / / cran.r-

project .org. Precom piled binaries are available for Linux, MacOS X, and Windows. Follow

direct ions for installing the base product on the plat form of your choice. Later we'll talk

about adding addit ional funct ionality through opt ional m odules called packages (also

available from CRAN) .

1.3 Working with the R interface
R is a case-sensit ive, interpreted language. You can enter com m ands one at a t im e at the

com m and prompt (>) or run a set of com m ands from a source file. There are a wide variety

of data types, including vectors, mat r ices, datafram es (sim ilar to datasets) , and lists

(collect ions of objects) . We will discuss each of these data types in chapter 2.

Most funct ionality is provided through built - in and user-created funct ions and all data

objects are kept in memory during an interact ive session. Basic funct ions are available by

default . Other funct ions are contained in packages that can be at tached to a current session

as needed.

Statem ents consist of funct ions and assignments. R uses the symbol <- for assignm ents,

rather than the typical = sign. For exam ple, the statem ent

x <- rnorm(5)

creates a vector nam ed x containing 5 random deviates from a standard normal

dist r ibut ion. Com m ents are preceded by the # sym bol. Any text appearing after the # is

ignored by the R interpreter.

1.3.1 Getting Started

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/
http://cran.r-project.org/

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

I f you are using Microsoft Windows, launch R from the Start Menu. On a Mac, double click

the R icon in the Applicat ions folder. For Linux, type R at the command prompt of a term inal

window. This will start the R interface (see figure 1.3 for an exam ple) .

Figure 1.3 Example of the R interface on Microsoft Windows XP.

To get a feel for the interface, let 's work through a simple cont r ived exam ple. Let 's say

that we are studying physical developm ent and we have collected the ages and weights of 10

infants in their first year of life (see table 1.1) . We are interested in the dist r ibut ion of the

weights and their relat ionship to age.

Table 1.1 The heights and weights of ten infants.

Age (mo.) Weight (kg.)

01 4.4

03 5.3

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

05 7.2

02 5.2

11 8.5

09 7.3

03 6.0

09 10.4

12 10.2

03 6.1
 Note: These are fictional data.

We will enter the age and weight data as vectors, using the funct ion c() , which combines

its arguments into a vector or list . Then we will get the m ean and standard deviat ion of the

weights, the correlat ion between age and weight , and plot the relat ionship between age and

weight so that we can inspect any t rend v isually. The q() funct ion will end the session and

allow us to quit .

Listing 1.1 A sample R session

> # A two variable example
> age <- c(1,3,5,2,11,9,3,9,12,3)
> weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2 ,6.1)
> mean(weight)
[1] 7.06
> sd(weight)
[1] 2.077498
> cor(age,weight)
[1] 0.9075655
> plot(age,weight)
> q()

We can see from list ing 1.1, that the mean weight for these 10 infants is 7.06 kilogram s,

that the standard deviat ion is 2.08 kilograms, and that there is st rong linear relat ionship

between age in months and weight in k ilograms (correlat ion = 0.91) . The relat ionship can

also be seen in scat terplot in figure 1.4. Not surpr isingly, as infants get older, they tend to

weigh m ore.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Figure 1.4 Scatterplot of infant age (mo) by weight (kg).

DEMONSTRATIONS

To get a sense of what R can do graphically, enter demo(g r aphics) . A sam ple of the

graphs produced is included in f igure 1.5. Other dem onst rat ions include dem o(Hershey) ,

dem o(persp) , and dem o(im age) . To see a com plete list of dem onst rat ions, enter dem o()

without param eters.

2 4 6 8 10 12

5
6

7
8

9
10

age

w
ei

gh
t

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Figure 1.5 A sample of the graphs created with the demo function

1.3.2 Getting help
R provides extensive help facilit ies and learning to navigate them will help you signif icant ly in

your program m ing efforts. The built - in help system provides details, references, and

examples of any funct ion contained in a current ly installed package. Help is obtained using

the funct ions listed in table 1.2.

Table 1.2 R help functions.

Function Action

help.start() General help

help(foo) or Help on function foo

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

?foo

help.search("foo") or

??foo

Search the help system for instances of the string

foo (note the quotation marks)

example(foo) Examples of function foo

RSiteSearch("foo") Search for the string foo in help manuals and

archived mailing lists (note the quotation marks)

vignette() List all available vignettes for currently installed

packages

vignette("foo") Display specific vignettes for topic foo (note

the quotation marks)

The funct ion help.start() opens a browser window with access to int roductory and

advanced m anuals, FAQs, and reference m ater ials. The RSiteSearch() funct ion searches

for a given topic in online help manuals and archives of the R-Help discussion list and returns

the results in a browser window. The vignet tes returned by the vig nette() funct ion are

pract ical int roductory art icles provided in PDF format . Not all packages will have vignet tes.

As you can see, R provides extensive help facilit ies and learning to navigate them will

definitely aid your program m ing efforts.

1.3.3 The workspace
The workspace is your current R working environm ent and includes any user-defined objects

(vectors, matr ices, funct ions, datafram es, lists) . At the end of an R session, you can save an

im age of the current workspace that is automat ically reloaded the next t ime R star ts.

Com mands are entered interact ively at the R user prom pt . You can use the up and down

arrow keys to scroll through your com mand history. This allows you to select a previous

com mand, edit it if desired, and resubm it it using the enter key.

The current working directory is the directory R will read files from and save results to by

default . You can find out what the current working directory is by using the get wd()

funct ion. You can set the current working directory by using the set wd() funct ion. I f you

need to input a file that is not in the current working directory, use the full path nam e in the

call. Always enclose the nam es of files and director ies from the operat ing system in quote

m arks.

Som e standard com m ands for m anaging your workspace are listed in table 1.3.

Table 1.3 Functions for managing the R workspace

Function Action

getwd()
List the current working directory

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

ls()
List the objects in the current workspace

setwd("mydirectory")
Change the current working directory to

mydirector y

help(options)
Learn about available options

options()
View or set current option settings

history(#)
Display your last # commands (default = 25)

savehistory("myfile")
Save the commands history to myfil e (default =

.Rhistory)

loadhistory("myfile")
Reload a commands history (default =

.Rhistory)

save.image("myfile")
Save the workspace to myfile (default = .RData)

save(objectlist,file="myfile")
Save specific objects to a file

load("myfile")
Load a workspace into the current session (default

= .RData)
q()

Quit R. You will be prompted to save the

workspace.

To see these commands in act ion, take a look at list ing 1.2.

Listing 1.2 An example of commands used to manage the R workspace

setwd(“C:/myprojects/project1”) 1
options() 2
options(digits=3)
x <- runif(20) 3
summary(x) 4
hist(x)
savehistory() 5
save.image()
q()

1 Set the current working directory to C:/myprojects/project1
2 View currently set options and set numbers to display with 3 digits after the decimal place
3 Create a vector with 20 uniform random deviates
4 Print summary statistics and a histogram
5 Save a your commands history to the file .Rhistory and your workspace (including the vector x) to
the file .RData

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Note the forward slashes in the path name of the setwd() com mand. R t reats the

backslash " \ " as an escape character . Even when using R on a Windows plat form , use

forward slashes in path nam es. Also note that the setwd() funct ion will not create a

directory that does not exist . I f necessary, you can use the dir.c r eate() funct ion to

create a directory, and then use setwd() to change to it s locat ion.

I t is a good idea to keep your projects in separate director ies. I typically star t an R

session by issuing the setw d() com m and with the appropriate path to a project , followed by

the load() com mand without opt ions. This lets me start up where I left off in m y last session

and keeps the data and set t ings separate between projects. On Windows and MacOS X

plat forms it is even easier . Just navigate to the project directory and double click on the

saved image file. This will start R, load the saved workspace, and set the current working

directory to this locat ion.

1.3.4 Input and Output
By default , launching R starts an interact ive session with input from the keyboard and output

to the screen. However, you can also process commands from a script file (a file containing R

statements) and direct output to a var iety of dest inat ions.

INPUT

The source ("filename") funct ion subm its a scr ipt to the current session. I f the

filename does not include a path, the file is assumed to be in the current working directory.

For exam ple, source("m yprog") runs a set of R statem ents contained in file m yprog.

TEXT OUTPUT

The sink(" f ilename") funct ion redirects output to the file filen ame. By default , if

the file already exists, it s contents are overwrit ten. I nclude the opt ion append=TRUE to

append text to the file rather than overwrit ing it . I ncluding the opt ion split=TRU E will send

output to both the screen and the output file. The command sin k() by it self, returns

output to the term inal.

GRAPHIC OUTPUT

Although si nk() redirects text output , it has no effect on graphic output . To redirect

graphic output use one of the funct ions listed in table 1.4. Use dev.off() to return output

to the term inal.

Table 1.4 Functions for Saving Graphic Output

Function Output

pdf("filename.pdf") pdf file

win.metafile("filename.wmf") windows m etafile

png("filename.pgn") png file

jpeg("filename.jpg") j peg file

bmp("filename.bmp") bm p file

postscript("filename.ps") postscr ipt file

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Let ’s put it all together by looking at the example in list ing 1.3

Listing 1.3 Using various input and output in an R session

source("myfile1") 1

sink(“myoutput”, append=TRUE, split=TRUE)
pdf(“mygraphs.pdf”)
source(“myfile2”) 2

sink()
dev.off()
source(“myfile3”) 3

I n the code above, R statem ents from myf ile1 are subm it ted to the current session # 1

and the results appear on the screen. When the statem ents from myfile 2 are subm it ted

2, results appear on the screen, the text output is appended to the file myoutpu t , and the

graphic output is saved to mygraphs.pd f . Finally the statements from myfile 3 are

subm it ted # 3 and the results appear on screen.

R provides quite a bit of flexibility and control over where input com es from and where it

goes. I n sect ion 1.5 we will see how to run a program in batch m ode.

1.4 Packages
R comes with extensive capabilit ies r ight out of the box. However, som e of it s m ost excit ing

features are available as opt ional m odules that you can download and install. There are over

1800 user cont r ibuted modules called packages that you can download from ht tp: / / cran.r-

project .org/ web/ packages. They provide a t rem endous range of new capabilit ies, from the

analysis of geostat ist ical data to protein m ass spect ra processing to the analysis of

educat ional tests! We will use m any of these opt ional packages in this book.

1.4.1 What are packages?
Packages are collect ions of R funct ions, data, and compiled code in a well-defined format .

The directory where packages are stored on your com puter is called the library. The funct ion

.libPaths() will show you where your library is located, while the funct ion libr ary()

will show you what packages you have saved in your library.

As we've said, R comes with a standard set of packages, while others are available for

download and installat ion. Once installed, they have to be loaded into the session in order to

be used. The command sea r ch() will tell you which packages are loaded and ready to use.

1.4.2 Installing a package
There are a num ber of R funct ions that let you m anipulate packages. To install a package for

the first t im e, use the insta l l.packages() com m and. For example,

install.packages() without opt ions will br ing up a list of CRAN m irror sites. Once you

select a site, you will be presented with a list of all available packages. Select ing one will

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/web/packages
http://cran.r-project.org/web/packages

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

download and install it . I f you know what package you want to install, you can do so direct ly

by providing it as an argum ent to the funct ion. For exam ple, the gcl us package contains

funct ions for creat ing enhanced scat ter plots. You can download and install the package with

the com mand install.packages("glus") .

You only need to install a package once. However, like any software, packages are often

updated by their authors. Use the com m and update.packages() to update any packages

that you have installed. To see details on your packages, you can use the

installed.packages() command. I t will list the packages you have, along with their

version numbers, dependencies, and other inform at ion.

1.4.3 Loading a package
I nstalling a package downloads it from a CRAN m irror site and places it in your library. To

actually use it in an R session, you need to load the package using the library() com m and.

For example, to use the packaged gclus , issue the com mand libra r y(gclus) . Of course,

you m ust have installed a package before you can load it . You will have to load a package

once in each session you want to use it . However, you can custom ize your start -up

environm ent to automat ically load the packages you use most often. Custom izing your star t -

up is covered in appendix x.

1.4.4 Learning about a package
When you load a package, a new set of funct ions and datasets becom e available. Sm all

illust rat ive datasets are provided along with sample code, allowing you to t ry out the new

funct ionalit ies. The help system contains a descript ion of each funct ion (along with

examples) , and informat ion on each dataset included. Enter ing help (package= " name")

will provide a br ief descript ion of the package nam ed and an index of the funct ions and

datasets included. Using help() with any of these funct ion or dataset nam es will provide

further details. The sam e inform at ion can be downloaded as a PDF m anual from CRAN.

Common mistakes in R programming

There are som e com m on m istakes m ade frequent ly by both beginning and exper ienced R

program m ers. I f your program generates an error be sure the check for the following:

Using the wrong case. help () , Help() , and HELP() are three different funct ions (only

the first will work) .

Forget t ing to use quote m arks when they are needed. inst all.packages("gclus")

will work, while install.pa ckages(gclus) will generate an error.

Forget t ing to include the parentheses in a funct ion call. hel p() rather than help . Even

if there are no opt ions, you st ill need the () .

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Using the \ in a path nam e on Windows. R sees the backslash character as an escape

character. se t wd("c:\mydata") will generate an error. Use setwd("c:/mydata")

or setwd("c:\\mydata") instead.

Using a funct ion from a package that is not loaded. The funct ion order.clusters() is

contained in the gclus package. I f you t ry to use it before loading the package, you will

get an error.

The error message in R can be crypt ic, but if you are careful to follow the points above,

you should avoid seeing m any of them .

In the sidebar above, these should be bullet points, with the text
of the first sentence bolded for each. Bullets start with "Using the
wrong case" and end with "Using a function".

1.5 Batch Processing
Most of the t ime, you will be running R interact ively, entering com mands at the command

prom pt and seeing the results of each statem ent as it is processed. Occasionally , you m ay

want to run an R program in a repeated, standard, and possibly unat tended fashion. For

exam ple, you m ay need to generate the sam e report once a m onth. You can write your

program in R and run it in batch m ode.

How you run R in batch m ode depends on your operat ing system . On Linux or MacOS X

system s, you can use the following com mand in a term inal window:

R CMD BATCH options infile outfile

where infi l e is the name of the f ile containing R code to executed, outfile is nam e

of the file receiv ing the output and options lists opt ions that cont rol execut ion. By

convent ion, the infile is given extension .R and the out file is given extension .Rout .

For Windows, use

"C:\Program Files\R\R-2.9.0\bin\R.exe" CMD BATCH [C A]
 --vanilla --slave "c:\my projects\myscript.R"

adjust ing the paths to match the locat ion of your R.exe binary and your script file. For

more details on how to invoke R, including com mand line opt ions, see an " I nt roduct ion to R"

from CRAN (ht tp: / / cran.r-project .org) .

1.6 Using output as input - Reusing results
One of the m ost useful design features of R is that the output of analyses can easily be

saved and used as input to addit ional analyses. Let 's walk through an exam ple. I f you don't

understand the stat ist ics involved, don't worry. We are focusing on the general pr inciple

here.

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

This following code will run a simple linear regression of m iles per gallon (mpg) on car

weight (wt) using the dataset m tcars. Results are sent to the screen. Nothing is saved.

lm(mpg~wt, data=mtcars)

This t im e, the sam e regression is perform ed but the results are saved under the nam e fit .

fit <- lm(mpg~wt, data=mtcars)

No output is sent to the screen. However, you now can manipulate the results.

The assignm ent has actually created a list called " fit " that contains a wide range of

inform at ion from the analysis (including the predicted values, residuals, regression

coefficients, and m ore) . Typing summary(fit) provides details of the analysis, while

plot(fit) produces diagnost ic plots. You can generate and save influence stat ist ics with

cook<-cooks.distance(fit) . plot(cook) will graph these influence stat ist ics. To

predict m iles per gallon from car weight in a new set of data use predi ct(fit ,

mynewdata) .

To see what a funct ion returns, look at the value sect ion of the online help for that

funct ion. Here we would look at help(lm) . This will tell you what is saved when you assign

the results of that funct ion to a nam e.

1.7 Working through an example
We will finish this chapter with an example that t ies many of these ideas together. Here is

the task:

1. Open up the general help and look at the I nt roduct ion to R sect ion.

2. I nstall the vcd package (a package for visualizing categorical data that we will be

using in future chapters) .

3. List the funct ions and datasets available in this package.

4. Load the package and read the descript ion of the dataset Arthr it is.

5. Print out the Arthr it is data set (entering the name of an object will list it) .

6. Run the example that com es with the Arthr it is dataset . Don't worry if you don't

understand the results. I t basically shows that arthr it is pat ients receiv ing t reatm ent

improved m uch m ore than pat ients receiving a placebo.

7. Quit

The code required is provided in list ing 1.4, with a sam ple of the results displayed in figure

1.6.

Listing 1.4 Working with a new package

help.start() # look at introduction and preliminari es
install.packages("vcd")

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

help(package="vcd")
library(vcd)
help(Arthritis)
Arthritis
example(Arthritis)
q()

Figure 1.6 Output from listing 1.4

As this short exercise demonst rates, you can accom plish a great deal with a small

am ount of code.

1.8 Summary
I n this chapter, we have looked as some of the st rengths that make R an at t ract ive

opt ion for students, researchers, stat ist ician, and data analysts t rying to understand the

meaning of their data. We have walked through the program 's installat ion and talked about

how to enhance R's capabilit ies by downloading addit ional packages. We have explored the

basic interface, running program s interact ively and in batch, and produced a few sam ple

graphs. We have also learned how to save our work to both text and graphic f iles. Since R

can be a com plex program , we have spent som e t im e looking at how to access the extensive

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

help that is available. Hopefully , you're get t ing a sense of how powerful this freely available

software can be.

 Now that we have R up and running, it 's t im e to get our data into the m ix. I n the next

chapter, we will look at the types of data R can handle and how to import them into R from

text f iles, other program s, and database m anagement system s.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

2
Creating a dataset

This Chapter covers:

̇ R data structures

̇ Data entry

̇ Importing data ＠
̇ Annotating datasets

The first step in any data analysis is the creat ion of a dataset containing the inform at ion to

be studied, in a form at that m eets our needs. I n R, this will involve

̇ Selecting a data structure to hold our data ＠
̇ Entering or importing our data into the data structure

The first part of this chapter (sect ions 2.1-2.2) descr ibes the wealth of st ructures that R can

use for holding data. I n part icular, sect ion 2.2 descr ibes scalars, vectors, mat r ices,

datafram es, factors, and lists. Understanding these st ructures (and the notat ion used to

access elements within them) will be help t remendously in understanding how R works. You

m ight want to take your t im e working through this sect ion.

The second part of this chapter (sect ion 2.3) covers the many m ethods available for

im port ing data into R. Data can be entered m anually, or im ported from an external source.

These data sources can include text files, spreadsheets, stat ist ical packages, and database

managem ent system s. For example, the data that I work with typically come from SQL

databases. However, on occasion, I receive data from legacy DOS system s, and from current

SAS and SPSS databases. I t is likely that you will only have to use one or two of the

m ethods descr ibed in this sect ion, so feel free to pick and choose those that f it for your

situat ion.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Once a dataset is created, we will typically annotate it , adding descript ive labels for

var iables and variable codes. The third port ion of this chapter will look at annotat ing

datasets (2.4) and reviews som e useful funct ions for working with datasets (2.5) . Let 's star t

with the basics.

2.1 Understanding datasets
A dataset is usually a rectangular array of data with rows represent ing observat ions and

colum ns represent ing variables. An exam ple of a hypothet ical pat ient dataset is given in

table 2.1

Table 2.1 A patient dataset

PatientID AdmDate Age Diabetes Status

1 10/15/2009 25 Type1 Poor

2 11/01/2009 34 Type2 Improved

3 10/21/2009 28 Type1 Excellent

4 10/28/2009 52 Type1 Poor

Different t radit ions have different names for the rows and colum ns of a dataset .

Stat ist icians refer to them as observat ions and variables, database analysts call them records

and fields, and those from the data m ining/ machine learning disciplines call them examples

and at t r ibutes. We will use the term s observat ions and variables throughout the rest of this

book.

We can dist inguish between the st ructure of the dataset (in this case a rectangular array)

and the contents or data types included. I n the dataset above, Patie ntID is a row or case

ident ifier , AdmDate is a date variable, Age is a cont inuous variable, Diabete s is nom inal

variable, and Statu s is an ordinal var iable.

R contains a wide var iety of st ructures for holding data including scalars, vectors, arrays,

datafram es, and lists. The table above corresponds to a dataframe in R. This diversity of

st ructures provides the R language with a great deal of flex ibility in dealing with data.

The data types or m odes that R can handle include numeric, character, logical

(TRUE/ FALSE) , complex (imaginary num bers) , and raw (bytes) . I n R, PatientID , AdmDate,

and Age would be num eric variables, while Diabete s and Statu s would be character

variables. Addit ionally, we will need to tell R that Patie ntID is a case ident ifier , AdmDate

contains dates, and that Diabete s and Statu s are nom inal and ordinal variables,

respect ively. R refers to case ident ifiers as rownames and categorical variables (nom inal,

ordinal) as f actors . We will cover each of these in the next sect ion. Dates will be discussed

in chapter 3.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

2.2 Data structures
As we have said, R has a wide variety of objects for holding data, including scalars, vectors,

mat r ices, dataframes and lists. They differ in terms of the type of data they can hold, how

they are created, their st ructural com plexity, and the notat ion used to ident ify and access

individual elem ents. Figure 2.1 presents a diagram of these data st ructures.

Figure 2.1 R data structures

 We will look at each structure in turn, starting with vectors.

Some Definitions

There are several terms that are idiosyncrat ic to R, and thus confusing to new users.

I n R, an object is anything that can be assigned to a var iable. This includes constants,

data st ructures, funct ions, and even other objects. Objects have a m ode (which descr ibes

how the object is stored) , and a class (which tells generic funct ions like pr int , how to

handle it) .

A datafram e is a st ructure in R that holds data and sim ilar to the datasets found in

standard stat ist ical packages (e.g., SAS, SPSS, and Stata) . The columns are var iables

and the rows are observat ions. We can have variables of different types (e.g., num eric,

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

character) in the sam e datafram e. Datafram es are the m ain st ructures we will use to

store datasets.

Factors are nom inal or ordinal var iables. They are stored and t reated specially in R. We

will have m uch to say about factors in sect ion 2.2.5.

Most other term s should be fam iliar and follow the term inology used in stat ist ics and

com put ing in general.

2.2.1 Vectors
Vectors are one dim ensional arrays that can hold num eric data, character data, or logical

data. The com bine funct ion c() is used to form the vector (see list ing 2.1) .

Listing 2.1 Creating vectors

a numeric vector
a <- c(1, 2, 5, 3, 6, -2, 4)

a character vector
b <- c("one", "two", "three")

a logic vector
c <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE)

Note that the data in a vector m ust only be one type or mode (numeric, character, or

logical) . You cannot m ix modes in the same vector .

SCALARS

Scalars are sim ply one elem ent vectors. Exam ples include f <- 3, g <- "US " and h

<- TRUE . They are used to hold constants.

You can refer to elem ents of a vector using a num eric vector of posit ions within brackets.

For exam ple a[c(2, 4)] refer to the 2nd and 4th elem ent of vector a. The following code

provides exam ples (list ing 2.2) .

Listing 2.2 Using vector subscripts

> a <- c(1, 2, 5, 3, 6, -2, 4)
> a[3]

[1] 5

> a[c(1, 3, 5)]

[1] 1 5 6

> a[2:6] 1

[1] 2 5 3 6 -2

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

1 I n this exam ple we use the colon operator, which takes the form from:t o. For

exam ple:

a <- c(2:6)

is equivalent to

a <- c(2,3,4,5,6).

2.2.2 Matrices
A matr ix is a two dim ensional array where each elem ent has the same mode (numeric,

character , or logical) . Mat r ices are created with the mat r ix funct ion. The general form at is

myymatrix <- matrix(vector, nrow=r, ncol=c, byrow=logical_valu e,

[CA] dimna mes=list(char_vector_rownames, char_vector_colnames))

where vect or contains the elements for the matr ix, r and c give the row and colum n

dim ensions, and dimnames contains opt ional row and colum n labels. The opt ion byrow

indicates whether the mat r ix should be filled in by row (byrow=T RUE) or by column

(byrow=FAL SE) . The default is by colum n. List ing 2.3 demonst rates the matri x funct ion.

Listing 2.3 Creating Matrices

> # create 5 x 4 matrix
> y <- matrix(1:20, nrow=5, ncol=4)
> y
 [,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20

> # create a 2 x 2 matrix with labels
> # fill in the matrix by rows
> cells <- c(1,26,24,68)
> rnames <- c("R1", "R2")
> cnames <- c("C1", "C2")
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=T RUE, [CA]
 dimnames=list(rnames, cnames))
> mymatrix
 C1 C2
R1 1 26
R2 24 68

> # this time fill in the matrix by columns
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=F ALSE, [CA]
 dimnames=list(rnames, cnames))

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

> mymatrix
 C1 C2
R1 1 24
R2 26 68

You can ident ify rows, colum ns or elements of a mat r ix by using subscripts and brackets.

X[i,] refers to the ith row of m at r ix X, while X[,j] refers to j th colum n, and X[i,j]

refers to the ij th elem ent respect ively. The subscr ipts i and j can be num eric vectors in order

to select mult iple rows or columns. Examples are given in list ing 2.4.

Listing 2.4 Using matrix subscripts

> x <- matrix(1:10, nrow=2)
> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> # selecting the 2nd row
> x[2,]
[1] 2 4 6 8 10

> # selecting the 2nd column
> x[,2]
[1] 3 4

> # selecting the 1st row, 4th column element
> x[1,4]
[1] 7

> # selecting the first row, 4 & 5th columns
> x[1, c(4,5)]
[1] 7 9

Matr ices are two dimensional and, like vectors, can contain only one data type. When

there are m ore than two dim ensions, we will use arrays (sect ion 2.2.3) . When there are

mult iple modes of data, we will use dataframes (sect ion 2.2.4) .

2.2.3 Arrays
Arrays are sim ilar to mat r ices but can have more than two dim ensions. They are created

with an array funct ion of the following form :

myarray <- array(vector, dimensions, dimnames)

where vecto r contains the data for the array, dimension s is a num eric vector giv ing

the m axim al index for each dim ension, and dimnames is an opt ional list of dim ension labels.

List ing 2.5 gives an exam ple of creat ing a three dim ensional (2 x 3 x 4) array of num bers.

Listing 2.5 Creating an array

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

> dim1 <- c("A1", "A2")
> dim2 <- c("B1", "B2", "B3")
> dim3 <- c("C1", "C2", "C3", "C4")
> z <- array(1:24, c(2,3,4), dimnames=list(dim1,dim 2,dim3))
> z
, , C1

 B1 B2 B3
A1 1 3 5
A2 2 4 6

, , C2

 B1 B2 B3
A1 7 9 11
A2 8 10 12

, , C3

 B1 B2 B3
A1 13 15 17
A2 14 16 18

, , C4

 B1 B2 B3
A1 19 21 23
A2 20 22 24

As you can see, arrays are a natural extension of m at r ices. They can be very useful in

programm ing new stat ist ical methods. Like matr ices, they m ust be a single mode.

I dent ifying elements follows what we have seen for m at r ices. I n the exam ple above, the

z[1,2,3] elem ent is 15.

2.2.4 Dataframes
A datafram e is m ore general than a matr ix , in that different columns can contain different

modes of data (numeric, character , etc.) . I t is sim ilar to the datasets you would typically see

in SAS, SPSS, and Stata. Datafram es are the m ost common data st ructure we will deal with

in R.

The pat ient dataset in table 2.1 consists of numeric and character data. Because there

are mult iple m odes of data, we cannot contain this data in mat r ix. I n this case, a datafram e

would be the st ructure of choice.

A datafram e is created with the datafram e funct ion:

mydata <- data.frame(col1, col2, col3,…)

where col1, col2, col3, … are column vectors of any type (character, num eric, logical,

etc.) . Names for each colum n can be provided with the names funct ion. An example (list ing

2.6) will make this clear.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Listing 2.6 Creating a dataframe

> patientID <- c(1, 2, 3, 4)
> age <- c(25, 34, 28, 52)
> diabetes <- c("Type1", "Type2", "Type1", "Type1")
> status <- c("Poor", "Improved", "Excellent", "Poo r")
> patientdata <- data.frame(patientID, age, diabete s, status)
> patientdata

 patientID age diabetes status
1 1 25 Type1 Poor
2 2 34 Type2 Improved
3 3 28 Type1 Excellent
4 4 52 Type1 Poor

Each colum n m ust have only one m ode. However, you can put colum ns of different

modes together to form the datafram e. Since dataframes are very close to what analysts

typically think of as datasets, we will use the terms columns and variables interchangeably

when discussing datafram es.

There are several ways to ident ify the elements of a datafram e. You can use the subscript

notat ion we have used previously (e.g. with m at r ices) or you can specify colum n nam es.

Take a look at the following three examples in list ing 2.7.

Listing 2.7 Specifying elements of a dataframe

> # continuing the last example
> patientdata[1:2]

 patientID age
1 1 25
2 2 34
3 3 28
4 4 52

> patientdata[c("diabetes","status")]

 diabetes status
1 Type1 Poor
2 Type2 Improved
3 Type1 Excellent
4 Type1 Poor

> patientdata$age 1

[1] 25 34 28 52

1 The $ notat ion in the third example is new. I t is used to indicate a part icular variable

from a given datafram e. For exam ple, if you want to get descr ipt ive stat ist ics on the

variables age , diabete s , and statu s from the patientdat a datafram e, you could use

the following code:

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

summary(patientdata$age, patientdata$diabetes, pati entdata$status)

This can get t iresom e to type, so a shortcut available.

attach(patientdata)
summary(age, diabetes, status)

The attac h funct ion adds the dataframe to the R search path. When a variable name is

encountered, datafram es in the search path are checked in order to locate the variable. We

will use the at tach funct ion often.

CASE IDENTIFIERS

I n the pat ient data example, patientI D is used to ident ify indiv iduals in the dataset . I n R,

case ident if iers can be specif ied with a rowname opt ion in the dataframe funct ion. For

example, the statem ent

patientdata <- data.frame(patientID, age, diabetes, status,
[CA]rownames=patientID)

specifies pat ient I D as the variable to use in labeling cases on various printouts and

graphs produced by R.

2.2.5 Factors
As we have seen, var iables can be descr ibed as nom inal, ordinal, or cont inuous. Nom inal

variables are categor ical, without an im plied order. Diabetes (Type1, Type2) is an exam ple of

a nom inal var iable. Even if Type1 is coded as a 1 and Type2 is coded as a 2 in the data, no

order is implied. Ordinal var iables imply order but not am ount . Status (poor, im proved,

excellent) is a good example of an ordinal variable. We know that a pat ient with a "poor"

status is not doing as well as a pat ient with an " im proved" status, but not by how m uch.

Cont inuous var iables can take on any value within som e range and both order and amount is

im plied. Age in years is a cont inuous variable and can take on values such as 14.5 or 22.8

and any value in between. We know that som eone who is fif teen is one year older than

som eone who is fourteen.

Many R funct ions will handle data different ly if one or m ore variables are nom inal or

ordinal rather than cont inuous. Categor ical (nom inal) and ordered categorical (ordinal)

variables in R are called factors. The funct ion factor stores the categorical values as a

vector of integers in the range [1.. . k] (where k is the num ber of unique values in the

nom inal var iable) , and an internal vector of character st r ings (the original values) m apped to

these integers.

For exam ple, assum e that we have the vector

diabetes <- c("Type1", "Type2", "Type1", "Type1")

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

The statem ent diabetes <- factor(diabetes) stores this vector as (1, 2, 1, 1) and

associates it with 1= Type1 and 2= Type2 internally (the assignment is alphabet ical) . Any

analyses perform ed on the vector diabet es will t reat the var iable as nom inal and select the

stat ist ical m ethods appropriate for this level of measurement .

For vectors represent ing ordinal var iables, we add the param eter ord ered=TRUE to the

facto r funct ion. For the vector

status <- c("Poor", "Improved", "Excellent", "Poor")

The statem ent status <- factor(status, ordered=TRUE) will encode the vector

as (3, 2, 1, 3) and associate these values internally as 1= Excellent , 2= I mproved, and

3= Poor. Addit ionally, any analyses perform ed on this vector will t reat the variable as ordinal

and select the stat ist ical m ethods appropriately. For com pat ibility with the S language, the

statement above could also have been writ ten as statu s <- ordered(status) .

List ing 2.8 dem onst rates how specify ing factors and ordered factors impact data

analyses.

Listing 2.8 Using factors

> # enter the variables as vectors
> patientID <- c(1, 2, 3, 4)
> age <- c(25, 34, 28, 52)
> diabetes <- c("Type1", "Type2", "Type1", "Type1")
> status <- c("Poor", "Improved", "Excellent", "Poo r")

> # specify the vectors as factors
> diabetes <- factor(diabetes)
> status <- factor(status, order=TRUE)

> # create the dataframe
> patientdata <- data.frame(patientID, age, diabete s, status)

> # view the structure of the dataframe
> str(patientdata)

'data.frame': 4 obs. of 4 variables: 1
 $ patientID: num 1 2 3 4
 $ age : num 25 34 28 52
 $ diabetes : Factor w/ 2 levels "Type1","Type2": 1 2 1 1
 $ status : Ord.factor w/ 3 levels "Excellent"<"I mproved"<..: 3 2 1 3

> # get summary statistics on the variables 2
> summary(patientdata)

 patientID age diabetes sta tus
 Min. :1.00 Min. :25.00 Type1:3 Excellent :1
 1st Qu.:1.75 1st Qu.:27.25 Type2:1 Improved :1
 Median :2.50 Median :31.00 Poor :2
 Mean :2.50 Mean :34.75
 3rd Qu.:3.25 3rd Qu.:38.50

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

 Max. :4.00 Max. :52.00

The funct ion str(object) # 1 provides informat ion on an object in R (the datafram e in

this case) . I t clear ly shows that diabete s is a factor and status in an order factor, along

with how it is coded internally . Note that the sum mary funct ion # 2 t reats the variables

different ly. I t provides the m inimum, m axim um , m ean, and quart iles for the cont inuous

variable age, and frequency counts for the categor ical var iables diabetes and status.

2.2.6 Lists
Lists are the most complex of the R data types. Basically, a list is an ordered collect ion of

objects (components) . A list allows you to gather a var iety of (possibly unrelated) objects

under one nam e. For exam ple, a list m ay contain a com binat ion of vectors, mat r ices,

datafram es, and even other lists. A list is created with the list funct ion:

mylist <- list(object1, object2, …)

where the objects are any of the st ructures we have seen so far. Opt ionally, you can nam e

the objects in a list .

mylist <- list(name1=object1, name2=object2, …)

An exam ple is given in list ing 2.9.

Listing 2.9 Creating a list

Example of a list with 4 components -
a string, a numeric vector, a matrix, and charact er vector

> g <- "My First List"
> h <- c(25, 26, 18, 39)
> j <- matrix(1:10, nrow=5)
> k <- c("one", "two", "three")
> mylist <- list(title=g, ages=h, j, k)

> print the contents
> mylist

$title
[1] "My First List"

$ages
[1] 25 26 18 39

[[3]]
 [,1] [,2]
[1,] 1 6
[2,] 2 7

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

[3,] 3 8
[4,] 4 9
[5,] 5 10

> mylist[[2]]
[1] 25 26 18 39

> mylist[["age"]]
[[1] 25 26 18 39

This sim ple exam ple shows that any num ber of objects can be com bined and saved as a

list . You can specify elements of the list by specifying a com ponent num ber or a nam e within

double brackets. I n this example, mylis t [[2]] and mylist[["ages"]] both refer to the

sam e 4 elem ent numeric vector. Lists are very important R st ructures for two reasons. First ,

they allow you to organize and recall disparate informat ion in a simple way. Second, the

results of many R funct ions return lists. I t is up to the analyst to pull out the components

that are needed. We will see num erous examples of this in later chapters.

2.3 Data input
Now that we have data st ructures, we need to put som e data in them ! As data analysts, we

are typically faced with data that com es to us from a variety of sources and in a variety of

form ats. Our task is to im port the data into our tools, analyze the data, and report on the

results. R provides a wide range of tools for im port ing data.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Figure 2.2 Sources of data that can be imported into R

As you can see from figure 2.2, R can import data from the keyboard, from flat f iles, from

Microsoft products such as Excel and Access, from popular stat ist ical packages, and from a

variety of relat ional database m anagem ent systems. Since we never know where our data

will com e from next , we will cover all of them here.

2.3.1 Entering data from the keyboard
Perhaps the sim plest m ethod of data ent ry is from the keyboard. The edit funct ion in R will

invoke a text editor that will allow us to enter our data manually. The steps are:

8. Create an empty datafram e (or m at r ix) with the var iable nam es and m odes you want

to have in the final dataset .

9. I nvoke the text editor on this data object , enter your data, and save the results back

to the data object .

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

I n the following example, we will create a datafram e nam ed mydata with three var iables:

age (numeric) , gende r (character) , and weight (num eric) . We will then invoke the text

editor, add our data, and save the results (see list ing 2.10) .

Listing 2.10 Entering data in R via text editor

mydata <- data.frame(age=numeric(0), [CA] 1
 gender=character(0), weight=numeric(0))

mydata <- edit(mydata) 2

1 Assignm ents like age= num eric(0) create a variable of a specif ic mode, but without actual

data. # 2 Note that the result of the edit ing is assigned back to the object it self. The edit

funct ion actually operates on a copy of the object . I f you do not assign it a dest inat ion, all of

your edits will be lost !

On a Windows plat form , the results of invoking the edit funct ion can be seen in Figure

2.3.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Figure 2.3 Entering data via text editor on a Windows platform.

I n this figure, I 've taken the liberty of adding som e data. I f we click on a column t it le, the

editor gives us the opt ion of changing the variable nam e and type (numeric, character) . We

can add addit ional variables by clicking on the t it les of unused colum ns. When the text editor

is closed, the results are saved to the object assigned (mydata in this case) . I nvoking

mydata <- edit(mydata) again allows us to edit the data we have have entered and to

add new data. A shortcut for mydata <- edit(mydata) is simply fi x (mydata) .

This method of data ent ry works well for small datasets. For larger datasets, you will

probably want to use one of the m ethods we will describe next - namely im port ing data from

exist ing text files, Excel spreadsheets, stat ist ical packages, or database m anagem ent

system s.

2.3.2 Importing data from a (comma) delimited text file
We can import data from comma delim ited text f iles using the read. t abl e, a funct ion that

reads a file in table form at and saves it as a datafram e. The syntax is

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

mydataframe <- read.table(file, header = logical_value,
sep="delimiter", row.names = "name")

where file is a delim ited ASCI I file, header is a logical value indicat ing whether the

first row contains variable nam es (TRUE) or not (FALSE) , sep specif ies the delim iter

separat ing data values, and row.name s is an opt ion parameter specifying one or m ore

variables to represent row ident ifiers.

For exam ple, the statem ent

grades <- read.table("studentgrades.csv", header=TRUE, sep=",",
row.names="STUDENTID")

reads a com ma delim ited file nam ed studentgrades.cs v from the current working

directory, gets the variable nam es from the first line of the file, specif ies the variable

STUDENTID as the row ident if ier, and saves the results as a datafram e nam ed grade s .

Note that the sep param eter allows us to import f iles that use a sym bol other than a

com ma to delim it the data values. To im port a tab delim ited file, you could use sep=" "

which denotes whitespace (one or m ore spaces, tabs, new lines, or carr iage returns) . The

read.tabl e funct ion has m any addit ional opt ions for fine tuning the data im port . See

help(read.table) for details.

2.3.3 Importing data from Excel
The best way to read an Excel file is to export it to a com ma delim ited file from within Excel

and import it to R using the m ethod above. On Windows system s you can also use the

RODBC package to access Excel files. The first row of the spreadsheet should contain

variable/ colum n nam es.

First , download and install the RODBC package

install.packages("RODBC")

You can then use the following code to im port the data.

library(RODBC)
channel <- odbcConnectExcel("myfile.xls")
mydataframe <- sqlFetch(channel, "mysheet")
odbcClose(channel)

Here, myfil e.xl s is an Excel f ile, mysheet is the name of the Excel worksheet to read

from the workbook, channel is an RODBC connect ion object returned by obcConnect , and

mydataframe is the result ing datafram e. RODBC can also be used to import data from

Microsoft Access. See help (RODBC) for details.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

2.3.4 Importing data from SPSS
SPSS datasets can be imported into R by the read.sps s funct ion in the foreig n package.

However, we will be using the spss.ge t funct ion in the Hm isc package instead. spss.get is

a wrapper funct ion that sets m any param eters of r ead.spss for us autom at ically and

m akes the t ransfer easier and m ore consistent with what data analysts expect as a result .

First , download and install the Hmisc package (the foreign package is already installed

by default) .

install.packages("Hmisc")

Then use the following code to im port the data.

library(Hmisc)
mydataframe <- spss.get("mydata.sav", use.value.labels=TRUE)

I n the code above, m ydata.sav is the SPSS datafile to be imported,

use.value.labels=TRUE tells the funct ion to convert var iables with value labels into R

factors with those same levels, and mydat afram e is the result ing R dataframe.

2.3.5 Importing data from SAS
There are a num ber of funct ions in R designed to im port SAS datasets, including rea d.ssd

in the fore i gn package and sas.ge t in the Hmisc package. Unfortunately, if you are

using a recent version of SAS (say SAS 9.1 or higher) , you are likely to find that these

funct ions do not work for you because R has not caught up with changes in SAS file

st ructures. There are two solut ions that I would recom mend.

You can save the SAS dataset as a com m a delim ited text file from within SAS using PROC

EXPORT, and read the result ing file into R using the m ethod described in sect ion 2.3.1. An

example is given in list ing 2.11.

Listing 2.11 Exporting a SAS dataset to an R dataframe

SAS program:

proc export data= mydata
 outfile= "mydata.csv"
 dbms=csv;
run;

R program:

mydata <- read.table("mydata.csv", header=TRUE, sep =",")

Alternat ively, there is a com mercial product call Stat Transfer (descr ibed in sect ion 2.3.9)

that does an excellent j ob of saving SAS datasets (including any exist ing variable form ats) as

R datafram es.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

2.3.6 Importing data from Stata
I m port ing data from Stata to R is st raight forward. The necessary code is

library(foreign)
mydataframe <- read.dta("mydata.dta")

Here, mydat a.dt a is the Stata dataset and mydatafram e is the result ing R datafram e.

2.3.7 Importing data from Systat
Sim ilar to Stata, the code to import Systat data in R is sim ple.

library(foreign)
mydataframe <- read.systat("mydata.syd")

Again, mydat a.sy d is the Systat dataset and mydatafram e is the result ing R

datafram e.

2.3.8 Accessing Database Management Systems (DBMS)
There are a num ber of R packages that provide access to relat ional database m anagem ent

system s including MS SQL, Oracle, and MySQL.

THE ODBC INTERFACE

The RODBC package provides access to databases (including Microsoft Access and Microsoft

SQL Server) through an ODBC interface. I f you have not previously installed the RODBC

package, you can do so with the instal l .packages("RODBC") com m and. The prim ary

funct ions included with this package are listed in table 2.2.

Table 2.2 RODBC functions

Function Description

odbcConnect(dsn, uid="", pwd="") Open a connection to an ODBC database

sqlFetch(channel, sqtable) Read a table from an ODBC database into a

dataframe

sqlQuery(channel, query) Submit a query to an ODBC database and return

the results

sqlSave(channel, mydf, tablename =

sqtable, append = FALSE)

Write or update (append=TRUE) a dataframe to a

table in the ODBC database

sqlDrop(channel, sqtable) Remove a table from the ODBC database

close(channel) Close the connection

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

The RODBC package allows two-way com m unicat ion between R and an ODBC connected

SQL database. This m eans that you can not only read data from a connected the database

into R, but you can use R to alter the contents of the database itself. I n the following

example (list ing 2.12) we will import two tables (Crim e and Punishm ent) from a DBMS into

two R datafram es and called cr imedat and pundat , respect ively.

Listing 2.12 Accessing a DBMS through an ODBC interface

library(RODBC) 1
myconn <-odbcConnect("mydsn", uid="Rob", pwd="aardv ark") 2
crimedat <- sqlFetch(myconn, Crime) 3
pundat <- sqlQuery(myconn, "select * from Punishmen t") 4
close(myconn) 5

After loading the RODBC package # 1, we open a connect ion to the ODBC database # 2

through a registered data source nam e (mydsn) with a security UI D (rob) and password

(aardvar k) . The connect ion st r ing is passed to sqlFetc h # 3, which copies the table

Crime into the R datafram e crimeda t . I n # 4 we run the SQL sele ct statem ent against

table Punis hment and save the results to the dataframe punda t . Finally, we close the

connect # 5.

The sqlQue r y funct ion is very powerful because any valid SQL statem ent can be

inserted. This allows us to select specif ic var iables, subset the data, create new variables,

and recode and renam e exist ing variables.

OTHER INTERFACES

R provides other interfaces to DBMS. The RMySQL package provides an interface to MySQL,

the ROracl e package provides an interface to Oracle, and the RJDBC package provides

access to databases through a JDBC interface. Documentat ion for each package is available

on CRAN (ht tp: / / cran.r-project .org) . With variat ions, they are sim ilar to the RODBC package

we have just seen.

2.3.9 Importing data via Stat/Transfer
Before ending our discussion of data im port ing, it is worth m ent ioning a com m ercial product

that can make the task signif icant ly easier . Stat / Transfer (www.stat t ransfer.com) is a stand-

alone applicat ion that can t ransfer data between 34 data form ats, including R (see figure

2.4)

Download from Wow! eBook <www.wowebook.com>

http://www.stattransfer.com/

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Figure 2.4 Stat/Transfer main dialog on Windows.

I t is available for Windows, Mac, and UNI X plat forms and supports the latest versions of the

stat ist ical packages we have discussed so far, as well as ODBC accessed DBMS such as

Oracle, Sybase, I nform ix, and DB/ 2.

2.4 Annotating datasets
Data analysts typically annotate datasets to make the results easier to interpret . Typically

annotat ion includes adding descr ipt ive labels to var iable names and value labels to the codes

used for categorical var iables. For example, for the variable age , we m ight want to at tach

the more descr ipt ive label "Age at hospitalizat ion (in years) " . For a new variable gender code

1 or 2, we m ight want to associate the labels "male" and " fem ale" .

2.4.1 Variable labels
Unfortunately, R's ability to handle var iable labels is lim ited. One approach is to use the

variable label as the variable's nam e and then refer to the var iable by its posit ion index.

Using the example above, let 's say that we have a dataframe containing pat ient data. The

third column, nam ed age , contains the ages at which individuals were first hospitalized. The

code

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

names(patientdata)[3] <- "Age at hospitalization (i n years)"

renam es age to "Age at hospitalization (in years) " . Clear ly this new nam e is

too long to type repeatedly. I nstead, we can refer to this variable as patientdata[3] and

the st r ing "A ge at hospi t alization (in years) " will pr int wherever age would have

originally. Obviously, this is not an ideal approach, and you m ay be bet ter off simply t rying

to com e up with bet ter nam es (e.g. adm issionAge) .

2.4.2 Value labels
The facto r funct ion can be used to create value labels for categor ical variables. Cont inuing

the example above, we could use the code

patientdata$gender <- factor(patientdata$gender , [CA]
levels = c(1,2),
labels = c("male", "female"))

Here level s indicate the actual values of the var iable, and labels refer to a character

vector containing the desired labels.

2.5 Useful functions for working with data objects
We will end this chapter with a br ief sum m ary of useful funct ions for working with data

objects (see table 2.3) .

Table 2.3 Useful functions for working with data objects

Function Action
length(object) number of elements/components
dim(object) dimensions of an object
str(object) structure of an object
class(object) class or type of an object
mode(object) how an object is stored
names(object) names of components in an object
c(object,object,...) combines objects into a vector
cbind(object, object, ...) combines objects as columns
rbind(object, object, ...) combines objects as rows
object prints the object

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

head(object) list the first part the object
tail(object) list the last part of the object
ls() list current objects
rm(object) delete an object
newobject <- edit(object) edit object and save as newobject
fix(object) edit in place

We have already discussed m ost of these funct ions. The funct ions head and tail are

useful for quickly scanning large datasets. For exam ple, head(patientdata) lists the first

six rows of our datafram e, while tail(patientdata) lists the last six. We will cover

funct ions such as length, cbind, and rbind, in the next chapter . They are gathered here as a

reference.

2.6 Summary
One of the most challenging tasks in data analysis is data preparat ion. We have made a

good star t in this chapter by out lining the various st ructures that R provides for holding data

and the m any m ethods available for im port ing data from both keyboard and external

sources. I n part icular, we will use the definit ions of m ode, vector , m at r ix, datafram e, and list

again and again in later chapters. Our abilit y to specify elem ents of these st ructures v ia the

bracket notat ion will be part icular ly important in select ing, subset t ing, and t ransform ing

data.

Once we get our datasets into R, it is likely that we will have to manipulate them into a

m ore conducive form at (I f ind guilt works well) . I n the next chapter , we will explore ways of

creat ing new variables, t ransform ing and recoding exist ing variables, m erging datasets, and

select ing observat ions.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

3
Basic data management

This Chapter covers:

̇ Manipulating dates and missing values

̇ Data type conversions

̇ Creating and recoding variables ＠
̇ Sorting, merging, and subsetting datasets

̇ Selecting and dropping variables

I n the last chapter, we covered a var iety of m ethods of import ing data into R. Unfor tunately,

get t ing our data in the rectangular arrangem ent of a m at r ix or datafram e is j ust the first step

in preparing it for analysis. To paraphrase Captain Kirk in "A Taste of Arm ageddon" (and

proving m y geekiness once and for all) "Data is a m essy business - a very, very m essy

business." I n my own work, as m uch as 60% of the t im e I spend on data analysis is actually

spent prepar ing the data for analysis. I will go out a lim b and say that this is probably t rue in

one form or another for m ost real-world data analysts. Let 's take a look at an exam ple.

3.1 A Working Example
One of the topics that I study in my current job is how m en and wom en differ in the ways

that they lead their organizat ions. Typical quest ions m ight be:

̇ Do men and women in management positions differ in the degree to which
they defer to superiors?

̇ Does this vary from country to country, or are these gender differences
universal?

One way to address these quest ions is to have bosses in mult iple count r ies rate their

managers on deferent ial behavior, using quest ions like the one below.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

This m anager asks m y opinion before m aking personnel decisions.

1 2 3 4 5

st rongly

disagree

disagree neither agree

nor disagree

agree st rongly

agree

The numbers and anchor text in the cells above should be
centered.

The result ing data m ight resem ble those in table 3.1. Each row represents the rat ings a

m anager by his or her boss.

Table 3.1 Gender differences in leadership behavior

manager date country gender age q1 q2 q3 q4 q5

1 10/24/08 US M 32 5 4 5 5 5

2 10/28/08 US F 45 3 5 2 5 5

3 10/01/08 UK F 25 3 5 5 5 2

4 10/12/08 UK M 39 3 3 4

5 05/01/09 UK F 99 2 2 1 2 1

Here, each m anager is rated by their boss on five statements (q1 to q5) related to

deference to author ity. For exam ple, Manager 1 is a 32 year old m ale working in the US and

is rated very deferent ial by his boss, while m anager 5 is a fem ale of unknown age (99

probably indicates m issing) working in the UK and is rated by low on deferent ial behavior.

The date column captures when the rat ings were made. Although a dataset m ight have

dozens of var iables and thousands of observat ions, we have only included 10 colum ns and 5

rows to simplify our examples. Addit ionally , we have lim ited the number of item s pertaining

to the m anagers' deferent ial behavior to f ive. I n a real-world study, we would probably use

10-20 such items to improve the reliability and validity of the results.

I n at tempt ing to address the quest ions of interest , there are several data m anagem ent

issues to be addressed. Here is a part ial list :

̇ The five ratings (q1 to q5) will need to be combined, yielding a single mean
deferential score from each manager.

̇ In surveys, respondents often skip questions. For example, the boss rating
manager 4 skipped questions 4 and 5. We will need a method of handling
incomplete data. We will also need to recode values like 99 for age to missing.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

̇ There may be hundreds of variables in a dataset, but we may only be
interested in a few. To simplify matters, we will want create a new dataset
with only the variables of interest. ＠

̇ Past research suggests that leadership behavior may change as a function of
the manager's age. To examine this, we may want to recode the current
values of age into a new categorical age grouping (e.g., young, middle aged,
elder).

̇ Leadership behavior may change over time. We might want to focus on
deferential behavior during the recent global financial crisis. To do this, we
may want to limit the study to data gathered during a specific period of time
(say January 1, 2009 to December 31, 2009).

We will work through each of these issues in the current chapter,
as well other basic data management issues such as combining
and sorting datasets. Then in chapter 4 we will look at some
advanced topics. 3.2 Creating new variables

I n a typical research project , we will need to create new variables and t ransform exist ing

ones. We will use statements of the form

variable <- expression

A wide array of operators and funct ions can be included in the expressio n port ion of the

statement . Table 3.2 lists R's ar ithm et ic operators. We will use ar ithmet ic operators when

developing formulas.

Table 3.2 Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation

x%%y Modulus (x mod y) 5%%2 is 1

x%/%y Integer division 5%/%2 is 2

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Let 's say that we have a datafram e nam ed m ydata, with var iables x1 and x2, and we

want to create a new var iable sumx that adds these two var iables and new var iable called

meanx that averages the two variables. I f we use the following code

sumx <- x1 + x2
meanx <- (x1 + x2)/2

we will get an error, because R does not know that x1 and x2 are from datafram e mydata .

I f we use the code below instead

sumx <- mydata$x1 + mydata$x2
meanx <- (mydata$x1 + mydata$x2)/2

the statements will succeed but we will end up with a datafram e (mydata) , and two

separate vectors(sumx and meanx) . This is probably not what we want . Ult im ately, we want

to incorporate new variables into the or iginal data fram e. List ing 3.1 provides three separate

ways to accom plish this. The one you choose is up to you - the results will be the sam e.

Listing 3.1 Creating new variables

Three examples for doing the same computations

mydata$,sumx <- mydata$x1 + mydata$x2
mydata$meanx <- (mydata$x1 + mydata$x2)/2

attach(mydata)
mydata$sumx <- x1 + x2
mydata$meanx <- (x1 + x2)/2
detach(mydata)

mydata <- transform(mydata,
sumx = x1 + x2,
meanx = (x1 + x2)/2
)

Personally, I prefer the third m ethod, exem plif ied by use of the trans f orm funct ion. I t

sim plifies inclusion of as m any new variables as desired and saves the results to the

datafram e.

3.3 Recoding variables
Recoding involves creat ing new values of a variable condit ional on the exist ing values of the

sam e and/ or other var iables. For exam ple, we m ay want to:

̇ change a continuous variable into a set of categories

̇ replace miscoded values with correct values

̇ create a pass/fail variable based on a set of cutͲoff scores.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

I n order to recode data, we can use one or m ore of R's logical operators (see table 3.3) .

Logical operators are expressions that return TRUE or FALSE.

Table 3.3 Logical Operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equal to

!= Not equal to

!x Not x

x | y x or y

x & y x and y

isTRUE(x) Test if x is TRUE

Let 's say that we want to recode the ages of the managers in our leadership dataset from

year to age category (Young, Middle Aged, Elder) . We could use the code in list ing 3.2

Listing 3.2 Recoding variables

Create 3 age categories from the age variable
attach(leadership)
leadership$agecat[age > 75] <- "Elder"
leadership$agecat[age > 45 & age <= 75] <- "Middle Aged"
leadership$agecat[age <= 45] <- "Young"
detach(leadership)

The statement variable [condition] <- expr essio n will only make the

assignm ent when condit i on is TRUE. We have included the datafram e nam e in

leadership$ageca t to ensure that the new var iable is saved back to the datafram e. We

used the at tach(leadership) statem ent so that we could write age rather than

leadership $age. We chose m iddle aged to be between 45 and 75 so that I wouldn't feel so

old.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

3.4 Renaming variables
I f we are not happy with our variable nam es, we can change them interact ively or

programmat ically . Let 's say that we wanted to change the var iables manager to

managerI D and date to testDat e. We could use the statement

fix(leadership)

to invoke an interact ive editor, click on the variable nam es, and renam e them in the dialog

boxes that are presented (see figure 3.1) .

Figure 3.1 Renaming variables interactively using the fix function

Program mat ically , the resh ape package has a rename funct ion that is very useful for

alter ing the nam es of variables. The form at of the renam e funct ion is

rename(dataframe, c(oldname="newname", oldname="new name",…))

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

An exam ple is given in list ing 3.3.

Listing 3.3 Renaming variables with the reshape package

rename programmatically
library(reshape)
leadership <- rename(leadership,
 c(manager="managerID", date="testDate")
)

Since the re shape package is not installed by default , you will need to install on first use

using the in stall.packages("reshape") command. The reshape package has a very

powerful set of funct ions for alter ing the st ructure of a dataset . We will explore several in

chapter 4.

Finally, you can renam e variables by re-entering the variable nam e in order, while

changing the ones that need to be altered. For exam ple:

names(leadership) <- c("testDate", "country", "gend er", "age",
 "managerID", "q1", "q2', "q3", "q4", "q5")

The lim itat ion of this approach is the need to enter all the variable nam es, not just those

that we want to rename. I f there are dozens or hundreds of var iables, this becom es

impract ical.

3.5 Missing values
I n a project of any size, data is likely to be incomplete, because of m issed quest ions, faut ly

equipm ent , or im properly coded data. I n R, m issing values are represented by the sym bol NA

(not available) . I mpossible values (e.g., div iding by zero) are represented by the sym bol NaN

(not a number) . Unlike programs like SAS, R uses the sam e m issing values sym bol for

character and num eric data.

I n our leadership exam ple, we could use the code in list ing 3.4 to read the data from a

tab delim ited text file.

Listing 3.4 Reading data with missing values

> leadership <- read.table("leadership.csv", header =TRUE, sep="\t")
> leadership

 manager date country gender age q1 q2 q3 q4 q 5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 45 3 5 2 5 5
3 3 10/01/08 UK F 25 3 5 5 5 2
4 4 10/12/08 UK M 39 3 3 4 NA N A
5 5 05/01/09 UK F 99 2 2 1 2 1

Note that when blank values are read into a datafram e, they are autom at ically converted to

m issing values.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

R provides a num ber of funct ions for ident ifying observat ions containing m issing values.

The funct ion i s.na allows us to test for the presence of m issing values. Assume that we

have a vector

y <- c(1, 2, 3, NA)

then the funct ion

is.na(y) returns c(FALSE, FALSE, FALSE, TRUE).

Not ice how the is.na funct ion works on an object . I t returns an object of the sam e size,

with the ent r ies replaced by TRUE if the element is a m issing value, and FALSE if the

elem ent is not a m issing value. Using our leadership exam ple in list ing 3.5:

Listing 3.5 Applying the is.na function

> is.na(leadership[,6:10])
 q1 q2 q3 q4 q5
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE TRUE TRUE
[5,] FALSE FALSE FALSE FALSE FALSE

Here, leade r ship[,6:10] lim ited the datafram e to all rows, and columns 6 to 10,

while is.na ident ified which values are m issing.

IMPORTANT NOTE

Missing values are considered non-com parable, even to them selves. This m eans that you

cannot use com parison operator to test for the presence of m issing values. For exam ple,

the logical test myvar == N A is never TRUE. I nstead, you have to use m issing values

funct ions, like those in this sect ion, to ident ify the m issing values in R data objects.

3.5.1 Recoding values to missing
We can use assignm ents to recode values to m issing. I n our leadership exam ple, m issing age

values were coded as 99. Before analyzing this dataset , we need to let R know that the

value 99 m eans m issing in this case (otherwise the m ean age for this sam ple of bosses will

be way off!) . We can accom plish this with the following code.

recode 99 to m issing for the variable age

at tach(leadership)

leadership[age= = 99, "age"] < - NA

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

The code fragm ent lead ership[age==99, "age"] selects the age colum n in the

datafram e le adershi p and within this column, the rows in which age is equal to 99. The

assignm ent <- NA then sets these age values to m issing. Be sure that any m issing data is

properly coded as m issing before analyzing the data or the results will be meaningless.

3.5.2 Excluding missing values from analyses
We need to elim inate m issing values in some way before analyzing our data. This is because

arithm et ic expressions and funct ions that contain m issing values y ield m issing values. For

exam ple

x <- c(1,2,NA,3)
y <- c[1] + c[2] + c[3] + c[4] # y returns NA
z <- sum(x) # z returns NA

Both y and z will be NA (m issing) because the 3rd element of x is m issing.

Luckily , most num erical funct ions have a na.rm=TRU E opt ion that rem oves m issing

values pr ior to calculat ions, and applies the funct ion to the remaining values.

x <- c(1,2,NA,3)
sum(x, na.rm=TRUE) # returns 6

When using funct ions with incomplete data, be sure to check how that funct ion handles

m issing data by looking at its online help (e.g. help(su m)) . The sum funct ion is only one of

many funct ions we will consider in chapter 4. They allow us to t ransform data with f lexibility

and ease.

We can remove any observat ion with m issing data using the na.om it funct ion. na.om it

deletes any rows with m issing data. We apply this to our leadership dataset in list ing 3.6.

Listing 3.6 Using na.omit to delete incomplete observations

create new dataset without missing data
> leadership

 manager date country gender age q1 q2 q3 q4 q 5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 40 3 5 2 5 5
3 3 10/01/08 UK F 25 3 5 5 5 2
4 4 10/12/08 UK M 39 3 3 4 NA N A
5 5 05/01/09 UK F 99 2 2 1 2 1

> newdata <- na.omit(leadership) 1
> newdata

 manager date country gender age q1 q2 q3 q4 q 5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 40 3 5 2 5 5
3 3 10/01/08 UK F 25 3 5 5 5 2

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

5 5 05/01/09 UK F 99 2 2 1 2 1

Any rows containing m issing data are deleted from lea dershi p before the results are

saved to newdata # 1.

Delet ing all observat ions with m issing data (called listwise delet ion) is one of several

methods of handling incomplete datasets. I f there are only a few m issing values or they are

concent rated in a sm all num ber of observat ions, listwise delet ion can provide a good solut ion

to the m issing values problem. However, if m issing values are spread throughout the data,

or there is a great deal of m issing data in a small number of var iables, listwise delet ion can

exclude a substant ial percentage of our data. We will look at several more sophist icated

m ethods of dealing with m issing values in chapter 15. Next , let 's take a look at dates.

3.6 Date values
Dates are typically entered into R as character st r ings and then t ranslated into date variables

that are stored numerically . The funct ion as.Dat e is used to make this t ranslat ion. The

syntax for is as.Date(x, "format") , where x is the character data and format gives the

appropriate form at from table 3.4.

Table 3.4 Date formats

Symbol Meaning Example

%d day as a number (0-31) 01-31

%a

%A

abbreviated weekday

unabbreviated weekday

Mon

Monday

%m month (00-12) 00-12

%b

%B

abbreviated month

unabbreviated month

Jan

January

%y

%Y

2-digit year

4-digit year

07

2007

The default form at is yyyy- mm-dd. List ing 3.7 provides two examples.

Listing 3.7 Converting character values to dates

convert character data in format 'mm/dd/yyyy' to dates
strDates <- c("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%d/%Y")

convert character data to dates using the default format
mydates <- as.Date(c("2007-06-22", "2004-02-13"))

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

When stored internally, dates are represented as the number of days since 1970-01-01,

with negat ive values for earlier dates. This lets us perform arithmet ic operat ions on dates

such as the one in list ing 3.8.

Listing 3.8 Calculations with with dates

> startdate <- as.Date("2004-02-13")
> enddate <- as.Date("2009-06-22")
> days <- enddate - startdate
> days

Time difference of 1956 days

I n our leadership dataset , date is coded as a character var iable in m m / dd/ yy form at .

We could use a com mands to t ransform them into date values.

myformat <- “%m/%d/%y”
leadership$date <- as.date(leadership$date, myforma t)

Here, we use the specif ied form at to read the character var iable and replace it in the

datafram e as a date var iable. Once in date form at , we can analyze and plot the dates using

the wide range of analyt ic techniques that we cover in later chapters.

There are two useful funct ions that take no argum ents, and return the current date

and/ or t ime. Specifically

̇ Sys.Date() returns today's date ＠
̇ Date() returns the current date and time.

We can use these funct ions to t im e stamp events, or to calculate the amount of t im e that

has passed between an event and the present . List ing 3.9 provides two exam ples of their

use.

Listing 3.9 Date functions and formatted printing

> # print today's date
> today <- Sys.Date()
> format(today, format="%B %d %Y") 1

[1] "July 07 2009"

> # day I was born (not really)
> dob <- as.Date(“1956-10-10”)
> format(dob, format="%A") 2

 [1] “Monday”

These examples also use the forma t funct ion. The for mat funct ion takes an argum ent (a

date in this case) , and applies a format (in this case assem bled from the sym bols in table

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

3.2) . This not only gives us cont rol over the way the dates are pr inted # 1, but also allows us

to ext ract port ions of the date values # 2.

3.6.1 Converting dates to character variables
Although less com monly used, we can also convert date variables to a character form at .

Date values can be converted to character variables using the as.Cha r acte r funct ion. For

exam ple

convert dates to character data
strDates <- as.character(dates)

The conversion allows us to apply a range of character funct ions to the data values

(subset t ing, replacem ent , concatenat ion, etc.) . We will cover character funct ions in detail in

chapter 4.

3.6.2 Going further
To learn m ore about convert ing character data to dates, take a look at help(as.Date)

and help(strftime) . To learn m ore about form at t ing dates and t imes, see

help(ISOdatetime) . I f you need to do complex calculat ions with dates, the fCa l endar

package can help. I t provides a m yriad of funct ions for dealing with dates, can handle

m ult iple t im e zones at once, and provides sophist icated calendar m anipulat ions that

recognize business days, weekends, and holidays.

3.7 Type conversions
I n the previous sect ion, we discussed how to convert character data to date values and vice-

versa. R provides a set of funct ions to ident ify an object 's data type, and convert it to a

different data type.

Type conversions in R work in a sim ilar fashion to those in other stat ist ical program m ing

languages. For exam ple, adding a character st r ing to a num eric vector converts all the

elem ents in the vector to character values. We can use the funct ions listed in table 3.5 to

test for a data type and to convert that to a given type.

Table 3.5. Type conversion functions

Test Convert

is.numeric as.numeric

is.character as.character

is.vector as.vector

is.matrix as.matrix

is.data.frame as.data.frame

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Funct ions of the form is. datatype return TRUE or FALSE, while as. datatype converts

the argum ent to that type. List ing 3.10 provides an example.

Listing 3.10 Converting from one data type to another

> a <- c(1,2,3)
> a

[1] 1 2 3

> is.numeric(a)

[1] TRUE

> is.vector(a)

[1] TRUE

> a <- as.character(a)
> a

[1] "1" "2" "3"

> is.numeric(a)

[1] FALSE

> is.vector(a)

[1] TRUE

> is.character(a)

[1] TRUE

When combined with the flow cont rols (e.g., if- then) that we will discuss in chapter 4, the

is. datatype funct ion can be a powerful tool, allowing us to handle data in different ways,

depending on its type. Addit ionally, some R funct ions require data of a specif ic type

(character or num eric, m at r ix or datafram e) and the as . datatype will allow us to t ransform

our data into the form at required pr ior to analyses.

3.8 Sorting data
Somet imes, j ust v iewing a dataset in a sorted order can tell us quite a bit about the data. For

exam ple, which m anagers are m ost deferent ial? To sort a datafram e in R, use the orde r

funct ion. By default , the sort ing order is ASCENDING. Prepend the sort ing variable with a

m inus sign to indicate a DESCENDING order. Som e examples are provided in list ing 3.11.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Listing 3.11 Sorting a dataset

sorting examples using the leadership dataset

sort by age
newdata <- leadership[order(age),] 1

sort by gender and age
newdata <- leadership[order(gender, age),] 2

#sort by gender (ascending) and age (descending) 3
newdata <-leadership[order(gender, -age),]

I n # 1 the dataset is sorted from youngest manager to oldest m anager. I n # 2 the dataset

is sorted into female followed by male, and age is sorted (younger first) within each of the

gender groups. I n # 3 age is sorted from oldest to youngest m anager within each gender.

3.9 Merging datasets
I f our data exist in m ult iple locat ions, we will need to com bine them before m oving forward.

3.9.1 Adding Columns
To m erge two datafram es (datasets) horizontally , we use the merge funct ion. I n m ost cases,

two datafram es are joined by by one or m ore com m on key variables (i.e., an inner join) .

Two examples are given in list ing 3.12.

Listing 3.12 Merging datasets horizontally

merge two dataframes by ID
total <- merge(dataframeA,dataframeB,by="ID")

merge two dataframes by ID and Country
total <- merge(dataframeA,dataframeB,by=c("ID","Cou ntry"))

Horizontal joins like this are usually used to add variables to a datafram e.

NOTE

I f you are sim ply joining two m at r ices or datafram es hor izontally and do not need to

specify a com m on key, you can use the cbin d funct ion:

total <- cbind(A, B)

This will hor izontally concatenate the objects A and B. For this to work proper ly, each

object has to have the sam e num ber of rows and be sorted in the sam e order.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

3.9.2 Adding Rows
To join two datafram es (datasets) vert ically, use the rb i nd funct ion. The two datafram es

m ust have the same variables, but they do not have to be in the sam e order (see list ing

3.13) .

Listing 3.13 Merging dataset vertically

merge two dataframes vertically
total <- rbind(dataframeA, dataframeB)

I f datafram eA has variables that datafram eB does not , then either:

̇ delete the extra variables in dataframeA or ＠
̇ create the additional variables in dataframeB and set them to NA (missing)

before joining them . Vert ical concatenat ion is usually used to add observat ions to a

datafram e.

3.10 Subsetting datasets
R has powerful indexing features for accessing the elem ents of an object . These features can

be used to select and exclude var iables, observat ions, or both. The following sect ions

dem onst rate several m ethods for keeping or delet ing var iables and observat ions.

3.10.1 Selecting (Keeping) Variables
I t is a com m on pract ice to create a new dataset from a lim ited num ber of var iables chosen

from a larger dataset . List ing 3.14 describes three different ways of accomplishing the sam e

select ion of var iables.

Listing 3.14 Selecting variables

select variables q1, q2, q3, q4, q5 from the lead ership dataframe

method 1
newdata <- leadership[, c(6:10)] 1

method 2
myvars <- c("q1", "q2", "q3", "q4", "q5") 2
newdata <-leadership[myvars]

method 3
myvars <- paste("q", 1:5, sep="") 3
newdata <- leadership[myvars]

I n chapter 2, we saw that the elem ents of a datafram e are accessed using the notat ion

dataframe[row indices, column indices] . I n # 1 we left the row indices blank (,)

which selected all rows by default . For the colum n indices, we selected columns 6 through

10 which t ranslated to variables q1 through q5. I n # 2, we entered variable nam es (in

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

quotes) as column indices, thereby select ing those columns. When variable nam es are

entered as colum n indices, the row indices are assumed and can be left out . Finally , in # 3,

we used the paste funct ion to create the same character vector as in the previous example.

The past e funct ion will be covered in chapter 4.

3.10.2 Excluding (dropping) Variables
There are m any reasons to exclude var iables. For exam ple, if a variable has m any m issing

values, we may want to drop the ent ire var iable pr ior to further analyses. Several m ethods

of excluding variables are presented in list ing 3.15.

Listing 3.15 Dropping variables

exclude variables q3 and q4 three different ways

myvars <- names(leadership) %in% c("q3", "q4") 1
newdata <- leadership[!myvars]

exclude 8th and 10th variable
newdata <- leadership[c(-8,-9)] 2

delete variables q3 and q4
leadership$q3 <- leadership$q4 <- NULL 3

I n order to understand why # 1 works, we need to break it down:

10. names(leadership) produces a character vector containing the var iable nam es.

c("managerID","testDate","country","gender","age","q1","q2",

"q3","q4","q5")

11. names(leadership) %ini% c("q3", "q4") returns a logical vector with TRUE

for each element in names(l eadership) that matches q3 or q4 and FALSE

otherwise.

c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE,

FALSE)

12. The not (!) operator reverses the logical values

c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)

13. leadership[c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE,

FALSE, TRUE)] selects columns with TRUE logical values, so q3

and q4 are excluded.

The code in # 2 works because prepending a colum n index with a m inus sign (-) excludes

that column. The third exam ple # 3 accom plishes the same goal by set t ing the columns q3

and q5 to undefined (NULL) . Note that NULL is not the sam e as NA (m issing) .

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Dropping variables is simply the converse of keeping variables. The choice will depend on

which is easier to code. I f there are m any variables to drop, it m ay be easier to keep the

ones that rem ain, or vice versa.

3.10.3 Selecting Observations

Select ing or excluding observat ions (rows) is typical a key aspect of successful data

preparat ion and analysis. Several examples are given in list ing 3.16.

Listing 3.16 Selecting observations

first 5 observerations
newdata <- leadership[1:5,] 1

based on variable values
newdata <- leadership[which(leadership$gender=="M" 2
& leadership$age > 30),]

or
attach(leadership)
newdata <- leadership[which(gender=='M' & age > 30) ,] 3
detach(leadership)

I n each of these exam ples, we provide the row indices and leave the column indices blank

(therefore choosing all colum ns) . I n # 1 we ask for rows 1 through 5 (the first 5

observat ions) . We need to break # 2 down to understand it :

14. The logical comparison le adership$gender=="F " produces the vector

c(TRUE, FALSE, FALSE, TRUE, FALSE)

15. The logical comparison le adership$age > 30 produces the vector

c(TRUE, TRUE, FALSE, TRUE, TRUE)

16. The logical comparison

c(TRUE, FALSE, FALSE, TRUE, TRUE) & c(TRUE, TRUE, FALSE, TRUE,

TRUE) produces the vector c(TRUE, FALSE, FALSE, TRUE, FALSE)

17. The funct ion which gives the indices of a vector that are TRUE. Thus

which(c(TRUE, FALSE, FALSE, TRUE, FALSE)) produces the vector

c(1, 4)

18. leadership[c(1,4),] selects the first and fourth observat ions from the

datafram e. This m atches our cr iter ia.

3 is ident ical to # 2 but uses the attac h funct ion so that we do not have to prepend the

variable names with the dataframe nam es.

At the beginning of this chapter, we suggested that we m ight want to lim it our analyses

to observat ions collected between January 1, 2009 and December 31, 2009. How can we do

this? One solut ion is presented in list ing 3.17.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Listing 3.17 Selecting observations based on dates

select observations recorded between Jan 1 2009 a nd Dec 31 2009
leadership$date <- as.Date(leadeship$date, "%m/%d/% y") 1
startdate <- as.Date("2009-01-01") 2
enddate <- as.Date("2009-01-31")
newdata <- leadership[which(leadership$date >= star tdate & [CA] 3
 leadership$date <= enddate),]

1 We convert the date values read in or iginally as character values to date values using

the form at mm/dd/yy . # 2 We create start ing and ending dates. Since the default for the

as.Dat e funct ion is yyyy - mm-dd, we don't have to supply it here. # 3 Finally, we select

cases m eet ing our desired cr iter ia as we did in the previous exam ple.

3.10.4 The Subset Function
The examples in the previous two sect ions are important because they help describe the

ways in which logical vectors and comparison operators are interpreted within R.

Understanding how these exam ples work will go a long way to m aking R m ore

understandable for you. Now that we have done things the hard way, let 's look at a shortcut .

The subse t funct ion is probably the easiest way to select variables and observat ion. Two

examples are given in list ing 3.18.

Listing 3.18 Using the subset function

using subset function
newdata <- subset(leadership, age >= 35 | age < 24, 1
select=c(q1, q2, q3, q4))

using subset function (another example)
newdata <- subset(leadership, sex=="M" & age > 25, 2
select=gender:q4)

I n # 1 we select all rows that have a value of age greater than or equal to 35 or age less

than 24. We keep the var iables q1 through q4. I n the second example # 2, we select all m en

over the age of 25 and we keep var iables gender through q5 (gender, q4, and all colum ns

between them) . We have seen the colon operator fro m:to in chapter 2. Here, it provides

all var iables in a datafram e between the to var iable and the from var iable, inclusive.

3.10.5 Random Samples
Sampling from larger datasets is com mon pract ice in data m ining and m achine learning. For

exam ple, we m ay want to select two random sam ples, creat ing a predict ive m odel from one,

and validat ing it s effect iveness on another. The sample funct ion allows us to take a random

sample (without or without replacement) of size n from a dataset . An exam ple is provided in

list ing 3.19.

Listing 3.19 Taking a random sample

take a random sample of size 50 from the leadersh ip dataset

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

sample without replacement
mysample <- leadership[sample(1:nrow(leadership), 5 0, [CA] 1
 replace=FALSE),]

1 The first argum ent to the sampl e funct ion is a vector list ing elements to be random ly

chosen from . Here, the vector is 1 to the number of observat ions in the datafram e. The

second argum ent is indices to be selected, and the third argum ent indicates sampling

without replacem ent . The sample funct ion returns the random ly sam pled indices, which are

then used to select rows from the datafram e.

GOING FURTHER

R has extensive facilit ies for sampling, including drawing and calibrat ing survey samples (see

the sampl e package) and analyzing com plex survey data (see the survey package) .

Bootst rapping is described in appendix d.

3.11 Summary
We have covered a great deal of ground in this chapter . We have looked at the way R

stores m issing and date values and explored various ways of handling them . We have seen

how to determ ine the data type of an object and how to convert it to other types. We have

used sim ple form ulas to create new variables and recode exist ing variables. We have sorted

our data and renam ed our variables. We have seen how to m erge our data with other

datasets both horizontally (adding variables) and vert ically (adding observat ions) . Finally, we

have seen how to keep or drop variables and how to select observat ions based on a variety

of cr iter ia.

Actually, we have only scratched the surface when it comes to handling incomplete data.

I n the next chapter, we will address the "m issing value problem " in m ore detail and discuss

more sophist icated methods of dealing with it . Then we will look at the myriad of ar ithmet ic,

character , and stat ist ical funct ions that R makes available for creat ing and t ransform ing

variables. After explor ing ways of cont rolling program flow, we will see how to wr ite our own

funct ions. Finally , we will explore how we can use these funct ions to aggregate and

summarize our data.

By the end of chapter 4 you will have most of the tools necessary to manage complex

datasets. (And you will be the envy of data analysts everywhere!)

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

4
Advanced data management

This Chapter covers:

̇ Mathematical and statistical functions

̇ Character functions

̇ Looping and conditional execution

̇ UserͲwritten functions

̇ Aggregating and reshaping data

I n chapter 3, we reviewed the basic techniques used for m anaging datasets within R. I n this

chapter, we will focus on advanced topics. The chapter is divided into three basic parts. I n

the first part we will take a whir lwind tour of R's many funct ions for mathemat ical, stat ist ical,

and character m anipulat ion. I n order to give this sect ion relevance, we begin with a data

m anagem ent problem that can be solved using these funct ions. After covering the funct ions

themselves, we will look at one possible solut ion to the problem we raised.

I n the second part we will look at how we can wr ite our own funct ions to accom plish data

m anagem ent and analysis tasks. First , we will look at ways of cont rolling program flow,

including looping and condit ional statement execut ion. Then we will look at the st ructure of

user-writ ten funct ions and how to invoke them once created.

I n the third part , we will look at ways of aggregat ing and sum m arizing our data, along

with m ethods of reshaping and rest ructur ing our datasets. When aggregat ing data, we can

specify the use of any appropriate built - in or user-writ ten funct ion to accom plish the

summarizat ion, so the topics we learned in the f irst two parts of the chapter will provide real

benefit .

Finally, we will pause for a well deserved rest .

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

4.1 A data management challenge
I n order to mot ivate our discussion of num erical and character funct ions, we will star t with a

data m anagem ent problem . A group of students have taken exams in Math, Science and

English. We want to combine these scores in order to determ ine a single performance

indicator for each student . Addit ionally, we want to assign an “A” to the top 20% of students,

“B” to the next 20% , etc. Finally, we want to sort the students alphabet ically . The data are

presented in table 4.1.

Table 4.1 Student exam data

Student Math Science English

John Davis 502 95 25

Angela Williams 600 99 22

Bullwinkle Moose 412 80 18

David Jones 358 82 15

Janice Markhammer 495 75 20

Cheryl Cushing 512 85 28

Reuven Ytzrhak 410 80 15

Greg Knox 625 95 30

Joel England 573 89 27

Mary Rayburn 522 86 18

Looking at this dataset , several obstacles are im mediately evident . First , scores on the

three exams are not com parable. They have widely different means and standard deviat ions,

so sim ply averaging them does not m ake sense. We m ust t ransform the exam scores into

comparable units before com bining them . Second, we will need a method of determ ining a

student 's percent ile rank on this score, in order to assign a grade. Third, there is single field

for name, com plicat ing the task of sort ing students. We will need to break apart their names

into f irst nam e and last nam e in order to sort them properly.

Each of these tasks can be accom plished through the judicious use of R's num erical and

character funct ions. After we work through the funct ions described next sect ion, we will

consider a possible solut ion to this data management challenge.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

4.2 Numerical and character functions

I n this sect ion we will review funct ions in R that can be used as the basic building blocks for

manipulat ing data. We can divide them into num erical (m athemat ical, stat ist ical, probability)

and character funct ions. After we review each type, we will look at how to apply funct ions to

the colum ns (variables) and rows (observat ions) of m at r ices and datafram es.

4.2.1 Mathematical functions
Table 4.2 lists com mon m athemat ical funct ions along with short examples.

Table 4.2 Mathematical functions

Function Description

abs(x) Absolute value

abs(-4) is 4

sqrt(x) Square root

sqrt(25) is 5

ceiling(x) Smallest integer not less than x

ceiling(3.475) is 4

floor(x) Largest integer not greater than x

floor(3.475) is 3

trunc(x) Integer formed by truncating values in x toward 0

trunc(5.99) is 5

round(x, digits=n) Round x to the specified number of decimal places

round(3.475, digits=2) is 3.48

signif(x, digits=n) Round x to the specified number of significant digits

signif(3.475, digits=2) is 3.5

cos(x), sin(x), tan(x) Cosine, sine, and tangent

cos(2) is -0.416

acos(x), asin(x), atan(x) Arc-cosine, arc-sine, and arc-tangent

acos(-0.416) is 2

cosh(x), sinh(x), tanh(x) Hyperbolic cosine, sine, and tangent

sinh(2) is 3.627

acosh(x), asinh(x), atanh(x) Hyperbolic arc-cosine, arc-sine, and arc-tangent

asinh(3.627) is 2

log(x,base=n) Logarithm of x to the base n

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

log(x)

log10(x)

For convenience

log(x) is the natural logarithm

log10(x) is the common logarithm

log(10) is 2.3026

log10(10) is 1

exp(x) Exponential function

exp(2.3026) is 10

Data t ransform at ion is one of the pr imary uses for these funct ions. For exam ple, we often

t ransform posit ively skewed variables such as incom e to a log scale before further analyses.

Mathem at ical funct ions will also be used as components in formulas, in plot t ing funct ions

(e.g., x vs. sin(x)) and in form at t ing num erical values pr ior to pr int ing.

4.2.2 Statistical Functions
Common stat ist ical funct ions are presented in table 4.3. Many of these funct ions have

opt ional param eters that affect the outcome. For example

y <- mean(x)

provides the arithm et ic m ean of the elements in object x, while

z <- mean(x, trim = 0.5, na.rm=TRUE)

provides the t r im m ed m ean, dropping the highest and lowest 5% of scores and any m issing

values. Use the help funct ion to learn m ore about each funct ion and its argum ents.

Table 4.3 Statistical functions

Function Description

mean(x) Mean

mean(c(1,2,3,4)) is 2. 5

median(x) Median

median(c(1,2,3,4)) is 2.5

sd(x) Standard deviation

sd(c(1,2,3,4) is 1.29

var(x) Variance

variance (c(1,2,3,4)) is 1.67

mad(x) Median absolute deviation

mad(c(1,2,3,4)) is 1.48

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

quantile(x, probs) Quantiles where x is the numeric vector whose

quantiles are desired and probs is a numeric

vector with probabilities in [0,1].

30th and 84th percentiles of x

y <- quantile(x, c(.3,.84))

range(x) Range

x <- c(1,2,3,4)

range(x) is c(1,4)

diff(range(x)) is 3

sum(x) Sum

sum(c(1,2,3,4) is 10

diff(x, lag=1) Lagged differences, with lag indicating which lag to

use. The default lag is 1.

x<- c(1, 5, 23, 29)

diff(x) is c(4, 18, 6)

min(x) Minimum

min(c(1,2,3,4)) is 1

max(x) Maximum

max(c(1,2,3,4) is 4

scale(x, center=TRUE, scale=TRUE) Column center (center=TRU E) or standardize

(center=TRUE, scale=TRU E) data object x .

An example is given in listing 4.2.

To see these funct ions in act ion, look at list ing 4.1. Here we demonst rate two ways to

calculate the m ean and standard deviat ion of a vector of num bers.

Listing 4.1 Calculating the mean and standard deviation

> x <- c(1,2,3,4,5,6,7,8)
> mean(x)

[1] 4.5

> sd(x)

[1] 2.449490

> # same thing the hard way
> n <- length(x)
> meanx <- sum(x)/n
> css <- sum((x - meanx)**2) 1
> sdx <- sqrt(css / (n-1))
> meanx

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

[1] 4.5

> sdx

[1] 2.449490

1 I t is inst ruct ive to v iew how the corrected sum of squares (css) is calculated step by

step:

19. x equals c(1 , 2, 3, 4, 5, 6, 7, 8) and meanx equals 4.5

20. (x – meanx) subt racts 4. 5 from each elem ent of x result ing in

c(-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5)

21. (x – meanx)** 2 squares each element of (x - meanx) result ing in

c(12.25, 6.25, 2.25, 0.25, 0.25, 2.25, 6.25 12.25)

22. sum((x-meanx)**2) sum s each of the elements of (x- meanx)**2) result ing in 42

Writ ing form ulas in R has m uch in common with m at r ix manipulat ion languages such as

MATLAB (we will look more specifically at solving mat r ix algebra problem s in appendix E) .

By default , the scale funct ion standardizes the colum ns of a m atr ix or datafram e to a

mean of zero and a standard deviat ion of one. To standardize each column to an arbit rary

m ean and standard deviat ion you could use code sim ilar to list ing 4.2.

Listing 4.2 Standardizing the columns of a dataset

standardize columns of a dataset to mean=0 and st andard deviation=1
newdata <- scale(mydata)

standardize columns of a dataset to an arbitrary
mean M and standard deviation SD
newdata <- scale(mydata)*SD + M

We will use this approach as one step in solving our learning exam ple (sect ion 4.2.7) .

4.2.3 Probability Functions
You m ay wonder why probabilit y funct ions are not listed with the stat ist ical funct ions above

(it was really bother ing you, wasn't it?) . Although probability funct ions are stat ist ical by

definit ion, they are unique enough to deserve their own sect ion. Probabilit y funct ions are

often used to generate sim ulated data with known characterist ics and to calculate probabilit y

values within user writ ten stat ist ical funct ions.

I n R, probabilit y funct ions take the form

[dpqr] dist r ibut ion_abbreviat ion

where the f irst let ter refers to the aspect of the dist r ibut ion returned:

d = density

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

p = dist r ibut ion funct ion

q = quant ile funct ion

r = r andom generat ion (random deviates)

The com mon probabilit y funct ions are listed in table 4.4.

Table 4.4 Probability distributions

Distribution Abbreviation Distribution Abbreviation

Beta beta Logistic logis
Binomial binom Multinomial multinom
Cauchy cauchy Negative binomial nbinom
ChiͲSquared
(noncentral)

chisq Normal norm

Exponential exp Poisson pois
F f Wilcoxon Signed Rank signrank
Gamma gamma T t
Geometric geom Uniform unif
Hypergeometric hyper Weibull weibull
Lognormal lnorm Wilcoxon Rank Sum wilcox

To see how these work, we will look at funct ions related to the norm al dist r ibut ion. I f we

do not specify a m ean and a standard deviat ion, the standard norm al dist r ibut ion is assumed

(m ean= 0, sd= 1) . Examples of the density (dnorm) , dist r ibut ion (pnor m) , quant ile (qnor m)

and random deviate generat ion (rnorm) funct ions are given in table 4.5.

Table 4.5 Normal distribution functions

Problem Solution

Plot the standard normal curve on the interval [-3,3]

(see below)

x <- pretty(c(-3,3), 30)

y <- dnorm(x)

plot(x, y,

 type = 'l',

 xlab = Normal Deviate",

 ylab = "Density",

 yaxs = "i"

)

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

What is the area under the standard normal curve to the

right of z = 1.96?

pnorm(1.96) equals 0.975

What is the value of the 90th percentile of a normal

distribution with a mean of 500 and a standard deviation

of 100?

qnorm(.9, mean=500, sd=100)

equals 628.16

Generate 50 random normal deviates with a mean of 50

and a standard deviation of 10.

rnorm(50, mean=50, sd=10)

Don't worry if the plot funct ion opt ions are unfam iliar. We will cover them in detail in later

chapters.

SETTING THE SEED FOR RANDOM NUMBER GENERATION

Each t im e we generate pseudo- random deviates, a different seed and therefore different

results, are produced. I n order to m ake our results reproducible, we can specify the seed

explicit ly, using the set.se ed funct ion. An example is given in list ing 4.3.

Listing 4.3 Generating pseudo-random numbers from a uniform distribution

> # generate 5 uniform random deviates
> runif(5)

[1] 0.8725344 0.3962501 0.6826534 0.3667821 0.92559 09

> runif(5)

[1] 0.4273903 0.2641101 0.3550058 0.3233044 0.65849 88

-3 -2 -1 0 1 2 3

0.
1

0.
2

0.
3

Normal Deviate

D
en

si
ty

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

> set.seed(1234) 1
> runif(5)

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.86091 54

> set.seed(1234) 1
> runif(5)

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.86091 54

1 By set t ing the seed m anually, we are able to reproduce our results. This can be very

helpful in creat ing examples we can access at a future t im e and share with others.

GENERATING MULTIVARIATE NORMAL DATA

I n sim ulat ion research and Monte Car lo studies, we often want to draw data from

mult ivar iate normal dist r ibut ion with a given m ean vector and covariance m atr ix. The

mvrnor m funct ion in the MASS package makes this easy. The funct ion call is

mvrnorm(n, mean, sigma)

where n is the desired sample size, m ean is the vector of m eans, and sigm a is the var iance-

covariance (or correlat ion) matr ix. I n list ing 4.4 we will sample 500 observat ions from a 3-

variable m ult ivar iate normal dist r ibut ion with

Mean Vector 230.7 146.7 3.6

Covariance Mat r ix 15360.8 6721.2 -47.1

 6721.2 4700.9 -16.5

 -47.1 -16.5 0.3

Listing 4.4 Generating data from a multivariate normal distribution

> mean <- c(230.7, 146.7, 3.6) 1
> sigma <- (c(15360.8, 6721.2, -47.1, 2
 6721.2, 4700.9, -16.5,
 -47.1, -16.5, 0.3), nrow=4, nco l=4)
> set.seed(1234) 3
> mydata <- mvrnorm(500, mean, sigma) 4
> mydata <- as.data.frame(mydata) 5
> names(mydata) <- c("y","x1","x2") 6
> dim(mydata 7

[1] 500 3

> head(mydata, n=10) 8

 y x1 x2

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

1 98.8 41.2 4.33
2 244.5 205.2 3.57
3 375.7 186.7 3.66
4 -59.2 11.2 4.23
5 313.0 111.0 2.92
6 288.8 185.1 4.14
7 134.8 165.0 3.69
8 171.7 97.4 3.80
9 167.3 101.0 3.99
10 121.1 94.5 3.76

I n the list ing above, we are generat ing 500 observat ions from a m ult ivar iate norm al

dist r ibut ion with a given # 1 m ean vector, and # 2 variance-covariance m at r ix. Since a

correlat ion mat r ix is a covariance matr ix too, we could have specif ied the correlat ions

st ructure direct ly here. We have # 3 set a random number seed so that we can reproduce our

results later. We # 4 generate the pseudo- random data, # 5 convert it to a datafram e from a

matr ix, and # 6 name the var iables. Finally , we # 7 confirm that we have 500 observat ions

and 3 variables, and # 8 pr int out the first 10 observat ions.

The probabilit y funct ions in R allow us to generate sim ulated data, sam pled from

dist r ibut ions with known character ist ics. Stat ist ical m ethods that rely on sim ulated data have

grown exponent ially in recent years and we will see several examples of these in later

chapters.

4.2.4 Character functions
While m athem at ical and stat ist ical funct ions operate on num erical data, character funct ions

ext ract inform at ion from textual data, or reformat textual data for pr int ing and report ing. For

exam ple, we m ay want to concatenate a person’s first nam e and last nam e, ensuring that

the first let ter of each is capitalized. Or we may want to count the instances of obscenit ies in

open ended feedback. Som e of the m ost useful character funct ions are listed in table 4.6.

Table 4.6 Character Functions

Function Description

nchar(x) Counts the number of characters of x

x <- c(“ab”, “cde”, “fghij”)

length(x) is 3

nchar(x[3]) is 5

substr(x, start, stop) Extract or replace substrings in a character vector.

x <- "abcdef"

substr(x, 2, 4) is bcd"

substr(x, 2, 4) <- "22222 " is

"a222ef"

grep(pattern, x, ignore.case=FALSE, Search for pat ter n in x . If fixed=FALS E then

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

fixed=FALSE) pattern is a regular expression. If fixed=TRU E

then pattern is a text string. Returns matching

indices.

grep("A", c("b","A","c"),

fixed=TRUE) returns 2

sub(pattern, replacement, x,

ignore.case=FALSE, fixed=FALSE)

Find pattern in x and substitue with

replacement text. If fixed =FALSE then

pattern is a regular expression. If fixed=TRU E

then pattern is a text string.

sub("\\s",".","Hello There") returns

Hello.Ther e

strsplit(x, split) Split the elements of character vector x at split .

strsplit("abc", "") returns

c("a","b","c")

paste(..., sep="") Concatenate strings after using sep string to

separate them.

paste("x", 1:3, sep="") returns

c("x1", "x2", "x3")

paste("x",1:3,sep="M") returns

c("xM1","xM2" "xM3")

paste("Today is", date()) returns

Today is Thu Jun 25 14:17:32 201 1

 (I changed the date to appear more current)

toupper(x) Uppercase

toupper("abc") returns "ABC"

tolower(x) Lowercase

tolower("ABC") returns "abc"

Note that the funct ions gr ep and su b can search for a text st r ing (f ixed= TRUE) or a

regular expression (fixed= FALSE) . Regular expressions provide a clear and concise syntax

for m atching a pat tern of text . For example, the regular expression

^[hc]?at

Download from Wow! eBook <www.wowebook.com>

http://regexlib.com/CheatSheet.aspx

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

m atches any st r ing that star ts with zero or one occurrences of “ h” or “ c” , followed by

“at ” . The expression therefore m atches "hat " , "cat " , and "at " , but not “bat ” . To learn m ore,

see the regular expression ent ry in Wikipedia.

4.2.5 Other useful functions
The funct ions in table 4.7 are also quite useful for data m anagem ent and m anipulat ion, but

they don't fit cleanly into the other categories.

Table 4.7 Other useful functions

Function Description

length(x) Length of object x

x <- c(2, 5, 6, 9)

length(x) is 4

seq(from , to, by) Generate a sequence

indices <- seq(1,10,2)

#indices is c(1, 3, 5, 7, 9)

rep(x, ntimes) Repeat x n times

y <- rep(1:3, 2)

y is c(1, 2, 3, 1, 2, 3)

cut(x, n) Divide continuous variable x into factor with n levels

y <- cut(x, 5)

pretty(x, n) Create pretty breakpoints. Divides a continuous

variable x into n intervals, by selecting n+ 1

equally spaced rounded values. Often used in

plotting.

cat(…) Concatenates the objects in … and outputs them

firstname <- c("Jane")

cat("Hello" , firstname, "\n")

The last exam ple dem onst rates the use of escape characters in pr int ing. Use \ n for new

lines, \ t for tabs, and \ ' for a single quote, \ b for backspace and so for th. For example, the

code:

name <- "Bob"
cat("Hello", name, "\b.\n", "Isn\'t R", "\t", "GRE AT?\n")

produces

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Hello Bob.
 Isn't R GREAT?

Note that the second line is indented one space. When cat concatenates objects for output ,

it separates each by a space. That is why we included the backspace (\ b) escape character

before the per iod. Otherwise it would have produced "Hello Bob ."

How we apply the funct ions we have covered so far to num bers, st r ings, and vectors is

intuit ive and st raight forward, but how do we apply them to m at r ices and datafram es? That is

the subject of the next sect ion.

4.2.6 Applying functions to matrices and dataframes
One of the interest ing features of R funct ions is that they can be applied to a variety of data

objects (scalars, vectors, mat r ices, arrays, and datafram es) . An example is given in list ing

4.5.

Listing 4.5 Apply functions to data objects

> a <- 5
> sqrt(5)

[1] 2.236068

> b <- c(1.243, 5.654, 2.99)
> round(b)

[1] 1 6 3

> log(c)
 [,1] [,2] [,3] [,4]
[1,] 0.0000000 1.386294 1.945910 2.302585
[2,] 0.6931472 1.609438 2.079442 2.397895
[3,] 1.0986123 1.791759 2.197225 2.484907

> mean(c)

[1] 6.5

Not ice that the m ean of m at r ix c in the exam ple above results in a scalar (6.5) . The m ean

funct ion took the average of all 12 elem ents in the matr ix . But what if we wanted the 3 row

means or the 4 column means?

R provides a funct ion nam ed apply that allows us to apply an arbit rary funct ion to any

dim ension of a m at r ix, array, or datafram e. The form at for the apply funct ion is

apply(x, MARGIN, FUN, ...)

where x is our data object , MARGIN is the dimension index, FUN is a funct ion we specify,

and . . . are any param eters we want to pass to FUN. I n a m at r ix or datafram e

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

MARGI N= 1 indicates rows and MARGI N= 2 indicates columns. Let 's take a look at the

examples in list ing 4.6.

Listing 4.6 Applying a function to the rows (columns) of a matrix

> # create some data
> mydata <- matrix(rnorm(30), nrow=6)
> mydata

 [,1] [,2] [,3] [,4] [,5]
[1,] 1.138 -1.413 -0.187 0.9849 -0.788
[2,] 0.475 1.318 -0.246 -1.0987 0.504
[3,] 1.444 -0.174 2.269 0.4378 0.195
[4,] -0.631 0.493 1.179 -0.4615 2.645
[5,] -0.458 0.180 -0.760 0.0759 -0.577
[6,] 0.485 0.158 0.369 -0.1272 0.669

> apply(mydata, 1, mean) 1

[1] -0.0531 0.1905 0.8344 0.6448 -0.3078 0.3106

> apply(mydata, 2, mean) 2

[1] 0.4088 0.0936 0.4372 -0.0315 0.4415

> apply(mydata, 2, mean, trim=.4) 3

[1] 0.4799 0.1689 0.0906 -0.0256 0.3495

I n # 1, we are calculat ing the 6 row m eans. I n # 2 we get the 5 column means. Finally , in

3, we get the colum n m eans, but this t ime we pass the opt ion tr i m=0.4 to the mean

funct ion, result ing in t r im m ed means.

Since FUN can be any R funct ion, including a funct ion that we wr ite ourselves (see sect ion

4.4) , apply is a very powerful mechanism. While apply applies a funct ion over the

m argins of an array, lapp l y and sapp l y apply a funct ion over a list . We will see an

exam ple of sapply (which is actually a user- fr iendly version of lappy) in the next sect ion.

We now have all the tools we need to solve the data challenge in sect ion 4.1, so let 's give

it a t ry.

4.3 A solution for our data management challenge
Our challenge from sect ion 4.1 is to com bine subject test scores into a single perform ance

indicator for each student , grade each student from A to F based on their relat ive standing

(top 20% , next 20% , etc.) , and sort the roster students last nam e, followed by first nam e. A

solut ion is given in list ing 4.7.

Listing 4.7 A solution to the learning example

tranform student roster
options(digits=2)

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

obtain performance scores
z <- scale(roster[,2:4])
score <- apply(z, 1, mean)
roster <- cbind(roster, score)

grade students
y <- quantile(score, c(.8,.6,.4,.2))
roster$grade[score >= y[1]] <- "A"
roster$grade[score < y[1] & score >= y[2]] <- "B"
roster$grade[score < y[2] & score >= y[3]] <- "C"
roster$grade[score < y[3] & score >= y[4]] <- "D"
roster$grade[score < y[4]] <- "F"

extract first and last name
name <- strsplit((roster$Student), " ")
lastname <- sapply(name, "[", 2)
firstname <- sapply(name, "[", 1)
roster <- cbind(firstname,lastname, roster[,-1])

sort by last and first name

roster < - roster[order(lastname,firstnam e) ,]

display results

> roster

 Firstname Lastname Math Science English score grade
6 Cheryl Cushing 512 85 28 0.35 C
1 John Davis 502 95 25 0.56 B
9 Joel England 573 89 27 0.70 B
4 David Jones 358 82 15 -1.16 F
8 Greg Knox 625 95 30 1.34 A
5 Janice Markhammer 495 75 20 -0.63 D
3 Bullwinkle Moose 412 80 18 -0.86 D
10 Mary Rayburn 522 86 18 -0.18 C
2 Angela Williams 600 99 22 0.92 A
7 Reuven Ytzrhak 410 80 15 -1.05 F

The code is dense so let 's walk through the solut ion step by step.

Step1 . The or iginal student roster is given below. The opt ions(digits= 3) just lim its the

num ber of digits pr inted after the decim al place and m akes the pr intouts easier to read.

> options(digits=3)
> roster

 Student Math Science English
1 John Davis 502 95 25
2 Angela Williams 600 99 22
3 Bullwinkle Moose 412 80 18
4 David Jones 358 82 15
5 Janice Markhammer 495 75 20
6 Cheryl Cushing 512 85 28
7 Reuven Ytzrhak 410 80 15

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

8 Greg Knox 625 95 30
9 Joel England 573 89 27
10 Mary Rayburn 522 86 18

Step 2 . Since the Math, Science, and English tests are reported on different scales (with

widely differ ing means and standard deviat ions) , we need to make them comparable before

com bining them. One way to do this is to standardize the var iables so that each test is

reported in standard deviat ion units, rather than in their or iginal scales. We can do this with

the scale funct ion.

> z <- scale(roster[,2:4])
> z

 Math Science English
 [1,] 0.013 1.078 0.587
 [2,] 1.143 1.591 0.037
 [3,] -1.026 -0.847 -0.697
 [4,] -1.649 -0.590 -1.247
 [5,] -0.068 -1.489 -0.330
 [6,] 0.128 -0.205 1.137
 [7,] -1.049 -0.847 -1.247
 [8,] 1.432 1.078 1.504
 [9,] 0.832 0.308 0.954
[10,] 0.243 -0.077 -0.697

Step 3 . We can then get a perform ance score for each student by calculat ing the row

means using the mean funct ion and add it to the roster using the cbind funct ion.

> score <- apply(z, 1, mean)
> roster <- cbind(roster, score)
> roster
 Student Math Science English score
1 John Davis 502 95 25 0.559
2 Angela Williams 600 99 22 0.924
3 Bullwinkle Moose 412 80 18 -0.857
4 David Jones 358 82 15 -1.162
5 Janice Markhammer 495 75 20 -0.629
6 Cheryl Cushing 512 85 28 0.353
7 Reuven Ytzrhak 410 80 15 -1.048
8 Greg Knox 625 95 30 1.338
9 Joel England 573 89 27 0.698
10 Mary Rayburn 522 86 18 -0.177

Step 4 . The quant ile funct ion will give us the percent ile rank of each student 's

perform ance score. We see that the cutoff for an A is .74, for a B is .44, and so on.

> y <- quantile(roster$score, c(.8,.6,.4,.2))
> y

 80% 60% 40% 20%
 0.74 0.44 -0.36 -0.89

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Step 5 . Using logical operators, we can recode students' percent ile ranks into a new

categorical grade variable. This creates var iable grad e, in the roste r datafram e.

> roster$grade[score >= y[1]] <- "A"
> roster$grade[score < y[1] & score >= y[2]] <- "B"
> roster$grade[score < y[2] & score >= y[3]] <- "C"
> roster$grade[score < y[3] & score >= y[4]] <- "D"
> roster$grade[score < y[4]] <- "F"
> roster

 Student Math Science English score gr ade
1 John Davis 502 95 25 0.559 B
2 Angela Williams 600 99 22 0.924 A
3 Bullwinkle Moose 412 80 18 -0.857 D
4 David Jones 358 82 15 -1.162 F
5 Janice Markhammer 495 75 20 -0.629 D
6 Cheryl Cushing 512 85 28 0.353 C
7 Reuven Ytzrhak 410 80 15 -1.048 F
8 Greg Knox 625 95 30 1.338 A
9 Joel England 573 89 27 0.698 B
10 Mary Rayburn 522 86 18 -0.177 C

Step 6 . We will use the st r split funct ion to break student names into first name and

last nam e at the space character. Apply ing st rsplit to a vector of st r ings, returns a list .

> name <- strsplit((roster$Student), " ")
> name

[[1]]
[1] "John" "Davis"

[[2]]
[1] "Angela" "Williams"

[[3]]
[1] "Bullwinkle" "Moose"

[[4]]
[1] "David" "Jones"

[[5]]
[1] "Janice" "Markhammer"

[[6]]
[1] "Cheryl" "Cushing"

[[7]]
[1] "Reuven" "Ytzrhak"

[[8]]
[1] "Greg" "Knox"

[[9]]
[1] "Joel" "England"

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

[[10]]
[1] "Mary" "Rayburn"

Step 7 . We can use the sapply funct ion to take the first elem ent of each com ponent and

put it in a firstname vector , and the second elem ent of each component and put it in a

lastname vector. We will use cbind to add them to the roster . Since we no longer need the

student variable, we will drop it (with the -1 in the roster index) .

> Firstname <- sapply(name, "[", 1)
> Lastname <- sapply(name, "[", 2)
> roster <- cbind(firstname,lastname, roster[,-1])
> roster

 Firstname Lastname Math Science English scor e grade
1 John Davis 502 95 25 0.55 9 B
2 Angela Williams 600 99 22 0.92 4 A
3 Bullwinkle Moose 412 80 18 -0.85 7 D
4 David Jones 358 82 15 -1.16 2 F
5 Janice Markhammer 495 75 20 -0.62 9 D
6 Cheryl Cushing 512 85 28 0.35 3 C
7 Reuven Ytzrhak 410 80 15 -1.04 8 F
8 Greg Knox 625 95 30 1.33 8 A
9 Joel England 573 89 27 0.69 8 B
10 Mary Rayburn 522 86 18 -0.17 7 C

Step 8 . Finally , we can sort the dataset by first and last nam e using the order funct ion.

> roster[order(Lastname,Firstname),]

 Firstname Lastname Math Science English score grade
6 Cheryl Cushing 512 85 28 0.35 C
1 John Davis 502 95 25 0.56 B
9 Joel England 573 89 27 0.70 B
4 David Jones 358 82 15 -1.16 F
8 Greg Knox 625 95 30 1.34 A
5 Janice Markhammer 495 75 20 -0.63 D
3 Bullwinkle Moose 412 80 18 -0.86 D
10 Mary Rayburn 522 86 18 -0.18 C
2 Angela Williams 600 99 22 0.92 A
7 Reuven Ytzrhak 410 80 15 -1.05 F

Voila! Piece of cake!

There are m any other ways to accom plish these tasks, but this code helps capture the

flavor of these funct ions. Now it is t im e to look at cont rol st ructures and user-writ ten

funct ions.

4.4 Control flow
I n the normal course of events, the statem ents in an R program are executed sequent ially

from the top of the program to the bot tom . However, there are t im es that we will want to

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

execute som e statem ents repet it ively, while only execut ing other statements if certain

condit ions are met . This is where cont rol- flow const ructs com e in.

R has the standard cont rol st ructures you would expect to see in a modern programm ing

language. First we will go through the const ructs used for condit ional execut ion, followed by

the const ructs used for looping.

I n the syntax examples throughout this sect ion

̇ statement is a single R statement or a compound statement (a group of R
statements enclosed in curly braces { } and separated by semicolons).

̇ cond is an expression that resolves to TRUE or FALSE ＠
̇ expr is a statement that evaluates to a number or character string

̇ seq is a sequence of numbers or character strings

After we discuss cont rol- flow const ructs, we will look at writ ing our funct ions.

4.4.1 Repetition and looping
Looping const ructs repet it ively execute a statement or ser ies of statem ents unt il a condit ion

is not t rue. These include the for and while st ructures.

FOR

The for loop executes a statem ent repet it ively unt il a var iable's value is no longer contained

in the sequence seq . The syntax is

for (var in seq) statement

I n following exam ple

for (i in 1:10) print("Hello")

the word Hello is pr inted 10 t im es.

WHILE

A while loop executes a statem ent repet it ively unt il the condit ion is no longer TRUE. The

syntax is

while (cond) statement

I n our second exam ple, the code

i = 10
while (i > 0) {print("Hello"); i <- i - 1}

once again pr ints the word Hello 10 t im es.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Looping in R can be inefficient and t im e consum ing when processing the rows or colum n

of large datasets. Whenever possible, it is bet ter to use R's built - in numerical and character

funct ions in conjunct ion with the apply fam ily of funct ions.

4.4.2 Conditional execution
I n condit ional execut ion, a statement or statements is only executed if a specif ied condit ion

is met . These const ructs include if-els e, ifels e, and switch .

IF-ELSE

The if-el se cont rol st ructure executes a statem ent if a given condit ion is TRUE.

Opt ionally, a different statem ent is executed if the condit ion is FALSE. The syntax is

if (cond) statement
if (cond) statement1 else statement2

Here is an example.

if (score > 90) grade = 'A"

if (gender=="M") print("This is a man") else print("This is a woman")

I n the first instance, the grade assignm ent is only made if the value of score is greater than

90. I n the second instance, one of two statements is executed. I f gender is equal to "M" then

the first statement is executed. I f not , the second statem ent is executed.

IFELSE

The ifelse const ruct is a compact version of the if-else const ruct we have seen above. The

sytax is

ifelse(cond, statement1, statement2)

The first statement is executed if cond is TRUE. I f cond is FALSE, the second statement is

executed. Here is an example.

ifelse (score > 50, outcome <- "passed", outcome < - "failed")

We use ifel se when we want to take a binary act ion.

SWITCH

Switch chooses statements based on the value of the expression. The syntax is

switch(expr, ...)

where the . . . are statements t ied to the possible outcome values of expr . I t is easiest

to understand how switc h works with by looking at an example. An example is given in

list ing 4.8.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Listing 4.8 A switch example

> feelings <- c("sad", "afraid")
> for (i in feelings)
 print(
 switch(i,
 happy = "I am glad you are happy",
 afraid = "There is nothing to fear",
 sad = "Cheer up",
 angry = "Calm down now"
)
)

[1] "Cheer up"
[1] "There is nothing to fear"

This is a silly example but shows the main features. We will see how to use switch a user-

writ ten funct ions in the next sect ion.

4.5 User-written functions
One of R's great strengths is the user's ability to add functions. In fact, many of the
functions in R are actually functions of existing functions. The structure of a function
is given below.

myfunction <- function(arg1, arg2, ...){
statements
return(object)
}

Objects in the funct ion are local to the funct ion. The object returned can be any data type

from scalar to list . Let 's take a look at an exam ple.

We would like to have a funct ion that calculates the cent ral tendency and spread of data

objects. The funct ion should give us a choice between parametr ic (m ean and standard

deviat ion) and nonparam etr ic (m edian and m edian absolute deviat ion) stat ist ics. The results

should be returned as a nam ed list . Addit ionally , the user should have the choice of

automat ically pr int ing the results or not . Unless unwise specified, the funct ion's default

behavior should be to calculate parametr ic stat ist ics and not pr int the results. One solut ion is

given in list ing 4.9.

Listing 4.9 mystats: a user-written function for summary statistics

mystats <- function(x, parametric=TRUE, print=FALSE) {
 if (parametric) {
 center <- mean(x); spread <- sd(x)
 } else {
 center <- median(x); spread <- mad(x)
 }
 if (print & parametric) {
 cat("Mean=", center, "\n", "SD=", spread, "\n")

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

 } else if (print & !parametric) {
 cat("Median=", center, "\n", "MAD=", spread, "\ n")
 }
 result <- list(center=center, spread=spread)
 return(result)
}

Now that we have our funct ion, let 's see it in act ion (list ing 4.10) .

Listing 4.10 mystats in action

create some data (random sample from a normal dis tribution)
set.seed(1234)
x <- rnorm(500)
y <- mystats(x)

no output is produced
y$center is the mean (0.001838821)
y$spread is the standard deviation (1.034814)

y <- mystats(x, parametric=FALSE, print=TRUE)

Median = -0.02070734
MAD = 1.000984

y$center is the median (-0.02070734)
y$spread is the median absolute deviation (1.0009 84)

Next , let 's look at a user-wr it ten funct ion that uses the switch const ruct (list ing 4.11) .

This funct ion gives the user a choice regarding the form at of today's date. The long form at is

specified as the default .

Listing 4.11 mydate: a user-written function using switch

mydate <- function(type="long") {
 switch(type,
 long = format(Sys.time(), "%A %B %d %Y"),
 short = format(Sys.time(), "%m-%d-%y"),
 cat(type, "is not a recognized type\n") 1
)
}

Here is the funct ion in act ion:

> mydate("long")

[1] "Saturday July 25 2009"

> mydate("short")

[1] "07-25-09"

> mydate()

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

[1] "Saturday July 25 2009"

> mydate("medium")

medium is not a recognized type

1 Note that the cat funct ion is only executed if the entered type does not match " long"

or "short " . I t is usually a good idea to have an expression that catches user supplied

argum ents that have been entered incorrect ly.

There are several funct ions than can help add error t rapping and correct ion to your

funct ions. You can use the funct ion warn i ng to generate a warning m essage, message to

generate a diagnost ic m essage, and stop to stop execut ion of the current expression and

carry out an error act ion. See each funct ion's online help for m ore details.

After creat ing our own funct ions, we m ay want to m ake them available in every session.

Appendix B describes how to custom ize the R environm ent so that our funct ions are loaded

autom at ically at star t -up. We will look at addit ional examples of user-writ ten funct ions in

chapters 5 and 7.

We can accomplish a great deal using the basic techniques provided in this sect ion.

However, if you would like to explore the subt let ies of funct ion writ ing, or would like to write

professional level code that you can dist r ibute to other, I would recom m end two excellent

books:

̇ Venables, W. N., & Ripley, B. D. (2000). S Programming. New York: Springer. ＠
̇ Chambers, J. M. (2008). Software for data analysis: Programming with R. New

York: Springer.

Together, they provide a level of detail, and breadth of exam ples that goes well beyond

what is possible in the current text .

Now that we have covered user-wr it ten funct ions, we will end this chapter with a

discussion of data aggregat ion and reshaping.

4.6 Aggregation and restructuring
R provides a num ber of powerful m ethods for aggregat ing and reshaping data. When we

aggregate data, we replace groups of observat ions with sum mary stat ist ics based on those

observat ions. When we reshape data, we alter the st ructure (rows and colum ns) determ ining

how the data is organized. This sect ion will describe a variety of m ethods for accom plishing

these tasks.

I n the next two sect ions, we will use the mt cars datafram e that is included with the base

installat ion of R. This dataset , ext racted from Motor Trend magazine (1974) , descr ibes the

design and perform ance character ist ics (number of cylinders, displacem ent , horsepower,

m pg, etc.) for 34 autom obiles. To learn more about the dataset , see help(mtcars) .

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

4.6.1 Transpose
The t ranspose (reversing rows and colum ns) is perhaps the sim plest m ethod of reshaping a

dataset . Use the t funct ion to t ranspose a m at r ix or a datafram e. I n the later case, row

nam es becom e variable (column) names. An example is presented in list ing 4.12.

Listing 4.12 Transposing a dataset

> cars <- mtcars[1:5,1:4] 1
> cars

 mpg cyl disp hp
Mazda RX4 21.0 6 160 110
Mazda RX4 Wag 21.0 6 160 110
Datsun 710 22.8 4 108 93
Hornet 4 Drive 21.4 6 258 110
Hornet Sportabout 18.7 8 360 175

> t(cars)

 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Dr ive Hornet Sportabout
mpg 21 21 22.8 2 1.4 18.7
cyl 6 6 4.0 6.0 8.0
disp 160 160 108.0 25 8.0 360.0
hp 110 110 93.0 11 0.0 175.0

1 We are using a subset of the m tcars dataset in order to conserve space on the page. We

will see a m ore flexible way of t ransposing data when we look at the shape package later in

this sect ion.

4.6.2 Aggregating data
I t is relat ively easy to collapse data in R using one or more BY variables and a defined

funct ion. The format is

aggregate(x, by, FUN)

where x is the data object to be collapsed, by is a list of var iables that will be crossed to

form the new observat ions, and FUN is the scalar funct ion used to calculate summary

stat ist ics that will m ake up the new observat ion values.

As an exam ple, we will aggregate the mt cars data by num ber of cylinders and gears,

returning m eans on each of the num eric var iables (see list ing 4.13) .

Listing 4.13 Aggregating data

> options(digits=3)
> attach(mtcars)
> aggdata <-aggregate(mtcars, by=list(cyl,gear), FU N=mean, na.rm=TRUE)
> aggdata

 Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb 1
1 4 3 21.5 4 120 97 3.70 2.46 20.0 1.0 0.00 3 1.00

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

2 6 3 19.8 6 242 108 2.92 3.34 19.8 1.0 0.00 3 1.00
3 8 3 15.1 8 358 194 3.12 4.10 17.1 0.0 0.00 3 3.08
4 4 4 26.9 4 103 76 4.11 2.38 19.6 1.0 0.75 4 1.50
5 6 4 19.8 6 164 116 3.91 3.09 17.7 0.5 0.50 4 4.00
6 4 5 28.2 4 108 102 4.10 1.83 16.8 0.5 1.00 5 2.00
7 6 5 19.7 6 145 175 3.62 2.77 15.5 0.0 1.00 5 6.00
8 8 5 15.4 8 326 300 3.88 3.37 14.6 0.0 1.00 5 6.00

1 I n these results, Group.1 represents the num ber of cylinders (4,6, or 8) and Group.2

represents the number of gears (3, 4, or 5) . For example, cars with 4 cylinders and 3 gears

have get a m ean of 21.5 m iles per gallon (m pg) .

When using the aggregate funct ion, the by variables m ust be in a list (even if there is

only one) . The funct ion specified can be any built - in or user provided funct ion. This gives the

aggregate com m and a great deal of power. But when it comes to power, nothing beats the

reshap e package.

4.6.3 The reshape package
The reshape package is a t rem endously versat ile approach to both rest ructur ing and

aggregat ing datasets. Because of this versat ility, it can be a bit challenging to learn. We will

go through the process slowly and use a very small dataset so that it is clear what is

happening. Since reshap e is not included in the standard installat ion of R, we will need to

install it one t ime, using in stall.packages("reshape") .

Basically , we will "m elt " data so that each row is a unique id-variable combinat ion. Then

we "cast " the m elted data into any shape we desire. Dur ing the cast , we can aggregate the

data with any funct ion we wish.

The dataset we will be working with is in table 4.5.

Table 4.5 The original dataset (mydata)

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

I n this dataset , the measurements are the values are the values in the last two colum ns

(5, 6, 3, 5, 6, 1, 2, and 4) . Each m easurem ent is uniquely ident if ied by a combinat ion of id

variables (in this case I D, Tim e, and whether the m easurem ent is on X1 or X2) . For exam ple,

the measured value 5 in the first row is uniquely ident if ied by knowing that it is from

observat ion (I D) 1, at Tim e 1, and on variable X1.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

MELTING

When we m elt a dataset , we rest ructure it into a format where each m easured variable is in

it s own row, along with the id var iables needed to uniquely ident ify it . I f we melt the data

from table x.x, using the following code

Library(reshape)
md <- melt(mydata, id=(c("id", "time"))

we end up with the st ructure given in table 4.6.

Table 4.6 The melted dataset

ID Time Variable Value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

Note that we have specified the var iables needed to uniquely ident ify each m easurement

(I D and Tim e) and that the variable indicat ing the measurem ent var iable nam es (X1 or . X2)

is created for us autom at ically .

Now that we have our data in a melted form , we can recast it into any shape, using the

cast funct ion.

CAST

The cast funct ion star ts with m elted data and reshapes using the it using a form ula that we

provide, and an (opt ional) funct ion used to aggregate the data. The form at is

newdata <- cast(md, formula, FUN)

where md is the melted data, formul a describes the desired end result , and FUN is the

(opt ional) aggregat ing funct ion. The form ula takes the form

rowvar1 + rowvar2 + … ~ colvar1 + colvar2 + …

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

I n this formula, rowvar1 + rowvar2 + . . . define the set of crossed variables that define

the rows, while colvar1 + colvar2 + ... define the set of crossed variables that

define the colum ns. This is easiest to see by looking at the examples in f igure 4.1.

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Time Variable Value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Variable Time1 Time 2

1 X1 5 3

1 X2 6 5

2 X2 6 2

2 X2 1 4

ID X1
Time1

X1
Time2

X2
Time1

X2
Time2

1 5 3 6 5

2 6 2 1 4

ID X1 X2

1 4 5.5

2 4 2.5

Time X1 X2

1 5.5 3.5

2 2.5 4.5

ID Time1 Time2

1 5.5 4

2 3.5 3

With Aggregation Without Aggregation

cast(md, id+time~variable)

cast(md, id+variable~time)

cast(md, id~variable+time)

cast(md, id~variable, mean)

cast(md, time~variable, mean)

cast(md, id~time, mean)

mydata

md <- melt(mydata, id=c("id", "time"))

Reshaping a Dataset

(c)

(b)

(a)

(d)

(e)

(f)

Figure 4.1 Reshaping data with the melt and cast functions

Since the form ulas on the r ight side (d, e, and f) do not include a funct ion, the data is

sim ply reshaped. I n cont rast , the exam ples on the left side (a, b, and c) specify the mean as

an aggregat ing funct ion. Thus the data are not only reshaped but aggregated. For exam ple

(a) gives the m eans on X1 and X2 averaged over t im e for each observat ion. Example (b)

gives the m ean scores of X1 and X2 at Tim e 1 and Tim e 2, averaged over observat ions. I n

(c) we have the m ean score for each observat ion at Tim e 1 and Tim e 2, averaged over X1

and X2. As you can see, the flexibilit y of the reshap e funct ions is amazing.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

4.7 Summary
I n this chapter , we have reviewed dozens of mathemat ical, stat ist ical, and probability

funct ions that are useful for m anipulat ing data. We have seen how to apply these funct ions

to a wide range of data objects, including vectors, m at r ices, and datafram es. We have

learned to use cont rol- f low const ructs for looping and branching to execute some statem ents

repet it ively and execute other statements only when certain condit ions are m et . We then had

a chance to write our own funct ions and apply them to data. Finally , we have explored ways

of collapsing, aggregat ing, and rest ructur ing our data.

Now that we have gathered the tools we need to get our data into shape (no pun

intended) , we are ready to bid Part I goodbye for now, and enter the excit ing world of data

analysis! I n the next chapter, we will begin to explore the many stat ist ical methods available

for turning data into understanding.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

5
Basic Statistics

This Chapter covers:

̇ Descriptive statistics ＠
̇ Frequency and contingency tables

̇ Correlations and covariances

̇ tͲtests

̇ Nonparametric statistics

I n previous chapters, we have seen how to im port data into R and use a variety of funct ions

to organize and t ransform the data into a useful form at . Our next step will be to exam ine the

dist r ibut ion of each variable collected, followed by an explorat ion of the relat ionships among

the variables two at a t im e. The goal of the present chapter is to describe how to accom plish

these tasks in R.

First we will look at m easures of locat ion and scale for quant itat ive variables. Then we will

look at frequency and cont ingency tables (and associated Chi-square tests) for categorical

variables. Next , we will exam ine the var ious forms of correlat ion coefficients available for

cont inuous and ordinal var iables. Finally, we will turn to a study of group differences v ia both

param etr ic (t - tests) and nonparam etr ic (Mann-Whitney U test , Kruskal Wallis test) methods.

Although our focus is on numerical results, accom panying graphical m ethods for visualizing

these results will be descr ibed throughout .

5.1 What you need to know
I n this chapter, we apply R programm ing techniques to the stat ist ical methods typically

taught in a first year undergraduate stat ist ics course. I f these m ethodologies are unfam iliar,

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

two excellent references are McCall (2000) , and Snedecor & Cochran (1989) . Alternat ively,

there are m any informat ive resources available online (e.g. Wikipedia) for each of the topics

covered.

Whenever possible, we have separated the discussion of stat ist ical methods and graphical

methods into separate chapters, with extensive cross- references between them . This allows

readers who are pr imar ily interested in R as a language for creat ing graphs (and who may

have a less extensive stat ist ical background) to focus on these aspects of the software. For

example, this chapter begins with stat ist ical m ethods for sum marizing data num erically ,

while chapter 6 descr ibes ways of present ing this informat ion graphically . However, in som e

later chapters (e.g., chapter 7) , the stat ist ical and graphical m ethods are so intertwined that

a separat ion will not be possible.

5.2 Descriptive statistics
I n this sect ion, we will look at measures of cent ral tendency, var iability , and dist r ibut ion

shape for cont inuous variables. For illust rat ive purposes, we will use several of the variables

from the with the Motor Trend Car Road Tests (mtcar s) dataset we first saw in chapter 4.

> mt <- mtcars[c("mpg", "hp", "wt", "am")]
> head(mt)
 mpg hp wt am
Mazda RX4 21.0 110 2.62 1
Mazda RX4 Wag 21.0 110 2.88 1
Datsun 710 22.8 93 2.32 1
Hornet 4 Drive 21.4 110 3.21 0
Hornet Sportabout 18.7 175 3.44 0
Valiant 18.1 105 3.46 0

I n this dataset , m iles per gallon (mpg) , horse power (hp) , and weight (wt) are

quant itat ive var iables, and t ransm ission (am) is a dichotomous variable coded 0= automat ic

and 1= manual. We will use the am var iable in sect ion 5.2.2, when we look at generat ing

descr ipt ive stat ist ics for subgroups.

5.2.1 A menagerie of methods
When it com es to calculat ing descr ipt ive stat ist ics, R has an embarrassm ent of r iches. Let 's

star t with funct ions that are included in the base installat ion. Then we will look at extensions

that are available through the use of user-cont r ibuted packages.

 I n the base installat ion, we can use the summary funct ion to obtain descript ive stat ist ics.

An exam ple is presented in list ing 5.1.

Listing 5.1 Descriptive statistics via summary

> summary(mt)
 mpg hp wt am
 Min. :10.4 Min. : 52.0 Min. :1.51 Min. :0.000
 1st Qu.:15.4 1st Qu.: 96.5 1st Qu.:2.58 1st Qu.:0.000
 Median :19.2 Median :123.0 Median :3.33 Medi an :0.000

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

 Mean :20.1 Mean :146.7 Mean :3.22 Mean :0.406
 3rd Qu.:22.8 3rd Qu.:180.0 3rd Qu.:3.61 3rd Qu.:1.000
 Max. :33.9 Max. :335.0 Max. :5.42 Max. :1.000

The summary funct ion provides the m inim um , maximum , quart iles, and the m ean. We

can use the sapply or apply funct ions from chapter 4 to provide any descr ipt ive stat ist ics

we choose. For the sapply funct ion, the form at is

sapply(x, FUN)

where x is our dataframe (or matr ix) and FUN is an arbit rary funct ion. Typical funct ions that

we can plug in here are mean , sd , va r , min , max, med, range , and quanti l e. The

funct ion fiv enum returns Tukey's five num ber sum m ary (m inim um , lower-hinge, m edian,

upper-hinge, and m axim um).

Surpr isingly, the base installat ion does not provide funct ions for skew and kurtosis, but

we can add our own. An example that provides several descr ipt ive stat ist ics, including skew

and kurtosis is given in list ing 5.2.

Listing 5.2 Descriptive statistics via sapply

> skew <- function(x)(sum((x-mean(x))**3/sqrt(var(x))**3)/length(x))
> kurtosis <- function(x)(sum((x-mean(x))**4/var(x) **2)/length(x) - 3)
> descript <- function(x)(c(mean=mean(x), stdev=sd(x), [CA]
 skew=skew(x), kurtosis=kurtosis(x))
> sapply(mt, descript)

 mpg hp wt am
mean 20.091 146.688 3.2172 0.406
stdev 6.027 68.563 0.9785 0.499
skew 0.611 0.726 0.4231 0.364
kurtosis -0.373 -0.136 -0.0227 -1.925 1

1 For cars in this sample, the m ean mpg is 20.1, with a standard deviat ion of 6.0. The

dist r ibut ion is skewed to the r ight (+ 0.61) and somewhat f lat ter than a normal dist r ibut ion (-

0.37) . This will be most evident when we graph the data in chapter 6.

EXTENSIONS

Several user-cont r ibuted packages offer funct ions for descr ipt ive stat ist ics, including

Hmisc , pastec s , and psych . Since these packages are not included in the base

dist r ibut ion, you will need to install them on first use (see sect ion 1.4) .

The descri be funct ion in the Hmisc package returns the num ber of variables and

observat ions, number of m issing and unique values, mean, quant iles, and five highest and

lowest values. An exam ple is provided in list ing 5.3.

Listing 5.3 Descriptive statistics via describe (Hmisc package)

> library(Hmisc)
> describe(mt)

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

mt

 4 Variables 32 Observations
--- -----------------------
mpg
 n missing unique Mean .05 .10 .25 . 50 .75 .90 .95
32 0 25 20.09 12.00 14.34 15.43 19. 20 22.80 30.09 31.30

lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27 .3 30.4 32.4 33.9
--- -----------------------
hp
 n missing unique Mean .05 .10 .25 . 50 .75 .90 .95
32 0 22 146.7 63.65 66.00 96.50 123. 00 180.00 243.50 253.55

lowest : 52 62 65 66 91, highest: 215 230 245 264 335
--- -----------------------
wt
 n missing unique Mean .05 .10 .25 . 50 .75 .90 .95
32 0 29 3.217 1.736 1.956 2.581 3.3 25 3.610 4.048 5.293

lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3. 845 4.070 5.250 5.345
5.424
--- -----------------------
am
 n missing unique Sum Mean
32 0 2 13 0.4062
--- -----------------------

The pastec s package offers a funct ion nam ed stat.d esc that provides a wide range of

descr ipt ive stat ist ics. The format is

stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0 .95)

I f basic=TRU E (the default) , the number of values, null values, m issing values,

m inim um , m axim um , range and sum are provided. I f desc=TRUE (also the default) , t he

m edian, m ean, standard error of the m ean, 95% confidence interval for the m ean, var iance,

standard deviat ion, and coefficient of var iat ion are also provided. Finally, if norm=TRUE (not

the default) , normal dist r ibut ion stat ist ics are returned, including skewness and kurtosis (and

their stat ist ical signif icance) , and the Shapiro-Wilks test of normality. The p value opt ion is

used to calculate the confidence interval for the m ean (.95 by default) . An example is given

in list ing 5.4.

Listing 5.4 Descriptive statistics via stat.desc (pastecs package)

> library(pastecs)
> stat.desc(mt)
 mpg hp wt am
nbr.val 32.00 32.000 32.000 32.0000
nbr.null 0.00 0.000 0.000 19.0000
nbr.na 0.00 0.000 0.000 0.0000
min 10.40 52.000 1.513 0.0000

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

max 33.90 335.000 5.424 1.0000
range 23.50 283.000 3.911 1.0000
sum 642.90 4694.000 102.952 13.0000
median 19.20 123.000 3.325 0.0000
mean 20.09 146.688 3.217 0.4062
SE.mean 1.07 12.120 0.173 0.0882
CI.mean.0.95 2.17 24.720 0.353 0.1799
var 36.32 4700.867 0.957 0.2490
std.dev 6.03 68.563 0.978 0.4990
coef.var 0.30 0.467 0.304 1.2283

As if this isn't enough, the psych package also has a funct ion called describ e that

provides the num ber of non-m issing observat ions, m ean, standard deviat ion, m edian,

t r imm ed m ean, m edian absolute deviat ion, m inimum, maxim um , range, skew, kurtosis, and

standard error of the m ean. An example is given in list ing 5.5.

Listing 5.5 Descriptive statistics via describe (psych package)

> library(psych)

Attaching package: 'psych'

 The following object(s) are masked from pac kage:Hmisc :
 describe

> describe(mt)

 n mean sd median trimmed mad min m ax range skew kurtosis
mpg 32 20.09 6.03 19.20 19.70 5.41 10.40 33. 90 23.50 0.61 -0.37
hp 32 146.69 68.56 123.00 141.19 77.10 52.00 335. 00 283.00 0.73 -0.14
wt 32 3.22 0.98 3.33 3.15 0.77 1.51 5. 42 3.91 0.42 -0.02
am 32 0.41 0.50 0.00 0.38 0.00 0.00 1. 00 1.00 0.36 -1.92
 se
mpg 1.07
hp 12.12
wt 0.17
am 0.09

I told you that it was an em barrassm ent of r iches but you didn't believe m e.

A NOTE ON MASKING

I n the exam ples above, the packages psych and Hm isc both provided funct ions nam ed

describ e. How does R know which one to use? Sim ply put , the package last loaded

takes precedence, as seen in list ing 5.5. Here, psyc h is loaded after Hmisc , and a

message is pr inted indicat ing that the descr ibe funct ion in Hmisc is m asked by the

funct ion in ps ych . When you type in the descr ibe funct ion and R searches for it , it comes

to the psych package first and executes it . I f we wanted the Hmisc version instead, we

could have typed Hmisc::describe(mt) . The funct ion is st ill there. We just have to

give R m ore inform at ion to f ind it .

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Now that we know how to generate descr ipt ive stat ist ics for the data as a whole, let 's

review how to obtain stat ist ics by subgroups of the data.

5.2.2 Descriptive statistics by group
When com par ing groups of individuals or observat ions, our focus is usually on the descr ipt ive

stat ist ics of each group, rather than the total sample. Again, there are several ways to

accomplish in R.

I n chapter 4, we discussed m ethods of aggregat ing data. We could use the aggre gate

funct ion (sect ion 4.5.2) to obtain descr ipt ive stat ist ics by group (list ing 5.6) .

Listing 5.6 Descriptive statistics by group via aggregate

> aggregate(mt,by=list(mt$am),mean)
 Group.1 mpg hp wt am
1 0 17.1 160 3.77 0
2 1 24.4 127 2.41 1

> aggregate(mt, by=list(mt$am),sd)
 Group.1 mpg hp wt am
1 0 3.83 53.9 0.777 0
2 1 6.17 84.1 0.617 0

Unfortunately, aggregat e only allows us to use single value funct ions such as m ean,

standard deviat ion, and the like in each call. I t will not return several stat ist ics at once. For

that task, we can use the by funct ion. The format is

by(data, INDICES, FUN)

where data is a dataframe or mat r ix , I NDI CES is a factor or list of factors that define the

groups, and FUN is an arbit rary funct ion. An example is given in list ing 5.6.

Listing 5.6 Descriptive statistics by group via by

> by(mt,mt$am,function(x)(c(mean=mean(x),sd=sd(x))))

mt$am: 0
mean.mpg mean.hp mean.wt mean.am sd.mpg sd. hp sd.wt sd.am
 17.147 160.263 3.769 0.000 3.834 53.9 08 0.777 0.000
--- ---------
mt$am: 1
mean.mpg mean.hp mean.wt mean.am sd.mpg sd. hp sd.wt sd.am
 24.392 126.846 2.411 1.000 6.167 84.0 62 0.617 0.000

EXTENSIONS

The doBy package and the psyc package also provide funct ions for descript ive stat ist ics

by group. Again, they are not dist r ibuted in the base installat ion, and must be installed

before first use. The summaryBy funct ion in the doBy package has the form at

summaryBy(formula, data=dataframe, FUN=)

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

The form ula takes the form

var1+var2+var3+...+varN~groupvar1+groupvar2+…+group varN

where variables on the left of the ~ are the num eric variables to be analyze and variables on

the r ight are categor ical grouping var iables. An exam ple using the descript funct ion we

created in sect ion 5.2.1 is given in list ing 5.7.

Listing 5.7 Summary statistics by group via summaryBy (doBy package)

> library(doBy)
> summaryBy(mpg+hp+wt~am,data=mt,FUN=descript)

 am mpg.mean mpg.stdev mpg.skew mpg.kurtosis hp.me an hp.stdev hp.skew
1 0 17.1 3.83 0.0140 -0.803 1 60 53.9 -0.0142
2 1 24.4 6.17 0.0526 -1.455 1 27 84.1 1.3599
 hp.kurtosis wt.mean wt.stdev wt.skew wt.kurtosis
1 -1.210 3.77 0.777 0.976 0.142
2 0.563 2.41 0.617 0.210 -1.174

The descri be.b y funct ion provided by the psych package provides the sam e

descr ipt ive stat ist ics as describ e, st rat ified by one or more grouping variables (see list ing

5.8) .

Listing 5.8 Summary statistics by group via describe.by (psych package)

> library(psych)
> describe.by(mt, mt$am)
$`0`
 n mean sd median trimmed mad min m ax range skew kurtosis
mpg 19 17.15 3.83 17.30 17.12 3.11 10.40 24. 40 14.00 0.01 -0.80
hp 19 160.26 53.91 175.00 161.06 77.10 62.00 245. 00 183.00 -0.01 -1.21
wt 19 3.77 0.78 3.52 3.75 0.45 2.46 5. 42 2.96 0.98 0.14
am 19 0.00 0.00 0.00 0.00 0.00 0.00 0. 00 0.00 NaN NaN
 se
mpg 0.88
hp 12.37
wt 0.18
am 0.00

$`1`
 n mean sd median trimmed mad min m ax range skew kurtosis
mpg 13 24.39 6.17 22.80 24.38 6.67 15.00 33. 90 18.90 0.05 -1.46
hp 13 126.85 84.06 109.00 114.73 63.75 52.00 335. 00 283.00 1.36 0.56
wt 13 2.41 0.62 2.32 2.39 0.68 1.51 3. 57 2.06 0.21 -1.17
am 13 1.00 0.00 1.00 1.00 0.00 1.00 1. 00 0.00 NaN NaN
 se
mpg 1.71
hp 23.31
wt 0.17
am 0.00

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Unlike the previous example, the descri be.b y funct ion does not allow us to specify an

arbit rary funct ion, so it is less generally applicable. I f there is m ore than one grouping

variable, we can write them as list(groupvar1, groupvar2, … , gro upvarN) .

However, this will only work if there are no em pty cells when the grouping var iables are

crossed.

5.2.3 Visualizing results
Num erical sum maries of a dist r ibut ion's character ist ics are im portant , but are no subst itute

for a visual representat ion. For quant itat ive variables we have histogram s (sect ion 6.2) ,

density and dot plots (sect ion 11.1) , and boxplots (sect ion 11.2) . They can provide insights

that are easily m issed by reliance on a sm all set of descr ipt ive stat ist ics.

The funct ions we have considered so far provide summaries of quant itat ive var iables. The

funct ions in the next sect ion allow us to examine the dist r ibut ions of categorical variables.

5.3 Frequency and contingency tables
I n this sect ion we look at frequency and cont ingency tables from categorical var iables, along

with tests of independence, m easures of associat ion, and m ethods for graphically displaying

results. We will be using funct ions in the basic installat ion, along with funct ions from the vcd

and gmodel s package. I n the following exam ples, assum e that A, B, and C represent

categorical var iables.

The first exam ple comes from the Arthriti s dataset included with the vcd package.

The data are from Kock & Edward (1988) and represents a double-blind clinical t r ial of new

t reatm ents for rheum atoid arthr it is. Here are the first few observat ions:

> library(vcd)
> head(Arthritis)

 ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked
6 23 Treated Male 58 Marked

Treatment (Placebo, Treated) , Sex (Male, Female) , and I m proved (None, Some, Marked) ,

are all categorical factors. I n the next sect ion, we will look at creat ing frequency and

cont ingency tables (cross-classificat ions) for the data.

5.3.1 Generating frequency tables
R provides several methods for creating frequency and contingency tables. We will
look at simple frequencies, followed by twoͲway contingency tables, and multiͲway
contingency tables.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

ONE WAY TABLES

We can generate sim ple frequency counts using the table funct ion. For example

> at tach(Arthr it is)

> table(I mproved)

I m proved

 None Som e Marked

 42 14 28

TWO WAY TABLES

For two-way tables, the form at for the tab l e funct ion is given below.

at tach(mydata)
mytable <- table(A,B) # A will be rows, B will be c olumns
mytable # print table

Alternat ively, the xtabs funct ion allows us to create a cont ingency table using form ula style

input . The format is

mytable <- xtabs(~A+B, data=mydata)

I n general, the variables to be cross classified appear on the r ight of the form ula (i.e., to

the r ight of the ~) separated by + signs. I f a var iable is included on the left side of the

formula, it is assumed to be a vector of frequencies (useful if the data have already been

tabulated) .

We can generate tables of proport ions using the prop . tabl e funct ion, and m arginal

frequencies using margin.tabl e. The formats are given below.

margin.table(mytable, 1) # A frequencies (summed ov er B)
margin.table(mytable, 2) # B frequencies (summed ov er A)

prop.table(mytable) # cell proportions
prop.table(mytable, 1) # row proportions
prop.table(mytable, 2) # column proportion

As you can see, the first step is to create a table using the table or xtabs funct ion. We

can then m anipulate it using the other funct ions. Here is an example (list ing 5.9) .

Listing 5.9 Two-way contingency table

> attach(Arthritis)

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

> mytable <- table(Treatment,Improved)
> mytable

 Improved A
Treatment None Some Marked A
 Placebo 29 7 7 A
 Treated 13 7 21 A

> margin.table(mytable,1)

Treatment B
Placebo Treated B
 43 41 B

> margin.table(mytable,2)

Improved C
 None Some Marked C
 42 14 28 C

> prop.table(mytable)

 Improved D
Treatment None Some Marked D
 Placebo 0.3452 0.0833 0.0833 D
 Treated 0.1548 0.0833 0.2500 D

> prop.table(mytable,1)

 Improved E
Treatment None Some Marked E
 Placebo 0.674 0.163 0.163 E
 Treated 0.317 0.171 0.512 E

> prop.table(mytable,2)

 Improved F
Treatment None Some Marked F
 Placebo 0.690 0.500 0.250 F
 Treated 0.310 0.500 0.750 F

A cell frequencies
B row marginals
C column marginals
D cell proportions
E row proportions
F column proportions

Looking at the row proport ions, we can see that 16% of pat ients receiving the placebo

had som e im provem ent . Looking at the colum n proport ions, we see that 75% of those

pat ients with m arked im provem ent were in the Treated group.

THE TABLE FUNCTION IGNORES MISSING VALUES

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

To include NA as a valid category in the frequency counts, include the table opt ion

exclude=NUL L if the var iable is a vector. I f the var iable is a factor, we have to replace

it with a new factor v ia newf actor <- factor(oldfactor, exclude=NULL) .

A third m ethod for creat ing two-way tables is the Cr ossTabl e funct ion in the gmodel s

package. The CrossTabl e funct ion produces two-way tables modeled after PROC FREQ in

SAS or CROSSTABS in SPSS. An example is given in list ing 5.10.

Listing 5.10 Two-way table using CrossTable

> library(gmodels)
> CrossTable(Arthritis$Treatment, Arthritis$Improve d)

 Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
N / Table Total

Total Observations in Table: 84

 | Arthritis$Improved
Arthritis$Treatment | None | Some | Ma rked | Row Total |
--------------------|-----------|-----------|------ -----|-----------|
 Placebo | 29 | 7 | 7 | 43 |
 | 2.616 | 0.004 | 3 .752 | |
 | 0.674 | 0.163 | 0 .163 | 0.512 |
 | 0.690 | 0.500 | 0 .250 | |
 | 0.345 | 0.083 | 0 .083 | |
--------------------|-----------|-----------|------ -----|-----------|
 Treated | 13 | 7 | 21 | 41 |
 | 2.744 | 0.004 | 3 .935 | |
 | 0.317 | 0.171 | 0 .512 | 0.488 |
 | 0.310 | 0.500 | 0 .750 | |
 | 0.155 | 0.083 | 0 .250 | |
--------------------|-----------|-----------|------ -----|-----------|
 Column Total | 42 | 14 | 28 | 84 |
 | 0.500 | 0.167 | 0 .333 | |
--------------------|-----------|-----------|------ -----|-----------|

The CrossTa bl e funct ion has opt ions to report percentages (row, colum n, cell) , specify

decim al places, produce Chi-square, Fisher, and McNem ar tests of independence, report

expected and residual values (Pearson, standardized, adjusted standardized) , include

m issing values as valid, annotate with row and colum n t it les, and form at as SAS or SPSS

style output ! See help(C r ossTable) for details. I f we have m ore than two categorical

variables, we will be interested in mult idim ensional tables, which are considered next .

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/web/packages/gmodels/index.html

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

MULTIDIMENSIONAL TABLES

Both the tab l e and xtabs funct ion can be used generate mult idim ensional tables based

on three or m ore categor ical var iables. The margin . tabl e and prop.tabl e funct ions

extend naturally to more than two dimensions. The fta ble funct ion can be used to pr int

mult idim ensional tables in a com pact and at t ract ive m anner. An exam ple is given in list ing

5.11.

Listing 5.11 Three-way contingency table

> attach(Arthritis)
> mytable <- table(Treatment, Improved, Sex) 1
> ftable(mytable) 2

 Sex Female Male
Treatment Improved
Placebo None 19 10
 Some 7 0
 Marked 6 1
Treated None 6 7
 Some 5 2
 Marked 16 5

> margin.table(mytable, 1) 3

Treatment
Placebo Treated
 43 41

> margin.table(mytable, 2) 4
Improved
 None Some Marked
 42 14 28

> margin.table(mytable, c(1:2)) 5
 Improved
Treatment None Some Marked
 Placebo 29 7 7
 Treated 13 7 21

> ftable(prop.table(mytable, c(1,2))) 6
 Sex Female Male
Treatment Improved
Placebo None 0.655 0.345
 Some 1.000 0.000
 Marked 0.857 0.143
Treated None 0.462 0.538
 Some 0.714 0.286
 Marked 0.762 0.238

We could have also writ ten # 1 as

mytable <- xtabs(~Treatment+Improved+Sex,data=Arthritis)

and obtained the sam e results. The code in # 2 produces cell frequencies for the 3-way

classificat ion, while # 3 and # 4 produce the m arginal frequencies for Treatment and

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

I m proved respect ively. The code in # 5 produces the m arginal frequencies for the Treatm ent

x I m proved classificat ion, sum m ed over Sex. The proport ion of m en and wom en for each

Treatment x I mproved combinat ion is provided in # 6. I n general, the proport ions will add to

one over the indices not included in the pr op.tabl e call (the 3rd index or Sex in this case) .

While cont ingency tables tell us the frequency or proport ions of cases with each

combinat ion of the variables that comprise the table, our interests usually extend to whether

the var iables in the table are related or independent . This is the subject of the next sect ion.

5.3.2 Tests of independence
R provides several m ethods of test ing the independence of the categorical var iables. The

three tests described in this sect ion are the Chi-square test of independence, the Fisher

exact test , and the Mantel-Haenszel test . A fourth approach, log- linear m odels, will be

discussed in chapter 14.

CHI-SQUARE TEST OF INDEPENDENCE

The funct ion chisquare.test can be applied to a two-way table in order to produce a Chi-

square test of independence of the row and column variables. An example is provided in

list ing 5.12.

Listing 5.12 Chi-square test of independence

> mytable <- table(Treatment, Improved)
> chisq.test(mytable)

 Pearson's Chi-squared test

data: mytable
X-squared = 13.1, df = 2, p-value = 0.001463 1

> mytable <- table(Improved, Sex)
> chisq.test(mytable)

 Pearson's Chi-squared test

data: mytable
X-squared = 4.84, df = 2, p-value = 0.0889 2

Warning message:
In chisq.test(mytable) : Chi-squared approximation may be incorrect

From the results above, there appears to be a relat ionship between t reatm ent received and

level of improvement (p< .01) # 1, but not between pat ient sex and improvement (p> .05)

2.

FISHER EXACT TEST

We can produce a Fisher's exact test v ia the fisher . tes t funct ion. Fisher 's exact test

evaluates the null hypothesis of independence of rows and colum ns in a cont ingency table

with fixed m arginals. The format is fish er.test(mytable) , where mytable is a two-

way table. An exam ple is given in list ing 5.13.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Listing 5.13 Fisher exact test

> mytable <- table(Treatment,Improved)
> fisher.test(mytable)

 Fisher's Exact Test for Count Data

data: mytable
p-value = 0.001393
alternative hypothesis: two.sided

I n cont rast to many stat ist ical packages, the fisher. t es t funct ion can be applied to any

rxc table, not j ust a 2x2 table.

COCHRAN-MANTEL-HAENSZEL TEST

The mantelh aen.tes t funct ion provides a Cochran-Mantel-Haenszel chi-squared test of

the null hypothesis that two nom inal var iables are condit ionally independent in each st ratum

of a third variable. List ing 5.14 tests the hypothesis that Treatment and I mproved is

independent within each level Sex. The test assum es that there is no three-way (Treatment

x I m proved x Sex) interact ion.

Listing 5.13 Cochran-Mantel-Haenszel test

> mytable <- table(Treatment, Improved, Sex)
> mantelhaen.test(mytable)

 Cochran-Mantel-Haenszel test

data: mytable
Cochran-Mantel-Haenszel M^2 = 14.6, df = 2, p-value = 0.0006647

The results suggest that the t reatm ent received and the im provem ent reported is not

independent within each level of sex (i.e., t reated indiv iduals improved more than those

receiving placebos when cont rolling for sex) .

5.3.3 Measures of association
The significance tests in the previous sect ion evaluate whether or not there is suff icient

evidence to reject a null hypothesis of independence between var iables. I f we can reject the

null hypothesis, our interests turn naturally to m easures of associat ion in order to gauge the

st rength of the relat ionships present . The assocstats funct ion in the vcd package can be

used to calculate the phi coefficient , cont ingency coefficient , and Cram er's V for a two-way

table. An exam ple of assoc stat s is given in list ing 5.14.

Listing 5.14 Measures of association for a two-way table

> library(vcd)
> attach(Arthritis)
> mytable <- table(Treatment, Improved)
> assocstats(mytable)

Download from Wow! eBook <www.wowebook.com>

http://cran.r-project.org/web/packages/vcd/index.html

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

 X^2 df P(> X^2)
Likelihood Ratio 13.530 2 0.0011536
Pearson 13.055 2 0.0014626

Phi-Coefficient : 0.394
Contingency Coeff.: 0.367
Cramer's V : 0.394

I n general, larger magnitudes indicated st ronger associat ions. The vcd package also

provides a kappa funct ion that can calculate Cohen's kappa and weighted kappa for a

confusion m at r ix (for example, the degree of agreem ent between two judges classify ing a

set of objects into categor ies) .

5.3.4 Visualizing results
R has m echanism s for visually exploring the relat ionships among categorical variables that

go well beyond those found in m ost other stat ist ical plat forms. We typically use bar charts to

visualize frequencies in one dim ension (sect ion 6.3) . The vcd package has excellent

funct ions for visualizing relat ionships am ong categor ical var iables in mult i-dimensional

datasets using m osaic and associat ion plots (sect ion 15.6) . Finally , correspondence analysis

funct ions in the ca package allow us to visually explore relat ionships between rows and

colum ns in cont ingency tables (sect ion 14.4) using var ious geom etr ic representat ions. Feel

free to jum p to those sect ions at any t im e!

5.3.5 Converting tables to flat files
We will end this sect ion with a topic that is rarely covered in books on R, but that can be

very useful. What happens if we have a table, but need the or iginal raw data file? For

exam ple, we have

 Sex Female Male
Treatment Improved
Placebo None 19 10
 Some 7 0
 Marked 6 1
Treated None 6 7
 Some 5 2
 Marked 16 5

but we need:

 ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked
6 23 Treated Male 58 Marked
[78 more rows go here]

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

There are many stat ist ical funct ions in R that expect the later format , rather than the

form er. We can use the funct ion provided list ing 5.15 to convert an R table back into a flat

data file.

Listing 5.15 Converting a table into a flat file via table2flat

table2flat <- function(mytable) {
 df <- as.data.frame(mytable)
 rows <- dim(df)[1]
 cols <- dim(df)[2]
 x <- NULL
 for (i in 1:rows){
 for (j in 1:df$Freq[i]){
 row <- df[i,c(1:(cols-1))]
 x <- rbind(x,row)
 }
 }
 row.names(x)<-c(1:dim(x)[1])
 return(x)
}

This funct ion takes an R table (with any number of dim ensions) and returns a datafram e in

flat file format . We can also use this funct ion to input tables from published studies. For

example, let 's say that we cam e across table 5.1 in a journal and we wanted to save it into R

as a flat f ile.

Table 5.1 Contingency table for treatment vs. improvement from the Arthritis dataset

Treatment Improved

None Some Marked

Placebo 29 7 7

Treated 13 17 21

List ing 5.16 describes a method that would do the t r ick.

Listing 5.16 Using the table2flat function from published data

> treatment <- rep(c("Placebo", "Treated"), 3)
> improved <- rep(c("None","Some","Marked"), each=2)
> Freq <- c(29,13,7,7,7,21)
> mytable <- as.data.frame(cbind(treatment,improved , Freq))
> mydata <- table2flat(mytable)
> head(mydata)

 treatment improved
1 Placebo None
2 Placebo None
3 Placebo None

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

4 Treated None
5 Placebo Some
6 Placebo Some
[12 more rows go here]

This will end our discussion of cont ingency tables, unt il we take up m ore advanced topics

in chapter 14. Next , let 's look at var ious types of correlat ion coefficients.

 5.4 Correlations
Correlat ion coefficients are used to explore relat ionships among quant itat ive variables. I n

this sect ion we will look at a var iety of correlat ion coefficients, as well as tests of

signif icance. We will use is the state. x77 dataset available in the base R installat ion. I t

provides data on the populat ion, incom e, illiteracy rate, life expectancy, m urder rate, and

high school graduat ion rate for the 50 US states in 1977. There are also temperature and

land area m easures, but we'll drop them to save space. Use help(s t ate.x77) to learn

more about the file. I n addit ion to the base installat ion, we will be using the psyc h and

ggm packages.

5.4.1 Type of correlations
R can produce a variety of correlat ion coefficients, including Pearson, Spearman, Kendall,

part ial, polychoric, and polyserial. Let 's look at each in turn.

PEARSON, SPEARMAN, AND KENDALL CORRELATIONS

The Pearson product m om ent correlat ion assesses the degree of linear relat ionship between

two quant itat ive variables. Spearman's Rank Order correlat ion coefficient assesses the

degree of relat ionship between two rank ordered variables. Kendall's Tau is also a

nonparam etr ic m easure of rank correlat ion.

The cor funct ion produces these correlat ion coefficients, while the cov funct ion provides

covariances. There are m any opt ions, but a sim plified form at for producing correlat ions is

cor(x, use= , method=)

where the opt ions are descr ibed in table 5.2.

Table 5.2 cor/cov options

Option Description

x Matrix or dataframe

use Specifies the handling of missing data. The options are all.ob s (assumes no

missing data, missing data will produce an error), everythin g (any correlation

involving a case with missing values will be set to missing), compl ete.ob s

(listwise deletion), and pairwis e.complete.ob s (pairwise deletion)

method Specifies the type of correlation. The options are pearso n, spearman , or

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

kendall .

The default opt ions are us e="everything " and meth od="pearson " . An example is

given in list ing 5.17.

Listing 5.17 Covariances and Correlations

> states<- state.x77[,1:6]
> cov(states)

 Population Income Illiteracy Life Exp M urder HS Grad
Population 19931684 571230 292.868 -407.842 56 63.52 -3551.51
Income 571230 377573 -163.702 280.663 -5 21.89 3076.77
Illiteracy 293 -164 0.372 -0.482 1.58 -3.24
Life Exp -408 281 -0.482 1.802 -3.87 6.31
Murder 5664 -522 1.582 -3.869 13.63 -14.55
HS Grad -3552 3077 -3.235 6.313 - 14.55 65.24

> cor(states)

 Population Income Illiteracy Life Exp Mu rder HS Grad
Population 1.0000 0.208 0.108 -0.068 0 .344 -0.0985
Income 0.2082 1.000 -0.437 0.340 -0 .230 0.6199
Illiteracy 0.1076 -0.437 1.000 -0.588 0 .703 -0.6572
Life Exp -0.0681 0.340 -0.588 1.000 -0 .781 0.5822
Murder 0.3436 -0.230 0.703 -0.781 1 .000 -0.4880
HS Grad -0.0985 0.620 -0.657 0.582 -0 .488 1.0000

> cor(states,method="spearman")

 Population Income Illiteracy Life Exp Mu rder HS Grad
Population 1.000 0.125 0.313 -0.104 0 .346 -0.383
Income 0.125 1.000 -0.315 0.324 -0 .217 0.510
Illiteracy 0.313 -0.315 1.000 -0.555 0 .672 -0.655
Life Exp -0.104 0.324 -0.555 1.000 -0 .780 0.524
Murder 0.346 -0.217 0.672 -0.780 1 .000 -0.437
HS Grad -0.383 0.510 -0.655 0.524 -0 .437 1.000

The first call produces the variances and covariances. The second provides Pearson

Product Mom ent correlat ion coefficients, while the third produces Spearm an Rank Order

correlat ion coefficients. We can see, for exam ple, that there is a st rong posit ive correlat ion

between incom e and high school graduat ion rate, and a st rong negat ive correlat ion between

illiteracy rates and life expectancy.

Not ice, that we get square m at r ices by default (all variables crossed with all other

variables) . We can also produce non-square m atr ices. An example is given in list ing 5.18.

Listing 5.18 Correlating two sets of variables

> x <- states[,c("Population","Income","Illiteracy" ,"HS Grad")]
> y <- states[,c("Life Exp", "Murder")]
> cor(x,y)

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

 Life Exp Murder
Population -0.068 0.344
Income 0.340 -0.230
Illiteracy -0.588 0.703
HS Grad 0.582 -0.488

This version of the funct ion is part icular ly useful when our interest centers on the

relat ionships between one set of variables and another. Not ice that the results pr inted above

do not tell us if the correlat ions differ significant ly from zero. For that , we need tests of

signif icance (sect ion 5.4.2) .

PARTIAL CORRELATIONS

A part ial correlat ion is a correlat ion between two quant itat ive variables, cont rolling for one or

m ore other quant itat ive variables. The pcor funct ion in the ggm package can be used to

provide part ial correlat ion coefficients. The ggm package is not installed by default , so be

sure to install it on first use. The form at is

pcor(u, S)

where u is a vector of num bers, with the first two num bers being the indices of the var iables

to be correlated, and the rem aining num bers being the indices of the condit ioning var iables

(i.e., the variables being part ialled out) . S is the covar iance matr ix among the variables. An

example (list ing 5.19) will clar ify this.

Listing 5.19 Partial correlations with the pcor function [ggm package]

> library(ggm)
> # partial correlation of population and murder ra te, controlling
> # for income, illiteracy rate, and HS graduation rate
> pcor(c(1,5,2,3,6), cov(states))

[1] 0.346 1

1 0.346 is the correlat ion between populat ion and murder rate, cont rolling for the influence

of income, illiteracy rate, and HS graduat ion rate. The use of part ial correlat ions is common

in the social sciences.

OTHER TYPES OF CORRELATIONS

The hetco r funct ion in the polyco r package can com pute a heterogeneous correlat ion

m atr ix containing Pearson product -m om ent correlat ions between num eric variables,

polyser ial correlat ions between num eric and ordinal var iables, polychoric correlat ions

between ordinal var iables, and tet rachor ic correlat ions between two dichotomous variables.

Polyserial, polychoric, and tet rachoric correlat ions assum e that the ordinal or dichotomous

variables are derived from under lying norm al dist r ibut ions. See the docum entat ion that

accom panies this package for m ore inform at ion.

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

5.4.2 Testing correlations for significance
Once we have generated correlat ion coefficients, how do we test them for stat ist ical

signif icance? The typical null hypothesis is no relat ionship (i.e., the correlat ion in the

populat ion is zero) . We can use the co r .test funct ion to test an individual Pearson,

Spearm an, and Kendall correlat ion coefficient . A sim plif ied form at is

cor.test(x, y, alternative = , method =)

where alte r nativ e specif ies a two- tailed or one- tailed test ("two . side " , "less" , or

"greater ") and metho d specifies the type of correlat ion ("pears on" , "kenda l l" , or

"spearman ") . An example is given in list ing 5.20.

Listing 5.20 Testing a correlation coefficient for significance

> cor.test(states[,3],states[,5])

 Pearson's product-moment correlation

data: states[, 3] and states[, 5]
t = 6.85, df = 48, p-value = 1.258e-08
alternative hypothesis: true correlation is not equ al to 0
95 percent confidence interval:
 0.528 0.821
sample estimates:
 cor
0.703

This code tests the null hypothesis that the Pearson correlat ion between life expectancy

and m urder rate is zero. We see that the sam ple correlat ion of 0.70 is large enough to reject

the null hypothesis at any reasonable alpha level (here p < .00000001) .

Unfortunately, we can only test one correlat ion at a t im e using cor. t est . Luckily , the

corr.tes t funct ion provided in the psych package allows us to go farther. The

corr.tes t funct ion produces correlat ions and significance levels for m at r ices of Pearson,

Spearman, orKendall correlat ions. An example is given in list ing 5.21.

Listing 5.21 Correlation matrix and tests of significance via corr.test [psych package]

> library(psych)
> corr.test(states,use="complete")

Call:corr.test(x = states, use = "complete")
Correlation matrix
 Population Income Illiteracy Life Exp Mu rder HS Grad
Population 1.00 0.21 0.11 -0.07 0.34 -0.10 1
Income 0.21 1.00 -0.44 0.34 - 0.23 0.62
Illiteracy 0.11 -0.44 1.00 -0.59 0.70 -0.66
Life Exp -0.07 0.34 -0.59 1.00 - 0.78 0.58
Murder 0.34 -0.23 0.70 -0.78 1.00 -0.49
HS Grad -0.10 0.62 -0.66 0.58 - 0.49 1.00

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

Sample Size
[1] 50
Probability value
 Population Income Illiteracy Life Exp Mu rder HS Grad
Population 0.00 0.15 0.46 0.64 0.01 0.5 1
Income 0.15 0.00 0.00 0.02 0.11 0.0
Illiteracy 0.46 0.00 0.00 0.00 0.00 0.0
Life Exp 0.64 0.02 0.00 0.00 0.00 0.0
Murder 0.01 0.11 0.00 0.00 0.00 0.0
HS Grad 0.50 0.00 0.00 0.00 0.00 0.0

The use= opt ions can be " pairwise " or "complete " (for pairwise or listwise delet ion

of m issing values respect ively) . The method= opt ion is "pear son" (the default) ,

"spearman " , or "kendall " . # 1 Here we see that the correlat ion between populat ion size

and high school graduat ion rate (-0.10) is not signif icant ly different from zero (p= 0.5) .

OTHER TESTS OF SIGNIFICANCE

I n sect ion 5.4.1 we looked at part ial correlat ions. The pcor.test funct ion in the psyc h

package can be used to test the condit ional independence of two variables cont rolling for one

or m ore addit ional var iables, assum ing mult ivar iate norm ality. The form at is

pcor.test(r, q, n)

where r is the part ial correlat ion produced by the pcor funct ion, q is the num ber of

variables being cont rolled, and n is the sam ple size.

Before leaving this topic, it should be ment ioned that the r.tes t funct ion in the psy ch

package also provides a num ber of useful significance tests. The funct ion can be used to test

the significance of a correlat ion coefficient , the difference between two independent

correlat ions, the difference between two dependent correlat ions sharing one single variable,

and the difference between two dependent correlat ions based on com pletely different

variables. See help(r.test) for details.

5.4.3 Visualizing correlations
The bivariate relat ionships underlying correlat ions can be visualized through scat terplots and

scat terplot mat r ices (sect ion 11.3) , while corrgrams (sect ion 15.7) provide a unique and

powerful m ethod for com paring a large num bers of correlat ion coefficients in a m eaningful

way.

5.5 Comparing Groups
The m ost com mon act ivity in research is the com parison of groups. Do pat ients receiv ing a

new drug show greater im provem ent than pat ients using an exist ing m edicat ion? Does one

m anufactur ing process produce fewer defects than another? Which of three teaching

m ethods is m ost cost effect ive? I f our outcome var iable is categorical, we can use the

m ethods descr ibed in sect ion 5.3 or chapter 14. I f the outcome variable is a survival t im e,

we would use the m ethods descr ibed in sect ion 12.4. Here, we will focus on group

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

com par isons, where the outcom e variable is cont inuous or ordinal. First we will look at the

two group case. Then we will consider designs involv ing more than two groups. Finally, we

will look at ways of visualizing our results.

5.5.1 Two Groups
To illust rate the two group case, we will use the UScrim e dataset dist r ibuted with the MASS

package. I t contains inform at ion on the effect of punishm ent regim es on cr im e rates in 47

US states in 1960. The var iables of interest will be Pro b (the probability of im prisonm ent) ,

So (an indicator variable for southern states) , U1 (the unem ploym ent rate for urban m ales

age 14-24) and U2 (the unemploym ent rate for urban m ales age 35-39) . The data have been

rescaled by the or iginal authors. (Note: I considered nam ing this sect ion "Cr ime and

Punishm ent in the Old South" , but cooler heads prevailed.)

T-TESTS

Are we more likely to be imprisoned if we comm it a cr ime in the South? The comparison of

interest is southern vs. non-southern states and the dependent variable is the probability of

incarcerat ion. A 2-group independent t - test can be used to test the hypothesis that the two

populat ion m eans are equal. Here, we assum e that the two groups are independent and that

the data are sam pled from norm al populat ions. The form at is either

t.test(y~x)

where y is numeric and x is a dichotomous factor or

t.test(y1,y2)

where y1 and y2 are num eric vectors (the outcome variable for each group) . I n cont rast

to most stat ist ical packages, the default test assumes unequal variance and applies the

Welsh degrees of freedom m odificat ion. We can add a var.equal=TRU E opt ion to specify

equal variances and a pooled variance est im ate. By default , a two- tailed alternat ive is

assumed (i.e., the m eans differ but the direct ion is not specified) . We can add the opt ion

alternative="less " or alternative="greater " to specify a direct ional test .

I n list ing 5.22, we compare southern (group 1) and non-southern (group 0) states on the

probability of impr isonm ent using a two- tailed test without the assumpt ion of equal

var iances.

Listing 5.22 Independent groups t-test

> t.test(Prob~So)

 Welch Two Sample t-test

data: Prob by So
t = -3.8954, df = 24.925, p-value = 0.0006506 1
alternative hypothesis: true difference in means is not equal to 0

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

95 percent confidence interval:
 -0.03852569 -0.01187439
sample estimates:
mean in group 0 mean in group 1
 0.03851265 0.06371269

1 We reject the hypothesis that southern states and non-southern states have equal

probabilit ies of impr isonm ent (p < .001) .

Note: Since the outcome var iable is a proport ion, we m ight seek to t ransform it towards

norm ality before carrying out the t - test . I n the current case, all reasonable t ransform at ions

of the outcom e variable (Y/ 1-Y, log(Y/ 1-Y) , arcsin(Y) , arcsin(sqrt (Y)) would have led to the

sam e conclusions.

As a second exam ple, we m ight ask if unemploym ent rate for younger m ales (14-24) is

greater than for older males (35-39) . I n this case, the two groups are not independent . We

would not expect the unem ploym ent rate for younger and older m ales in Alabama to be

unrelated. When observat ions in the two groups are related, we have a dependent groups

design. Pre-post or repeated m easures designs also produce dependent groups.

A dependent t - test assumes that the difference between groups is normally dist r ibuted.

I n this case, the form at is

 t.test(y1, y2, paired=TRUE)

where y1 and y2 are the num eric vectors for the two dependent groups. The results are

provided in list ing 5.23.

Listing 5.23 Dependent groups t-test

> sapply(UScrime[c("U1","U2")],function(x)(c(mean=m ean(x),sd=sd(x))))

 U1 U2
mean 95.5 33.98
sd 18.0 8.45

> t.test(U1,U2,paired=TRUE)

 Paired t-test

data: U1 and U2
t = 32.4066, df = 46, p-value < 2.2e-16 1
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 57.67003 65.30870
sample estimates:
mean of the differences
 61.48936 1

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

1 The m ean difference (61.5) is large enough to warrant reject ion of the hypothesis that

the m ean unemploym ent rate for older and younger m ales is the sam e. Younger m ales have

a higher rate.

NONPARAMETRIC TESTS

I f we are unable to m eet the param et r ic assumpt ions of a t - test , we can turn to

nonparam etr ic approaches. For exam ple, if the outcome variables are severely skewed or

ordinal in nature, we may wish to use the techniques in this sect ion.

I f the two groups are independent , we can use the Wilcoxon rank sum test (m ore

popular ly known as the Mann-Whitney U test) to assess whether the observat ions are

sam pled from the sam e probabilit y dist r ibut ion (i.e., whether the probability of obtaining

higher scores is greater in one populat ion than the other) . The form at is either

wilcox.test(y~x)

where y is numeric and x is a dichotomous factor or

wilcox.test(y1,y2)

where y1 and y2 are the outcom e variables for each group. The default is a two- tailed test .

We can add the opt ion ex act to produce an exact test , and alter native="less " or

alternative="greater " to specify a direct ional test .

I f we apply the Mann-Whitney U test to the quest ion of incarcerat ion rates from the

previous sect ion, we would get the results in sect ion 5.24.

Listing 5.24 Mann-Whitney U Test

> by(Prob,So,median)

So: 0
[1] 0.0382

So: 1
[1] 0.0556

> wilcox.test(Prob~So)

 Wilcoxon rank sum test

data: Prob by So
W = 81, p-value = 8.488e-05 1
alternative hypothesis: true location shift is not equal to 0

1 Again, we can reject the hypothesis that incarcerat ion rates are the sam e in southern

and non-southern states (p< .001) .

The Wilcoxon Signed Rank Test provides a nonparamet r ic alternat ive to the dependent

sample t - test . I t is appropriate in situat ions where the groups are paired and the assum pt ion

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

of norm ality is unwarranted. The format is ident ical to the Mann-Whitney U test , but we add

the paired= TRUE opt ion. Let 's apply it to the unemployment quest ion from the previous

sect ion (list ing 5.25) .

Listing 5.25 Wilcoxon Signed Rank Test

> sapply(UScrime[c("U1","U2")],median)

U1 U2
92 34

> wilcox.test(U1,U2,paired=TRUE)

 Wilcoxon signed rank test with continuity c orrection

data: U1 and U2
V = 1128, p-value = 2.464e-09 1
alternative hypothesis: true location shift is not equal to 0

1 Again, we would reach the sam e conclusion reached with the paired t - test .

I n this case, the parametr ic t - tests and their nonparam etr ic equivalents reach the sam e

conclusions. When the assum pt ions for the t - tests are reasonable, the parametr ic tests will

be more powerful (more likely to find a difference if it exists) . The non-parametr ic tests are

m ore appropriate when the assum pt ions are grossly unreasonable (e.g., rank ordered data) .

5.5.2 More than two groups
When there are m ore than two groups to be com pared, we must turn to other m ethods.

Consider the state.x77 dataset from sect ion 5.4. I t contains populat ion, incom e, illiteracy

rate, life expectancy, m urder rate, and high school graduat ion rate data for US states. What

if want to com pare the illiteracy rates in four regions of the count ry (Northeast , South, North

Cent ral, and West)? This is called a one-way design, and there are both param etr ic and

nonparam etr ic approaches available to address the quest ion.

ANALYSIS OF VARIANCE

I f we can assum e that the data are independent ly sam pled from normal populat ions, we can

use analysis of variance (ANOVA) to com pare groups. ANOVA is a com prehensive

m ethodology that covers m any exper im ental and quasi-experim ental designs. As such, it has

earned it s own chapter. Feel free to abandon us and jum p to chapter 8 at any t im e.

NONPARAMETRIC TESTS

I f we can't m eet the assum pt ions of ANOVA designs, we can use nonparam etr ic m ethods to

evaluate group differences. I f the groups are independent , a Kruskal-Wallis test will provide

us with a useful approach. I f the groups are dependent (e.g., repeated m easures or

random ized block design) , the Fr iedman test is m ore appropriate.

The form at for the Kruskal Wallis test is

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

kruskal.test(y~A)

where y is a num eric outcom e variable and A is a group factor with 2 or m ore levels (if

there are two levels, it is equivalent to the Mann-Whitney U test) . For the Friedm an test , the

form at is

friedman.test(y~A|B)

where y is the num eric outcom e var iable, A is a group factor, and B is a blocking factor

that ident if ies matched observat ions.

Let 's apply the Kruskal Wallis test to the illiteracy quest ion above. First , we will have to

add the region designat ions to the dataset . These are contained in the dataset

state.regio n dist r ibuted with the base installat ion of R.

states <- as.data.frame(cbind(state.region, state.x 77))

Now we can apply our test (see list ing 5.26) .

Listing 5.26 Kruskal Wallis test - One Way Anova by Ranks

> attach(states)
> kruskal.test(Illiteracy~state.region)

 Kruskal-Wallis rank sum test

data: states$Illiteracy by states$state.region
Kruskal-Wallis chi-squared = 22.7, df = 3, p-value = 4.726e-05 1

1 The significance test suggests that the illiteracy rate is not the sam e in group of the four

regions of the count ry (p < .001) .

Although we can reject the null hypothesis of no difference, the test does not tell us

which regions differ significant ly from which others. To answer this quest ion, we could

com pare groups two at a t im e using the Mann-Whitney U test . A more elegant approach is to

apply a simultaneous mult iple compar isons procedure that makes all pairwise comparisons,

while cont rolling the type I error rate (the probability of finding a difference that isn't there) .

The npmc package provides the nonparam et r ic m ult iple com parisons we need.

To be honest , we are st retching our definit ion of "Basic" in the chapter t it le quite a bit ,

but since it really f it s well here, I hope you will bear with m e. First , be sure to install the

npmc package. The npmc funct ion in this package expects input to be a two colum n

datafram e with a colum n nam ed var (the dependent var iable) and class (the grouping

variable) . We can accomplish this with the code in list ing 5.27.

Listing 5.27 Nonparametric multiple comparisons

> class <- state.region
> var <- state.x77[,c("Illiteracy")]

Download from Wow! eBook <www.wowebook.com>

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

> mydata <- as.data.frame(cbind(class, var))
> summary(npmc(mydata, type="BF"))

$`Data-structure`
 group.index class.level nobs
Northeast 1 Northeast 9
South 2 South 16
North Central 3 North Central 12
West 4 West 13

$`Results of the multiple Behrens-Fisher-Test` 1
 cmp effect lower.cl upper.cl p.value.1s p.value.2 s
1 1-2 0.8750 0.66149 1.0885 0.000665 0.0013 5
2 1-3 0.1898 -0.13797 0.5176 0.999999 0.0654 7
3 1-4 0.3974 -0.00554 0.8004 0.998030 0.9200 4
4 2-3 0.0104 -0.02060 0.0414 1.000000 0.0000 0
5 2-4 0.1875 -0.07923 0.4542 1.000000 0.0211 3
6 3-4 0.5641 0.18740 0.9408 0.797198 0.9843 0

> aggregate(mydata, by=list(mydata$class),median) 2

 Group.1 class var
1 1 1 1.10
2 2 2 1.75
3 3 3 0.70
4 4 4 0.60

1 The npmc call generates six stat ist ical comparisons (Northeast vs. South, Northeast

vs. North Cent ral, northeast vs. West , South vs. North Cent ral, South vs. West , and North

Cent ral vs. West) . We can see from the two-sided p-values (p.value.2s) that the South

differs signif icant ly from the other three regions, and that the other three regions do not

differ from each other. From # 2 we see that the South has a higher m edian illiteracy rate.

5.5.3 Visualizing group differences
Exam ining group differences visually is a crucial part of a comprehensive data analysis

st rategy. I t allows us to assess the magnitude of the differences, ident ify any dist r ibut ional

character ist ics that influence the results (e.g., skew, bimodality, out liers) , and evaluate the

appropriateness of our test assum pt ions. R provides a wide range of graphical m ethods for

com par ing groups including box plots (sim ple, notched, violin, and bagplots) covered in

sect ion 11.2, overlapping kernel density plots, covered in sect ion 11.1, and graphical

methods of assessing test assumpt ions, discussed in sect ion 8.6.

5.6 Summary
I n this chapter, we have reviewed the funct ions in R that provide basic stat ist ical

sum maries and tests. I t has included sam ple stat ist ics and frequency tables, tests of

independence and m easures of associat ion for categorical var iables, correlat ions between

quant itat ive var iables (and their associated signif icance tests) , and comparisons of two or

m ore groups on a quant itat ive outcom e variable.

Download from Wow! eBook <www.wowebook.com>

118 Robert I . Kabacoff / R in Act ion Last saved: 8/ 10/ 2009

© Manning Publicat ions Co. Please post com ments or correct ions to the Author Online forum :

ht tp: / / www.m anning-sandbox.com / forum .j spa?forum I D= 578

I n the next chapter we take up the topic of basic graphs. They form a natural partnership

with the topics we have just covered. As we will see throughout this book, there is a yin and

a yang between num erical sum maries and stat ist ical tests, and visual depict ions of

relat ionships and differences. However, the graphical chapters are m ore fun to look at .

References
Koch, G & S. Edwards, S. (1988) , Clinical efficiency t r ials with categor ical data. I n K. E.

Peace (ed.) , Biopharmaceut ical Stat ist ics for Drug Development , 403–451. Marcel Dekker,

New York.

 McCall, R. B. (2000) . Fundamental stat ist ics for the behavioral sciences (8th ed.) .

Wadsworth Publishing, New York.

Snedecor, G. W., & Cochran, W.G. (1988) . Stat ist ical methods (8th ed.) . I owa State

University Press, I owa.

	1 Introduction to R
	1.1 Why use R?
	1.2 Obtaining and installing R
	1.3 Working with the R interface
	1.3.1 Getting Started
	1.3.2 Getting help
	1.3.3 The workspace
	1.3.4 Input and Output

	1.4 Packages
	1.4.1 What are packages?
	1.4.2 Installing a package
	1.4.3 Loading a package
	1.4.4 Learning about a package

	1.5 Batch Processing
	1.6 Using output as input - Reusing results
	1.7 Working through an example
	1.8 Summary

	2 Creating a dataset
	2.1 Understanding datasets
	2.2 Data structures
	2.2.1 Vectors
	2.2.2 Matrices
	2.2.3 Arrays
	2.2.4 Dataframes
	2.2.5 Factors
	2.2.6 Lists

	2.3 Data input
	2.3.1 Entering data from the keyboard
	2.3.2 Importing data from a (comma) delimited text file
	2.3.3 Importing data from Excel
	2.3.4 Importing data from SPSS
	2.3.5 Importing data from SAS
	2.3.6 Importing data from Stata
	2.3.7 Importing data from Systat
	2.3.8 Accessing Database Management Systems (DBMS)
	2.3.9 Importing data via Stat/Transfer

	2.4 Annotating datasets
	2.4.1 Variable labels
	2.4.2 Value labels

	2.5 Useful functions for working with data objects
	2.6 Summary

	3 Basic data management
	3.1 A Working Example
	We will work through each of these issues in the current chapter, as well other basic data management issues such as combining and sorting datasets. Then in chapter 4 we will look at some advanced topics. 3.2 Creating new variables
	3.3 Recoding variables
	3.4 Renaming variables
	3.5 Missing values
	3.5.1 Recoding values to missing
	3.5.2 Excluding missing values from analyses

	3.6 Date values
	3.6.1 Converting dates to character variables
	3.6.2 Going further

	3.7 Type conversions
	3.8 Sorting data
	3.9 Merging datasets
	3.9.1 Adding Columns
	3.9.2 Adding Rows

	3.10 Subsetting datasets
	3.10.1 Selecting (Keeping) Variables
	3.10.2 Excluding (dropping) Variables
	3.10.3 Selecting Observations
	3.10.4 The Subset Function
	3.10.5 Random Samples

	3.11 Summary

	4 Advanced data management
	4.1 A data management challenge
	4.2 Numerical and character functions
	4.2.1 Mathematical functions
	4.2.2 Statistical Functions
	4.2.3 Probability Functions
	4.2.4 Character functions
	4.2.5 Other useful functions
	4.2.6 Applying functions to matrices and dataframes

	4.3 A solution for our data management challenge
	4.4 Control flow
	4.4.1 Repetition and looping
	4.4.2 Conditional execution

	4.5 User-written functions
	4.6 Aggregation and restructuring
	4.6.1 Transpose
	4.6.2 Aggregating data
	4.6.3 The reshape package

	4.7 Summary

	5 Basic Statistics
	5.1 What you need to know
	5.2 Descriptive statistics
	5.2.1 A menagerie of methods
	5.2.2 Descriptive statistics by group
	5.2.3 Visualizing results

	5.3 Frequency and contingency tables
	5.3.1 Generating frequency tables
	5.3.2 Tests of independence
	5.3.3 Measures of association
	5.3.4 Visualizing results
	5.3.5 Converting tables to flat files

	 5.4 Correlations
	5.4.1 Type of correlations
	5.4.2 Testing correlations for significance
	5.4.3 Visualizing correlations

	5.5 Comparing Groups
	5.5.1 Two Groups
	5.5.2 More than two groups
	5.5.3 Visualizing group differences

	5.6 Summary
	References

