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1 
Introduction to R 

This Chapter covers:  

̇ Installing R ＠
̇ Understanding the R language 

̇ Running programs 

̇  

How we analyze data has changed dramat ically  in recent  years. With the advent  of personal

computers and the internet , the sheer volum e of data we have available has grown

enormously. Companies have terabytes of data on the consumers they interact  with, while

governm ental,  academ ic, and pr ivate research inst itut ions have extensive archival and

survey data on every m anner of research topic. Gleaning informat ion ( let  alone wisdom )

from  these m assive stores of data has becom e an indust ry in it self.  At  the same t im e,

present ing the informat ion in easily  accessible and digest ible ways has become increasingly

challenging.  

The science of data analysis (stat ist ics, psychom etr ics, econometr ics, m achine learning)

has kept  pace with this explosion of data. Before personal com puters and the I nternet , new

stat ist ical m ethods were developed by academ ic researchers who published their results as

theoret ical papers in professional journals. I t  could take years for these m ethods to be

adapted by program m ers and incorporated into the stat ist ical packages widely available to

the data analysts. Today, new m ethodologies appear daily .  Stat ist ical researchers publish

new and im proved m ethods, along with code to produce them , on easily accessible websites

And the code is typically writ ten for, or easily adapted to freely available stat ist ical packages

like R.  

The advent  of personal com puters had another effect  on the way we analyze data. When

data analysis was carr ied out  on m ainfram e com puters, com puter t im e was precious and 
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difficult  to com e by. Analysts would carefully  set  up a com puter run with all the param eters

and opt ions thought  to be needed. When the procedure ran, the result ing output  could be

dozens or hundreds of pages long. The analyst  would sift  through this output , ext ract ing

useful m ater ial and discarding the rest . With the cheap and easy access afforded by personal

com puters, data analysis now follows a different  paradigm.  

Rather than set t ing up a com plete data analysis at  once, the process has becom e highly

interact ive, with the output  from  each stage serving as the input  for the next  stage  An

exam ple of a typical analysis is presented in figure 1.1. At  any point , the cycles m ay include

t ransform ing the data, imput ing m issing values, adding or delet ing variables, and looping

back through the whole process again. The process stops when the analyst  believes he or

she understands the data int imately and has answered all the relevant  quest ions that  can be

answered.  

Figure 1.1 Steps in a typical data analysis 

The advent  of personal com puters (and especially the availabilit y  of high resolut ion

m onitors)  has also had an im pact  on how results are understood and presented. A picture 

Fit a statistical model

Evaluate model fit

Cross-validate the model

Import data

Prepare, explore, and clean data

Evaluate model prediction on new data

Produce report
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really can be worth a thousand words, and hum an beings are very adept  at  ext ract ing useful

inform at ion from  visual presentat ions.  Modern data analysis increasingly relies on graphical

presentat ions to uncover m eaning and convey results. 

Today's data analysts need to be able to access data from  a wide range of sources

(database m anagem ent  system s, text  files, stat ist ical packages, and spreadsheets) , merge

them together, clean and annotate them , analyze them with the latest  m ethods, present  the

findings in m eaningful and graphically appealing ways, and incorporate the results into

at t ract ive reports that  can be dist r ibuted to stakeholders and the public. As you will see in

the following pages, R is a com prehensive software package that  is ideally suited to

accom plish these goals. 

1.1 Why use R? 
R is a language and environment  for stat ist ical com put ing and graphics, sim ilar to the S

language or iginally developed at  Bell Labs. I t  is an open source solut ion to data analysis that

is supported by a large and act ive wor ldwide research comm unity. R has many features to

recom m end it :  

̇ Most commercial statistical software platforms cost thousands,  if not tens of 
thousands of dollars. R is free! If you are a teacher or a student, the benefits 
are obvious.  ＠

̇ R runs on a wide variety of platforms including Windows, UNIX and MacOS X.  

̇ R  is a comprehensive statistical platform, offering all manner of data analytic 
techniques. 

̇ R has stateͲofͲtheͲart graphics capabilities.  ＠
̇ R provides an unparalleled platform for programming new statistical methods 

in an easy and straightforward manner.  ＠
̇ R contains advanced statistical routines not yet available in other packages.  

An example of R's graphic capabilit ies can be seen in f igure 1.2. This graph, created with

a single line of code, descr ibes the relat ionships between incom e, educat ion, and prest ige for

blue collar , white collar, and professional jobs. Technically , it  is a scat terplot  mat r ix with

groups displayed by color and sym bol, two types of fit  lines ( linear and loess) , confidence

ellipses, and two types of density display (kernel density est imat ion, and rug plots) . I f these

terms are unfam iliar to you, don't  worry. We will cover them  in later chapters. For now, t rust

m e that  they are really cool (and that  the stat ist icians reading this are salivat ing) . 

Download from Wow! eBook <www.wowebook.com>



© Manning Publicat ions Co. Please post  com ments or correct ions to the Author Online forum :  

Figure 1.2 Relationships between income, education, and prestige for blue collar, white collar, and
professional jobs. Source: car package written by John Fox. 

Basically , this graph indicates that :  

̇ Education, income and job prestige are linearly related. ＠
̇ In  general,  blue  collar  jobs  involve  lower  education,  income  and  prestige, 

while professional jobs involve higher education, income, and prestige. White 
collar jobs fall in between. 

̇ There are  some  interesting exceptions. Ministers  (the point  labeled 1) have 
high prestige and  low  income. RR Engineers  (the point  labeled 2) have high 
income and low education. ＠

̇ Education (and possibly prestige) are distributed bimodally, with more scores 
as the high end and low end, than in the middle. 
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We will have m uch m ore to say about  this type of graph in chapter 5. 

Unfortunately, R can have a steep learning curve. Because it  can do so much, the

documentat ion and help f iles available can be volum inous. Addit ionally, because much of the

funct ionally comes from  opt ional modules created by independent  cont r ibutors, this

documentat ion can be scat tered and difficult  to locate. I n fact , get t ing a handle on all that  R

can do is a challenge. 

The goal of this book is to make access to R quick and easy. We will tour the many

features of R, covering enough m aterial to get  you star ted on your data, with pointers on

where to go when you need to learn m ore. Let 's begin by installing the program . 

1.2 Obtaining and installing R 
R is freely available from  the Comprehensive R Archive Network (CRAN)  at  ht tp: / / cran.r-

project .org. Precom piled binaries are available for Linux, MacOS X, and Windows. Follow

direct ions for installing the base product  on the plat form  of your choice.  Later we'll talk

about  adding addit ional funct ionality through opt ional m odules called packages (also

available from  CRAN) . 

1.3 Working with the R interface 
R is a case-sensit ive, interpreted language. You can enter com m ands one at  a t im e at  the

com m and prompt  (>)  or run a set  of com m ands from  a source file. There are a wide variety

of data types, including vectors, mat r ices, datafram es (sim ilar to datasets) , and lists

(collect ions of objects) . We will discuss each of these data types in chapter 2.  

Most  funct ionality is provided through built - in and user-created funct ions and all data

objects are kept  in memory during an interact ive session. Basic funct ions are available by

default . Other funct ions are contained in packages that  can be at tached to a current  session

as needed.  

Statem ents consist  of funct ions and assignments. R uses the symbol <-  for assignm ents,

rather than the typical = sign. For exam ple, the statem ent  

x <- rnorm(5) 

creates a vector nam ed x containing 5 random  deviates from  a standard normal 

dist r ibut ion. Com m ents are preceded by the # sym bol. Any text  appearing after the # is

ignored by the R interpreter. 

1.3.1 Getting Started 
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I f you are using Microsoft  Windows, launch R from  the Start  Menu. On a Mac, double click

the R icon in the Applicat ions folder. For Linux, type R at  the command prompt  of a term inal

window. This will start  the R interface (see figure 1.3 for an exam ple) . 

Figure 1.3  Example of the R interface on Microsoft Windows XP. 

To get  a feel for the interface, let 's work through a simple cont r ived exam ple. Let 's say

that  we are studying physical developm ent  and we have collected the ages and weights of 10

infants in their  first  year of life (see table 1.1) . We are interested in the dist r ibut ion of the

weights and their  relat ionship to age. 

Table 1.1 The heights and weights of ten infants.

Age (mo.) Weight (kg.) 

01 4.4 

03 5.3 
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05 7.2 

02 5.2 

11 8.5 

09 7.3 

03 6.0 

09 10.4 

12 10.2 

03 6.1 
 Note: These are fictional data. 

We will enter the age and weight  data as vectors, using the funct ion c( ) , which combines

its arguments into a vector or list . Then we will get  the m ean and standard deviat ion of the

weights, the correlat ion between age and weight , and plot  the relat ionship between age and

weight  so that  we can inspect  any t rend v isually. The q( )  funct ion will end the session and

allow us to quit .  

Listing 1.1 A sample R session 

> # A two variable example 
> age <- c(1,3,5,2,11,9,3,9,12,3) 
> weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2 ,6.1)
> mean(weight) 
[1] 7.06 
> sd(weight) 
[1] 2.077498 
> cor(age,weight) 
[1] 0.9075655 
> plot(age,weight)
> q() 

We can see from list ing 1.1, that  the mean weight  for these 10 infants is 7.06 kilogram s,

that  the standard deviat ion is 2.08 kilograms, and that  there is st rong linear relat ionship

between age in months and weight  in k ilograms (correlat ion =  0.91) . The relat ionship can

also be seen in scat terplot  in figure 1.4. Not  surpr isingly, as infants get  older, they tend to

weigh m ore. 
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Figure 1.4 Scatterplot of infant age (mo) by weight (kg). 

DEMONSTRATIONS 

To get  a sense of what  R can do graphically, enter demo(g r aphics ) .  A sam ple of the

graphs produced is included in f igure 1.5. Other dem onst rat ions include dem o(Hershey) ,

dem o(persp) , and dem o( im age) . To see a com plete list  of dem onst rat ions, enter dem o()

without  param eters. 
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Figure 1.5  A sample of the graphs created with the demo function 

1.3.2 Getting help 
R provides extensive help facilit ies and learning to navigate them will help you signif icant ly in

your program m ing efforts. The built - in help system  provides details, references, and

examples of any funct ion contained in a current ly installed package. Help is obtained using

the funct ions listed in table 1.2. 

Table 1.2 R help functions. 

Function Action 

help.start() General help 

help(foo) or  Help on function foo  
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?foo 

help.search("foo") or 

??foo 

Search the help system for instances of the string 

foo  (note the quotation marks) 

example(foo) Examples of function foo  

RSiteSearch("foo") Search for the string foo  in help manuals and

archived mailing lists (note the quotation marks)  

vignette() List all available vignettes for currently installed

packages 

vignette("foo") Display specific vignettes for topic foo (note

the quotation marks )  

The funct ion help.start( )  opens a browser window with access to int roductory and

advanced m anuals, FAQs, and reference m ater ials. The RSiteSearch( )  funct ion searches

for a given topic in online help manuals and archives of the R-Help discussion list  and returns

the results in a browser window. The vignet tes returned by the vig nette( )  funct ion are

pract ical int roductory art icles provided in PDF format . Not  all packages will have vignet tes. 

As you can see, R provides extensive help facilit ies and learning to navigate them will

definitely aid your program m ing efforts. 

1.3.3 The workspace 
The workspace is your current  R working environm ent  and includes any user-defined objects

(vectors, matr ices, funct ions, datafram es, lists) .  At  the end of an R session, you can save an

im age of the current  workspace that  is automat ically reloaded the next  t ime R star ts.

Com mands are entered interact ively at  the R user prom pt . You can use the up and down

arrow keys to scroll through your com mand history. This allows you to select  a previous

com mand, edit  it  if desired, and resubm it  it  using the enter  key. 

The current  working directory is the directory R will read files from  and save results to by

default . You can find out  what  the current  working directory is by using the get wd( )  

funct ion. You can set  the current  working directory by using the set wd()  funct ion. I f you

need to input  a file that  is not  in the current  working directory, use the full path nam e in the

call.  Always enclose the nam es of files and director ies from  the operat ing system in quote

m arks.  

Som e standard com m ands for m anaging your workspace are listed in table 1.3. 

Table 1.3 Functions for managing the R workspace 

Function Action 

getwd() 
List the current working directory 
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ls() 
List  the objects in the current workspace 

setwd("mydirectory")   
Change the current working directory to 

mydirector y  

help(options) 
Learn about available options 

options() 
View  or set current option settings 

history(#) 
Display your last  #  commands (default = 25) 

savehistory("myfile") 
Save the commands history to myfil e ( default =

.Rhistory ) 

loadhistory("myfile") 
Reload a  commands history (default = 

.Rhistory ) 

save.image("myfile") 
Save the workspace to myfile (default = .RData )

save(objectlist,file="myfile") 
Save specific objects to a file 

load("myfile")  
Load a workspace into the current session (default

= .RData ) 
q() 

Quit R. You will be prompted to save the

workspace. 

To see these commands in act ion, take a look at  list ing 1.2. 

Listing 1.2 An example of commands used to manage the R workspace 

setwd(“C:/myprojects/project1”)           1
options()                                 2
options(digits=3)                         
x <- runif(20)                            3
summary(x)                                4
hist(x)                                   
savehistory()                             5
save.image()                              
q()                             

1 Set the current working directory to C:/myprojects/project1 
2 View currently set options and set numbers to display with 3 digits after the decimal place 
3 Create a vector with 20 uniform random deviates 
4 Print summary statistics and a histogram 
5 Save a your commands history to the file .Rhistory and your workspace (including the vector x) to
the file .RData 
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Note the forward slashes in the path name of the setwd()  com mand. R t reats the

backslash " \ "  as an escape character . Even when using R on a Windows plat form , use

forward slashes in path nam es. Also note that  the setwd()  funct ion will not  create a

directory that  does not  exist . I f necessary, you can use the dir.c r eate( )  funct ion to

create a directory, and then use setwd( )  to change to it s locat ion. 

I t  is a good idea to keep your projects in separate director ies. I  typically star t  an R

session by issuing the setw d()  com m and with the appropriate path to a project ,  followed by

the load( )  com mand without  opt ions. This lets me start  up where I  left  off in m y last  session

and keeps the data and set t ings separate between projects. On Windows and MacOS X

plat forms it  is even easier . Just  navigate to the project  directory and double click on the

saved image file. This will start  R, load the saved workspace, and set  the current  working

directory to this locat ion. 

1.3.4 Input and Output 
By default , launching R starts an interact ive session with input  from  the keyboard and output

to the screen. However, you can also process commands from  a script  file (a file containing R

statements)  and direct  output  to a var iety of dest inat ions. 

INPUT 

The source ( "filename" )  funct ion subm its a scr ipt  to the current  session. I f the

filename does not  include a path, the file is assumed to be in the current  working directory. 

For exam ple, source( "m yprog")  runs a set  of R statem ents contained in  file m yprog.  

TEXT OUTPUT 

The sink(" f ilename" )  funct ion redirects output  to the file filen ame.  By default , if

the file already exists, it s contents are overwrit ten. I nclude the opt ion append=TRUE to

append text  to the file rather than overwrit ing it .  I ncluding the opt ion split=TRU E will send

output  to both the screen and the output  file. The command sin k() by it self, returns

output  to the term inal.  

GRAPHIC OUTPUT 

Although si nk() redirects text  output , it  has no effect  on graphic output . To redirect

graphic output  use one of the funct ions listed in table 1.4. Use dev.off( )  to return output

to the term inal.  

Table 1.4 Functions for Saving Graphic Output 

Function Output 

pdf("filename.pdf") pdf file 

win.metafile("filename.wmf") windows m etafile 

png("filename.pgn") png file 

jpeg("filename.jpg") j peg file 

bmp("filename.bmp") bm p file 

postscript("filename.ps") postscr ipt  file 
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Let ’s put  it  all together by looking at  the example in list ing 1.3 

Listing 1.3 Using various input and output in an R session 

source("myfile1")     1 

sink(“myoutput”, append=TRUE, split=TRUE)   
pdf(“mygraphs.pdf”)    
source(“myfile2”)     2 

sink()      
dev.off()      
source(“myfile3”)     3 

I n the code above, R statem ents from  myf ile1  are subm it ted to the current  session # 1

and the results appear on the screen. When the statem ents from  myfile 2 are subm it ted

# 2, results appear on the screen, the text  output  is appended to the file myoutpu t ,  and the

graphic output  is saved to mygraphs.pd f . Finally the statements from  myfile 3 are

subm it ted # 3 and the results appear on screen. 

R provides quite a bit  of flexibility and control over where input  com es from  and where it

goes. I n sect ion 1.5 we will see how to run a program  in batch m ode. 

1.4 Packages 
R comes with extensive capabilit ies r ight  out  of the box. However, som e of it s m ost  excit ing

features are available as opt ional m odules that  you can download and install.   There are over

1800 user cont r ibuted modules called packages that  you can download from ht tp: / / cran.r-

project .org/ web/ packages. They provide a t rem endous range of new capabilit ies, from  the

analysis of geostat ist ical data to protein m ass spect ra processing to the analysis of

educat ional tests!  We will use m any of these opt ional packages in this book. 

1.4.1 What are packages? 
Packages are collect ions of R funct ions, data, and compiled code in a well-defined format .

The directory where packages are stored on your com puter is called the library.  The funct ion 

.libPaths( )  will show you where your library is located, while the funct ion libr ary( )

will show you what  packages you have saved in your library.  

As we've said, R comes with a standard set  of packages, while others are available for

download and installat ion. Once installed, they have to be loaded into the session in order to

be used. The command sea r ch()  will tell you which packages are loaded and ready to use.  

1.4.2 Installing a package 
There are a num ber of R funct ions that  let  you m anipulate packages. To install a package for

the first  t im e, use the insta l l.packages( )  com m and. For example,

install.packages() without  opt ions will br ing up a list  of CRAN m irror sites. Once you

select  a site, you will be presented with a list  of all available packages. Select ing one will 
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download and install it .  I f you know what  package you want  to install, you can do so direct ly

by providing it  as an argum ent  to the funct ion. For exam ple, the gcl us  package contains

funct ions for creat ing enhanced scat ter plots. You can download and install the package with

the com mand install.packages("glus" ) .  

You only need to install a package once. However, like any software, packages are often

updated by their  authors. Use the com m and update.packages( )  to update any packages

that  you have installed. To see details on your packages, you can use the 

installed.packages( )  command. I t  will list  the packages you have, along with their

version numbers, dependencies, and other inform at ion. 

1.4.3 Loading a package 
I nstalling a package downloads it  from  a CRAN m irror site and places it  in your library. To

actually use it  in an R session, you need to load the package using the library( )  com m and.

For example, to use the packaged gclus ,  issue the com mand libra r y(gclus ) .  Of course,

you m ust  have installed a package before you can load it .  You will have to load a package

once in each session you want  to use it .  However, you can custom ize your start -up

environm ent  to automat ically load the packages you use most  often. Custom izing your star t -

up is covered in appendix x. 

1.4.4 Learning about a package 
When you load a package, a new set  of funct ions and datasets becom e available. Sm all

illust rat ive datasets are provided along with sample code, allowing you to t ry out  the new

funct ionalit ies.  The help system contains a descript ion of each funct ion (along with

examples) , and informat ion on each dataset  included. Enter ing help ( package= " name") 

will provide a br ief descript ion of the package nam ed and an index of the funct ions and

datasets included. Using help() with any of these  funct ion or dataset  nam es will provide

further details. The sam e inform at ion can be downloaded as a PDF m anual from  CRAN. 

Common mistakes in R programming 

There are som e com m on m istakes m ade frequent ly by both beginning and exper ienced R 

program m ers. I f your program  generates an error be sure the check for the following:  

Using the wrong case. help ( ) , Help( ) ,  and HELP()  are three different  funct ions (only 

the first  will work) . 

Forget t ing to use quote m arks when they are needed. inst all.packages("gclus" )  

will work, while install.pa ckages(gclus )  will generate an error. 

Forget t ing to include the parentheses in a funct ion call.  hel p()  rather than help .  Even 

if there are no opt ions, you st ill need the ( ) .   
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Using the \  in a path nam e on Windows. R sees the backslash character as an escape

character. se t wd("c:\mydata" )  will generate an error. Use setwd("c:/mydata" )  

or setwd("c:\\mydata" )  instead. 

Using a funct ion from  a package that  is not  loaded. The funct ion order.clusters( )  is

contained in the gclus  package. I f you t ry to use it  before loading the package, you will 

get  an error.  

The error message in R can be crypt ic, but  if you are careful to follow the points above, 

you should avoid seeing m any of them . 

In the sidebar above, these should be bullet points, with the text
of the first sentence bolded for each. Bullets start with "Using the
wrong case" and end with "Using a function". 

1.5 Batch Processing 
Most  of the t ime, you will be running R interact ively, entering com mands at  the command

prom pt  and seeing the results of each statem ent  as it  is processed. Occasionally , you m ay

want  to run an R program  in a repeated, standard, and possibly unat tended fashion.  For

exam ple, you m ay need to generate the sam e report  once a m onth. You can write your

program  in R and run it  in batch m ode. 

How you run R in batch m ode depends on your operat ing system . On Linux or MacOS X

system s, you can use the following com mand in a term inal window:  

R CMD BATCH options infile outfile 

where infi l e is the name of the f ile containing R code to executed, outfile  is nam e

of the file receiv ing the output  and options  lists opt ions that  cont rol execut ion. By

convent ion, the infile is given extension .R  and the out file is given extension .Rout .  

For Windows, use 

"C:\Program Files\R\R-2.9.0\bin\R.exe" CMD BATCH [C A] 
   --vanilla --slave "c:\my projects\myscript.R" 

adjust ing the paths  to match the locat ion of your R.exe binary and your script  file. For

more details on how to invoke R, including com mand line opt ions, see an " I nt roduct ion to R"

from  CRAN (ht tp: / / cran.r-project .org) . 

1.6 Using output as input - Reusing results 
One of the m ost  useful design features of R is that  the output  of analyses can easily be

saved and used as input  to addit ional analyses. Let 's walk through an exam ple. I f you don't

understand the stat ist ics involved, don't  worry. We are focusing on the general pr inciple

here. 
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This following code will run a simple linear regression of m iles per gallon (mpg)  on car

weight  (wt )  using the dataset  m tcars. Results are sent  to the screen. Nothing is saved. 

lm(mpg~wt, data=mtcars) 

  

This t im e, the sam e regression is perform ed but  the results are saved under the nam e fit .   

fit <- lm(mpg~wt, data=mtcars)  

No output  is sent  to the screen. However, you now can manipulate the results.  

The assignm ent  has actually created a list  called " fit "  that  contains a wide range of 

inform at ion from  the analysis ( including the predicted values, residuals, regression

coefficients, and m ore) . Typing summary(fit )  provides details of the analysis, while

plot(fit )  produces diagnost ic plots. You can generate and save influence stat ist ics with

cook<-cooks.distance(fit ) . plot( cook )  will graph these influence stat ist ics. To

predict  m iles per gallon from  car weight  in a new set  of data use predi ct(fit ,

mynewdata ) .  

To see what  a funct ion returns, look at  the value sect ion of the online help for that

funct ion. Here we would look at  help(lm ) .  This will tell you what  is saved when you assign

the results of that  funct ion to a nam e.  

1.7 Working through an example 
We will finish this chapter with an example that  t ies many of these ideas together. Here is

the task:  

1. Open up the general help and look at  the I nt roduct ion to R sect ion. 

2. I nstall the vcd package (a package for visualizing categorical data that  we will be

using in future chapters) . 

3. List  the funct ions and datasets available in this package. 

4. Load the package and read the descript ion of the dataset  Arthr it is.  

5. Print  out  the Arthr it is data set  (entering the name of an object  will list  it ) .  

6. Run the example that  com es with the Arthr it is dataset . Don't  worry if you don't

understand the results. I t  basically shows that  arthr it is pat ients receiv ing t reatm ent

improved m uch m ore than pat ients receiving a placebo. 

7. Quit  

The code required is provided in list ing 1.4, with a sam ple of the results displayed in figure 

1.6. 

Listing 1.4 Working with a new package 

help.start() # look at introduction and preliminari es 
install.packages("vcd") 
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help(package="vcd")
library(vcd)
help(Arthritis)
Arthritis
example(Arthritis)
q() 

Figure 1.6 Output from listing 1.4 

As this short  exercise demonst rates, you can accom plish a great  deal with a small

am ount  of code. 

1.8 Summary 
I n this chapter, we have looked as some of the st rengths that  make R an at t ract ive

opt ion for students, researchers, stat ist ician, and data analysts t rying to understand the

meaning of their data. We have walked through the program 's installat ion and talked about

how to enhance R's capabilit ies by downloading addit ional packages. We have explored the

basic interface, running program s interact ively and in batch, and produced a few sam ple

graphs. We have also learned how to save our work to both text  and graphic f iles. Since R

can be a com plex program , we have spent  som e t im e looking at  how to access the extensive 
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help that  is available. Hopefully , you're get t ing a sense of how powerful this freely available

software can be. 

 Now that  we have R up and running, it 's t im e to get  our data into the m ix. I n the next

chapter, we will look at  the types of data R can handle and how to import  them into R from

text  f iles, other program s, and database m anagement  system s. 
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2 
Creating a dataset 

This Chapter covers:  

̇ R data structures 

̇ Data entry 

̇ Importing data  ＠
̇ Annotating datasets 

The first  step in any data analysis is the creat ion of a dataset  containing the inform at ion to

be studied, in a form at  that  m eets our needs. I n R, this will involve 

̇ Selecting a data structure to hold our data ＠
̇ Entering or importing our data into the data structure 

The first  part  of this chapter (sect ions 2.1-2.2)  descr ibes the wealth of st ructures that  R can

use for holding data. I n part icular, sect ion 2.2 descr ibes scalars, vectors, mat r ices,

datafram es, factors, and lists. Understanding these st ructures (and the notat ion used to

access elements within them )  will be help t remendously in understanding how R works. You

m ight  want  to take your t im e working through this sect ion. 

The second part  of this chapter (sect ion 2.3)  covers the many m ethods available for

im port ing data into R. Data can be entered m anually, or im ported from  an external source.

These data sources can include text  files, spreadsheets, stat ist ical packages, and database

managem ent  system s. For example, the data that  I  work with typically  come from  SQL

databases. However, on occasion, I  receive data from  legacy DOS system s, and from  current

SAS and SPSS databases. I t  is likely that  you will only have to use one or two of the

m ethods descr ibed in this sect ion, so feel free to pick and choose those that  f it  for  your

situat ion. 
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Once a dataset  is created, we will typically annotate it ,  adding descript ive labels for

var iables and variable codes.  The third port ion of this chapter will look at  annotat ing

datasets (2.4)  and reviews som e useful funct ions for working with datasets (2.5) . Let 's star t

with the basics. 

2.1 Understanding datasets 
A dataset  is usually a rectangular array of data with rows represent ing observat ions and

colum ns represent ing variables. An exam ple of a hypothet ical pat ient  dataset  is given in

table 2.1 

Table 2.1 A patient dataset 

PatientID AdmDate Age Diabetes Status 

1 10/15/2009 25 Type1 Poor 

2 11/01/2009 34 Type2 Improved 

3 10/21/2009 28 Type1 Excellent 

4 10/28/2009 52 Type1 Poor 

 
Different  t radit ions have different  names for the rows and colum ns of a dataset .

Stat ist icians refer to them  as observat ions and variables, database analysts call them records

and fields, and those from  the data m ining/ machine learning disciplines call them examples

and at t r ibutes. We will use the term s observat ions and variables throughout  the rest  of this

book.  

We can dist inguish between the st ructure of the dataset  ( in this case a rectangular array)

and the contents or data types included. I n the dataset  above, Patie ntID  is a row or case

ident ifier , AdmDate  is a date variable, Age is a cont inuous variable, Diabete s  is nom inal

variable, and Statu s  is an ordinal var iable.  

R contains a wide var iety of st ructures for holding data including scalars, vectors, arrays,

datafram es, and lists. The table above corresponds to a dataframe in R. This diversity of

st ructures provides the R language with a great  deal of flex ibility in dealing with data.  

The data types or m odes that  R can handle include numeric, character, logical

(TRUE/ FALSE) , complex ( imaginary num bers) , and raw (bytes) . I n R, PatientID , AdmDate,

and Age would be num eric variables, while Diabete s  and Statu s  would be character

variables. Addit ionally, we will need to tell R that  Patie ntID  is a case ident ifier , AdmDate  

contains dates, and that  Diabete s  and Statu s are nom inal and ordinal variables,

respect ively. R refers to case ident ifiers as rownames  and categorical variables (nom inal,

ordinal)  as f actors . We will cover each of these in the next  sect ion. Dates will be discussed

in chapter 3. 
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2.2 Data structures 
As we have said, R has a wide variety of objects for holding data, including scalars, vectors,

mat r ices, dataframes and lists. They differ  in terms of the type of data they can hold, how

they are created, their st ructural com plexity, and the notat ion used to ident ify and access

individual elem ents. Figure 2.1 presents a diagram  of these data st ructures. 

 

Figure 2.1 R data structures 

 We will look at each structure in turn, starting with vectors. 

Some Definitions 

There are several terms that  are idiosyncrat ic to R, and thus confusing to new users.  

I n R, an object  is anything that  can be assigned to a var iable. This includes constants,

data st ructures, funct ions, and even other objects. Objects have a m ode (which descr ibes

how the object  is stored) , and a class (which tells generic funct ions like pr int , how to 

handle it ) .  

A datafram e  is a st ructure in R that  holds data and sim ilar to the datasets found in

standard stat ist ical packages (e.g., SAS, SPSS, and Stata) . The columns are var iables

and the rows are observat ions. We can have variables of different  types (e.g., num eric, 
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character)  in the sam e datafram e. Datafram es are the m ain st ructures we will use to 

store datasets. 

Factors are nom inal or ordinal var iables. They are stored and t reated specially in R. We 

will have m uch to say about  factors in sect ion 2.2.5. 

Most  other term s should be fam iliar and follow the term inology used in stat ist ics and 

com put ing in general.  

2.2.1 Vectors 
Vectors are one dim ensional arrays that  can hold num eric data, character data, or logical

data. The com bine funct ion c()  is used to form  the vector (see list ing 2.1) .  

Listing 2.1 Creating vectors 

# a numeric vector 
a <- c(1, 2, 5, 3, 6, -2, 4) 

# a character vector 
b <- c("one", "two", "three") 

# a logic vector 
c <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE) 

Note that  the data in a vector m ust  only be one type or mode (numeric, character, or

logical) . You cannot  m ix modes in the same vector .  

SCALARS 

Scalars are sim ply one elem ent  vectors. Exam ples include f <- 3, g <- "US "  and h

<- TRUE .  They are used to hold constants. 

You can refer to elem ents of a vector using a num eric vector of posit ions within brackets.

For exam ple a[c(2, 4) ]  refer to the 2nd and 4th elem ent  of vector a.  The following code

provides exam ples ( list ing 2.2) . 

Listing 2.2 Using vector subscripts 

> a <- c(1, 2, 5, 3, 6, -2, 4)
> a[3] 

[1] 5 

> a[c(1, 3, 5)] 

[1] 1 5 6 

> a[2:6]                           1 

[1]  2  5  3  6 -2 
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# 1 I n this exam ple we use the colon  operator, which takes the form  from:t o.  For

exam ple:  

a <- c(2:6) 

is equivalent to 

a <- c(2,3,4,5,6). 

2.2.2 Matrices 
A matr ix is a two dim ensional array where each elem ent  has the same mode (numeric,

character , or logical) . Mat r ices are created with the mat r ix  funct ion. The general form at  is 

myymatrix <- matrix(vector, nrow=r, ncol=c, byrow=logical_valu e,

[ CA]  dimna mes=list(char_vector_rownames, char_vector_colnames)) 

where vect or  contains the elements for the matr ix, r and c  give the row and colum n

dim ensions, and dimnames  contains opt ional row and colum n labels. The opt ion byrow  

indicates whether the mat r ix should be filled in by row (byrow=T RUE)  or by column

(byrow=FAL SE) . The default  is by colum n. List ing 2.3 demonst rates the matri x  funct ion. 

Listing 2.3 Creating Matrices 

> # create 5 x 4 matrix 
> y <- matrix(1:20, nrow=5, ncol=4)
> y 
     [,1] [,2] [,3] [,4]
[1,]    1    6   11   16
[2,]    2    7   12   17
[3,]    3    8   13   18
[4,]    4    9   14   19
[5,]    5   10   15   20 

> # create a 2 x 2 matrix with labels 
> # fill in the matrix by rows 
> cells    <- c(1,26,24,68) 
> rnames   <- c("R1", "R2") 
> cnames   <- c("C1", "C2")  
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=T RUE, [CA] 
    dimnames=list(rnames, cnames)) 
> mymatrix 
   C1 C2
R1  1 26
R2 24 68 

> # this time fill in the matrix by columns 
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=F ALSE,  [CA] 
    dimnames=list(rnames, cnames)) 
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> mymatrix 
   C1 C2
R1  1 24
R2 26 68 

You can ident ify rows, colum ns or  elements of a mat r ix by using subscripts and brackets. 

X[i,]  refers to the ith row of m at r ix X,  while X[,j]  refers to j th colum n,  and X[i,j]

refers to the ij th elem ent  respect ively. The subscr ipts i and j  can be num eric vectors in order

to select  mult iple rows or columns. Examples are given in list ing 2.4.  

Listing 2.4 Using matrix subscripts 

> x <- matrix(1:10, nrow=2)
> x 
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    9
[2,]    2    4    6    8   10 

> # selecting the 2nd row
> x[2,] 
[1]  2  4  6  8 10 

> # selecting the 2nd column
> x[,2] 
[1] 3 4 

> # selecting the 1st row, 4th column element
> x[1,4] 
[1] 7 

> # selecting the first row, 4 & 5th columns
> x[1, c(4,5)] 
[1] 7 9 

Matr ices are two dimensional and, like vectors, can contain only one data type. When

there are m ore than two dim ensions, we will use arrays (sect ion 2.2.3) . When there are

mult iple modes of data, we will use dataframes (sect ion 2.2.4) .  

2.2.3 Arrays 
Arrays are sim ilar to mat r ices but  can have more than two dim ensions. They are created

with an array funct ion of the following form :  

myarray <- array(vector, dimensions, dimnames) 

where vecto r  contains the data for the array, dimension s  is a num eric vector giv ing

the m axim al index for each dim ension, and dimnames  is an opt ional list  of dim ension labels. 

List ing 2.5 gives an exam ple of creat ing a three dim ensional (2 x 3 x 4)  array of num bers. 

Listing 2.5 Creating an array 
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> dim1 <- c("A1", "A2") 
> dim2 <- c("B1", "B2", "B3") 
> dim3 <- c("C1", "C2", "C3", "C4") 
> z <- array(1:24, c(2,3,4), dimnames=list(dim1,dim 2,dim3))
> z 
, , C1 

   B1 B2 B3
A1  1  3  5
A2  2  4  6 

, , C2 

   B1 B2 B3
A1  7  9 11
A2  8 10 12 

, , C3 

   B1 B2 B3
A1 13 15 17
A2 14 16 18 

, , C4 

   B1 B2 B3
A1 19 21 23
A2 20 22 24 

As you can see, arrays are a natural extension of m at r ices. They can be very useful in

programm ing new stat ist ical methods. Like matr ices, they m ust  be a single mode.

I dent ifying elements follows what  we have seen for m at r ices. I n the exam ple above, the

z[ 1,2,3]  elem ent  is 15. 

2.2.4 Dataframes 
A datafram e is m ore general than a matr ix , in that  different  columns can contain different

modes of data (numeric, character , etc.) . I t  is sim ilar to the datasets you would typically see

in SAS, SPSS, and Stata. Datafram es are the m ost  common data st ructure we will deal with

in R. 

The pat ient  dataset  in table 2.1 consists of numeric and character data. Because there

are mult iple m odes of data, we cannot  contain this data in mat r ix. I n this case, a datafram e

would be the st ructure of choice. 

A datafram e is created with the datafram e funct ion:  

mydata <- data.frame(col1, col2, col3,…) 

where col1, col2, col3, … are column vectors of any type (character, num eric, logical,

etc.) . Names for each colum n can be provided with the names funct ion. An example ( list ing 

2.6)  will make this clear. 
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Listing 2.6 Creating a dataframe 

> patientID <- c(1, 2, 3, 4) 
> age <- c(25, 34, 28, 52) 
> diabetes <- c("Type1", "Type2", "Type1", "Type1")  
> status <- c("Poor", "Improved", "Excellent", "Poo r") 
> patientdata <- data.frame(patientID, age, diabete s, status)
> patientdata 

  patientID age diabetes    status
1         1  25    Type1      Poor
2         2  34    Type2  Improved
3         3  28    Type1 Excellent
4         4  52    Type1      Poor 

Each colum n m ust  have only one m ode. However, you can put  colum ns of different

modes together to form  the datafram e. Since dataframes are very close to what  analysts

typically think of as datasets, we will use the terms columns and variables interchangeably

when discussing datafram es. 

There are several ways to ident ify the elements of a datafram e. You can use the subscript

notat ion we have used previously (e.g. with m at r ices)  or you can specify colum n nam es. 

Take a look at  the following three examples in list ing 2.7. 

Listing 2.7 Specifying elements of a dataframe 

> # continuing the last example
> patientdata[1:2] 

  patientID age
1         1  25
2         2  34
3         3  28
4         4  52 

> patientdata[c("diabetes","status")] 

  diabetes    status
1    Type1      Poor 
2    Type2  Improved 
3    Type1 Excellent 
4    Type1      Poor 

> patientdata$age                       1 

[1] 25 34 28 52 

# 1 The $ notat ion in the third example is new. I t  is used to indicate a part icular variable

from  a given datafram e. For exam ple, if you want  to get  descr ipt ive stat ist ics on the

variables age ,  diabete s ,  and statu s  from  the patientdat a datafram e, you could use

the following code:  
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summary(patientdata$age, patientdata$diabetes, pati entdata$status) 

This can get  t iresom e to type, so a shortcut  available. 

attach(patientdata)
summary(age, diabetes, status) 

The attac h funct ion adds the dataframe to the R search path. When a variable name is

encountered, datafram es in the search path are checked in order to locate the variable. We

will use the at tach funct ion often. 

CASE IDENTIFIERS 

I n the pat ient  data example, patientI D is used to ident ify indiv iduals in the dataset . I n R,

case ident if iers can be specif ied with a rowname opt ion in the dataframe funct ion. For

example, the statem ent   

patientdata <- data.frame(patientID, age, diabetes,  status,
[CA]rownames=patientID) 

specifies pat ient I D as the variable to use in labeling cases on various printouts and

graphs produced by R. 

2.2.5 Factors 
As we have seen, var iables can be descr ibed as nom inal,  ordinal, or  cont inuous. Nom inal

variables are categor ical, without  an im plied order. Diabetes (Type1, Type2)  is an exam ple of

a nom inal var iable.  Even if Type1 is coded as a 1 and Type2 is coded as a 2 in the data, no

order is implied. Ordinal var iables imply order but  not  am ount . Status (poor, im proved,

excellent )  is a good example of an ordinal variable. We know that  a pat ient  with a "poor"

status is not  doing as well as a pat ient  with an " im proved" status, but  not  by how m uch.

Cont inuous var iables can take on any value within som e range and both order and amount  is

im plied. Age in years is a cont inuous variable and can take on values such as 14.5 or 22.8

and any value in between. We know that  som eone who is fif teen is one year older than

som eone who is fourteen. 

Many R funct ions will handle data different ly if  one or  m ore variables are nom inal or

ordinal rather than cont inuous. Categor ical (nom inal)  and ordered categorical (ordinal)

variables in R are called factors. The funct ion factor  stores the categorical values as a

vector of integers in the range [ 1.. . k]  (where k is the num ber of unique values in the

nom inal var iable) , and an internal vector of character st r ings ( the original values)  m apped to

these integers. 

For exam ple, assum e that  we have the vector 

diabetes <- c("Type1", "Type2", "Type1", "Type1") 
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The statem ent  diabetes <- factor(diabetes )  stores this vector as (1, 2, 1, 1)  and

associates it  with 1= Type1 and 2= Type2 internally ( the assignment  is alphabet ical) . Any

analyses perform ed on the vector diabet es  will t reat  the var iable as nom inal and select  the

stat ist ical m ethods appropriate for this level of measurement . 

For vectors represent ing ordinal var iables, we add the param eter ord ered=TRUE to the

facto r  funct ion. For the vector 

status <- c("Poor", "Improved", "Excellent", "Poor") 

The statem ent  status <- factor(status, ordered=TRUE )  will encode the vector

as (3, 2, 1, 3)  and associate these values internally  as 1= Excellent , 2= I mproved, and

3= Poor. Addit ionally, any analyses perform ed on this vector will t reat  the variable as ordinal

and select  the stat ist ical m ethods appropriately. For com pat ibility with the S language, the

statement  above could also have been writ ten as statu s <- ordered(status ) .  

List ing 2.8 dem onst rates how specify ing factors and ordered factors impact  data

analyses. 

Listing 2.8 Using factors 

> # enter the variables as vectors 
> patientID <- c(1, 2, 3, 4) 
> age <- c(25, 34, 28, 52) 
> diabetes <- c("Type1", "Type2", "Type1", "Type1")  
> status <- c("Poor", "Improved", "Excellent", "Poo r") 

> # specify the vectors as factors 
> diabetes <- factor(diabetes) 
> status <- factor(status, order=TRUE) 

> # create the dataframe 
> patientdata <- data.frame(patientID, age, diabete s, status) 

> # view the structure of the dataframe
> str(patientdata) 

'data.frame':   4 obs. of  4 variables:                                  1 
 $ patientID: num  1 2 3 4 
 $ age      : num  25 34 28 52 
 $ diabetes : Factor w/ 2 levels "Type1","Type2": 1  2 1 1 
 $ status   : Ord.factor w/ 3 levels "Excellent"<"I mproved"<..: 3 2 1 3 

> # get summary statistics on the variables                               2
> summary(patientdata) 

   patientID         age         diabetes       sta tus  
 Min.   :1.00   Min.   :25.00   Type1:3   Excellent :1   
 1st Qu.:1.75   1st Qu.:27.25   Type2:1   Improved :1   
 Median :2.50   Median :31.00             Poor     :2   
 Mean   :2.50   Mean   :34.75                           
 3rd Qu.:3.25   3rd Qu.:38.50                           
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 Max.   :4.00   Max.   :52.00                           

The funct ion str(object )  # 1 provides informat ion on an object  in R ( the datafram e in

this case) . I t  clear ly shows that  diabete s  is a factor and status  in an order factor, along

with how it  is coded internally . Note that  the sum mary funct ion # 2 t reats the variables

different ly. I t  provides the m inimum, m axim um , m ean, and quart iles for the cont inuous

variable age, and frequency counts for the categor ical var iables diabetes and status.  

2.2.6 Lists 
Lists are the most  complex of the R data types. Basically, a list  is an ordered collect ion of

objects (components) . A list  allows you to gather a var iety of (possibly unrelated)  objects

under one nam e. For exam ple, a list  m ay contain a com binat ion of vectors, mat r ices,

datafram es, and even other lists. A list  is created with the list funct ion:  

mylist <- list(object1, object2, …) 

where the objects are any of the st ructures we have seen so far.  Opt ionally, you can nam e

the objects in a list .  

mylist <- list(name1=object1, name2=object2, …) 

An exam ple is given in list ing 2.9. 

Listing 2.9 Creating a list 

# Example of a list with 4 components -  
# a string, a numeric vector, a matrix, and charact er vector  

> g <- "My First List" 
> h <- c(25, 26, 18, 39) 
> j <- matrix(1:10, nrow=5) 
> k <- c("one", "two", "three") 
> mylist <- list(title=g, ages=h, j, k) 

> print the contents
> mylist 

$title 
[1] "My First List" 

$ages 
[1] 25 26 18 39 

[[3]] 
     [,1] [,2]
[1,]    1    6
[2,]    2    7 
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[3,]    3    8
[4,]    4    9
[5,]    5   10 

> mylist[[2]] 
[1] 25 26 18 39 

> mylist[["age"]] 
[[1] 25 26 18 39 

This sim ple exam ple shows that  any num ber of objects can be com bined and saved as a

list . You can specify elements of the list  by specifying a com ponent  num ber or a nam e within

double brackets. I n this example, mylis t [[2] ]  and mylist[["ages"] ]  both refer  to the

sam e 4 elem ent  numeric vector. Lists are very important  R st ructures for two reasons. First ,

they allow you to organize and recall disparate informat ion in a simple way. Second, the

results of many R funct ions return lists. I t  is up to the analyst  to pull out  the components

that  are needed. We will see num erous examples of this in later chapters. 

2.3 Data input 
Now that  we have data st ructures, we need to put  som e data in them !  As data analysts, we

are typically faced with data that  com es to us from  a variety of sources and in a variety of

form ats. Our task is to im port  the data into our tools, analyze the data, and report  on the

results. R provides a wide range of tools for im port ing data. 
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Figure 2.2 Sources of data that can be imported into R 

As you can see from  figure 2.2, R can import  data from  the keyboard, from  flat  f iles, from

Microsoft  products such as Excel and Access, from  popular stat ist ical packages, and from  a

variety of relat ional database m anagem ent  systems. Since we never know where our data

will com e from  next , we will cover all of them  here. 

2.3.1 Entering data from the keyboard  
Perhaps the sim plest  m ethod of data ent ry is from  the keyboard. The edit  funct ion in R will

invoke a text  editor that  will allow us to enter our data manually. The steps are:  

8. Create an empty datafram e (or m at r ix)  with the var iable nam es and m odes you want

to have in the final dataset .  

9. I nvoke the text  editor on this data object , enter your data, and save the results back

to the data object . 
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I n the following example, we will create a datafram e nam ed mydata  with three var iables:

age  (numeric) , gende r  ( character) , and weight  (num eric) .  We will then invoke the text

editor, add our data, and save the results (see list ing 2.10) . 

Listing 2.10 Entering data in R via text editor 

mydata <- data.frame(age=numeric(0), [CA]       1 
  gender=character(0), weight=numeric(0)) 

mydata <- edit(mydata)                          2 

# 1 Assignm ents like age= num eric(0)  create a variable of a specif ic mode, but  without  actual

data. # 2 Note that  the result  of the edit ing is assigned back to the object  it self. The edit

funct ion actually operates on a copy of the object . I f you do not  assign it  a dest inat ion, all of

your edits will be lost !  

On a Windows plat form , the results of invoking the edit  funct ion can be seen in Figure 

2.3. 
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Figure 2.3 Entering data via text editor on a Windows platform. 

I n this figure, I 've taken the liberty of adding som e data. I f we click on a column t it le, the

editor gives us the opt ion of changing the variable nam e and type (numeric, character) . We

can add addit ional variables by clicking on the t it les of unused colum ns. When the text  editor

is closed, the results are saved to the object  assigned (mydata  in this case) . I nvoking

mydata <- edit(mydata )  again allows us to edit  the data we have have entered and to

add new data. A shortcut  for mydata <- edit(mydata )  is simply fi x (mydata ) .  

This method of data ent ry works well for small datasets. For larger datasets, you will

probably want  to use one of the m ethods we will describe next  -  namely im port ing data from

exist ing text  files, Excel spreadsheets, stat ist ical packages, or database m anagem ent

system s. 

2.3.2 Importing data from a (comma) delimited text file 
We can import  data from comma delim ited text  f iles using the read. t abl e,  a funct ion that

reads a file in table form at  and saves it  as a datafram e. The syntax is 
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mydataframe <- read.table(file, header = logical_value,
sep="delimiter", row.names = "name") 

where file  is a delim ited ASCI I   file, header  is a logical value indicat ing whether the

first  row contains variable nam es (TRUE)  or not  (FALSE) , sep  specif ies the delim iter

separat ing data values, and row.name s  is an opt ion parameter specifying one or m ore

variables to represent  row ident ifiers.  

For exam ple, the statem ent  

grades <- read.table("studentgrades.csv", header=TRUE, sep=",",
row.names="STUDENTID") 

reads a com ma delim ited file nam ed studentgrades.cs v  from  the current  working

directory, gets the variable nam es from  the first  line of the file, specif ies the variable 

STUDENTID as the row ident if ier, and saves the results as a datafram e nam ed grade s .   

Note that  the sep  param eter allows us to import  f iles that  use a sym bol other than a

com ma to delim it  the data values. To im port  a tab delim ited file, you could use sep=" "  

which denotes whitespace (one or m ore spaces, tabs, new lines, or carr iage returns) . The 

read.tabl e funct ion has m any addit ional opt ions for  fine tuning the data im port . See

help(read.table )  for details. 

2.3.3 Importing data from Excel 
The best  way to read an Excel file is to export  it  to a com ma delim ited file from  within Excel

and import  it  to R using the m ethod above. On Windows system s you can also use the

RODBC package to access Excel files. The first  row of the spreadsheet  should contain

variable/ colum n nam es.  

First , download and install the RODBC package 

install.packages("RODBC") 

You can then use the following code to im port  the data. 

library(RODBC) 
channel <- odbcConnectExcel("myfile.xls")
mydataframe <- sqlFetch(channel, "mysheet")
odbcClose(channel) 

Here, myfil e.xl s  is an Excel f ile, mysheet  is the name of the Excel worksheet  to read

from  the workbook, channel is an RODBC connect ion object  returned by obcConnect , and 

mydataframe is the result ing datafram e. RODBC can also be used to import  data from

Microsoft  Access. See help ( RODBC)  for details. 
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2.3.4 Importing data from SPSS 
SPSS datasets can be imported into R by the read.sps s  funct ion in the foreig n package.

However, we will be using the spss.ge t  funct ion in the Hm isc package instead. spss.get  is

a wrapper funct ion that  sets m any param eters of r ead.spss  for us autom at ically and

m akes the t ransfer easier and m ore consistent  with what  data analysts expect  as a result . 

First , download and install the Hmisc package ( the foreign package is already installed

by default ) .  

install.packages("Hmisc") 

Then use the following code to im port  the data. 

library(Hmisc) 
mydataframe <- spss.get("mydata.sav", use.value.labels=TRUE) 

I n the code above, m ydata.sav is the SPSS datafile to be imported, 

use.value.labels=TRUE tells the funct ion to convert  var iables with value labels into R

factors with those same levels, and mydat afram e is the result ing R dataframe. 

2.3.5 Importing data from SAS 
There are a num ber of funct ions in R designed to im port  SAS datasets, including rea d.ssd

in the fore i gn  package and sas.ge t  in the Hmisc  package. Unfortunately, if you are

using a recent  version of SAS (say SAS 9.1 or higher) , you are likely to find that  these

funct ions do not  work for you because R has not  caught  up with changes in SAS file

st ructures. There are two solut ions that  I  would recom mend.  

You can save the SAS dataset  as a com m a delim ited text  file from  within SAS using PROC

EXPORT, and read the result ing file into R using the m ethod described in sect ion 2.3.1. An

example is given in list ing 2.11. 

Listing 2.11 Exporting a SAS dataset to an R dataframe 

SAS program: 

proc export data= mydata  
     outfile= "mydata.csv"  
     dbms=csv; 
run; 

R program: 

mydata <- read.table("mydata.csv", header=TRUE, sep =",") 

Alternat ively, there is a com mercial product  call Stat  Transfer (descr ibed in sect ion 2.3.9)

that  does an excellent  j ob of saving SAS datasets ( including any exist ing variable form ats)  as

R datafram es. 
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2.3.6 Importing data from Stata 
I m port ing data from  Stata to R is st raight forward. The necessary code is 

library(foreign) 
mydataframe <- read.dta("mydata.dta") 

Here, mydat a.dt a is the Stata dataset  and mydatafram e is the result ing R datafram e. 

2.3.7 Importing data from Systat 
Sim ilar to Stata, the code to import  Systat  data in R is sim ple. 

library(foreign) 
mydataframe <- read.systat("mydata.syd") 

Again, mydat a.sy d is the Systat  dataset  and mydatafram e is the result ing R

datafram e. 

2.3.8 Accessing Database Management Systems (DBMS) 
There are a num ber of R packages that  provide access to relat ional database m anagem ent

system s including MS SQL, Oracle, and MySQL. 

THE ODBC INTERFACE 

The RODBC package provides access to databases ( including Microsoft  Access and Microsoft

SQL Server)  through an ODBC interface. I f you have not  previously installed the RODBC

package, you can do so with the instal l .packages("RODBC") com m and. The prim ary

funct ions included with this package are listed in table 2.2. 

Table 2.2 RODBC functions 

Function Description 

odbcConnect(dsn, uid="", pwd="") Open a connection to an ODBC database 

sqlFetch(channel, sqtable) Read a table from an ODBC database into a

dataframe 

sqlQuery(channel, query) Submit a query to an ODBC database and return

the results 

sqlSave(channel, mydf, tablename =

sqtable, append = FALSE) 

Write or update (append=TRUE) a dataframe to a

table in the ODBC database 

sqlDrop(channel, sqtable) Remove a table from the ODBC database 

close(channel) Close the connection 
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The RODBC package allows two-way com m unicat ion between R and an ODBC connected

SQL database. This m eans that  you can not  only read data from  a connected the database

into R, but  you can use R to alter the contents of the database itself. I n the following

example ( list ing 2.12)  we will import  two tables (Crim e and Punishm ent )  from a DBMS into

two R datafram es and called cr imedat  and pundat , respect ively. 

Listing 2.12  Accessing a DBMS through an ODBC interface 

library(RODBC)       1
myconn <-odbcConnect("mydsn", uid="Rob", pwd="aardv ark")  2
crimedat <- sqlFetch(myconn, Crime)    3
pundat <- sqlQuery(myconn, "select * from Punishmen t")  4
close(myconn)       5 

After loading the RODBC package # 1, we open a connect ion to the ODBC database  # 2

through a registered data source nam e (mydsn )  with a security UI D ( rob )  and password

(aardvar k ) . The connect ion st r ing is passed to sqlFetc h # 3, which copies the table

Crime  into the R datafram e crimeda t . I n # 4 we run the SQL sele ct  statem ent  against

table Punis hment  and save the results to the dataframe punda t .  Finally, we close the

connect  # 5.  

The sqlQue r y  funct ion is very powerful because any valid SQL statem ent  can be

inserted. This allows us to select  specif ic var iables, subset  the data, create new variables,

and recode and renam e exist ing variables. 

OTHER INTERFACES 

R provides other interfaces to DBMS. The RMySQL package provides an interface to MySQL,

the ROracl e package provides an interface to Oracle, and the RJDBC package provides

access to databases through a JDBC interface. Documentat ion for each package is available

on CRAN (ht tp: / / cran.r-project .org) . With variat ions, they are sim ilar to the RODBC package

we have just  seen.  

2.3.9 Importing data via Stat/Transfer 
Before ending our discussion of data im port ing, it  is worth m ent ioning a com m ercial product

that  can make the task signif icant ly easier . Stat / Transfer (www.stat t ransfer.com)  is a stand-

alone applicat ion that  can t ransfer data between 34 data form ats, including R (see figure 

2.4)  
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Figure 2.4 Stat/Transfer main dialog on Windows. 

I t  is available for Windows, Mac, and UNI X plat forms and supports the latest  versions of the

stat ist ical packages we have discussed so far, as well as ODBC accessed DBMS such as

Oracle, Sybase, I nform ix, and DB/ 2. 

2.4 Annotating datasets 
Data analysts typically annotate datasets to make the results easier to interpret . Typically

annotat ion includes adding descr ipt ive labels to var iable names and value labels to the codes

used for categorical var iables. For example, for the variable age ,  we m ight  want  to at tach

the more descr ipt ive label "Age at  hospitalizat ion ( in years) " . For a new variable gender code

1 or 2, we m ight  want  to associate the labels "male" and " fem ale" . 

2.4.1 Variable labels 
Unfortunately, R's ability to handle var iable labels is lim ited. One approach is to use the

variable label as the variable's nam e and then refer to the var iable by its posit ion index.

Using the example above, let 's say that  we have a dataframe containing pat ient  data. The

third column, nam ed age ,  contains the ages at  which individuals were first  hospitalized.  The

code 
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names(patientdata)[3] <- "Age at hospitalization (i n years)" 

renam es age  to "Age at hospitalization (in years) " .  Clear ly this new nam e is

too long to type repeatedly. I nstead, we can refer to this variable as patientdata[3 ]  and

the st r ing "A ge at hospi t alization (in years) "  will pr int  wherever age would have

originally. Obviously, this is not  an ideal approach, and you m ay be bet ter off simply t rying

to com e up with bet ter nam es (e.g. adm issionAge) . 

2.4.2 Value labels 
The facto r  funct ion can be used to create value labels for categor ical variables. Cont inuing

the example above, we could use the code 

patientdata$gender <- factor(patientdata$gender , [CA]
levels = c(1,2), 
labels = c("male", "female")) 

Here level s  indicate the actual values of the var iable, and labels  refer to a character

vector containing the desired labels. 

2.5 Useful functions for working with data objects 
We will end this chapter with a br ief sum m ary of useful funct ions for working with data

objects (see table 2.3) . 

Table 2.3 Useful functions for working with data objects 

Function Action 
length(object) number of elements/components 
dim(object) dimensions of an object 
str(object) structure of an object 
class(object) class or type of an object 
mode(object) how an object is stored 
names(object) names of components in an object 
c(object,object,...) combines objects into a vector 
cbind(object, object, ...) combines objects as columns 
rbind(object, object, ...) combines objects as rows 
object prints the object 
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head(object) list the first part the object 
tail(object) list the last part of the object 
ls() list current objects 
rm(object) delete an object 
newobject <- edit(object) edit object and save as newobject 
fix(object) edit in place 

We have already discussed m ost  of these funct ions.  The funct ions head  and tail  are

useful for quickly scanning large datasets. For exam ple, head(patientdata )  lists the first

six rows of our datafram e, while tail(patientdata )  lists the last  six. We will cover

funct ions such as length, cbind, and rbind, in the next  chapter . They are gathered here as a

reference. 

2.6 Summary 
One of the most  challenging tasks in data analysis is data preparat ion. We have made a

good star t  in this chapter by out lining the various st ructures that  R provides for holding data

and the m any m ethods available for im port ing data from  both keyboard and external

sources. I n part icular, we will use the definit ions of m ode, vector , m at r ix, datafram e, and list

again and again in later chapters. Our abilit y to specify elem ents of these st ructures v ia the

bracket  notat ion will be part icular ly important  in select ing, subset t ing, and t ransform ing

data.  

Once we get  our datasets into R, it  is likely that  we will have to manipulate them into a

m ore conducive form at  ( I  f ind guilt  works well) . I n the next  chapter , we will explore ways of

creat ing new variables, t ransform ing and recoding exist ing variables, m erging datasets, and

select ing observat ions. 
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3 
Basic data management 

This Chapter covers:  

̇ Manipulating dates and missing values 

̇ Data type conversions 

̇ Creating and recoding variables ＠
̇ Sorting, merging, and subsetting datasets 

̇ Selecting and dropping variables 

I n the last  chapter, we covered a var iety of m ethods of import ing data into R. Unfor tunately,

get t ing our data in the rectangular arrangem ent  of a m at r ix or datafram e is j ust  the first  step

in preparing it  for analysis. To paraphrase Captain Kirk in "A Taste of Arm ageddon"  (and

proving m y geekiness once and for all)  "Data is a m essy business -  a very, very m essy

business."   I n my own work, as m uch as 60%  of the t im e I  spend on data analysis is actually

spent  prepar ing the data for analysis. I  will go out  a lim b and say that  this is probably t rue in

one form  or another for m ost  real-world data analysts. Let 's take a look at  an exam ple. 

3.1 A Working Example 
One of the topics that  I  study in my current  job is how m en and wom en differ in the ways

that  they lead their organizat ions. Typical quest ions m ight  be:  

̇ Do men and women  in management positions differ  in  the degree  to which 
they defer to superiors? 

̇ Does  this  vary  from  country  to  country,  or  are  these  gender  differences 
universal? 

One way to address these quest ions is to have bosses in mult iple count r ies rate their

managers on deferent ial behavior, using quest ions like the one below. 
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This m anager asks m y opinion before m aking personnel decisions.

1 2 3 4 5 

st rongly

disagree 

disagree neither agree

nor disagree 

agree st rongly

agree 

The numbers and anchor text in the cells above should be
centered. 

The result ing data m ight  resem ble those in table 3.1. Each row represents the rat ings a

m anager by his or her boss. 

Table 3.1 Gender differences in leadership behavior 

manager date country gender age q1 q2 q3 q4 q5 

1 10/24/08 US M 32 5 4 5 5 5 

2 10/28/08 US F 45 3 5 2 5 5 

3 10/01/08 UK F 25 3 5 5 5 2 

4 10/12/08 UK M 39 3 3 4    

5 05/01/09 UK F 99 2 2 1 2 1 

 
 

Here, each m anager is rated by their  boss on five statements (q1 to q5)  related to

deference to author ity.  For exam ple, Manager 1 is a 32 year old m ale working in the US and

is rated very deferent ial by his boss, while m anager 5 is a fem ale of unknown age (99

probably indicates m issing)  working in the UK and is rated by low on deferent ial behavior.

The date column captures when the rat ings were made. Although a dataset  m ight  have

dozens of var iables and thousands of observat ions, we have only included 10 colum ns and 5

rows to simplify our examples. Addit ionally , we have lim ited the number of item s pertaining

to the m anagers' deferent ial behavior  to f ive. I n a real-world study, we would probably use

10-20 such items to improve the reliability and validity of the results. 

I n at tempt ing to address the quest ions of interest , there are several data m anagem ent

issues to be addressed. Here is a part ial list :  

̇ The  five  ratings  (q1  to q5) will need  to be combined, yielding a single mean 
deferential score from each manager. 

̇ In  surveys,  respondents  often  skip  questions.  For  example,  the  boss  rating 
manager  4  skipped  questions  4  and  5. We will  need  a method  of  handling 
incomplete data. We will also need to recode values like 99 for age to missing. 
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̇ There  may  be  hundreds  of  variables  in  a  dataset,  but  we  may  only  be 
interested  in a  few. To  simplify matters, we will want  create a new dataset 
with only the variables of interest.  ＠

̇ Past research suggests that  leadership behavior may change as a function of 
the  manager's  age.  To  examine  this,  we  may  want  to  recode  the  current 
values of age  into a new categorical age grouping  (e.g., young, middle aged, 
elder). 

̇ Leadership  behavior  may  change  over  time.  We  might  want  to  focus  on 
deferential behavior during  the  recent  global  financial  crisis. To do  this, we 
may want to limit the study to data gathered during a specific period of time 
(say January 1, 2009 to December 31, 2009). 

We will work through each of these issues in the current chapter,
as well other basic data management issues such as combining
and sorting datasets. Then in chapter 4 we will look at some
advanced topics. 3.2 Creating new variables 

I n a typical research project , we will need to create new variables and t ransform  exist ing

ones.  We will use statements of the form  

variable <- expression 

A wide array of operators and funct ions can be included in the expressio n port ion of the

statement . Table 3.2  lists R's ar ithm et ic operators. We will use ar ithmet ic operators when

developing  formulas.  

Table 3.2 Arithmetic Operators 

Operator Description 

+ Addition 

- Subtraction 

* Multiplication 

/ Division 

^ or ** Exponentiation 

x%%y Modulus (x mod y) 5%%2 is 1 

x%/%y Integer division 5%/%2 is 2 

Download from Wow! eBook <www.wowebook.com>



© Manning Publicat ions Co. Please post  com ments or correct ions to the Author Online forum :  

Let 's say that  we have a datafram e nam ed m ydata, with var iables x1 and x2, and we

want  to create a new var iable sumx that  adds these two var iables and new var iable called

meanx that  averages the two variables. I f we use the following code  

sumx <- x1 + x2
meanx <- (x1 + x2)/2 

we will get  an error, because R does not  know that  x1  and x2  are from  datafram e mydata .

I f we use the code below instead 

sumx <- mydata$x1 + mydata$x2
meanx <- (mydata$x1 + mydata$x2)/2 

the statements will succeed but  we will end up with a  datafram e (mydata ) ,  and two

separate vectors(sumx and meanx )  . This is probably not  what  we want . Ult im ately, we want

to incorporate new variables into the or iginal data fram e. List ing 3.1 provides three separate

ways to accom plish this. The one you choose is up to you -  the results will be the sam e. 

Listing 3.1 Creating new variables 

# Three examples for doing the same computations 

mydata$,sumx <- mydata$x1 + mydata$x2
mydata$meanx <- (mydata$x1 + mydata$x2)/2 

attach(mydata)
mydata$sumx <- x1 + x2
mydata$meanx <- (x1 + x2)/2
detach(mydata) 

mydata <- transform(mydata,
sumx = x1 + x2, 
meanx = (x1 + x2)/2  
) 

Personally, I  prefer the third m ethod, exem plif ied by use of the trans f orm funct ion. I t

sim plifies inclusion of as m any new variables as desired and saves the results to the

datafram e. 

3.3 Recoding variables 
Recoding involves creat ing new values of a variable condit ional on the exist ing values of the

sam e and/ or other var iables.  For exam ple, we m ay want  to:  

̇ change a continuous variable into a set of categories  

̇ replace miscoded values with correct values  

̇ create a pass/fail variable based on a set of cutͲoff scores. 

Download from Wow! eBook <www.wowebook.com>



© Manning Publicat ions Co. Please post  com ments or correct ions to the Author Online forum :  

I n order to recode data, we can use one or m ore of R's logical operators (see table 3.3) .

Logical operators are expressions that  return TRUE or FALSE.  

Table 3.3 Logical Operators 

Operator Description 

< Less than 

<= Less than or equal to 

> Greater than 

>= Greater than or equal to 

== Exactly equal to 

!= Not equal to 

!x Not x 

x | y x or y 

x & y x and y 

isTRUE(x) Test if x is TRUE 

Let 's say that  we want  to recode the ages of the managers in our leadership dataset  from

year to age category (Young, Middle Aged, Elder) . We could use the code in list ing 3.2 

Listing 3.2 Recoding variables 

# Create 3 age categories from the age variable
attach(leadership) 
leadership$agecat[age > 75] <- "Elder"
leadership$agecat[age > 45 & age <= 75] <- "Middle Aged"
leadership$agecat[age <= 45] <- "Young"
detach(leadership) 

The statement  variable [ condition] <- expr essio n will only make the

assignm ent  when condit i on  is TRUE.   We have included the datafram e nam e in

leadership$ageca t  to ensure that  the new var iable is saved back to the datafram e. We

used the at tach(leadership )  statem ent  so that  we could write age rather than

leadership $age.  We chose m iddle aged to be between 45 and 75 so that  I  wouldn't  feel so

old. 
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3.4 Renaming variables 
I f we are not  happy with our variable nam es, we can change them  interact ively or

programmat ically . Let 's say that  we wanted to change the var iables manager to

managerI D and date to testDat e.  We could use the statement  

fix(leadership) 

to invoke an interact ive editor, click on the variable nam es, and renam e them  in the dialog 

boxes that  are presented (see figure 3.1) . 

Figure 3.1 Renaming variables interactively using the fix function 

Program mat ically , the resh ape  package has a rename funct ion that  is very useful for

alter ing the nam es of variables. The form at  of the renam e funct ion is 

rename(dataframe, c(oldname="newname", oldname="new name",…)) 
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An exam ple is given in list ing 3.3. 

Listing 3.3 Renaming variables with the reshape package 

# rename programmatically 
library(reshape) 
leadership <- rename(leadership,  
  c( manager="managerID", date="testDate" )
) 

Since the re shape  package is not  installed by default , you will need to install on first  use

using the in stall.packages("reshape") command. The reshape package has a very

powerful set  of funct ions for alter ing the st ructure of a dataset . We will explore several in

chapter 4. 

Finally, you can renam e variables by re-entering the variable nam e in order, while

changing the ones that  need to be altered. For exam ple:  

names(leadership) <- c("testDate", "country", "gend er", "age", 
   "managerID", "q1", "q2', "q3", "q4", "q5") 

The lim itat ion of this approach is the need to enter all the variable nam es, not  just  those

that  we want  to rename. I f there are dozens or hundreds of var iables, this becom es

impract ical.  

3.5 Missing values 
I n a project  of any size, data is likely to be incomplete, because of m issed quest ions, faut ly

equipm ent , or im properly coded data. I n R, m issing values are represented by the sym bol NA 

(not  available) . I mpossible values (e.g., div iding by zero)  are represented by the sym bol NaN

(not  a number) . Unlike programs like SAS, R uses the sam e m issing values sym bol for

character and num eric data.  

I n our leadership exam ple, we could use the code in list ing 3.4 to read the data from  a

tab delim ited text  file. 

Listing 3.4 Reading data with missing values 

> leadership <- read.table("leadership.csv", header =TRUE, sep="\t")
> leadership 

  manager     date country gender age q1 q2 q3 q4 q 5
1       1 10/24/08      US      M  32  5  4  5  5  5
2       2 10/28/08      US      F  45  3  5  2  5  5
3       3 10/01/08      UK      F  25  3  5  5  5  2
4       4 10/12/08      UK      M  39  3  3  4 NA N A
5       5 05/01/09      UK      F  99  2  2  1  2  1 

Note that  when blank values are read into a datafram e, they are autom at ically converted to

m issing values.   
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R provides a num ber of funct ions for ident ifying observat ions containing m issing values.

The funct ion i s.na  allows us to test  for the presence of m issing values. Assume that  we

have a vector  

y <- c(1, 2, 3, NA) 

then the funct ion 

is.na(y) returns c(FALSE, FALSE, FALSE, TRUE). 

Not ice how the is.na  funct ion works on an object . I t  returns an object  of the sam e size,

with the ent r ies replaced by TRUE if the element  is a m issing value, and FALSE if the

elem ent  is not  a m issing value. Using our leadership exam ple in list ing 3.5:  

Listing 3.5 Applying the is.na function 

> is.na(leadership[,6:10]) 
        q1    q2    q3    q4    q5
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE  TRUE  TRUE
[5,] FALSE FALSE FALSE FALSE FALSE 

Here, leade r ship[,6:10 ]  lim ited the datafram e to all rows, and columns 6 to 10,

while is.na  ident ified which values are m issing.  

IMPORTANT NOTE 

Missing values are considered non-com parable, even to them selves. This m eans that  you

cannot  use com parison operator to test  for the presence of m issing values. For exam ple,

the logical test  myvar == N A is never TRUE.  I nstead, you have to use m issing values

funct ions, like those in this sect ion, to ident ify the m issing values in R data objects. 

3.5.1 Recoding values to missing 
We can use assignm ents to recode values to m issing. I n our leadership exam ple, m issing age

values were coded as 99.  Before analyzing this dataset , we need to let  R know that  the

value 99 m eans m issing in this case (otherwise the m ean age for this sam ple of bosses will

be way off! ) .   We can accom plish this with the following code. 

#  recode 99 to m issing for the variable age

at tach( leadership)

leadership[ age= = 99, "age" ]  < -  NA 
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The code fragm ent  lead ership[age==99, "age" ]  selects the age colum n in the 

datafram e le adershi p and within this column, the rows in which age is equal to 99. The

assignm ent  <- NA then sets these age values to m issing. Be sure that  any m issing data is

properly coded as m issing before analyzing the data or the results will be meaningless. 

3.5.2 Excluding missing values from analyses 
We need to elim inate m issing values in some way before analyzing our data. This is because

arithm et ic expressions and funct ions that  contain m issing values y ield m issing values. For

exam ple 

  
x <- c(1,2,NA,3) 
y <- c[1] + c[2] + c[3] + c[4] # y returns NA 
z <- sum(x)                    # z returns NA 

Both y and z  will be NA (m issing)  because the 3rd element  of x  is m issing. 

Luckily , most  num erical funct ions have a na.rm=TRU E opt ion that  rem oves m issing

values pr ior to calculat ions, and applies the funct ion to the remaining values. 

x <- c(1,2,NA,3) 
sum(x, na.rm=TRUE) # returns 6 

When using funct ions with incomplete data, be sure to check how that  funct ion handles

m issing data by looking at  its online help (e.g. help(su m) ) . The sum funct ion is only one of

many funct ions we will consider in chapter 4. They allow us to t ransform  data with f lexibility

and ease. 

We can remove any observat ion with m issing data using the na.om it  funct ion.  na.om it

deletes any rows with m issing data.  We apply this to our leadership dataset  in list ing 3.6. 

Listing 3.6 Using na.omit to delete incomplete observations 

  
# create new dataset without missing data 
> leadership 

  manager     date country gender age q1 q2 q3 q4 q 5
1       1 10/24/08      US      M  32  5  4  5  5  5
2       2 10/28/08      US      F  40  3  5  2  5  5
3       3 10/01/08      UK      F  25  3  5  5  5  2
4       4 10/12/08      UK      M  39  3  3  4 NA N A
5       5 05/01/09      UK      F  99  2  2  1  2  1 

> newdata <- na.omit(leadership)                         1
> newdata 

  manager     date country gender age q1 q2 q3 q4 q 5
1       1 10/24/08      US      M  32  5  4  5  5  5
2       2 10/28/08      US      F  40  3  5  2  5  5
3       3 10/01/08      UK      F  25  3  5  5  5  2 
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5       5 05/01/09      UK      F  99  2  2  1  2  1 

Any rows containing m issing data are deleted from  lea dershi p before the results are

saved to newdata  # 1. 

Delet ing all observat ions with m issing data (called listwise delet ion)  is one of several

methods of handling incomplete datasets.  I f there are only a few m issing values or they are

concent rated in a sm all num ber of observat ions, listwise delet ion can provide a good solut ion

to the m issing values problem. However, if  m issing values are spread throughout  the data,

or there is a great  deal of m issing data in a small number of var iables, listwise delet ion can

exclude a substant ial percentage of our data. We will look at  several more sophist icated

m ethods of dealing with m issing values in chapter 15.  Next , let 's take a look at  dates. 

3.6 Date values 
Dates are typically entered into R as character st r ings and then t ranslated into date variables

that  are stored numerically . The funct ion as.Dat e is used to make this t ranslat ion. The

syntax for is as.Date(x, "format" ) ,  where x  is the character  data and format  gives the

appropriate form at  from  table 3.4.  

Table 3.4 Date formats 

Symbol Meaning Example 

%d day as a number (0-31) 01-31 

%a

%A 

abbreviated weekday 

unabbreviated weekday 

Mon

Monday 

%m month (00-12) 00-12 

%b

%B 

abbreviated month

unabbreviated month 

Jan

January 

%y

%Y 

2-digit year 

4-digit year 

07

2007 

The default  form at  is yyyy- mm-dd. List ing 3.7 provides two examples. 

Listing 3.7 Converting character values to dates 

# convert character data in format 'mm/dd/yyyy' to dates
strDates <- c("01/05/1965", "08/16/1975") 
dates <- as.Date(strDates, "%m/%d/%Y")  

# convert character data to dates using the default  format
mydates <- as.Date(c("2007-06-22", "2004-02-13")) 
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When stored internally, dates are represented as the number of days since 1970-01-01,

with negat ive values for earlier dates. This lets us perform  arithmet ic operat ions on dates

such as the one in list ing 3.8.  

Listing 3.8 Calculations with with dates 

> startdate <- as.Date("2004-02-13")
> enddate   <- as.Date("2009-06-22")
> days      <- enddate - startdate 
> days 

Time difference of 1956 days 

I n our leadership dataset , date is coded as a character var iable in m m / dd/ yy form at . 

We could  use a com mands to t ransform  them  into date values. 

myformat <- “%m/%d/%y” 
leadership$date <- as.date(leadership$date, myforma t) 

Here, we use the specif ied form at  to read the character var iable and replace it  in the

datafram e as a date var iable.  Once in date form at , we can analyze and plot  the dates using

the wide range of analyt ic techniques that  we cover in later  chapters. 

There are two useful funct ions that  take no argum ents, and return the current  date

and/ or t ime. Specifically  

̇ Sys.Date( )  returns today's date ＠
̇ Date( )  returns the current date and time. 

We can use these funct ions to t im e stamp events, or to calculate the amount  of t im e that

has passed between an event  and the present . List ing 3.9 provides two exam ples of their

use. 

Listing 3.9 Date functions and formatted printing 

> # print today's date 
> today <- Sys.Date() 
> format(today, format="%B %d %Y")               1 

[1] "July 07 2009"                                

> # day I was born (not really) 
> dob <- as.Date(“1956-10-10”) 
> format(dob, format="%A")                        2  

   [1] “Monday” 

These examples also use the forma t  funct ion. The for mat  funct ion takes an argum ent  (a

date in this case) , and applies a format  ( in this case assem bled from  the sym bols in table 
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3.2) . This not  only gives us cont rol over the way the dates are pr inted # 1, but  also allows us

to ext ract  port ions of the date values # 2. 

3.6.1 Converting dates to character variables 
Although less com monly used, we can also convert  date variables to a character form at .

Date values can be converted to character variables using the as.Cha r acte r  funct ion. For

exam ple 

# convert dates to character data
strDates <- as.character(dates) 

The conversion allows us to apply a range of character funct ions to the data values

(subset t ing, replacem ent , concatenat ion, etc.) . We will cover character funct ions in detail in

chapter 4. 

3.6.2 Going further  
To learn m ore about  convert ing character data to dates, take a look at  help(as.Date)

and help(strftime ) .  To learn m ore about  form at t ing dates and t imes, see

help(ISOdatetime ) .  I f you need to do complex calculat ions with dates, the fCa l endar  

package can help. I t  provides a m yriad of funct ions for dealing with dates, can handle

m ult iple t im e zones at  once, and provides sophist icated calendar m anipulat ions that

recognize business days, weekends, and holidays. 

3.7 Type conversions 
I n the previous sect ion, we discussed how to convert  character  data to date values and vice-

versa. R provides a set  of funct ions to ident ify an object 's data type, and convert  it  to a

different  data type. 

Type conversions in R work in a sim ilar fashion to those in other stat ist ical program m ing

languages. For exam ple, adding a character st r ing to a num eric vector converts all the

elem ents in the vector to character  values. We can use the funct ions listed in table 3.5 to

test  for a data type and to convert  that  to a given type. 

Table 3.5. Type conversion functions 

Test Convert 

is.numeric as.numeric 

is.character as.character 

is.vector as.vector 

is.matrix as.matrix 

is.data.frame as.data.frame 
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Funct ions of the form  is. datatype return TRUE or FALSE,  while as. datatype converts

the argum ent  to that  type. List ing 3.10 provides an example. 

Listing 3.10 Converting from one data type to another 

> a <- c(1,2,3)
> a 

[1] 1 2 3 

> is.numeric(a) 

[1] TRUE 

> is.vector(a) 

[1] TRUE 

> a <- as.character(a)
> a 

[1] "1" "2" "3" 

> is.numeric(a) 

[1] FALSE 

> is.vector(a) 

[1] TRUE 

> is.character(a) 

[1] TRUE 

When combined with the flow cont rols (e.g.,  if- then)  that  we will discuss in chapter 4, the 

is. datatype funct ion can be a powerful tool, allowing us to handle data in different  ways,

depending on its type. Addit ionally, some R funct ions require data of a specif ic type

(character or num eric, m at r ix or datafram e)  and the as . datatype will allow us to t ransform

our data into the form at  required pr ior to analyses. 

3.8 Sorting data 
Somet imes, j ust  v iewing a dataset  in a sorted order can tell us quite a bit  about  the data. For

exam ple, which m anagers are m ost  deferent ial? To sort  a datafram e in R, use the orde r  

funct ion. By default , the sort ing  order is ASCENDING.  Prepend the sort ing variable with a

m inus sign to indicate a DESCENDING order. Som e examples are provided in list ing 3.11. 
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Listing 3.11 Sorting a dataset 

# sorting examples using the leadership dataset 

# sort by age 
newdata <- leadership[order(age),]                 1 

# sort by gender and age 
newdata <- leadership[order(gender, age),]         2 

#sort by gender (ascending) and age (descending)   3
newdata <-leadership[order(gender, -age),] 

I n # 1 the dataset  is sorted from  youngest  manager to oldest  m anager. I n # 2 the dataset

is sorted into female followed by male, and age is sorted (younger first )  within each of the

gender groups. I n # 3 age is sorted from  oldest  to youngest  m anager within each gender. 

3.9 Merging datasets 
I f our data exist  in m ult iple locat ions, we will need to com bine them  before m oving forward.  

3.9.1 Adding Columns  
To m erge two datafram es (datasets)  horizontally , we use the merge  funct ion. I n m ost  cases,

two datafram es are joined by by one or m ore com m on key variables ( i.e., an inner join) . 

Two examples are given in list ing 3.12. 

Listing 3.12 Merging datasets horizontally 

# merge two dataframes by ID 
total <- merge(dataframeA,dataframeB,by="ID") 

# merge two dataframes by ID and Country 
total <- merge(dataframeA,dataframeB,by=c("ID","Cou ntry"))  

  

Horizontal joins like this are usually used to add variables to a datafram e. 

NOTE 

I f you are sim ply joining two m at r ices or datafram es hor izontally and do not  need to

specify a com m on key, you can use the cbin d funct ion:  

total <- cbind(A, B) 

This will hor izontally concatenate the objects A and B. For this to work proper ly, each

object  has to have the sam e num ber of rows and be sorted in the sam e order. 
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3.9.2 Adding Rows  
To join two datafram es (datasets)  vert ically, use the rb i nd  funct ion. The two datafram es

m ust  have the same variables, but  they do not  have to be in the sam e order (see list ing 

3.13) . 

Listing 3.13 Merging dataset vertically 

# merge two dataframes vertically
total <- rbind(dataframeA, dataframeB)  

I f datafram eA has variables that  datafram eB does not , then either:  

̇ delete the extra variables in dataframeA or  ＠
̇ create the additional variables in dataframeB and set them to NA (missing)  

before joining them . Vert ical concatenat ion is usually  used to add observat ions to a

datafram e. 

3.10 Subsetting datasets 
R has powerful indexing features for accessing the elem ents of an object . These features can

be used to select  and exclude var iables, observat ions, or both. The following sect ions

dem onst rate several m ethods for keeping or delet ing var iables and observat ions.  

3.10.1 Selecting (Keeping) Variables  
I t  is a com m on pract ice to create a new dataset  from  a lim ited num ber of var iables chosen

from  a larger dataset . List ing 3.14 describes three different  ways of accomplishing the sam e

select ion of var iables. 

Listing 3.14 Selecting variables 

# select variables q1, q2, q3, q4, q5 from the lead ership dataframe 

# method 1 
newdata <- leadership[, c(6:10)]               1 

# method 2 
myvars <- c("q1", "q2", "q3", "q4", "q5")      2
newdata <-leadership[myvars] 

# method 3 
myvars <- paste("q", 1:5, sep="")              3
newdata <- leadership[myvars] 

I n chapter 2, we saw that  the elem ents of a datafram e are accessed using the notat ion 

dataframe[row indices, column indices ] .  I n # 1 we left  the row indices blank ( , )

which selected all rows by default .  For the colum n indices, we selected columns 6 through

10 which t ranslated to variables q1 through q5.  I n # 2, we entered variable nam es ( in 

Download from Wow! eBook <www.wowebook.com>



© Manning Publicat ions Co. Please post  com ments or correct ions to the Author Online forum :  

quotes)  as column indices, thereby select ing those columns. When variable nam es are

entered as colum n indices, the row indices are assumed and can be left  out . Finally , in # 3,

we used the paste  funct ion to create the same character vector as in the previous example. 

The past e funct ion will be covered in chapter 4.  

3.10.2 Excluding (dropping) Variables  
There are m any reasons to exclude var iables. For exam ple, if a variable has m any m issing

values, we may want  to drop the ent ire var iable pr ior to further analyses. Several m ethods

of excluding variables are presented in list ing 3.15. 

Listing 3.15 Dropping variables 

# exclude variables q3 and q4 three different ways 

myvars <- names(leadership) %in% c("q3", "q4")      1  
newdata <- leadership[!myvars] 

# exclude 8th and 10th variable  
newdata <- leadership[c(-8,-9)]                     2 

# delete variables q3 and q4 
leadership$q3 <- leadership$q4 <- NULL              3  

I n order to understand why # 1 works, we need to break it  down:  

10. names(leadership )  produces a character  vector containing the var iable nam es.

c("managerID","testDate","country","gender","age","q1","q2",   

"q3","q4","q5" )  

11. names(leadership) %ini% c("q3", "q4") returns a logical vector  with TRUE

for  each element  in names( l eadership ) that  matches  q3 or  q4  and FALSE 

otherwise. 

c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,  TRUE,  TRUE,

FALSE)  

12.  The not  ( ! )  operator reverses the logical values 

c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,  FALSE, FALSE, TRUE) 

13.  leadership[c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,  FALSE,

FALSE, TRUE)] selects columns with TRUE logical values, so q3

and q4 are excluded. 

   

The code in # 2 works because prepending a colum n index with a m inus sign ( - )  excludes 

that  column. The third exam ple # 3 accom plishes the same goal by set t ing the columns q3

and q5 to undefined (NULL) . Note that  NULL is not  the sam e as NA (m issing) . 
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Dropping variables is simply the converse of keeping variables. The choice will depend on

which is easier  to code. I f there are m any variables to drop, it  m ay be easier to keep the

ones that  rem ain, or vice versa. 

3.10.3 Selecting Observations 

Select ing or excluding observat ions ( rows)  is typical a key aspect  of successful data

preparat ion and analysis. Several examples are given in list ing 3.16. 

Listing 3.16 Selecting observations 

# first 5 observerations 
newdata <- leadership[1:5,]                              1 

# based on variable values 
newdata <- leadership[which(leadership$gender=="M"       2 
& leadership$age > 30),] 

# or 
attach(leadership) 
newdata <- leadership[which(gender=='M' & age > 30) ,]     3
detach(leadership)  

I n each of these exam ples, we provide the row indices and leave the column indices blank

( therefore choosing all colum ns) . I n # 1 we ask for rows 1 through 5 ( the first  5

observat ions) . We need to break # 2 down to understand it :  

14. The logical comparison le adership$gender=="F "  produces the vector

c(TRUE, FALSE, FALSE, TRUE, FALSE )  

15.  The logical comparison le adership$age > 30  produces the vector

c(TRUE, TRUE, FALSE, TRUE, TRUE) 

16. The logical comparison  

c(TRUE, FALSE, FALSE, TRUE, TRUE) & c(TRUE, TRUE, FALSE, TRUE,

TRUE) produces the vector c(TRUE, FALSE, FALSE, TRUE, FALSE )  

17.  The funct ion which  gives the indices of a vector that  are TRUE. Thus 

which(c(TRUE, FALSE, FALSE, TRUE, FALSE)) produces the vector

c(1, 4) 

18. leadership[c(1,4),] selects the first  and fourth observat ions from  the

datafram e. This m atches our cr iter ia. 

# 3 is ident ical to # 2 but  uses the attac h funct ion so that  we do not  have to prepend the

variable names with the dataframe nam es.  

At  the beginning of this chapter, we suggested that  we m ight  want  to lim it  our analyses

to observat ions collected between January 1, 2009 and December 31, 2009. How can we do

this? One solut ion is presented in list ing 3.17. 
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Listing 3.17 Selecting observations based on dates 

# select observations recorded between Jan 1 2009 a nd Dec 31 2009
leadership$date <- as.Date(leadeship$date, "%m/%d/% y")            1
startdate <- as.Date("2009-01-01")                                2
enddate   <- as.Date("2009-01-31") 
newdata <- leadership[which(leadership$date >= star tdate & [CA]   3 
    leadership$date <= enddate),] 

# 1 We convert  the date values read in or iginally as character values to date values using

the form at  mm/dd/yy .  # 2 We create start ing and ending dates. Since the default  for the

as.Dat e funct ion is yyyy - mm-dd,  we don't  have to supply it  here. # 3 Finally, we select

cases m eet ing our desired cr iter ia as we did in the previous exam ple.  

3.10.4 The Subset Function  
The examples in the previous two sect ions are important  because they help describe the

ways in which logical vectors and comparison operators are interpreted within R.

Understanding how these exam ples work will go a long way to m aking R m ore

understandable for you. Now that  we have done things the hard way, let 's look at  a shortcut .  

The subse t  funct ion is probably the easiest  way to select  variables and observat ion. Two

examples are given in list ing 3.18.   

Listing 3.18 Using the subset function 

# using subset function  
newdata <- subset(leadership, age >= 35 | age < 24,        1
select=c(q1, q2, q3, q4))  

# using subset function (another example) 
newdata <- subset(leadership, sex=="M" & age > 25,        2
select=gender:q4)  

I n # 1 we select  all rows that  have a value of age greater than or equal to 35 or  age less

than 24. We keep the var iables q1 through q4.  I n the second example # 2, we select  all m en

over the age of 25 and we keep var iables gender through q5 (gender, q4, and all colum ns

between them ) . We have seen the colon  operator fro m:to  in chapter 2. Here, it  provides

all var iables in a datafram e between the to  var iable and the from  var iable, inclusive. 

3.10.5 Random Samples 
Sampling from  larger datasets is com mon pract ice in data m ining and m achine learning. For

exam ple, we m ay want  to select  two random  sam ples, creat ing a predict ive m odel from  one,

and validat ing it s effect iveness on another. The sample  funct ion allows us to take a random

sample (without  or without  replacement )  of size n from  a dataset . An exam ple is provided in

list ing 3.19. 

Listing 3.19 Taking a random sample 

# take a random sample of size 50 from the leadersh ip dataset 
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# sample without replacement 
mysample <- leadership[sample(1:nrow(leadership), 5 0, [CA]     1 
   replace=FALSE),]  

# 1 The first  argum ent  to the sampl e funct ion is a vector list ing elements to be random ly

chosen from . Here, the vector is 1 to the number of observat ions in the datafram e.  The

second argum ent  is indices to be selected, and the third argum ent  indicates sampling

without  replacem ent . The sample  funct ion returns the random ly sam pled indices, which are

then used to select  rows from  the datafram e. 

GOING FURTHER  

R has extensive facilit ies for sampling, including drawing and calibrat ing survey samples (see

the sampl e package)  and analyzing com plex survey data (see the survey  package) . 

Bootst rapping is described in appendix d. 

3.11 Summary 
We have covered a great  deal of ground in this chapter . We have looked at  the way R

stores m issing and date values and explored various ways of handling them . We have seen

how to determ ine the data type of an object  and how to convert  it  to other types. We have

used sim ple form ulas to create new variables and recode exist ing variables. We have sorted

our data and renam ed our variables. We have seen how to m erge our data with other

datasets both horizontally (adding variables)  and vert ically  (adding observat ions) . Finally, we

have seen how to keep or drop variables and how to select  observat ions based on a variety

of cr iter ia.   

Actually, we have only scratched the surface when it  comes to handling incomplete data.

I n the next  chapter, we will address the "m issing value problem " in m ore detail and discuss

more sophist icated methods of dealing with it .  Then we will look at  the myriad of ar ithmet ic,

character , and stat ist ical funct ions that  R makes available for creat ing and t ransform ing

variables. After explor ing ways of cont rolling program  flow, we will see how to wr ite our own

funct ions. Finally , we will explore how we can use these funct ions to aggregate and

summarize our data.  

By the end of chapter 4 you will have most  of the tools necessary to manage complex

datasets. (And you will be the envy of data analysts everywhere! )  
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4 
Advanced data management 

This Chapter covers:  

̇ Mathematical and statistical functions 

̇ Character functions 

̇ Looping and conditional execution 

̇ UserͲwritten functions 

̇ Aggregating and reshaping data 

I n chapter 3, we reviewed the basic techniques used for m anaging datasets within R. I n this

chapter, we will focus on advanced topics. The chapter is divided into three basic parts. I n

the first  part  we will take a whir lwind tour of R's many funct ions for mathemat ical, stat ist ical,

and character m anipulat ion. I n order to give this sect ion relevance, we begin with a data

m anagem ent  problem  that  can be solved using these funct ions. After covering the funct ions

themselves, we will look at  one possible solut ion to the problem we raised. 

I n the second part  we will look at  how we can wr ite our own funct ions to accom plish data

m anagem ent  and analysis tasks. First , we will look at  ways of cont rolling program  flow,

including looping and condit ional statement  execut ion.  Then we will look at  the st ructure of

user-writ ten funct ions and how to invoke them  once created.  

I n the third part , we will look at  ways of aggregat ing and sum m arizing our data, along

with m ethods of reshaping and rest ructur ing our datasets. When aggregat ing data, we can

specify the use of any appropriate built - in or user-writ ten funct ion to accom plish the

summarizat ion, so the topics we learned in the f irst  two parts of the chapter will provide real

benefit .  

Finally, we will pause for a well deserved rest . 
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4.1 A data management challenge 
I n order to mot ivate our discussion of num erical and character  funct ions, we will star t  with a

data m anagem ent  problem . A group of students have taken exams in Math, Science and

English. We want  to combine these scores in order to determ ine a single performance

indicator for each student . Addit ionally, we want  to assign an “A”  to the top 20%  of students,

“B”  to the next  20% , etc. Finally, we want  to sort  the students alphabet ically . The data are

presented in table 4.1. 

Table 4.1 Student exam data 

Student Math Science English 

John Davis 502 95 25 

Angela Williams 600 99 22 

Bullwinkle Moose 412 80 18 

David Jones 358 82 15 

Janice Markhammer 495 75 20 

Cheryl Cushing 512 85 28 

Reuven Ytzrhak 410 80 15 

Greg Knox 625 95 30 

Joel England 573 89 27 

Mary Rayburn 522 86 18 

Looking at  this dataset , several obstacles are im mediately evident . First , scores on the

three exams are not  com parable. They have widely different  means and standard deviat ions,

so sim ply averaging them does not  m ake sense. We m ust  t ransform  the exam  scores into

comparable units before com bining them . Second, we will need a method of determ ining a

student 's percent ile rank on this score, in order to assign a grade.  Third, there is single field

for name, com plicat ing the task of sort ing students. We will need to break apart  their names

into f irst  nam e and last  nam e in order to sort  them  properly.  

Each of these tasks can be accom plished through the judicious use of R's num erical and

character funct ions. After we work through the funct ions described next  sect ion, we will

consider a possible solut ion to this data management  challenge. 
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4.2 Numerical and character functions 
   
I n this sect ion we will review funct ions in R that  can be used as the basic building blocks for

manipulat ing data. We can divide them into num erical (m athemat ical, stat ist ical, probability )

and character funct ions. After we review each type, we will look at  how to apply funct ions to

the colum ns (variables)  and rows (observat ions)  of m at r ices and datafram es. 

4.2.1 Mathematical functions 
Table 4.2 lists com mon m athemat ical funct ions along with short  examples.  

Table 4.2 Mathematical functions 

Function Description 

abs(x) Absolute value

abs(-4 )  is 4 

sqrt(x) Square root

sqrt(25 )  is 5 

ceiling(x) Smallest integer not less than x

ceiling(3.475 )  is 4 

floor(x) Largest integer not greater than x

floor(3.475 )  is 3 

trunc(x) Integer formed by truncating values in x toward 0

trunc(5.99 )  is 5 

round(x, digits=n)  Round x to the specified number of decimal places

round(3.475, digits=2 )  is 3.48 

signif(x, digits=n)  Round x to the specified number of significant digits

signif(3.475, digits=2) is 3.5 

cos(x), sin(x), tan(x)  Cosine, sine, and tangent

cos(2 )  is -0.416 

acos(x), asin(x), atan(x) Arc-cosine, arc-sine, and arc-tangent

acos(-0.416 )  is 2 

cosh(x), sinh(x), tanh(x)  Hyperbolic cosine, sine, and tangent

sinh(2) is 3.627 

acosh(x), asinh(x), atanh(x) Hyperbolic arc-cosine, arc-sine, and arc-tangent

asinh(3.627 )  is 2 

log(x,base=n) Logarithm of x  to the base n 
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log(x)

log10(x) 

For convenience  

log(x) is the natural logarithm

log10(x)   is the common logarithm

log(10) is 2.3026 

log10(10)  is 1 

exp(x) Exponential function

exp(2.3026)  is 10 

Data t ransform at ion is one of the pr imary uses for these funct ions. For exam ple, we often

t ransform  posit ively skewed variables such as incom e to a log scale before further analyses. 

Mathem at ical funct ions will also be used as components in formulas, in plot t ing funct ions

(e.g., x vs. sin(x) )  and in form at t ing num erical values pr ior to pr int ing.  

4.2.2 Statistical Functions 
Common stat ist ical funct ions are presented in table 4.3. Many of these funct ions have

opt ional param eters that  affect  the outcome. For example 

y <- mean(x) 

provides the arithm et ic m ean of the elements in object  x, while 

z <- mean(x, trim = 0.5, na.rm=TRUE) 

provides the t r im m ed m ean, dropping the highest  and lowest  5%  of scores and any m issing

values.  Use the help  funct ion to learn m ore about  each funct ion and its argum ents. 

Table 4.3 Statistical functions 

Function Description 

mean(x) Mean

mean(c(1,2,3,4))  is 2. 5 

median(x) Median

median(c(1,2,3,4) )  is 2.5 

sd(x) Standard deviation 

sd(c(1,2,3,4)  is 1.29 

var(x) Variance 

variance (c(1,2,3,4) )  is 1.67 

mad(x) Median absolute deviation

mad(c(1,2,3,4))  is 1.48 
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quantile(x, probs) Quantiles where x  is the numeric vector whose

quantiles are desired and probs  is a numeric

vector with probabilities in [0,1]. 

# 30th and 84th percentiles of x

y <- quantile(x, c(.3,.84)) 

range(x) Range 

x <- c(1,2,3,4 )  

range(x) is c(1,4)

diff(range(x))  is  3 

sum(x) Sum

sum(c(1,2,3,4 )  is 10 

diff(x, lag=1) Lagged differences, with lag indicating which lag to

use. The default lag is 1. 

x<- c(1, 5, 23, 29)

diff(x )  is  c(4, 18, 6 )  

min(x) Minimum

min(c(1,2,3,4) )  is 1 

max(x) Maximum

max(c(1,2,3,4)  is 4 

scale(x, center=TRUE, scale=TRUE) Column center (center=TRU E) or standardize

(center=TRUE, scale=TRU E) data object  x . 

An example is given in listing 4.2. 

To see these funct ions in act ion, look at  list ing 4.1. Here we demonst rate two ways to

calculate the m ean and standard deviat ion of a vector of num bers.  

Listing 4.1 Calculating the mean and standard deviation 

> x <- c(1,2,3,4,5,6,7,8)
> mean(x) 

[1] 4.5 

> sd(x) 

[1] 2.449490 

> # same thing the hard way 
> n <- length(x) 
> meanx <- sum(x)/n 
> css <- sum((x - meanx)**2)                               1
> sdx <- sqrt(css / (n-1)) 
> meanx 
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[1] 4.5 

> sdx 

[1] 2.449490 

# 1 I t  is inst ruct ive to v iew how the corrected sum  of squares (css)  is calculated step by

step:  

19. x  equals c(1 ,  2, 3, 4, 5, 6, 7, 8 )  and meanx equals 4.5 

20.  (x – meanx) subt racts 4. 5 from  each elem ent  of x  result ing in 

c(-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5) 

21. (x – meanx)** 2  squares each element  of (x - meanx )  result ing in 

c(12.25, 6.25, 2.25, 0.25, 0.25, 2.25, 6.25 12.25 )  

22. sum((x-meanx)**2 )  sum s each of the elements of (x- meanx)**2 )  result ing in 42

Writ ing form ulas in R has m uch in common with m at r ix manipulat ion languages such as 

MATLAB (we will look more specifically at  solving mat r ix algebra problem s in appendix E) . 

By default , the scale  funct ion standardizes the colum ns of a m atr ix or datafram e to a

mean of zero and a standard deviat ion of one. To standardize each column to an arbit rary

m ean and standard deviat ion you could use code sim ilar to list ing 4.2.  

Listing 4.2 Standardizing the columns of a dataset 

# standardize columns of a dataset to mean=0 and st andard deviation=1 
newdata <- scale(mydata) 
  
# standardize columns of a dataset to an arbitrary 
# mean M and standard deviation SD 
newdata <- scale(mydata)*SD + M 

We will use this approach as one step in solving our learning exam ple (sect ion 4.2.7) . 

4.2.3 Probability Functions 
You m ay wonder why probabilit y funct ions are not  listed with the stat ist ical funct ions above

( it  was really bother ing you, wasn't  it?) . Although probability funct ions are stat ist ical by

definit ion, they are unique enough to deserve their  own sect ion. Probabilit y funct ions are

often used to generate sim ulated data with known characterist ics and to calculate probabilit y

values within user writ ten stat ist ical funct ions.  

I n R, probabilit y funct ions take the form  

[ dpqr ] dist r ibut ion_abbreviat ion 

where the f irst  let ter refers to the aspect  of the dist r ibut ion returned:  

d = density 
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p = dist r ibut ion funct ion 

q = quant ile funct ion 

r = r andom  generat ion ( random  deviates)  

The com mon probabilit y funct ions are listed in table 4.4.  

Table 4.4 Probability distributions 

Distribution Abbreviation Distribution Abbreviation 

Beta  beta  Logistic  logis 
Binomial  binom  Multinomial  multinom 
Cauchy  cauchy  Negative binomial  nbinom 
ChiͲSquared 
(noncentral) 

chisq  Normal  norm 

Exponential  exp  Poisson  pois 
F  f  Wilcoxon Signed Rank  signrank 
Gamma  gamma  T  t 
Geometric  geom  Uniform  unif 
Hypergeometric  hyper  Weibull  weibull 
Lognormal  lnorm  Wilcoxon Rank Sum  wilcox 
 

To see how these work, we will look at  funct ions related to the norm al dist r ibut ion. I f we

do not  specify a m ean and a standard deviat ion, the standard norm al dist r ibut ion is assumed

(m ean= 0, sd= 1) . Examples of the density (dnorm ) , dist r ibut ion (pnor m) , quant ile (qnor m)  

and random  deviate generat ion (rnorm )  funct ions are given in table 4.5. 

Table 4.5 Normal distribution functions 

Problem Solution 

Plot the standard normal curve  on the interval  [-3,3]

(see below) 

x <- pretty(c(-3,3), 30)

y <- dnorm(x) 

plot(x, y,  

  type = 'l',  

  xlab = Normal Deviate",  

  ylab = "Density",  

  yaxs = "i"

) 
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What is the area under the standard normal curve to the

right of z = 1.96? 

pnorm(1.96 ) equals 0.975 

What is the value of the 90th percentile of a normal

distribution with a mean of 500 and a standard deviation

of 100? 

qnorm(.9, mean=500, sd=100)

equals 628.16 

Generate 50 random normal deviates with a mean of 50

and a standard deviation of 10. 

rnorm(50, mean=50, sd=10) 

Don't  worry if the plot  funct ion opt ions are unfam iliar. We will cover them in detail in later

chapters.  

SETTING THE SEED FOR RANDOM NUMBER GENERATION 

Each t im e we generate pseudo- random  deviates, a different  seed and therefore different

results, are produced. I n order to m ake our results reproducible, we can specify the seed

explicit ly, using the set.se ed funct ion. An example is given in list ing 4.3. 

Listing 4.3 Generating pseudo-random numbers from a uniform distribution 

> # generate 5 uniform random deviates
> runif(5) 

[1] 0.8725344 0.3962501 0.6826534 0.3667821 0.92559 09 

> runif(5) 

[1] 0.4273903 0.2641101 0.3550058 0.3233044 0.65849 88 
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1
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> set.seed(1234)                                                      1
> runif(5) 

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.86091 54 

> set.seed(1234)                                                      1
> runif(5) 

[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.86091 54 

# 1 By set t ing the seed m anually, we are able to reproduce our results. This can be very

helpful in creat ing examples we can access at  a future t im e and share with others. 

GENERATING MULTIVARIATE NORMAL DATA 

I n sim ulat ion research and Monte Car lo studies, we often want  to draw data from

mult ivar iate normal dist r ibut ion with a given m ean vector and covariance m atr ix. The 

mvrnor m funct ion in the MASS package makes this easy. The funct ion call is 

mvrnorm(n, mean, sigma) 

where n is the desired sample size, m ean is the vector of m eans, and sigm a is the var iance-

covariance (or  correlat ion)  matr ix. I n list ing 4.4 we will sample 500 observat ions from a 3-

variable m ult ivar iate normal dist r ibut ion with  

Mean Vector   230.7   146.7    3.6

Covariance Mat r ix  15360.8 6721.2 -47.1 

 6721.2  4700.9 -16.5 

  -47.1   -16.5    0.3 

Listing 4.4 Generating data from a multivariate normal distribution 

> mean <- c(230.7, 146.7, 3.6)                                            1
> sigma <- ( c(15360.8, 6721.2, -47.1,                                    2 
                6721.2, 4700.9, -16.5, 
                 -47.1,  -16.5,   0.3), nrow=4, nco l=4) 
> set.seed(1234)                                                          3
> mydata <- mvrnorm(500, mean, sigma)                                     4
> mydata <- as.data.frame(mydata)                                         5
> names(mydata) <- c("y","x1","x2")                                       6
> dim(mydata                                                              7 

[1] 500 3 

> head(mydata, n=10)                                                      8 

       y    x1   x2 
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1   98.8  41.2 4.33
2  244.5 205.2 3.57
3  375.7 186.7 3.66
4  -59.2  11.2 4.23
5  313.0 111.0 2.92
6  288.8 185.1 4.14
7  134.8 165.0 3.69
8  171.7  97.4 3.80
9  167.3 101.0 3.99
10 121.1  94.5 3.76 

I n the list ing above, we are generat ing 500 observat ions from  a m ult ivar iate norm al

dist r ibut ion with a given # 1 m ean vector, and # 2 variance-covariance m at r ix. Since a

correlat ion mat r ix is a covariance matr ix too, we could have specif ied the correlat ions

st ructure direct ly  here. We have # 3 set  a random  number seed so that  we can reproduce our

results later. We # 4 generate the pseudo- random  data, # 5 convert  it  to a datafram e from  a

matr ix, and # 6 name the var iables. Finally , we # 7 confirm  that  we have 500 observat ions

and 3 variables, and # 8 pr int  out  the first  10 observat ions. 

The probabilit y funct ions in R allow us to generate sim ulated data, sam pled from

dist r ibut ions with known character ist ics. Stat ist ical m ethods that  rely on sim ulated data have

grown exponent ially in recent  years and we will see several examples of these in later

chapters. 

4.2.4 Character functions 
While m athem at ical and stat ist ical funct ions operate on num erical data, character funct ions

ext ract  inform at ion from  textual data, or reformat  textual data for pr int ing and report ing. For

exam ple, we m ay want  to concatenate a person’s first  nam e and last  nam e, ensuring that

the first  let ter  of each is capitalized. Or we may want  to count  the instances of obscenit ies in

open ended feedback.  Som e of the m ost  useful character funct ions are listed in table 4.6. 

Table 4.6 Character Functions 

Function Description  

nchar(x) Counts the number of characters of x 

x <- c(“ab”, “cde”, “fghij”)

length(x) is 3 

nchar(x[3])  is 5 

substr(x, start, stop) Extract or replace substrings in a character vector. 

x <- "abcdef"  

substr(x, 2, 4 )  is bcd"

substr(x, 2, 4) <- "22222 "  is

"a222ef"  

grep(pattern, x, ignore.case=FALSE,  Search for  pat ter n  in  x . If fixed=FALS E then 
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fixed=FALSE) pattern is a regular expression. If fixed=TRU E

then pattern is a text string. Returns matching

indices. 

grep("A", c("b","A","c"),

fixed=TRUE)  returns 2 

sub(pattern, replacement, x,

ignore.case=FALSE, fixed=FALSE) 

Find  pattern  in x and substitue with

replacement  text.  If fixed =FALSE then

pattern is a regular expression. If fixed=TRU E 

then pattern is a text string.  

sub("\\s",".","Hello There") returns

Hello.Ther e 

strsplit(x, split) Split the elements of character vector x  at split . 

strsplit("abc", "" )  returns 

c("a","b","c" )  

paste(..., sep="") Concatenate strings after using sep  string to

separate them. 

paste("x", 1:3, sep="" )  returns 

c("x1", "x2", "x3") 

paste("x",1:3,sep="M") returns

c("xM1","xM2" "xM3") 

paste("Today is", date()) returns

Today is Thu Jun 25 14:17:32 201 1  

 (I changed the date to appear more current) 

toupper(x) Uppercase 

toupper("abc" )  returns "ABC" 

tolower(x) Lowercase 

tolower("ABC")  returns "abc" 

 
 

Note that  the funct ions gr ep and su b can search for a text  st r ing ( f ixed= TRUE)  or a

regular expression ( fixed= FALSE) . Regular expressions provide a clear and concise syntax

for m atching a pat tern of text . For example, the regular expression  

^[hc]?at  
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m atches any st r ing that  star ts with zero or one occurrences of “ h”  or “ c” , followed by

“at ” . The expression therefore m atches "hat " , "cat " , and "at " ,  but  not  “bat ” .  To learn m ore,

see the regular  expression ent ry in Wikipedia. 

4.2.5 Other useful functions 
The funct ions in table 4.7 are also quite useful for data m anagem ent  and m anipulat ion, but

they don't  fit  cleanly into the other categories. 

Table 4.7 Other useful functions 

Function Description 

length(x) Length of object x 

x <- c(2, 5, 6, 9)

length(x) is 4 

seq(from , to, by) Generate a sequence 

indices <- seq(1,10,2)

#indices is c(1, 3, 5, 7, 9 )  

rep(x, ntimes) Repeat x n times 

y <- rep(1:3, 2) 

# y is c(1, 2, 3, 1, 2, 3 )  

cut(x, n) Divide continuous variable x into factor with n levels  

y <- cut(x, 5 )  

pretty(x, n) Create pretty breakpoints. Divides a continuous

variable x  into n intervals, by selecting n+ 1

equally spaced rounded values. Often used in

plotting. 

cat(…) Concatenates the objects in … and outputs them 

firstname <-  c("Jane")

cat("Hello" , firstname, "\n" )  

The last  exam ple dem onst rates the use of escape characters in pr int ing. Use \ n for new

lines, \ t  for tabs, and \ ' for a single quote, \ b for backspace and so for th. For example, the

code:  

name <- "Bob" 
cat( "Hello", name, "\b.\n", "Isn\'t R", "\t", "GRE AT?\n") 

produces 
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Hello Bob. 
 Isn't R         GREAT? 

Note that  the second line is indented one space. When cat  concatenates objects for output ,

it  separates each by a space. That  is why we included the backspace ( \ b)  escape character

before the per iod. Otherwise it  would have produced "Hello Bob  ."  

How we apply the funct ions we have covered so far to num bers, st r ings, and vectors is

intuit ive and st raight forward, but  how do we apply them  to m at r ices and datafram es? That  is

the subject  of the next  sect ion. 

4.2.6 Applying functions to matrices and dataframes  
One of the interest ing features of R funct ions is that  they can be applied to a variety of data

objects (scalars, vectors, mat r ices, arrays, and datafram es) .  An example is given in list ing 

4.5. 

Listing 4.5 Apply functions to data objects 

> a <- 5
> sqrt(5) 

[1] 2.236068 

> b <- c(1.243, 5.654, 2.99)
> round(b) 

[1] 1 6 3 

> log(c) 
          [,1]     [,2]     [,3]     [,4]
[1,] 0.0000000 1.386294 1.945910 2.302585
[2,] 0.6931472 1.609438 2.079442 2.397895
[3,] 1.0986123 1.791759 2.197225 2.484907 

> mean(c) 

[1] 6.5 

 
Not ice that  the m ean of m at r ix c in the exam ple above results in a scalar (6.5) . The m ean

funct ion took the average of all 12 elem ents in the matr ix . But  what  if we wanted the 3 row

means or the 4 column means?  

R provides a funct ion nam ed apply that  allows us to apply  an arbit rary funct ion to any

dim ension of a m at r ix, array, or datafram e. The form at  for the apply funct ion is 

apply(x, MARGIN, FUN, ...) 

where x  is our data object , MARGIN is the dimension index, FUN is a funct ion we specify,

and . . .  are any param eters we want  to pass to FUN.  I n a m at r ix or datafram e 
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MARGI N= 1 indicates rows and MARGI N= 2 indicates columns. Let 's take a look at  the

examples in list ing 4.6. 

Listing 4.6 Applying a function to the rows (columns) of a matrix 

> # create some data 
> mydata <- matrix(rnorm(30), nrow=6)
> mydata 

       [,1]   [,2]   [,3]    [,4]   [,5]
[1,]  1.138 -1.413 -0.187  0.9849 -0.788
[2,]  0.475  1.318 -0.246 -1.0987  0.504
[3,]  1.444 -0.174  2.269  0.4378  0.195
[4,] -0.631  0.493  1.179 -0.4615  2.645
[5,] -0.458  0.180 -0.760  0.0759 -0.577
[6,]  0.485  0.158  0.369 -0.1272  0.669 

> apply(mydata, 1, mean)                              1 

[1] -0.0531  0.1905  0.8344  0.6448 -0.3078  0.3106  

> apply(mydata, 2, mean)                              2 

[1]  0.4088  0.0936  0.4372 -0.0315  0.4415 

> apply(mydata, 2, mean, trim=.4)                     3 

[1]  0.4799  0.1689  0.0906 -0.0256  0.3495 

I n # 1, we are calculat ing the 6 row m eans. I n # 2 we get  the 5 column means. Finally , in

# 3, we get  the colum n m eans, but  this t ime we pass the opt ion tr i m=0.4 to the mean

funct ion, result ing in t r im m ed means. 

Since FUN can be any R funct ion, including a funct ion that  we wr ite ourselves (see sect ion 

4.4) , apply  is a very powerful mechanism.  While apply  applies a funct ion over the

m argins of an array, lapp l y  and sapp l y  apply a funct ion over a list . We will see an

exam ple of sapply  (which is actually a user- fr iendly version of lappy )  in the next  sect ion.  

We now have all the tools we need to solve the data challenge in sect ion 4.1, so let 's give

it  a t ry.  

4.3 A solution for our data management challenge 
Our challenge from  sect ion 4.1  is to com bine subject  test  scores into a single perform ance

indicator for each student , grade each student  from  A to F based on their relat ive standing

( top 20% , next  20% , etc.) , and sort  the roster students last  nam e, followed by first  nam e.  A

solut ion is given in list ing 4.7. 

Listing 4.7 A solution to the learning example 

# tranform student roster
options(digits=2) 
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# obtain performance scores                                                      
z <- scale(roster[,2:4])                                                
score <- apply(z, 1, mean)                                             
roster <- cbind(roster, score) 

# grade students                                        
y <- quantile(score, c(.8,.6,.4,.2))                                   
roster$grade[score >= y[1]] <- "A"                                     
roster$grade[score < y[1] & score >= y[2]] <- "B" 
roster$grade[score < y[2] & score >= y[3]] <- "C" 
roster$grade[score < y[3] & score >= y[4]] <- "D" 
roster$grade[score < y[4]] <- "F" 

# extract first and last name 
name <- strsplit((roster$Student), " ")                                
lastname <- sapply(name, "[", 2) 
firstname <- sapply(name, "[", 1) 
roster <- cbind(firstname,lastname, roster[,-1]) 

# sort by last and first name 

roster < -  roster[ order( lastname,firstnam e) ,]  

#  display results

>  roster  

    Firstname   Lastname Math Science English score  grade 
6      Cheryl    Cushing  512      85      28  0.35      C
1        John      Davis  502      95      25  0.56      B 
9        Joel    England  573      89      27  0.70      B 
4       David      Jones  358      82      15 -1.16      F 
8        Greg       Knox  625      95      30  1.34      A 
5      Janice Markhammer  495      75      20 -0.63      D 
3  Bullwinkle      Moose  412      80      18 -0.86      D 
10       Mary    Rayburn  522      86      18 -0.18      C 
2      Angela   Williams  600      99      22  0.92      A 
7      Reuven    Ytzrhak  410      80      15 -1.05      F 

The code is dense so let 's walk through the solut ion step by step.  

Step1 .  The or iginal student  roster is given below. The opt ions(digits= 3)  just  lim its the

num ber of digits pr inted after  the decim al place and m akes the pr intouts easier to read. 

> options(digits=3) 
> roster                                                                

             Student Math Science English
1         John Davis  502      95      25 
2    Angela Williams  600      99      22 
3   Bullwinkle Moose  412      80      18 
4        David Jones  358      82      15 
5  Janice Markhammer  495      75      20 
6     Cheryl Cushing  512      85      28 
7     Reuven Ytzrhak  410      80      15 
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8          Greg Knox  625      95      30 
9       Joel England  573      89      27 
10      Mary Rayburn  522      86      18 

Step 2 .  Since the Math, Science, and English tests are reported on different  scales (with

widely differ ing means and standard deviat ions) , we need to make them  comparable before

com bining them. One way to do this is to standardize the var iables so that  each test  is

reported in standard deviat ion units, rather than in their or iginal scales. We can do this with

the scale  funct ion. 

> z <- scale(roster[,2:4])                       
> z 

        Math Science English 
 [1,]  0.013   1.078   0.587 
 [2,]  1.143   1.591   0.037 
 [3,] -1.026  -0.847  -0.697 
 [4,] -1.649  -0.590  -1.247 
 [5,] -0.068  -1.489  -0.330 
 [6,]  0.128  -0.205   1.137 
 [7,] -1.049  -0.847  -1.247 
 [8,]  1.432   1.078   1.504 
 [9,]  0.832   0.308   0.954
[10,]  0.243  -0.077  -0.697 

Step 3 . We can then get  a perform ance score for each student  by calculat ing the row

means using the mean funct ion and add it  to the roster using the cbind  funct ion. 

> score <- apply(z, 1, mean) 
> roster <- cbind(roster, score)                                            
> roster 
            Student Math Science English  score
1         John Davis  502      95      25  0.559 
2    Angela Williams  600      99      22  0.924 
3   Bullwinkle Moose  412      80      18 -0.857 
4        David Jones  358      82      15 -1.162 
5  Janice Markhammer  495      75      20 -0.629 
6     Cheryl Cushing  512      85      28  0.353 
7     Reuven Ytzrhak  410      80      15 -1.048 
8          Greg Knox  625      95      30  1.338 
9       Joel England  573      89      27  0.698 
10      Mary Rayburn  522      86      18 -0.177 

Step 4 .  The quant ile funct ion will give us the percent ile rank of each student 's

perform ance score. We see that  the cutoff for an A is .74, for a B is .44, and so on. 

> y <- quantile(roster$score, c(.8,.6,.4,.2))                                   
> y 

  80%   60%   40%   20%  
 0.74  0.44 -0.36 -0.89 
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Step 5 . Using logical operators, we can recode students' percent ile ranks into a new

categorical grade variable. This creates var iable grad e,  in the roste r  datafram e. 

> roster$grade[score >= y[1]] <- "A"                                    
> roster$grade[score < y[1] & score >= y[2]] <- "B"  
> roster$grade[score < y[2] & score >= y[3]] <- "C"  
> roster$grade[score < y[3] & score >= y[4]] <- "D"  
> roster$grade[score < y[4]] <- "F" 
> roster 

             Student Math Science English  score gr ade
1         John Davis  502      95      25  0.559     B 
2    Angela Williams  600      99      22  0.924     A 
3   Bullwinkle Moose  412      80      18 -0.857     D 
4        David Jones  358      82      15 -1.162     F 
5  Janice Markhammer  495      75      20 -0.629     D 
6     Cheryl Cushing  512      85      28  0.353     C 
7     Reuven Ytzrhak  410      80      15 -1.048     F 
8          Greg Knox  625      95      30  1.338     A 
9       Joel England  573      89      27  0.698     B 
10      Mary Rayburn  522      86      18 -0.177     C 

Step 6 . We will use the st r split funct ion to break student  names into first  name and

last  nam e at  the space character. Apply ing st rsplit  to a vector of st r ings, returns a list .  

> name <- strsplit((roster$Student), " ")                               
> name 

[[1]] 
[1] "John"  "Davis" 

[[2]] 
[1] "Angela"   "Williams" 

[[3]] 
[1] "Bullwinkle" "Moose"      

[[4]] 
[1] "David" "Jones" 

[[5]] 
[1] "Janice"     "Markhammer" 

[[6]] 
[1] "Cheryl"  "Cushing" 

[[7]] 
[1] "Reuven"  "Ytzrhak" 

[[8]] 
[1] "Greg" "Knox" 

[[9]] 
[1] "Joel"    "England" 
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[[10]] 
[1] "Mary"    "Rayburn" 

Step 7 .  We can use the sapply funct ion to take the first  elem ent  of each com ponent  and

put  it  in a firstname vector , and the second elem ent  of each component  and put  it  in a

lastname vector. We will use cbind to add them to the roster . Since we no longer need the

student  variable, we will drop it  (with the -1 in the roster index) . 

> Firstname <- sapply(name, "[", 1) 
> Lastname <- sapply(name, "[", 2)   
> roster <- cbind(firstname,lastname, roster[,-1])
> roster 

    Firstname   Lastname Math Science English  scor e grade
1        John      Davis  502      95      25  0.55 9     B 
2      Angela   Williams  600      99      22  0.92 4     A 
3  Bullwinkle      Moose  412      80      18 -0.85 7     D 
4       David      Jones  358      82      15 -1.16 2     F 
5      Janice Markhammer  495      75      20 -0.62 9     D 
6      Cheryl    Cushing  512      85      28  0.35 3     C 
7      Reuven    Ytzrhak  410      80      15 -1.04 8     F 
8        Greg       Knox  625      95      30  1.33 8     A 
9        Joel    England  573      89      27  0.69 8     B 
10       Mary    Rayburn  522      86      18 -0.17 7     C 

Step 8 . Finally , we can sort  the dataset  by first  and last  nam e using the order  funct ion. 

> roster[order(Lastname,Firstname),]                           

    Firstname   Lastname Math Science English score  grade 
6      Cheryl    Cushing  512      85      28  0.35      C
1        John      Davis  502      95      25  0.56      B 
9        Joel    England  573      89      27  0.70      B 
4       David      Jones  358      82      15 -1.16      F 
8        Greg       Knox  625      95      30  1.34      A 
5      Janice Markhammer  495      75      20 -0.63      D 
3  Bullwinkle      Moose  412      80      18 -0.86      D 
10       Mary    Rayburn  522      86      18 -0.18      C 
2      Angela   Williams  600      99      22  0.92      A 
7      Reuven    Ytzrhak  410      80      15 -1.05      F 

Voila!  Piece of cake!  

There are m any other ways to accom plish these tasks, but  this code helps capture the 

flavor of these funct ions. Now it  is t im e to look at  cont rol st ructures and user-writ ten

funct ions. 

4.4 Control flow 
I n the normal course of events, the statem ents in an R program  are executed sequent ially

from  the top of the program to the bot tom . However, there are t im es that  we will want  to 
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execute som e statem ents repet it ively, while only execut ing other statements if certain

condit ions are met . This is where cont rol- flow const ructs com e in. 

R has the standard cont rol st ructures you would expect  to see in a modern programm ing

language. First  we will go through the const ructs used for condit ional execut ion, followed by

the const ructs used for looping.  

I n the syntax examples throughout  this sect ion 

̇ statement is a  single R  statement or a compound  statement  (a group of R 
statements enclosed in curly braces { } and separated by semicolons). 

̇ cond is an expression that resolves to TRUE or FALSE  ＠
̇ expr  is a statement that evaluates to a number or character string 

̇ seq  is a sequence of numbers or character strings 

After we discuss cont rol- flow const ructs, we will look at  writ ing our funct ions. 

4.4.1 Repetition and looping 
Looping const ructs repet it ively execute a statement  or ser ies of statem ents unt il a condit ion

is not  t rue. These include the for  and while st ructures. 

FOR 

The for  loop executes a statem ent  repet it ively unt il a var iable's value is no longer contained

in the sequence seq .  The syntax is 

for (var in seq) statement 

I n following exam ple 

for (i in 1:10)  print("Hello") 

the word Hello is pr inted 10 t im es. 

WHILE 

A while loop executes a statem ent  repet it ively unt il the condit ion is no longer TRUE. The

syntax is 

while (cond) statement 

I n our second exam ple, the code 

  
i = 10 
while (i > 0) {print("Hello"); i <- i - 1} 

once again pr ints the word Hello 10 t im es. 
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Looping in R can be inefficient  and t im e consum ing when processing the rows or colum n

of large datasets. Whenever possible, it  is bet ter to use R's built - in numerical and character

funct ions in conjunct ion with the apply  fam ily of funct ions. 

4.4.2 Conditional execution 
I n condit ional execut ion, a statement  or statements is only executed if a specif ied condit ion

is met . These const ructs include if-els e, ifels e,  and switch .  

IF-ELSE 

The if-el se cont rol st ructure executes a statem ent  if a given condit ion is TRUE.

Opt ionally, a different  statem ent  is executed if the condit ion is FALSE.  The syntax is 

if (cond) statement 
if (cond) statement1 else statement2 

Here is an example. 

if (score > 90) grade = 'A" 

if (gender=="M") print("This is a man") else print( "This is a woman") 

I n the first  instance, the grade assignm ent  is only made if the value of score  is greater than 

90. I n the second instance, one of two statements is executed. I f gender is equal to "M" then

the first  statement  is executed. I f not , the second statem ent  is executed. 

IFELSE 

The ifelse const ruct  is a compact  version of the if-else const ruct  we have seen above. The

sytax is  

ifelse(cond, statement1, statement2) 

The first  statement  is executed if cond  is TRUE.  I f cond is FALSE,  the second statement  is

executed. Here is an example. 

ifelse (score > 50, outcome <-  "passed", outcome < - "failed") 

We use ifel se when we want  to take a binary act ion. 

SWITCH 

Switch chooses statements based on the value of the expression. The syntax is 

switch(expr, ...) 

where the . . .  are statements t ied to the possible outcome values of expr .  I t  is easiest

to understand how switc h works with by looking at  an example. An example is given in

list ing 4.8. 
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Listing 4.8 A switch example 

> feelings <- c("sad", "afraid")
> for (i in feelings) 
    print( 
      switch(i, 
         happy  = "I am glad you are happy", 
         afraid = "There is nothing to fear", 
         sad    = "Cheer up", 
         angry  = "Calm down now" 
      ) 
    ) 

[1] "Cheer up" 
[1] "There is nothing to fear" 

This is a silly example but  shows the main features. We will see how to use switch  a user-

writ ten funct ions in the next  sect ion.  

4.5 User-written functions 
One of R's great strengths is the user's ability to add functions. In fact, many of the 
functions in R are actually functions of existing functions. The structure of a function 
is given below. 

myfunction <- function(arg1, arg2, ... ){
statements 
return(object) 
} 

Objects in the funct ion are local to the funct ion. The object  returned can be any data type

from  scalar to list . Let 's take a look at  an exam ple.  

We would like to have a funct ion that  calculates the cent ral tendency and spread of data

objects. The funct ion should give us a choice between parametr ic (m ean and standard

deviat ion)  and nonparam etr ic (m edian and m edian absolute deviat ion)  stat ist ics. The results

should be returned as a nam ed list . Addit ionally , the user should have the choice of

automat ically pr int ing the results or not . Unless unwise specified, the funct ion's default

behavior  should be to calculate parametr ic stat ist ics and not  pr int  the results. One solut ion is

given in list ing 4.9. 

Listing 4.9 mystats: a user-written function for summary statistics 

mystats <- function(x, parametric=TRUE, print=FALSE ) { 
  if (parametric) { 
    center <- mean(x); spread <- sd(x)  
  } else { 
    center <- median(x); spread <- mad(x)  
  } 
  if (print & parametric) { 
    cat("Mean=", center, "\n", "SD=", spread, "\n")  
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  } else if (print & !parametric) { 
    cat("Median=", center, "\n", "MAD=", spread, "\ n") 
  } 
  result <- list(center=center, spread=spread) 
  return(result)
} 

Now that  we have our funct ion, let 's see it  in act ion ( list ing 4.10) . 

Listing 4.10 mystats in action  

# create some data (random sample from a normal dis tribution)
set.seed(1234) 
x <- rnorm(500)  
y <- mystats(x) 

# no output is produced 
# y$center is the mean (0.001838821)  
# y$spread is the standard deviation (1.034814) 

y <- mystats(x, parametric=FALSE, print=TRUE) 

Median = -0.02070734
MAD = 1.000984 

# y$center is the median (-0.02070734) 
# y$spread is the median absolute deviation (1.0009 84) 

Next , let 's look at  a user-wr it ten funct ion that  uses the switch const ruct  ( list ing 4.11) .

This funct ion gives the user a choice regarding the form at  of today's date. The long form at  is

specified as the default .  

Listing 4.11 mydate: a user-written function using switch 

mydate <- function(type="long") { 
  switch(type, 
    long =  format(Sys.time(), "%A %B %d %Y"),  
    short = format(Sys.time(), "%m-%d-%y"), 
    cat(type, "is not a recognized type\n")        1 
   )
} 

Here is the funct ion in act ion:  

> mydate("long") 

[1] "Saturday July 25 2009" 

> mydate("short") 

[1] "07-25-09" 

> mydate() 
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[1] "Saturday July 25 2009" 

> mydate("medium") 

medium is not a recognized type 

# 1 Note that  the cat funct ion is only executed if the entered type does not  match " long"

or "short " .  I t  is usually a good idea to have an expression that  catches user supplied

argum ents that  have been entered incorrect ly.  

There are several funct ions than can help add error t rapping and correct ion to your

funct ions. You can use the funct ion warn i ng  to generate a warning m essage, message  to

generate a diagnost ic m essage, and stop  to stop execut ion of the current  expression and

carry out  an error act ion. See each funct ion's online help for m ore details.  

After creat ing our own funct ions, we m ay want  to m ake them available in every session.

Appendix B describes how to custom ize the R environm ent  so that  our funct ions are loaded

autom at ically at  star t -up. We will look at  addit ional examples of user-writ ten funct ions in

chapters 5 and 7.  

We can accomplish a great  deal using the basic techniques provided in this sect ion.

However, if you would like to explore the subt let ies of funct ion writ ing, or  would like to write

professional level code that  you can dist r ibute to other, I  would recom m end two excellent

books:  

̇ Venables, W. N., & Ripley, B. D. (2000). S Programming. New York: Springer. ＠
̇ Chambers, J. M. (2008). Software for data analysis: Programming with R. New 

York: Springer. 

Together, they provide a level of detail,  and breadth of exam ples that  goes well beyond

what  is possible in the current  text . 

Now that  we have covered user-wr it ten funct ions, we will end this chapter with a

discussion of data aggregat ion and reshaping. 

4.6 Aggregation and restructuring 
R provides a num ber of powerful m ethods for aggregat ing and reshaping data. When we

aggregate data, we replace groups of observat ions with sum mary stat ist ics based on those

observat ions. When we reshape data, we alter the st ructure ( rows and colum ns)  determ ining

how the data is organized. This sect ion will describe a variety of m ethods for accom plishing

these tasks. 

I n the next  two sect ions, we will use the mt cars  datafram e that  is included with the base

installat ion of R. This dataset , ext racted from Motor Trend magazine (1974) , descr ibes the

design and perform ance character ist ics (number of cylinders, displacem ent , horsepower,

m pg, etc.)  for 34 autom obiles. To learn more about  the dataset , see help(mtcars ) .  
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4.6.1 Transpose 
The t ranspose ( reversing rows and colum ns)  is perhaps the sim plest  m ethod of reshaping a

dataset . Use the t  funct ion to t ranspose a m at r ix or a datafram e. I n the later case, row

nam es becom e variable (column)  names. An example is presented in list ing 4.12. 

Listing 4.12 Transposing a dataset 

> cars <- mtcars[1:5,1:4]                                     1
> cars 

                   mpg cyl disp  hp
Mazda RX4         21.0   6  160 110
Mazda RX4 Wag     21.0   6  160 110
Datsun 710        22.8   4  108  93
Hornet 4 Drive    21.4   6  258 110
Hornet Sportabout 18.7   8  360 175 

> t(cars) 

     Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Dr ive Hornet Sportabout
mpg         21            21       22.8           2 1.4              18.7
cyl          6             6        4.0            6.0               8.0
disp       160           160      108.0          25 8.0             360.0
hp         110           110       93.0          11 0.0             175.0 

# 1 We are using a subset  of the m tcars dataset  in order to conserve space on the page. We

will see a m ore flexible way of t ransposing data when we look at  the shape  package later in

this sect ion. 

4.6.2 Aggregating data 
I t  is relat ively easy to collapse data in R using one or more BY variables and a defined

funct ion. The format  is 

aggregate(x, by, FUN) 

where x  is the data object  to be collapsed, by  is a list  of var iables that  will be crossed to

form  the new observat ions, and FUN is the scalar funct ion used to calculate summary

stat ist ics that  will m ake up the new observat ion values. 

As an exam ple, we will aggregate the mt cars  data by num ber of cylinders and gears,

returning m eans on each of the num eric var iables (see list ing 4.13) . 

Listing 4.13 Aggregating data 

> options(digits=3) 
> attach(mtcars) 
> aggdata <-aggregate(mtcars, by=list(cyl,gear), FU N=mean, na.rm=TRUE)
> aggdata 

  Group.1 Group.2  mpg cyl disp  hp drat   wt qsec  vs   am gear carb     1
1       4       3 21.5   4  120  97 3.70 2.46 20.0 1.0 0.00    3 1.00 
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2       6       3 19.8   6  242 108 2.92 3.34 19.8 1.0 0.00    3 1.00 
3       8       3 15.1   8  358 194 3.12 4.10 17.1 0.0 0.00    3 3.08 
4       4       4 26.9   4  103  76 4.11 2.38 19.6 1.0 0.75    4 1.50 
5       6       4 19.8   6  164 116 3.91 3.09 17.7 0.5 0.50    4 4.00 
6       4       5 28.2   4  108 102 4.10 1.83 16.8 0.5 1.00    5 2.00 
7       6       5 19.7   6  145 175 3.62 2.77 15.5 0.0 1.00    5 6.00 
8       8       5 15.4   8  326 300 3.88 3.37 14.6 0.0 1.00    5 6.00 

# 1 I n these results, Group.1 represents the num ber of cylinders (4,6, or 8)  and Group.2

represents the number of gears (3, 4, or 5) . For example, cars with 4 cylinders and 3 gears

have get  a m ean of 21.5 m iles per gallon (m pg) . 

When using the aggregate funct ion, the by variables m ust  be in a list  (even if there is

only one) . The funct ion specified can be any built - in or user provided funct ion. This gives the

aggregate com m and a great  deal of power. But  when it  comes to power, nothing beats the 

reshap e package. 

4.6.3 The reshape package  
The reshape package is a t rem endously versat ile approach to both rest ructur ing and

aggregat ing datasets. Because of this versat ility, it  can be a bit  challenging to learn. We will

go through the process slowly and use a very small dataset  so that  it  is clear what  is

happening. Since reshap e is not  included in the standard installat ion of R, we will need to

install it  one t ime, using in stall.packages("reshape" ) .  

Basically , we will "m elt "  data so that  each row is a unique id-variable combinat ion. Then

we "cast "  the m elted data into any shape we desire. Dur ing the cast , we can aggregate the

data with any funct ion we wish.  

The dataset  we will be working with is in table 4.5. 

Table 4.5 The original dataset (mydata) 

ID Time X1 X2 

1 1 5 6 

1 2 3 5 

2 1 6 1 

2 2 2 4 

I n this dataset , the measurements are the values are the values in the last  two colum ns

(5, 6, 3, 5, 6, 1, 2, and 4) . Each m easurem ent  is uniquely ident if ied by a combinat ion of id

variables ( in this case I D, Tim e, and whether the m easurem ent  is on X1 or  X2) . For exam ple,

the measured value 5 in the first  row is uniquely ident if ied by knowing that  it  is from

observat ion ( I D)  1, at  Tim e 1, and on variable X1.  
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MELTING 

When we m elt  a dataset , we rest ructure it  into a format  where each m easured variable is in

it s own row, along with the id var iables needed to uniquely ident ify it .  I f we melt  the data

from  table x.x, using the following code 

Library(reshape) 
md <- melt(mydata, id=(c("id", "time")) 

we end up with the st ructure given in table 4.6. 

Table 4.6 The melted dataset 

ID Time Variable Value 

1 1 X1 5 

1 2 X1 3 

2 1 X1 6 

2 2 X1 2 

1 1 X2 6 

1 2 X2 5 

2 1 X2 1 

2 2 X2 4 

Note that  we have specified the var iables needed to uniquely ident ify each m easurement

( I D and Tim e)  and that  the variable indicat ing the measurem ent  var iable nam es (X1 or . X2)

is created for us autom at ically .  

Now that  we have our data in a melted form , we can recast  it  into any shape, using the

cast  funct ion.  

CAST 

The cast  funct ion star ts with m elted data and reshapes using the it  using a form ula that  we

provide, and an (opt ional)  funct ion used to aggregate the data. The form at  is 

newdata <- cast(md, formula, FUN) 

where md is the melted data, formul a describes the desired end result , and FUN is the

(opt ional)  aggregat ing funct ion. The form ula takes the form  

rowvar1 + rowvar2 + … ~ colvar1 + colvar2 + … 
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I n this formula, rowvar1 + rowvar2 + . . .  define the set  of crossed variables that  define

the rows, while colvar1 + colvar2 + ... define the set  of crossed variables that

define the colum ns. This is easiest  to see by looking at  the examples in f igure 4.1. 

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Time Variable Value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Variable Time1 Time 2

1 X1 5 3

1 X2 6 5

2 X2 6 2

2 X2 1 4

ID X1
Time1

X1
Time2 

X2
Time1

X2
Time2

1 5 3 6 5

2 6 2 1 4

ID X1 X2

1 4 5.5

2 4 2.5

Time X1 X2

1 5.5 3.5

2 2.5 4.5

ID Time1 Time2

1 5.5 4

2 3.5 3

With Aggregation Without Aggregation

cast(md, id+time~variable)

cast(md, id+variable~time)

cast(md, id~variable+time)

cast(md, id~variable, mean)

cast(md, time~variable, mean)

cast(md, id~time, mean)

mydata

md <- melt(mydata, id=c("id", "time"))

Reshaping a Dataset

(c)

(b)

(a)

(d)

(e)

(f)

 

Figure 4.1 Reshaping data with the melt and cast functions 

Since the form ulas on the r ight  side (d, e, and f)  do not  include a funct ion, the data is

sim ply reshaped. I n cont rast , the exam ples on the left  side (a, b, and c)  specify the mean as

an aggregat ing funct ion. Thus the data are not  only reshaped but  aggregated. For exam ple 

(a)  gives the m eans on X1 and X2 averaged over t im e for each observat ion. Example (b)

gives the m ean scores of X1 and X2 at  Tim e 1 and Tim e 2, averaged over observat ions. I n 

(c)  we have the m ean score for each observat ion at  Tim e 1 and Tim e 2, averaged over X1

and X2. As you can see, the flexibilit y of the reshap e funct ions is amazing. 
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4.7 Summary 
I n this chapter , we have reviewed dozens of mathemat ical, stat ist ical, and probability  

funct ions that  are useful for m anipulat ing data. We have seen how to apply these funct ions

to a wide range of data objects, including vectors, m at r ices, and datafram es. We have

learned to use cont rol- f low const ructs for looping and branching to execute some statem ents

repet it ively and execute other statements only when certain condit ions are m et . We then had

a chance to write our own funct ions and apply them to data. Finally , we have explored ways

of collapsing, aggregat ing, and rest ructur ing our data. 

Now that  we have gathered the tools we need to get  our data into shape (no pun

intended) , we are ready to bid Part  I  goodbye for now, and enter the excit ing world of data

analysis!  I n the next  chapter, we will begin to explore the many stat ist ical methods available

for turning data into understanding. 
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5 
Basic Statistics 

This Chapter covers:  

̇ Descriptive statistics ＠
̇ Frequency and contingency tables 

̇ Correlations and covariances 

̇ tͲtests 

̇ Nonparametric statistics 

I n previous chapters, we have seen how to im port  data into R and use a variety of funct ions

to organize and t ransform  the data into a useful form at . Our next  step will be to exam ine the

dist r ibut ion of each variable collected, followed by an explorat ion of the relat ionships among

the variables two at  a t im e. The goal of the present  chapter is to describe how to accom plish

these tasks in R. 

First  we will look at  m easures of locat ion and scale for quant itat ive variables. Then we will

look at  frequency and cont ingency tables (and associated Chi-square tests)  for categorical

variables. Next , we will exam ine the var ious forms of correlat ion coefficients available for

cont inuous and ordinal var iables. Finally, we will turn to a study of group differences v ia both

param etr ic ( t - tests)  and nonparam etr ic (Mann-Whitney U test , Kruskal Wallis test )  methods.

Although our focus is on numerical results, accom panying graphical m ethods for visualizing

these results will be descr ibed throughout . 

5.1 What you need to know 
I n this chapter, we apply R programm ing techniques to the stat ist ical methods typically

taught  in a first  year undergraduate stat ist ics course. I f these m ethodologies are unfam iliar, 
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two excellent  references are McCall (2000) , and Snedecor & Cochran (1989) . Alternat ively,

there are m any informat ive resources available online (e.g. Wikipedia)  for each of the topics

covered.  

Whenever possible, we have separated the discussion of stat ist ical methods and graphical

methods into separate chapters, with extensive cross- references between them . This allows

readers who are pr imar ily interested in R as a language for creat ing graphs (and who may

have a less extensive stat ist ical background)  to focus on these aspects of the software. For

example, this chapter begins with stat ist ical m ethods for sum marizing data num erically ,

while chapter 6 descr ibes ways of present ing this informat ion graphically . However, in som e

later chapters (e.g., chapter 7) , the stat ist ical and graphical m ethods are so intertwined that

a separat ion will not  be possible.  

5.2 Descriptive statistics 
I n this sect ion, we will look at  measures of cent ral tendency, var iability , and dist r ibut ion

shape for cont inuous variables. For illust rat ive purposes, we will use several of the variables

from  the with the Motor Trend Car Road Tests (mtcar s )  dataset  we first  saw in chapter  4. 

> mt <- mtcars[c("mpg", "hp", "wt", "am")]
> head(mt) 
                   mpg  hp   wt am
Mazda RX4         21.0 110 2.62  1
Mazda RX4 Wag     21.0 110 2.88  1
Datsun 710        22.8  93 2.32  1
Hornet 4 Drive    21.4 110 3.21  0
Hornet Sportabout 18.7 175 3.44  0
Valiant           18.1 105 3.46  0 

I n this dataset , m iles per gallon (mpg) , horse power (hp) , and weight  (wt )  are

quant itat ive var iables, and t ransm ission (am)  is a dichotomous variable coded 0= automat ic

and 1= manual. We will use the am var iable in sect ion 5.2.2, when we look at  generat ing

descr ipt ive stat ist ics for subgroups. 

5.2.1 A menagerie of methods  
When it  com es to calculat ing descr ipt ive stat ist ics, R has an embarrassm ent  of r iches. Let 's

star t  with funct ions that  are included in the base installat ion. Then we will look at  extensions

that  are available through the use of user-cont r ibuted packages. 

 I n the base installat ion, we can use the summary  funct ion to obtain descript ive stat ist ics.

An exam ple is presented in list ing 5.1.  

Listing 5.1 Descriptive statistics via summary 

> summary(mt) 
      mpg             hp              wt             am        
 Min.   :10.4   Min.   : 52.0   Min.   :1.51   Min.    :0.000   
 1st Qu.:15.4   1st Qu.: 96.5   1st Qu.:2.58   1st Qu.:0.000   
 Median :19.2   Median :123.0   Median :3.33   Medi an :0.000   
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 Mean   :20.1   Mean   :146.7   Mean   :3.22   Mean    :0.406   
 3rd Qu.:22.8   3rd Qu.:180.0   3rd Qu.:3.61   3rd Qu.:1.000   
 Max.   :33.9   Max.   :335.0   Max.   :5.42   Max.    :1.000     

The summary  funct ion provides the m inim um , maximum , quart iles, and the m ean. We

can use the sapply  or apply  funct ions from  chapter 4 to provide any  descr ipt ive stat ist ics

we choose. For the sapply funct ion, the form at  is 

sapply(x, FUN) 

where x  is our dataframe (or  matr ix)  and FUN is an arbit rary funct ion. Typical funct ions that

we can plug in here are mean , sd ,  va r , min ,  max,  med, range ,  and quanti l e.  The

funct ion fiv enum returns Tukey's five num ber sum m ary (m inim um , lower-hinge, m edian,

upper-hinge, and m axim um ).  

Surpr isingly, the base installat ion does not  provide funct ions for skew and kurtosis, but

we can add our own. An example that  provides several descr ipt ive stat ist ics, including skew

and kurtosis is given in list ing 5.2. 

Listing 5.2 Descriptive statistics via sapply 

> skew <- function(x)(sum((x-mean(x))**3/sqrt(var(x ))**3)/length(x)) 
> kurtosis <- function(x)(sum((x-mean(x))**4/var(x) **2)/length(x) - 3)
> descript <- function(x)(c(mean=mean(x), stdev=sd( x), [CA] 
  skew=skew(x), kurtosis=kurtosis(x))
> sapply(mt, descript) 

            mpg      hp      wt     am 
mean     20.091 146.688  3.2172  0.406 
stdev     6.027  68.563  0.9785  0.499 
skew      0.611   0.726  0.4231  0.364 
kurtosis -0.373  -0.136 -0.0227 -1.925               1 

# 1 For cars in this sample, the m ean mpg is 20.1, with a standard deviat ion of 6.0. The

dist r ibut ion is skewed to the r ight  (+ 0.61)  and somewhat  f lat ter than a normal dist r ibut ion ( -

0.37) . This will be most  evident  when we graph the data in chapter 6. 

EXTENSIONS 

Several user-cont r ibuted packages offer funct ions for descr ipt ive stat ist ics, including 

Hmisc , pastec s ,  and psych .  Since these packages are not  included in the base

dist r ibut ion, you will need to install them  on first  use (see sect ion 1.4) . 

The descri be funct ion in the Hmisc  package returns the num ber of variables and

observat ions, number of m issing and unique values, mean, quant iles, and five highest  and

lowest  values. An exam ple is provided in list ing 5.3. 

Listing 5.3 Descriptive statistics via describe (Hmisc package) 

> library(Hmisc)
> describe(mt) 
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mt  

 4  Variables      32  Observations
--------------------------------------------------- ----------------------- 
mpg  
 n missing  unique   Mean    .05    .10    .25    . 50    .75    .90   .95
32       0      25  20.09  12.00  14.34  15.43  19. 20  22.80  30.09 31.30 
  
lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27 .3 30.4 32.4 33.9 
--------------------------------------------------- ----------------------- 
hp  
 n missing  unique   Mean    .05    .10    .25    . 50    .75    .90    .95
32       0      22  146.7  63.65  66.00  96.50 123. 00 180.00 243.50 253.55  

lowest :  52  62  65  66  91, highest: 215 230 245 264 335 
--------------------------------------------------- ----------------------- 
wt  
 n missing  unique   Mean    .05    .10    .25    . 50    .75    .90   .95
32       0      29  3.217  1.736  1.956  2.581  3.3 25  3.610  4.048 5.293  

lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3. 845 4.070 5.250 5.345 
5.424 
--------------------------------------------------- ----------------------- 
am  
 n missing  unique     Sum    Mean  
32       0       2      13  0.4062 
--------------------------------------------------- ----------------------- 

The pastec s  package offers a funct ion nam ed stat.d esc  that  provides a wide range of

descr ipt ive stat ist ics. The format  is 

stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0 .95) 

I f basic=TRU E ( the default ) , the number of values, null values, m issing values,

m inim um , m axim um , range and sum  are provided. I f desc=TRUE (also the default ) , t he

m edian, m ean, standard error of the m ean, 95%  confidence interval for the m ean, var iance,

standard deviat ion, and coefficient  of var iat ion are also provided. Finally, if norm=TRUE (not

the default ) , normal dist r ibut ion stat ist ics are returned, including skewness and kurtosis (and

their  stat ist ical signif icance) , and the Shapiro-Wilks test  of normality. The p value opt ion is

used to calculate the confidence interval for the m ean ( .95 by default ) . An example is given

in list ing 5.4. 

Listing 5.4 Descriptive statistics via stat.desc (pastecs package) 

> library(pastecs)
> stat.desc(mt) 
                mpg       hp      wt      am
nbr.val       32.00   32.000  32.000 32.0000
nbr.null       0.00    0.000   0.000 19.0000
nbr.na         0.00    0.000   0.000  0.0000
min           10.40   52.000   1.513  0.0000 
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max           33.90  335.000   5.424  1.0000
range         23.50  283.000   3.911  1.0000
sum          642.90 4694.000 102.952 13.0000
median        19.20  123.000   3.325  0.0000
mean          20.09  146.688   3.217  0.4062
SE.mean        1.07   12.120   0.173  0.0882
CI.mean.0.95   2.17   24.720   0.353  0.1799
var           36.32 4700.867   0.957  0.2490
std.dev        6.03   68.563   0.978  0.4990
coef.var       0.30    0.467   0.304  1.2283 

As if this isn't  enough, the psych  package also has a funct ion called describ e that

provides the num ber of non-m issing observat ions, m ean, standard deviat ion, m edian,

t r imm ed m ean, m edian absolute deviat ion, m inimum, maxim um , range, skew, kurtosis, and

standard error of the m ean. An example is given in list ing 5.5. 

Listing 5.5 Descriptive statistics via describe (psych package) 

> library(psych) 

Attaching package: 'psych' 

        The following object(s) are masked from pac kage:Hmisc : 
         describe  

> describe(mt) 

     n   mean    sd median trimmed   mad   min    m ax  range skew kurtosis
mpg 32  20.09  6.03  19.20   19.70  5.41 10.40  33. 90  23.50 0.61    -0.37
hp  32 146.69 68.56 123.00  141.19 77.10 52.00 335. 00 283.00 0.73    -0.14
wt  32   3.22  0.98   3.33    3.15  0.77  1.51   5. 42   3.91 0.42    -0.02
am  32   0.41  0.50   0.00    0.38  0.00  0.00   1. 00   1.00 0.36    -1.92 
       se
mpg  1.07
hp  12.12
wt   0.17
am   0.09 

I  told you that  it  was an em barrassm ent of r iches but  you didn't  believe m e. 

A NOTE ON MASKING 

I n the exam ples above, the packages psych and Hm isc both provided funct ions nam ed 

describ e.  How does R know which one to use? Sim ply put , the package last  loaded

takes precedence, as seen in list ing 5.5. Here, psyc h is loaded after Hmisc ,  and a

message is pr inted indicat ing that  the descr ibe funct ion in Hmisc  is m asked by the

funct ion in ps ych .  When you type in the descr ibe funct ion and R searches for it ,  it  comes

to the psych package first  and executes it .  I f we wanted the Hmisc  version instead, we

could have typed Hmisc::describe(mt ) .  The funct ion is st ill there. We just  have to

give R m ore inform at ion to f ind it .  
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Now that  we know how to generate descr ipt ive stat ist ics for the data as a whole, let 's

review how to obtain stat ist ics by subgroups of the data. 

5.2.2 Descriptive statistics by group 
When com par ing groups of individuals or observat ions, our focus is usually on the descr ipt ive

stat ist ics of each group, rather than the total sample. Again, there are several ways to

accomplish in R. 

I n chapter 4, we discussed m ethods of aggregat ing data. We could use the aggre gate

funct ion (sect ion 4.5.2)  to obtain descr ipt ive stat ist ics by group ( list ing 5.6) . 

Listing 5.6 Descriptive statistics by group via aggregate 

> aggregate(mt,by=list(mt$am),mean) 
  Group.1  mpg  hp   wt am
1       0 17.1 160 3.77  0
2       1 24.4 127 2.41  1 

> aggregate(mt, by=list(mt$am),sd) 
  Group.1  mpg   hp    wt am
1       0 3.83 53.9 0.777  0
2       1 6.17 84.1 0.617  0 

Unfortunately, aggregat e only allows us to use single value funct ions such as m ean,

standard deviat ion, and the like in each call. I t  will not  return several stat ist ics at  once. For

that  task, we can use the by  funct ion. The format  is 

by(data, INDICES, FUN) 

where data is a dataframe or mat r ix , I NDI CES is a factor or list  of factors that  define the

groups, and FUN is an arbit rary funct ion. An example is given in list ing 5.6. 

Listing 5.6 Descriptive statistics by group via by 

> by(mt,mt$am,function(x)(c(mean=mean(x),sd=sd(x))) ) 

mt$am: 0 
mean.mpg  mean.hp  mean.wt  mean.am   sd.mpg    sd. hp    sd.wt    sd.am  
  17.147  160.263    3.769    0.000    3.834   53.9 08    0.777    0.000 
--------------------------------------------------- ---------  
mt$am: 1 
mean.mpg  mean.hp  mean.wt  mean.am   sd.mpg    sd. hp    sd.wt    sd.am  
  24.392  126.846    2.411    1.000    6.167   84.0 62    0.617    0.000  

EXTENSIONS 

The doBy  package and the psyc  package also provide funct ions for descript ive stat ist ics

by group. Again, they are not  dist r ibuted in the base installat ion, and must  be installed

before first  use. The summaryBy funct ion in the doBy  package has the form at  
  
summaryBy(formula, data=dataframe, FUN=) 

Download from Wow! eBook <www.wowebook.com>



© Manning Publicat ions Co. Please post  com ments or correct ions to the Author Online forum :  

The form ula takes the form   

var1+var2+var3+...+varN~groupvar1+groupvar2+…+group varN 

where variables on the left  of the ~  are the num eric variables to be analyze and variables on

the r ight  are categor ical grouping var iables. An exam ple using the descript  funct ion we

created in sect ion 5.2.1 is given in list ing 5.7. 

Listing 5.7 Summary statistics by group via summaryBy (doBy package) 

> library(doBy) 
> summaryBy(mpg+hp+wt~am,data=mt,FUN=descript) 

  am mpg.mean mpg.stdev mpg.skew mpg.kurtosis hp.me an hp.stdev hp.skew
1  0     17.1      3.83   0.0140       -0.803     1 60     53.9 -0.0142
2  1     24.4      6.17   0.0526       -1.455     1 27     84.1  1.3599 
  hp.kurtosis wt.mean wt.stdev wt.skew wt.kurtosis
1      -1.210    3.77    0.777   0.976       0.142
2       0.563    2.41    0.617   0.210      -1.174 

The descri be.b y  funct ion provided by the psych package provides the sam e

descr ipt ive stat ist ics as describ e, st rat ified by one or more grouping variables (see list ing 

5.8) .  

Listing 5.8 Summary statistics by group via describe.by (psych package) 

> library(psych) 
> describe.by(mt, mt$am)
$`0` 
     n   mean    sd median trimmed   mad   min    m ax  range  skew kurtosis
mpg 19  17.15  3.83  17.30   17.12  3.11 10.40  24. 40  14.00  0.01    -0.80
hp  19 160.26 53.91 175.00  161.06 77.10 62.00 245. 00 183.00 -0.01    -1.21
wt  19   3.77  0.78   3.52    3.75  0.45  2.46   5. 42   2.96  0.98     0.14
am  19   0.00  0.00   0.00    0.00  0.00  0.00   0. 00   0.00   NaN      NaN 
       se
mpg  0.88
hp  12.37
wt   0.18
am   0.00 

$`1` 
     n   mean    sd median trimmed   mad   min    m ax  range skew kurtosis
mpg 13  24.39  6.17  22.80   24.38  6.67 15.00  33. 90  18.90 0.05    -1.46
hp  13 126.85 84.06 109.00  114.73 63.75 52.00 335. 00 283.00 1.36     0.56
wt  13   2.41  0.62   2.32    2.39  0.68  1.51   3. 57   2.06 0.21    -1.17
am  13   1.00  0.00   1.00    1.00  0.00  1.00   1. 00   0.00  NaN      NaN 
       se
mpg  1.71
hp  23.31
wt   0.17
am   0.00 
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Unlike the previous example, the descri be.b y  funct ion does not  allow us to specify an

arbit rary funct ion, so it  is less generally applicable. I f there is m ore than one grouping

variable, we can write them  as list(groupvar1, groupvar2, … , gro upvarN ) .  

However, this will only work if there are no em pty cells when the grouping var iables are

crossed. 

5.2.3 Visualizing results 
Num erical sum maries of a dist r ibut ion's character ist ics are im portant , but  are no subst itute

for a visual representat ion. For quant itat ive variables we have histogram s (sect ion 6.2) ,

density and dot  plots (sect ion 11.1) , and boxplots (sect ion 11.2) . They can provide insights

that  are easily m issed by reliance on a sm all set  of descr ipt ive stat ist ics. 

The funct ions we have considered so far provide summaries of quant itat ive var iables. The

funct ions in the next  sect ion allow us to examine the dist r ibut ions of categorical variables. 

5.3 Frequency and contingency tables 
I n this sect ion we look at  frequency and cont ingency tables from  categorical var iables, along

with tests of independence, m easures of associat ion, and m ethods for graphically displaying

results. We will be using funct ions in the basic installat ion, along with funct ions from  the vcd  

and gmodel s  package. I n the following exam ples, assum e that  A, B, and C represent

categorical var iables. 

The first  exam ple comes from  the Arthriti s  dataset  included with the vcd  package.

The data are from Kock & Edward (1988)  and represents a double-blind clinical t r ial of new

t reatm ents for rheum atoid arthr it is. Here are the first  few observat ions:  

> library(vcd) 
> head(Arthritis) 

  ID Treatment  Sex Age Improved
1 57   Treated Male  27     Some
2 46   Treated Male  29     None
3 77   Treated Male  30     None
4 17   Treated Male  32   Marked
5 36   Treated Male  46   Marked
6 23   Treated Male  58   Marked 

Treatment  (Placebo, Treated) , Sex (Male, Female) , and I m proved (None, Some, Marked) ,

are all categorical factors. I n the next  sect ion, we will look at  creat ing frequency and

cont ingency tables (cross-classificat ions)  for the data. 

5.3.1 Generating frequency tables 
R provides several methods for creating frequency and contingency tables. We will 
look at simple frequencies, followed by twoͲway contingency tables, and multiͲway 
contingency tables.   
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ONE WAY TABLES 

We can generate sim ple frequency counts using the table  funct ion. For example 

>  at tach(Arthr it is)

>  table( I mproved)  

I m proved 

  None   Som e Marked  

    42     14     28 

TWO WAY TABLES 

For two-way tables, the form at  for the tab l e funct ion is given below.  

at tach(mydata)  
mytable <- table(A,B) # A will be rows, B will be c olumns 
mytable               # print table  

Alternat ively, the xtabs  funct ion allows us to create a cont ingency table using form ula style

input . The format  is 

mytable <- xtabs(~A+B, data=mydata) 

I n general, the variables to be cross classified appear on the r ight  of the form ula ( i.e., to

the r ight  of the ~ )  separated by +  signs. I f a var iable is included on the left  side of the

formula, it  is assumed to be a vector of frequencies (useful if the data have already been

tabulated) .  

We can generate tables of proport ions using the prop . tabl e funct ion, and m arginal

frequencies using margin.tabl e.  The formats are given below. 

margin.table(mytable, 1) # A frequencies (summed ov er B) 
margin.table(mytable, 2) # B frequencies (summed ov er A) 

prop.table(mytable)    # cell proportions
prop.table(mytable, 1) # row proportions 
prop.table(mytable, 2) # column proportion  

As you can see, the first  step is to create a table using the table   or xtabs  funct ion. We

can then m anipulate it  using the other funct ions. Here is an example ( list ing 5.9) . 

Listing 5.9 Two-way contingency table 

> attach(Arthritis) 
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> mytable <- table(Treatment,Improved)
> mytable 

         Improved                      A
Treatment None Some Marked             A 
  Placebo   29    7      7             A 
  Treated   13    7     21             A 

> margin.table(mytable,1) 

Treatment                              B
Placebo Treated                        B 
     43      41                        B 

> margin.table(mytable,2) 

Improved                               C 
  None   Some Marked                   C 
    42     14     28                   C  

> prop.table(mytable) 

         Improved                      D
Treatment   None   Some Marked         D 
  Placebo 0.3452 0.0833 0.0833         D 
  Treated 0.1548 0.0833 0.2500         D 

> prop.table(mytable,1) 

         Improved                      E
Treatment  None  Some Marked           E 
  Placebo 0.674 0.163  0.163           E 
  Treated 0.317 0.171  0.512           E 

> prop.table(mytable,2) 

         Improved                      F
Treatment  None  Some Marked           F 
  Placebo 0.690 0.500  0.250           F 
  Treated 0.310 0.500  0.750           F 

A cell frequencies 
B row marginals 
C column marginals 
D cell proportions 
E row proportions 
F column proportions 

Looking at  the row proport ions, we can see that  16%  of pat ients receiving the placebo

had som e im provem ent . Looking at  the colum n proport ions, we see that  75%  of those

pat ients with m arked im provem ent  were in the Treated group. 

THE TABLE FUNCTION IGNORES MISSING VALUES 
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To include NA as a valid category in the frequency counts, include the table opt ion

exclude=NUL L if the var iable is a vector. I f the var iable is a factor, we have to replace

it  with a new factor v ia newf actor <- factor(oldfactor, exclude=NULL ) .  

A third m ethod for creat ing two-way tables is the Cr ossTabl e funct ion in the gmodel s

package. The CrossTabl e funct ion produces two-way tables modeled after PROC FREQ in 

SAS or CROSSTABS in SPSS. An example is given in list ing 5.10. 

Listing 5.10 Two-way table using CrossTable 

> library(gmodels) 
> CrossTable(Arthritis$Treatment, Arthritis$Improve d) 

  
   Cell Contents
|-------------------------| 
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------| 

  
Total Observations in Table:  84  

  
                    | Arthritis$Improved  
Arthritis$Treatment |      None |      Some |    Ma rked | Row Total | 
--------------------|-----------|-----------|------ -----|-----------| 
            Placebo |        29 |         7 |         7 |        43 |  
                    |     2.616 |     0.004 |     3 .752 |           |  
                    |     0.674 |     0.163 |     0 .163 |     0.512 |  
                    |     0.690 |     0.500 |     0 .250 |           |  
                    |     0.345 |     0.083 |     0 .083 |           | 
--------------------|-----------|-----------|------ -----|-----------| 
            Treated |        13 |         7 |        21 |        41 |  
                    |     2.744 |     0.004 |     3 .935 |           |  
                    |     0.317 |     0.171 |     0 .512 |     0.488 |  
                    |     0.310 |     0.500 |     0 .750 |           |  
                    |     0.155 |     0.083 |     0 .250 |           | 
--------------------|-----------|-----------|------ -----|-----------| 
       Column Total |        42 |        14 |        28 |        84 |  
                    |     0.500 |     0.167 |     0 .333 |           | 
--------------------|-----------|-----------|------ -----|-----------| 

The CrossTa bl e funct ion has opt ions to report  percentages ( row, colum n, cell) , specify

decim al places, produce Chi-square, Fisher, and McNem ar tests of independence, report  

expected and residual values (Pearson, standardized, adjusted standardized) , include 

m issing values as valid, annotate with row and colum n t it les, and form at  as SAS or SPSS 

style output !  See help(C r ossTable) for details. I f we have m ore than two categorical

variables, we will be interested in mult idim ensional tables, which are considered next . 
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MULTIDIMENSIONAL TABLES 

Both the tab l e and xtabs  funct ion can be used generate mult idim ensional tables based

on three or m ore categor ical var iables. The margin . tabl e and prop.tabl e funct ions

extend naturally to more than two dimensions. The fta ble  funct ion can be used to pr int

mult idim ensional tables in a com pact  and at t ract ive m anner. An exam ple is given in list ing 

5.11. 

Listing 5.11 Three-way contingency table 

> attach(Arthritis) 
> mytable <- table(Treatment, Improved, Sex)           1
> ftable(mytable)                                      2 

                   Sex Female Male
Treatment Improved                
Placebo   None             19   10 
          Some              7    0 
          Marked            6    1
Treated   None              6    7 
          Some              5    2 
          Marked           16    5 

> margin.table(mytable, 1)                             3 

Treatment
Placebo Treated  
     43      41  

> margin.table(mytable, 2)                             4
Improved 
  None   Some Marked  
    42     14     28  

> margin.table(mytable, c(1:2))                        5 
         Improved
Treatment None Some Marked 
  Placebo   29    7      7 
  Treated   13    7     21 

> ftable(prop.table(mytable, c(1,2)))                  6          
                   Sex Female  Male
Treatment Improved                 
Placebo   None          0.655 0.345 
          Some          1.000 0.000 
          Marked        0.857 0.143
Treated   None          0.462 0.538 
          Some          0.714 0.286 
          Marked        0.762 0.238 

We could have also writ ten # 1  as  

mytable <- xtabs(~Treatment+Improved+Sex,data=Arthritis)  

and obtained the sam e results. The code in # 2 produces cell frequencies for the 3-way 

classificat ion, while # 3 and # 4 produce the m arginal frequencies for Treatment  and 
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I m proved respect ively. The code in # 5 produces the m arginal frequencies for the Treatm ent  

x I m proved classificat ion, sum m ed over Sex. The proport ion of m en and wom en for  each 

Treatment  x I mproved combinat ion is provided in # 6. I n general, the proport ions will add to 

one over the indices not  included in the pr op.tabl e call ( the 3rd index or Sex in this case) .

While cont ingency tables tell us the frequency or proport ions of cases with each 

combinat ion of the variables that  comprise the table, our interests usually extend to whether 

the var iables in the table are related or independent . This is the subject  of the next  sect ion. 

5.3.2 Tests of independence 
R provides several m ethods of test ing the independence of the categorical var iables. The 

three tests described in this sect ion are the Chi-square test  of independence, the Fisher 

exact  test , and the Mantel-Haenszel test . A fourth approach, log- linear m odels, will be 

discussed in chapter 14. 

CHI-SQUARE TEST OF INDEPENDENCE 

The funct ion chisquare.test can be applied to a two-way table in order to produce a Chi-

square test  of independence of the row and column variables. An example is provided in 

list ing 5.12. 

Listing 5.12 Chi-square test of independence 

> mytable <- table(Treatment, Improved)
> chisq.test(mytable) 

        Pearson's Chi-squared test 

data:  mytable  
X-squared = 13.1, df = 2, p-value = 0.001463        1 

> mytable <- table(Improved, Sex)
> chisq.test(mytable) 

        Pearson's Chi-squared test 

data:  mytable  
X-squared = 4.84, df = 2, p-value = 0.0889           2 

Warning message: 
In chisq.test(mytable) : Chi-squared approximation may be incorrect 

From the results above, there appears to be a relat ionship between t reatm ent  received and 

level of improvement  (p< .01)  # 1, but  not  between pat ient  sex and improvement  (p> .05)  

# 2.  

FISHER EXACT TEST 

We can produce a Fisher's exact  test  v ia the fisher . tes t  funct ion. Fisher 's exact  test

evaluates the null hypothesis of independence of rows and colum ns in a cont ingency table 

with fixed m arginals. The format  is fish er.test(mytable ) ,  where mytable is a two-

way table. An exam ple is given in list ing 5.13. 
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Listing 5.13 Fisher exact test 

> mytable <- table(Treatment,Improved)
> fisher.test(mytable) 

        Fisher's Exact Test for Count Data 

data:  mytable  
p-value = 0.001393 
alternative hypothesis: two.sided 

I n cont rast  to many stat ist ical packages, the fisher. t es t  funct ion can be applied to any

rxc table, not  j ust  a 2x2 table. 

COCHRAN-MANTEL-HAENSZEL TEST 

The mantelh aen.tes t  funct ion provides a Cochran-Mantel-Haenszel chi-squared test  of

the null hypothesis that  two nom inal var iables are condit ionally independent  in each st ratum  

of a third variable. List ing 5.14 tests the hypothesis that  Treatment  and I mproved is 

independent  within each level Sex. The test  assum es that  there is no three-way (Treatment  

x I m proved x Sex)  interact ion. 

Listing 5.13 Cochran-Mantel-Haenszel test 

> mytable <- table(Treatment, Improved, Sex)
> mantelhaen.test(mytable) 

        Cochran-Mantel-Haenszel test 

data:  mytable  
Cochran-Mantel-Haenszel M^2 = 14.6, df = 2, p-value  = 0.0006647 

The results suggest  that  the t reatm ent  received and the im provem ent  reported is not  

independent  within each level of sex ( i.e., t reated indiv iduals improved more than those 

receiving placebos when cont rolling for sex) . 

5.3.3 Measures of association 
The significance tests in the previous sect ion evaluate whether or not  there is suff icient  

evidence to reject  a null hypothesis of independence between var iables. I f we can reject  the 

null hypothesis, our interests turn naturally to m easures of associat ion in order to gauge the 

st rength of the relat ionships present . The assocstats funct ion in the vcd package can be

used to calculate the phi coefficient , cont ingency coefficient , and Cram er's V for a two-way 

table. An exam ple of assoc stat s  is given in list ing 5.14. 

Listing 5.14 Measures of association for a two-way table 

> library(vcd) 
> attach(Arthritis) 
> mytable <- table(Treatment, Improved)
> assocstats(mytable) 
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                    X^2 df  P(> X^2)
Likelihood Ratio 13.530  2 0.0011536
Pearson          13.055  2 0.0014626 

Phi-Coefficient   : 0.394 
Contingency Coeff.: 0.367 
Cramer's V        : 0.394 

I n general, larger magnitudes indicated st ronger associat ions. The vcd  package also

provides a kappa  funct ion that  can calculate Cohen's kappa and weighted kappa for a

confusion m at r ix ( for  example, the degree of agreem ent  between two judges classify ing a 

set  of objects into categor ies) . 

5.3.4 Visualizing results 
R has m echanism s for visually exploring the relat ionships among categorical variables that  

go well beyond those found in m ost  other stat ist ical plat forms. We typically use bar charts to 

visualize frequencies in one dim ension (sect ion 6.3) . The vcd  package has excellent

funct ions for visualizing relat ionships am ong categor ical var iables in mult i-dimensional 

datasets using m osaic and associat ion plots (sect ion 15.6) . Finally , correspondence analysis 

funct ions in the ca  package allow us to visually explore relat ionships between rows and

colum ns in cont ingency tables (sect ion 14.4)  using var ious geom etr ic representat ions. Feel 

free to jum p to those sect ions at  any t im e!  

5.3.5 Converting tables to flat files 
We will end this sect ion with a topic that  is rarely covered in books on R, but  that  can be 

very useful. What  happens if we have a table, but  need the or iginal raw data file? For 

exam ple, we have 

                   Sex Female Male
Treatment Improved                
Placebo   None             19   10 
          Some              7    0 
          Marked            6    1
Treated   None              6    7 
          Some              5    2 
          Marked           16    5 

but  we need:  

  ID Treatment  Sex Age Improved
1 57   Treated Male  27     Some
2 46   Treated Male  29     None
3 77   Treated Male  30     None
4 17   Treated Male  32   Marked
5 36   Treated Male  46   Marked
6 23   Treated Male  58   Marked
[78 more rows go here] 
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There are many stat ist ical funct ions in R that  expect  the later format , rather than the 

form er. We can use the funct ion provided list ing 5.15 to convert  an R table back into a flat  

data file. 

Listing 5.15 Converting a table into a flat file via table2flat 

table2flat <- function(mytable) { 
  df <- as.data.frame(mytable) 
  rows  <- dim(df)[1] 
  cols  <- dim(df)[2] 
  x <- NULL 
  for (i in 1:rows){ 
    for (j in 1:df$Freq[i]){ 
      row <- df[i,c(1:(cols-1))] 
      x <- rbind(x,row) 
    } 
  } 
  row.names(x)<-c(1:dim(x)[1]) 
  return(x)
} 

This funct ion takes an R table (with any number of dim ensions)  and returns a datafram e in 

flat  file format . We can also use this funct ion to input  tables from  published studies. For 

example, let 's say that  we cam e across table 5.1 in a journal and we wanted to save it  into R 

as a flat  f ile. 

Table 5.1 Contingency table for treatment vs. improvement from the Arthritis dataset

Treatment Improved 

None Some Marked 

Placebo 29 7 7 

Treated 13 17 21 

List ing 5.16 describes a method that  would do the t r ick. 

Listing 5.16 Using the table2flat function from published data 

> treatment <- rep(c("Placebo", "Treated"), 3) 
> improved <- rep(c("None","Some","Marked"), each=2 ) 
> Freq <- c(29,13,7,7,7,21) 
> mytable <- as.data.frame(cbind(treatment,improved , Freq))
> mydata <- table2flat(mytable) 
> head(mydata) 

  treatment improved
1   Placebo     None 
2   Placebo     None 
3   Placebo     None 
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4   Treated     None 
5   Placebo     Some 
6   Placebo     Some
[12 more rows go here] 

This will end our discussion of cont ingency tables, unt il we take up m ore advanced topics 

in chapter 14. Next , let 's look at  var ious types of correlat ion coefficients. 

 5.4 Correlations 
Correlat ion coefficients are used to explore relat ionships among quant itat ive variables. I n 

this sect ion we will look at  a var iety of correlat ion coefficients, as well as tests of 

signif icance. We will use is the state. x77  dataset  available in the base R installat ion. I t

provides data on the populat ion, incom e, illiteracy rate, life expectancy, m urder rate, and 

high school graduat ion rate for the 50 US states in 1977. There are also temperature and 

land area m easures, but  we'll drop them to save space. Use help(s t ate.x77) to learn

more about  the file. I n addit ion to the base installat ion, we will be using the psyc h and

ggm packages. 

5.4.1 Type of correlations 
R can produce a variety of correlat ion coefficients, including Pearson, Spearman, Kendall,  

part ial, polychoric, and polyserial. Let 's look at  each in turn. 

PEARSON, SPEARMAN, AND KENDALL CORRELATIONS 

The Pearson product  m om ent  correlat ion assesses the degree of linear relat ionship between 

two quant itat ive variables. Spearman's Rank Order correlat ion coefficient  assesses the 

degree of relat ionship between two rank ordered variables. Kendall's Tau is also a 

nonparam etr ic m easure of rank correlat ion.  

The cor  funct ion produces these correlat ion coefficients, while the cov  funct ion provides

covariances. There are m any opt ions, but  a sim plified form at  for producing correlat ions is 

cor(x, use= , method= )  

where the opt ions are descr ibed in table 5.2. 

Table 5.2 cor/cov options

Option Description 

x Matrix or dataframe 

use Specifies the handling of missing data. The options are all.ob s  (assumes no

missing data, missing data will produce an error), everythin g (any correlation

involving a case with missing values will be set to missing), compl ete.ob s  

(listwise deletion), and pairwis e.complete.ob s  (pairwise deletion)  

method Specifies the type of correlation. The options are pearso n, spearman ,  or 
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kendall . 

The default  opt ions are us e="everything "  and meth od="pearson " .  An example is 

given in list ing 5.17. 

Listing 5.17 Covariances and Correlations 

> states<- state.x77[,1:6]
> cov(states) 

           Population Income Illiteracy Life Exp  M urder  HS Grad
Population   19931684 571230    292.868 -407.842 56 63.52 -3551.51
Income         571230 377573   -163.702  280.663 -5 21.89  3076.77
Illiteracy        293   -164      0.372   -0.482    1.58    -3.24
Life Exp         -408    281     -0.482    1.802   -3.87     6.31
Murder           5664   -522      1.582   -3.869   13.63   -14.55
HS Grad         -3552   3077     -3.235    6.313  - 14.55    65.24 

> cor(states) 

           Population Income Illiteracy Life Exp Mu rder HS Grad
Population     1.0000  0.208      0.108   -0.068  0 .344 -0.0985
Income         0.2082  1.000     -0.437    0.340 -0 .230  0.6199
Illiteracy     0.1076 -0.437      1.000   -0.588  0 .703 -0.6572
Life Exp      -0.0681  0.340     -0.588    1.000 -0 .781  0.5822
Murder         0.3436 -0.230      0.703   -0.781  1 .000 -0.4880
HS Grad       -0.0985  0.620     -0.657    0.582 -0 .488  1.0000 

> cor(states,method="spearman") 

           Population Income Illiteracy Life Exp Mu rder HS Grad
Population      1.000  0.125      0.313   -0.104  0 .346  -0.383
Income          0.125  1.000     -0.315    0.324 -0 .217   0.510
Illiteracy      0.313 -0.315      1.000   -0.555  0 .672  -0.655
Life Exp       -0.104  0.324     -0.555    1.000 -0 .780   0.524
Murder          0.346 -0.217      0.672   -0.780  1 .000  -0.437
HS Grad        -0.383  0.510     -0.655    0.524 -0 .437   1.000 

The first  call produces the variances and covariances. The second provides Pearson 

Product  Mom ent  correlat ion coefficients, while the third produces Spearm an Rank Order 

correlat ion coefficients. We can see, for exam ple, that  there is a st rong posit ive correlat ion 

between incom e and high school graduat ion rate, and a st rong negat ive correlat ion between 

illiteracy rates and life expectancy.  

Not ice, that  we get  square m at r ices by default  (all variables crossed with all other 

variables) . We can also produce non-square m atr ices. An example is given in list ing 5.18. 

Listing 5.18 Correlating two sets of variables 

> x <- states[,c("Population","Income","Illiteracy" ,"HS Grad")]
> y <- states[,c("Life Exp", "Murder")] 
> cor(x,y) 
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           Life Exp Murder
Population   -0.068  0.344
Income        0.340 -0.230
Illiteracy   -0.588  0.703
HS Grad       0.582 -0.488 

This version of the funct ion is part icular ly useful when our interest  centers on the 

relat ionships between one set  of variables and another. Not ice that  the results pr inted above 

do not  tell us if the correlat ions differ significant ly from  zero. For that , we need tests of 

signif icance (sect ion 5.4.2) . 

PARTIAL CORRELATIONS 

A part ial correlat ion is a correlat ion between two quant itat ive variables, cont rolling for one or  

m ore other quant itat ive variables. The pcor  funct ion in the ggm package can be used to

provide part ial correlat ion coefficients. The ggm package is not  installed by default , so be

sure to install it  on first  use. The form at  is 

pcor(u, S) 

where u is a vector  of num bers,  with the first  two num bers being the indices of the var iables

to be correlated, and the rem aining num bers being the indices of the condit ioning var iables 

( i.e., the variables being part ialled out ) . S is the covar iance matr ix among the variables. An 

example ( list ing 5.19)  will clar ify this. 

Listing 5.19 Partial correlations with the pcor function [ggm package] 

> library(ggm) 
> # partial correlation of population and murder ra te, controlling
> # for income, illiteracy rate, and HS graduation rate 
> pcor(c(1,5,2,3,6), cov(states)) 

[1] 0.346              1 

# 1 0.346 is the correlat ion between populat ion and murder rate, cont rolling for the influence 

of income, illiteracy rate, and HS graduat ion rate. The use of part ial correlat ions is common 

in the social sciences. 

OTHER TYPES OF CORRELATIONS 

The hetco r  funct ion in the polyco r  package can com pute a heterogeneous correlat ion

m atr ix containing Pearson product -m om ent  correlat ions between num eric variables, 

polyser ial correlat ions between num eric and ordinal var iables, polychoric correlat ions 

between ordinal var iables, and tet rachor ic correlat ions between two dichotomous variables. 

Polyserial,  polychoric, and tet rachoric correlat ions assum e that  the ordinal or dichotomous 

variables are derived from  under lying norm al dist r ibut ions. See the docum entat ion that  

accom panies this package for  m ore inform at ion. 

Download from Wow! eBook <www.wowebook.com>



© Manning Publicat ions Co. Please post  com ments or correct ions to the Author Online forum :  

5.4.2 Testing correlations for significance 
Once we have generated correlat ion coefficients, how do we test  them  for stat ist ical 

signif icance? The typical null hypothesis is no relat ionship ( i.e., the correlat ion in the 

populat ion is zero) . We can use the co r .test  funct ion to test  an individual Pearson,

Spearm an, and Kendall correlat ion coefficient . A sim plif ied form at  is 

cor.test(x, y,  alternative = , method = ) 

where alte r nativ e specif ies a two- tailed or one- tailed test  ("two . side " , "less" ,  or  

"greater " )  and metho d specifies the type of correlat ion ("pears on" , "kenda l l" ,  or

"spearman " ) .   An example is given in list ing 5.20. 

Listing 5.20 Testing a correlation coefficient for significance 

> cor.test(states[,3],states[,5]) 

        Pearson's product-moment correlation 

data:  states[, 3] and states[, 5]  
t = 6.85, df = 48, p-value = 1.258e-08 
alternative hypothesis: true correlation is not equ al to 0 
95 percent confidence interval: 
 0.528 0.821 
sample estimates: 
  cor  
0.703  

This code tests the null hypothesis that  the Pearson correlat ion between life expectancy 

and m urder rate is zero. We see that  the sam ple correlat ion of 0.70 is large enough to reject  

the null hypothesis at  any reasonable alpha level (here p <  .00000001) .  

Unfortunately, we can only test  one correlat ion at  a t im e using cor. t est .  Luckily , the

corr.tes t  funct ion provided in the psych  package allows us to go farther. The

corr.tes t  funct ion produces correlat ions and significance levels for m at r ices of Pearson, 

Spearman, orKendall correlat ions. An example is given in list ing 5.21. 

Listing 5.21 Correlation matrix and tests of significance via corr.test [psych package] 

> library(psych) 
> corr.test(states,use="complete") 

Call:corr.test(x = states, use = "complete")
Correlation matrix  
           Population Income Illiteracy Life Exp Mu rder HS Grad
Population       1.00   0.21       0.11    -0.07   0.34   -0.10    1
Income           0.21   1.00      -0.44     0.34  - 0.23    0.62
Illiteracy       0.11  -0.44       1.00    -0.59   0.70   -0.66 
Life Exp        -0.07   0.34      -0.59     1.00  - 0.78    0.58
Murder           0.34  -0.23       0.70    -0.78   1.00   -0.49 
HS Grad         -0.10   0.62      -0.66     0.58  - 0.49    1.00 
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Sample Size  
[1] 50
Probability value  
           Population Income Illiteracy Life Exp Mu rder HS Grad
Population       0.00   0.15       0.46     0.64   0.01     0.5     1
Income           0.15   0.00       0.00     0.02   0.11     0.0
Illiteracy       0.46   0.00       0.00     0.00   0.00     0.0 
Life Exp         0.64   0.02       0.00     0.00   0.00     0.0 
Murder           0.01   0.11       0.00     0.00   0.00     0.0 
HS Grad          0.50   0.00       0.00     0.00   0.00     0.0         

The use=  opt ions can be " pairwise "  or "complete "  ( for pairwise or  listwise delet ion

of m issing values respect ively) . The method=  opt ion is "pear son"  ( the default ) ,  

"spearman " ,  or "kendall " . # 1 Here we see that  the correlat ion between populat ion size

and high school graduat ion rate ( -0.10)  is not  signif icant ly different  from  zero (p= 0.5) . 

OTHER TESTS OF SIGNIFICANCE 

I n sect ion 5.4.1 we looked at  part ial correlat ions. The pcor.test  funct ion in the psyc h

package can be used to test  the condit ional independence of two variables cont rolling for one 

or m ore addit ional var iables, assum ing mult ivar iate norm ality. The form at  is 

pcor.test(r, q, n) 

where r  is the part ial correlat ion produced by the pcor  funct ion, q is the num ber of

variables being cont rolled, and n is the sam ple size. 

Before leaving this topic, it  should be ment ioned that  the r.tes t  funct ion in the psy ch

package also provides a num ber of useful significance tests. The funct ion can be used to test  

the significance of a correlat ion coefficient , the difference between two independent  

correlat ions, the difference between two dependent  correlat ions sharing one single variable, 

and the difference between two dependent  correlat ions based on com pletely different  

variables. See help(r.test )  for details. 

5.4.3 Visualizing correlations 
The bivariate relat ionships underlying correlat ions can be visualized through scat terplots and 

scat terplot  mat r ices (sect ion 11.3) , while corrgrams (sect ion 15.7)  provide a unique and 

powerful m ethod for com paring a large num bers of correlat ion coefficients in a m eaningful 

way. 

5.5 Comparing Groups 
The m ost  com mon act ivity in research is the com parison of groups. Do pat ients receiv ing a 

new drug show greater im provem ent  than pat ients using an exist ing m edicat ion? Does one 

m anufactur ing process produce fewer defects than another? Which of three teaching 

m ethods is m ost  cost  effect ive? I f our outcome var iable is categorical,  we can use the 

m ethods descr ibed in sect ion 5.3 or chapter 14. I f the outcome variable is a survival t im e, 

we would use the m ethods descr ibed in sect ion 12.4. Here, we will focus on group 
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com par isons, where the outcom e variable is cont inuous or ordinal. First  we will look at  the 

two group case. Then we will consider designs involv ing more than two groups. Finally, we 

will look at  ways of visualizing our results. 

5.5.1 Two Groups 
To illust rate the two group case, we will use the UScrim e dataset  dist r ibuted with the MASS

package. I t  contains inform at ion on the effect  of punishm ent  regim es on cr im e rates in 47 

US states in 1960. The var iables of interest  will be Pro b ( the probability of im prisonm ent ) , 

So (an indicator variable for southern states) , U1 ( the unem ploym ent  rate for urban m ales

age 14-24)  and U2 ( the unemploym ent  rate for urban m ales age 35-39) . The data have been 

rescaled by the or iginal authors. (Note:  I  considered nam ing this sect ion "Cr ime and 

Punishm ent  in the Old South" , but  cooler heads prevailed.)  

T-TESTS 

Are we more likely to be imprisoned if we comm it  a cr ime in the South? The comparison of 

interest  is southern vs. non-southern states and the dependent  variable is the probability of 

incarcerat ion. A 2-group independent  t - test  can be used to test  the hypothesis that  the two 

populat ion m eans are equal. Here, we assum e that  the two groups are independent  and that  

the data are sam pled from  norm al populat ions. The form at  is either 

t.test(y~x)  

where y  is numeric and x  is a dichotomous factor or 

t.test(y1,y2)  

where y1  and y2  are num eric vectors ( the outcome variable for each group) .  I n cont rast

to most  stat ist ical packages, the default  test  assumes unequal variance and applies the 

Welsh degrees of freedom  m odificat ion. We can add a var.equal=TRU E opt ion to specify

equal variances and a pooled variance est im ate. By default , a two- tailed alternat ive is 

assumed ( i.e.,  the m eans differ but  the direct ion is not  specified) . We can add the opt ion 

alternative="less "  or alternative="greater "  to specify a direct ional test .  

I n list ing 5.22, we compare southern (group 1)  and non-southern (group 0)  states on the 

probability of impr isonm ent  using a two- tailed test  without  the assumpt ion of equal 

var iances. 

Listing 5.22 Independent groups t-test 

> t.test(Prob~So) 

        Welch Two Sample t-test 

data:  Prob by So  
t = -3.8954, df = 24.925, p-value = 0.0006506                            1
alternative hypothesis: true difference in means is  not equal to 0  

Download from Wow! eBook <www.wowebook.com>



© Manning Publicat ions Co. Please post  com ments or correct ions to the Author Online forum :  

95 percent confidence interval: 
 -0.03852569 -0.01187439 
sample estimates: 
mean in group 0 mean in group 1  
     0.03851265      0.06371269 

# 1 We reject  the hypothesis that  southern states and non-southern states have equal 

probabilit ies of impr isonm ent  (p <  .001) . 

Note:  Since the outcome var iable is a proport ion, we m ight  seek to t ransform  it  towards 

norm ality before carrying out  the t - test . I n the current  case, all reasonable t ransform at ions 

of the outcom e variable (Y/ 1-Y, log(Y/ 1-Y) , arcsin(Y) , arcsin(sqrt (Y) )  would have led to the 

sam e conclusions. 

As a second exam ple, we m ight  ask if unemploym ent  rate for younger m ales (14-24)  is 

greater than for older males (35-39) . I n this case, the two groups are not  independent . We 

would not  expect  the unem ploym ent  rate for younger and older m ales in Alabama to be 

unrelated. When observat ions in the two groups are related, we have a dependent  groups 

design. Pre-post  or repeated m easures designs also produce dependent  groups. 

A dependent  t - test  assumes that  the difference between groups is normally dist r ibuted. 

I n this case, the form at  is 

 t.test(y1, y2, paired=TRUE)  

where y1 and y2 are the num eric vectors for the two dependent  groups. The results are 

provided in list ing 5.23. 

Listing 5.23 Dependent groups t-test 

> sapply(UScrime[c("U1","U2")],function(x)(c(mean=m ean(x),sd=sd(x)))) 

       U1    U2 
mean 95.5 33.98                
sd   18.0  8.45 

> t.test(U1,U2,paired=TRUE) 

        Paired t-test 

data:  U1 and U2  
t = 32.4066, df = 46, p-value < 2.2e-16                                1               
alternative hypothesis: true difference in means is  not equal to 0  
95 percent confidence interval: 
 57.67003 65.30870 
sample estimates: 
mean of the differences  
               61.48936                                                1 
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# 1 The m ean difference (61.5)  is large enough to warrant  reject ion of the hypothesis that  

the m ean unemploym ent  rate for older and younger m ales is the sam e. Younger m ales have 

a higher rate. 

NONPARAMETRIC TESTS 

I f we are unable to m eet  the param et r ic assumpt ions of a t - test , we can turn to 

nonparam etr ic approaches. For exam ple, if the outcome variables are severely skewed or  

ordinal in nature, we may wish to use the techniques in this sect ion. 

I f the two groups are independent , we can use the Wilcoxon rank sum  test  (m ore 

popular ly known as the Mann-Whitney U test )  to assess whether the observat ions are 

sam pled from  the sam e probabilit y dist r ibut ion ( i.e., whether the probability  of obtaining 

higher scores is greater in one populat ion than the other) . The form at  is either 

wilcox.test(y~x)  

where y  is numeric and x  is a dichotomous factor or 

wilcox.test(y1,y2)  

where y1 and y2  are the outcom e variables for each group. The default  is a two- tailed test .

We can add the opt ion ex act  to produce an exact  test , and alter native="less "  or  

alternative="greater "  to specify a direct ional test .  

I f we apply the Mann-Whitney U test  to the quest ion of incarcerat ion rates from  the 

previous sect ion, we would get  the results in sect ion 5.24. 

Listing 5.24 Mann-Whitney U Test 

> by(Prob,So,median) 

So: 0 
[1] 0.0382
--------------------  
So: 1 
[1] 0.0556 

> wilcox.test(Prob~So) 

        Wilcoxon rank sum test 

data:  Prob by So  
W = 81, p-value = 8.488e-05                                        1
alternative hypothesis: true location shift is not equal to 0 

# 1  Again, we can reject  the hypothesis that  incarcerat ion rates are the sam e in southern 

and non-southern states (p< .001) .  

The Wilcoxon Signed Rank Test  provides a nonparamet r ic alternat ive to the dependent  

sample t - test . I t  is appropriate in situat ions where the groups are paired and the assum pt ion 
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of norm ality is unwarranted. The format  is ident ical to the Mann-Whitney U test , but  we add 

the paired= TRUE opt ion. Let 's apply it  to the unemployment  quest ion from  the previous

sect ion ( list ing 5.25) . 

Listing 5.25 Wilcoxon Signed Rank Test 

> sapply(UScrime[c("U1","U2")],median) 

U1 U2 
92 34  

> wilcox.test(U1,U2,paired=TRUE) 

        Wilcoxon signed rank test with continuity c orrection 

data:  U1 and U2  
V = 1128, p-value = 2.464e-09                                       1
alternative hypothesis: true location shift is not equal to 0  

# 1 Again, we would reach the sam e conclusion reached with the paired t - test .  

I n this case, the parametr ic t - tests and their nonparam etr ic equivalents reach the sam e 

conclusions. When the assum pt ions for the t - tests are reasonable, the parametr ic tests will 

be more powerful (more likely to find a difference if it  exists) . The non-parametr ic tests are 

m ore appropriate when the assum pt ions are grossly unreasonable (e.g., rank ordered data) . 

5.5.2 More than two groups 
When there are m ore than two groups to be com pared, we must  turn to other m ethods. 

Consider the state.x77  dataset  from  sect ion 5.4.  I t  contains populat ion, incom e, illiteracy

rate, life expectancy, m urder rate, and high school graduat ion rate data for US states. What 

if want  to com pare the illiteracy rates in four regions of the count ry (Northeast , South, North 

Cent ral, and West )?  This is called a one-way design, and there are both param etr ic and 

nonparam etr ic approaches available to address the quest ion. 

ANALYSIS OF VARIANCE 

I f we can assum e that  the data are independent ly sam pled from  normal populat ions, we can 

use analysis of variance (ANOVA)  to com pare groups. ANOVA is a com prehensive 

m ethodology that  covers m any exper im ental and quasi-experim ental designs. As such, it  has 

earned it s own chapter. Feel free to abandon us and jum p to chapter 8 at  any t im e. 

NONPARAMETRIC TESTS 

I f we can't  m eet  the assum pt ions of ANOVA designs, we can use nonparam etr ic m ethods to 

evaluate group differences. I f the groups are independent , a Kruskal-Wallis test  will provide 

us with a useful approach. I f the groups are dependent  (e.g., repeated m easures or  

random ized block design) , the Fr iedman test  is m ore appropriate. 

The form at  for the Kruskal Wallis test  is 

Download from Wow! eBook <www.wowebook.com>



© Manning Publicat ions Co. Please post  com ments or correct ions to the Author Online forum :  

kruskal.test(y~A) 

where y  is a num eric outcom e variable and A is a group factor with 2 or  m ore levels ( if 

there are two levels, it  is equivalent  to the Mann-Whitney U test ) . For the Friedm an test , the

form at  is 

friedman.test(y~A|B) 

where y  is the num eric outcom e var iable, A is a group factor, and B is a blocking factor

that  ident if ies matched observat ions. 

Let 's apply the Kruskal Wallis test  to the illiteracy quest ion above. First ,  we will have to

add the region designat ions to the dataset . These are contained in the dataset  

state.regio n dist r ibuted with the base installat ion of R. 

states <- as.data.frame(cbind(state.region, state.x 77)) 

Now we can apply our test  (see list ing 5.26) . 

Listing 5.26 Kruskal Wallis test - One Way Anova by Ranks 

> attach(states) 
> kruskal.test(Illiteracy~state.region) 

        Kruskal-Wallis rank sum test 

data:  states$Illiteracy by states$state.region  
Kruskal-Wallis chi-squared = 22.7, df = 3, p-value = 4.726e-05    1 

# 1 The significance test  suggests that  the illiteracy rate is not  the sam e in group of the four

regions of the count ry (p < .001) . 

Although we can reject  the null hypothesis of no difference, the test  does not  tell us

which regions differ  significant ly from  which others. To answer this quest ion, we could

com pare groups two at  a t im e using the Mann-Whitney U test . A more elegant  approach is to

apply a simultaneous mult iple compar isons procedure that  makes all pairwise comparisons,

while cont rolling the type I  error rate ( the probability of finding a difference that  isn't  there) .

The npmc package provides the nonparam et r ic m ult iple com parisons we need. 

To be honest , we are st retching our definit ion of "Basic"  in the chapter t it le quite a bit ,

but  since it  really f it s well here, I  hope you will bear with m e. First ,  be sure to install the 

npmc package. The npmc funct ion in this package expects input  to be a two colum n

datafram e with a colum n nam ed var  ( the dependent  var iable)  and class  ( the grouping

variable) . We can accomplish this with the code in list ing 5.27. 

Listing 5.27 Nonparametric multiple comparisons 

> class <- state.region 
> var <- state.x77[,c("Illiteracy")] 
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> mydata <- as.data.frame(cbind(class, var)) 
> summary(npmc(mydata, type="BF"))                                                      
  
$`Data-structure`                                                      
              group.index   class.level nobs
Northeast               1     Northeast    9
South                   2         South   16
North Central           3 North Central   12
West                    4          West   13 

$`Results of the multiple Behrens-Fisher-Test`                        1 
  cmp effect lower.cl upper.cl p.value.1s p.value.2 s
1 1-2 0.8750  0.66149   1.0885   0.000665    0.0013 5
2 1-3 0.1898 -0.13797   0.5176   0.999999    0.0654 7
3 1-4 0.3974 -0.00554   0.8004   0.998030    0.9200 4
4 2-3 0.0104 -0.02060   0.0414   1.000000    0.0000 0
5 2-4 0.1875 -0.07923   0.4542   1.000000    0.0211 3
6 3-4 0.5641  0.18740   0.9408   0.797198    0.9843 0 

> aggregate(mydata, by=list(mydata$class),median)             2 

  Group.1 class  var
1       1     1 1.10
2       2     2 1.75
3       3     3 0.70
4       4     4 0.60 

# 1 The npmc call generates six stat ist ical comparisons (Northeast  vs. South, Northeast

vs. North Cent ral, northeast  vs. West , South vs. North Cent ral, South vs. West , and North 

Cent ral vs. West ) . We can see from  the two-sided p-values (p.value.2s)  that  the South

differs signif icant ly from  the other three regions, and that  the other three regions do not

differ from  each other. From # 2 we see that  the South has a higher m edian illiteracy rate. 

5.5.3 Visualizing group differences 
Exam ining group differences visually is a crucial part  of a comprehensive data analysis

st rategy. I t  allows us to assess the magnitude of the differences, ident ify any dist r ibut ional

character ist ics that  influence the results (e.g., skew, bimodality, out liers) , and evaluate the

appropriateness of our test  assum pt ions. R provides a wide range of graphical m ethods for

com par ing groups including box plots (sim ple, notched, violin, and bagplots)  covered in

sect ion 11.2, overlapping kernel density plots, covered in sect ion 11.1, and graphical

methods of assessing test  assumpt ions, discussed in sect ion 8.6. 

5.6 Summary 
I n this chapter, we have reviewed the funct ions in R that  provide basic stat ist ical

sum maries and tests. I t  has included sam ple stat ist ics and frequency tables, tests of

independence and m easures of associat ion for categorical var iables, correlat ions between

quant itat ive var iables (and their  associated signif icance tests) , and comparisons of two or

m ore groups on a quant itat ive outcom e variable.  
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I n the next  chapter we take up the topic of basic graphs. They form  a natural partnership 

with the topics we have just  covered. As we will see throughout  this book, there is a yin and 

a yang between num erical sum maries and stat ist ical tests, and visual depict ions of 

relat ionships and differences. However, the graphical chapters are m ore fun to look at . 
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