
The eXPeRT’s VOIce® In OPen sOuRce

Pro

Puppet

James Turnbull and Jeffrey McCune

Maximize and customize Puppet’s
capabilities for your environment

Turnbull
M

cCune
Puppet

Companion
eBook

Available

Pro

BOOks fOR PROfessIOnals By PROfessIOnals®

Pro Puppet
Learn how to automate your system administration tasks across an entire
network with Pro Puppet. This book holds all the knowledge, insider tips and
techniques you need to install, use, and develop with Puppet, the popular con-
figuration management tool.

It shows you how to create Puppet recipes, extend Puppet, and use Facter to
gather configuration data from your servers. You’ll discover how to use Puppet
to manage Postfix, Apache and MySQL servers, as well as how to load-balance
your Puppet Masters.

What you’ll learn:

• Insider tricks and techniques to better manage your infrastructure
• How to scale Puppet to suit small, medium and large organizations
• How to integrate Puppet with other tools like Cucumber, Nagios and
 OpenLDAP
• How advanced Puppet techniques can make managing your
 environment easier

Pro Puppet will teach you how to extend Puppet’s capabilities to suit your envi-
ronment. Whether you have a small network or a large corporate IT infrastruc-
ture, this book will enable you to use Puppet to immediately start automating
tasks and create reporting solutions. Become a Puppet expert now!

James Turnbull, Author of

Pulling Strings with Puppet:
Configuration Management
Made Easy

Pro Linux System
Administration

Pro Nagios 2.0

Jeff McCune

Shelve in:
System Administration

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

Companion eBook

Re
lA

Te
d

Ti
Tl

es

www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS AT A GLANCE

iv

 Contents at a Glance

 About the Authors.. xiii
 About the Technical Reviewer ... xiv
 Acknowledgments .. xv
 Introduction ... xvi
 Chapter 1: Getting Started with Puppet ..1

 Chapter 2: Building Hosts with Puppet ...29

 Chapter 3: Working with Environments ..65

 Chapter 4: Puppet Scalability ...89

 Chapter 5: Externalizing Puppet Configuration...119

 Chapter 6: Exporting and Storing Configuration...133

 Chapter 7: Puppet Consoles: Puppet Dashboard and The Foreman....................159

 Chapter 8: Tools and Integration ..189

 Chapter 9: Reporting with Puppet ..231

 Chapter 10: Extending Facter and Puppet ..241

 Chapter 11: Marionette Collective ..265

 Appendix A: Working with Puppet ..289

 Index ...293

www.it-ebooks.info

http://www.it-ebooks.info/

 INTRODUCTION

xvi

Introduction

“ssh in a for loop is not a solution” – Luke Kanies, Puppet developer

The lives of system administrators and operations staff often revolve around a series of repetitive tasks:
configuring hosts, creating users, and managing applications, daemons, and services. Often these tasks
are repeated many times in the life cycle of one host, from building to decommissioning, and as new
configuration is added or corrected for error or entropy.

The usual response to these repetitive tasks is to try to automate them with scripts and tools. This
leads to the development of custom-built scripts and applications. In my first role as a systems
administrator, I remember creating a collection of Control Language (CL) and Rexx scripts that I
subsequently used to manage and operate a variety of infrastructure. The scripts were complex, poorly
documented and completely customized to my environment.

My experience is not unique, and this sort of development is a common response to the desire to
make life easier, automate boring, manual tasks and give you a few more minutes in the day for the more
interesting projects and tasks (or to get to the pub earlier).

Very few of the scripts developed in this ad hoc manner are ever published, documented, or reused.
Indeed, copyright for most custom material rests with the operator or system administrator’s
organization and is usually left behind when they move on. This leads to the same tool being developed
over and over again. Sometimes they are even developed over and over again in the same company if
previous incarnations don’t suit a new incumbent (or occasionally, if they are indecipherable to a new
incumbent!).

These custom scripts and applications rarely scale to suit large environments, and they often have
issues of stability, flexibility, and functionality. In multi-platform environments, such scripts also tend to
suit only one target platform, resulting in situations such as the need to create a user creation script for
BSD, another one for Linux, and still another for Solaris. This increases the time and effort required to
develop and maintain the very tools you are hoping to use to reduce administrative efforts.

Other approaches include the purchase of operations and configuration management tools like
HP’s Opsware, BMC’s CONTROL-M, IBM’s Tivoli suite, and CA’s Unicenter products. But commercial
tools generally suffer from two key issues: price and flexibility. Price, especially, can quickly become an
issue: The more platforms and hosts that you are managing, the greater the price. In large
environments, licensing for such tools can run to millions of dollars.

Flexibility is also a key concern. Commercial tools are usually closed source and are limited to the
features available to them, meaning that if you want to extend them to do something custom or specific
to your environment, you need to request a new feature, potentially with a waiting period and associated
cost. Given the huge varieties of deployments, platforms, configurations and applications in
organizations, it is rare to discover any tool that provides the ability to completely customize to suit your
environment.

There is an alternative to both in-house development and commercial products: Free and Open
Source Software (FOSS). Free and open source configuration management tools offer two key benefits
for organizations:

www.it-ebooks.info

http://www.it-ebooks.info/

 INTRODUCTION

xvii

• They are open and extensible.

• They are free!

With FOSS products, the tool’s source code is at your fingertips, allowing you to develop your own
enhancements or adjustments. You don’t need to wait for the vendor to implement the required
functionality or pay for new features or changes. You are also part of a community of users and
developers who share a vision for the development of the tool. You and your organization can in turn
contribute to that vision. In combination, you can shape the direction of the tools you are using, giving
you a more flexible outcome for your organization.

The price tag is another important consideration for acquisition of any tool. With free and open
source software, it isn’t an issue. You don’t pay anything for the software, and you get the source code
with it.

Of course, we all know there is no such thing as a free lunch, so what’s the catch? Well unlike
commercial software, open source software doesn’t come with any guaranteed support. This is not to
say there is no support available: Many open source tools have large and active communities where
members answer questions and provide assistance via mechanisms like email lists, forums, Wikis and
IRC.

 Note Many open source tools, including Puppet, also have organizations that provide commercial editions or
support for these tools. For full disclosure, both the author James Turnbull and co-author Jeff McCune work at
Puppet Labs, the organization that supports the development of Puppet.

Puppet (http://www.puppetlabs.com/puppet) is a reaction to these gaps in the tools available to
SysAdmins, Operators and Developers. It is designed to make their lives easier by making infrastructure
easy, simple and cheap to manage. This book will introduce you to Puppet, an open source
configuration management tool, and take you through installation, configuration and integration of
Puppet into your environment.

www.it-ebooks.info

http://www.puppetlabs.com/puppet
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 1

1

Getting Started with Puppet

Puppet is an open source framework and toolset for managing the configuration of computer systems.
In this book, we’re going to look at how you can use Puppet to manage your configuration. As the book
progresses, we’ll introduce Puppet’s features and then show you how to integrate Puppet into your
provisioning and management lifecycle. To do this, we’ll take you through configuring a real-world
scenario that we’ll introduce in Chapter 2.

In this chapter, we start with a quick overview of Puppet, what it is, how it works, and which release
to use, and then we show you how to install Puppet and its inventory tool, Facter. We show you how to
install it on Red Hat, Debian, Ubuntu, Solaris, Microsoft Windows, and via a Ruby gem. We’ll then
configure it and show you how create your first configuration items. We’ll also introduce you to the
concept of “modules,” Puppet’s way of collecting and managing bundles of configuration data. We’ll
then show you how to apply one of these modules to a host using the Puppet agent.

What Is Puppet?
Puppet is Ruby-based, licensed as GPLv2 and can run in either client-server or stand-alone modes.
Puppet is principally developed by Luke Kanies and his company, Puppet Labs (formerly Reductive
Labs). Kanies has been involved with Unix and systems administration since 1997 and developed Puppet
from that experience. Unsatisfied with existing configuration management tools, Kanies began working
with tool development in 2001 and in 2005 he founded Puppet Labs, an open source development house
focused on automation tools. Shortly after this, Puppet Labs released their flagship product, Puppet.

Puppet can be used to manage configuration on UNIX (including OSX) and Linux platforms, and
recently Microsoft Windows platforms as well. Puppet is often used to manage a host throughout its
lifecycle: from initial build and installation, to upgrades, maintenance, and finally to end-of-life, when
you move services elsewhere. Puppet is designed to continuously interact with your hosts, unlike
provisioning tools which build your hosts and leave them unmanaged.

Puppet has a simple operating model that is easy to understand and implement. The model is made
up of three components:

• Deployment

• Configuration Language and Resource Abstraction Layer

• Transactional Layer

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

2

Figure 1-1. The Puppet model

Deployment
Puppet is usually deployed in a simple client-server model (Figure 1-2). The server is called a “Puppet
master”, the Puppet client software is called an agent and the host itself is defined as a node.

The Puppet master runs as a daemon on a host and contains the configuration required for your
environment. The Puppet agents connect to the Puppet master via an encrypted and authenticated
connection using standard SSL, and retrieve or “pull” any configuration to be applied.

Importantly, if the Puppet agent has no configuration available or already has the required
configuration then Puppet will do nothing. This means that Puppet will only make changes to your
environment if they are required. The whole process is called a configuration run.

Each agent can run Puppet as a daemon via a mechanism such as cron, or the connection can be
manually triggered. The usual practice is to run Puppet as a daemon and have it periodically check with
the master to confirm that its configuration is up-to-date or to retrieve any new configuration. However,
many people find being able to trigger Puppet via a mechanism such as cron, or manually, better suits
their needs. By default, the Puppet agent will check the master for new or changed configuration once
every 30 minutes. You can configure this period to suit your environment.

Figure 1-2. Puppet client-server model

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

3

Other deployment models also exist. For example, Puppet can also run in a stand-alone mode
where no Puppet master is required. Configuration is installed locally on the host and the puppet binary
is run to execute and apply that configuration. We discuss this mode later in the book.

Configuration Language and Resource Abstraction Layer
Puppet uses a declarative language to define your configuration items, which Puppet calls “resources.”
This declarative nature creates an important distinction between Puppet and many other configuration
tools. A declarative language makes statements about the state of your configuration - for example, it
declares that a package should be installed or a service should be started.

Most configuration tools, such as a shell or Perl script, are imperative or procedural. They describe
HOW things should be done rather than the desired end state - for example, most custom scripts used to
manage configuration would be considered imperative.

This means Puppet users just declare what the state of their hosts should be: what packages should
be installed, what services should be running, etc. With Puppet, the system administrator doesn’t care
HOW this state is achieved – that’s Puppet’s problem. Instead, we abstract our host’s configuration into
resources.

Configuration Language
What does this declarative language mean in real terms? Let’s look at a simple example. We have an
environment with Red Hat Enterprise Linux, Ubuntu, and Solaris hosts and we want to install the vim
application on all our hosts. To do this manually, we’d need to write a script that does the following:

• Connects to the required hosts (including handling passwords or keys)

• Checks to see if vim is installed

• If not, uses the appropriate command for each platform to install vim, for example
on Red Hat the yum command and on Ubuntu the apt-get command

• Potentially reports the results of this action to ensure completion and success

 Note This would become even more complicated if you wanted to upgrade vim (if it was already installed) or
apply a particular version of vim.

Puppet approaches this process quite differently. In Puppet, we define a configuration resource for
the vim package. Each resource is made up of a type (what sort of resource is being managed: packages,
services, or cron jobs), a title (the name of the resource), and a series of attributes (values that specify the
state of the resource - for example, whether a service is started or stopped).

You can see an example of a resource in Listing 1-1.

Listing 1-1. A Puppet Resource

package { "vim":
 ensure => present,
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

4

The resource in Listing 1-1 specifies that a package called vim should be installed. It is constructed
like:

type { title:
 attribute => value,
}

In Listing 1-1, the resource type is the package type. Puppet comes with a number of resource types
by default, including types to manage files, services, packages, and cron jobs, among others.

 Note You can see a full list of the types Puppet can currently manage (and their attributes) at
http://docs.puppetlabs.com/references/stable/type.html. You can also extend Puppet to support
additional resource types, as we’ll discuss in Chapter 10.

Next is the title of the resource, here the name of the package we want to install, vim. The type and
title of the resource can be combined together to allow Puppet to create a reference to the resource. For
example, our resource would be called Package["vim"]. We’ll see this a lot more in later chapters when
we build relationships between resources, allowing us to create structure in our configuration, for
example installing a package before starting its associated service.

Lastly, we’ve specified a single attribute, ensure, with a value of present. Attributes tell Puppet about
the required state of our configuration resource. Each type has a series of attributes available to
configure it. Here the ensure attribute specifies the state of the package: installed, uninstalled, etc. The
present value tells Puppet we want to install the package. To uninstall the package we would change the
value of this attribute to absent.

Resource Abstraction Layer
With our resource created, Puppet takes care of the details of how to manage that resource when our
agents connect. Puppet handles the “how” by knowing how different platforms and operating systems
manage certain types of resources. Each type has a number of “providers.” A provider contains the
“how” of managing packages using a particular package management tool. For the package type, for
example, for there are more than 20 providers covering a variety of tools including yum, aptitude, pkgadd,
ports, and emerge.

When an agent connects, Puppet uses a tool called “Facter” to return information about that agent,
including what operating system it is running. Puppet then chooses the appropriate package provider
for that operating system and uses that provider to check if the vim package is installed. For example, on
Red Hat it would execute yum, on Ubuntu it would execute aptitude, and on Solaris it would use the pkg
command. If the package is not installed, then Puppet will install it. If the package is already installed,
Puppet does nothing.

Puppet will then report its success or failure in applying the resource back to the Puppet master.

www.it-ebooks.info

http://docs.puppetlabs.com/references/stable/type.html
http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

5

INTRODUCING FACTER AND FACTS

Facter is a system inventory tool that we use throughout the book. It returns “facts” about each agent,
such as its hostname, IP address, operating system and version, and other configuration items. These
facts are gathered when the agent runs. The facts are then sent to the Puppet master, and automatically
created as variables available to Puppet.

You can see the facts available on your clients by running the facter binary from the command line. Each
fact is returned as a key => value pair. For example:

operatingsystem => Ubuntu
ipaddress => 10.0.0.10

We can then use these values to individually configure each host. For example, knowing the IP address of
a host allows us to configure networking on that host.

These facts are made available as variables that can be used in your Puppet configuration. When
combined with the configuration you define in Puppet, they allow you to customize that configuration for
each host. For example, they allow you to write generic resources, like your network settings, and
customize them with data from your agents.

Facter also helps Puppet understand how to manage particular resources on an agent. For example, if
Facter tells Puppet that a host runs Ubuntu, then Puppet knows to use aptitude to install packages on that
agent. Facter can also be extended to add custom facts for specific information about your hosts. We’ll be
installing Facter shortly after we install Puppet, and we’ll discuss it in more detail in later chapters.

Transactional Layer
Puppet’s transactional layer is its engine. A Puppet transaction encompasses the process of configuring
each host including:

• Interpret and compile your configuration

• Communicate the compiled configuration to the agent

• Apply the configuration on the agent

• Report the results of that application to the master

The first step Puppet takes is to analyze your configuration and calculate how to apply it to your
agent. To do this, Puppet creates a graph showing all resources, their relationships to each other and to
each agent. This allows Puppet to work out in what order, based on relationships you create, to apply
each resource to your host. This model is one of Puppet’s most powerful features.

Puppet then takes the resources and compiles them into a “catalog” for each agent. The catalog is
sent to the host and applied by the Puppet agent. The results of this application are then sent back to the
master in the form of a report.

The transaction layer allows configurations to be created and applied repeatedly on the host.
Puppet calls this idempotent, meaning multiple applications of the same operation will yield the same
results. Puppet configuration can be safely run multiple times with the same outcome on your host and
hence ensuring your configuration stays consistent.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

6

Puppet is not fully transactional though; your transactions aren’t logged (other than informative
logging) and hence you can’t roll back transactions as you can with some databases. You can, however,
model transactions in a “noop,” or no operation mode, that allows you to test the execution of your
changes without making any actual changes.

Selecting the Right Version of Puppet
The best version of Puppet to use is usually the latest release, which at the time of writing is the 2.6.x
branch of releases; newer ones are currently in development. The biggest advantage of the 2.6.x branch
of releases onward is their replacement of XML-RPC as a transport layer. The 2.6.x releases instead use
REST APIs, resulting in greatly improved performance. The 2.6.x releases are also stable, perform well,
and contain a wide of variety of new features and functions unavailable in earlier releases.

WHY DID PUPPET CHANGE VERSION NUMBERING?

If you are familiar with Puppet’s development, you are aware that Puppet jumped release numbers from
0.25.5 straight to 2.6.0. So why did this happen – is the 2.6.0 release 11 times more powerful and stable
than the 0.25.5 release? Well, yes and no. The 2.6.0 release included substantial feature additions and
removed the last of the XML-RPC transport layer. Importantly though, the jump in release numbering was
also an acknowledgment that the previous release numbering was not an accurate reflection of the growth
and change in Puppet. In stability and functionality terms, the 0.24.x and 0.25.x releases should have had
the decimal place moved to the right. Additionally, since the 0.25.0 release, Puppet has not really been the
“pre-V1.0” product that its version numbering would suggest.

Older releases of Puppet, especially releases before the 0.24.x branch of releases, tend to be very
poorly featured and contain a number of bugs and issues. They are largely unsupportable and requests
for help for with 0.20.x, 0.22.x, and 0.23.x or earlier releases will be largely met with suggestions that you
upgrade. We do not recommend you use any of these releases.

 Note This book assumes you are using either a 2.6.x or later release, although most of the material (except
where specifically indicated) is supported back to release 0.24.7. It is important to remember that if you use the
0.24.7 or 0.24.8 releases, you will not get the benefit of the performance improvements in the 0.25.x and later
releases.

There are a variety of releases, some older than others, packaged for operating systems. The 0.24.x
releases are broadly packaged. The 2.6.x and 0.25.x releases are packaged and distributed in newer
versions of operating systems and platforms. If you can’t find later Puppet releases packaged for your
distribution you have the option of rolling your own packages, backporting, or installing from source
(though we don’t recommend the latter – see below).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

7

Can I mix releases of Puppet?
The most common deployment model for Puppet is client-server. Many people ask if you can have
differing releases of Puppet on the master and as agents. The answer is yes, with some caveats. The first
caveat is that the master needs to be a later release than the agents. For example, you can have a version
0.24.8 agent connected to a version 2.6.0 master but not a version 2.6.0 agent connected to a 0.24.8
master.

The second caveat is that the older the agent release, the less likely it will function correctly with a
newer release of the master. It is highly unlikely that a version 0.20.0 agent will correctly work with a
version 2.6.0 master. Generally, the 0.24.x branch of agents will happily connect to and function with
2.6.x and 0.25.x-based masters. Later versions of masters may not be so forgiving of earlier agents and
some functions and features may not behave correctly.

Lastly, mixing 2.6.x and later release masters with 0.24.x and earlier agents will mean you won’t get
the full performance enhancements available in 2.6.x. The 0.24.x agents will still communicate with the
slower XML-RPC transport layer rather than taking advantage of the newer REST interface.

Installing Puppet
Puppet can be installed and used on a variety of different platforms, including the following:

• Red Hat Enterprise Linux, CentOS, Fedora & Oracle Enterprise Linux

• Debian and Ubuntu

• Mandrake and Mandriva

• Gentoo

• Solaris and OpenSolaris

• MacOS X and MacOS X Server

• *BSD

• AIX

• HP UX

• Microsoft Windows hosts (in versions after 2.6.0 and with only limited support for
file resources)

On these platforms, Puppet manages a variety of configuration items, including (but not limited to):

• Files

• Services

• Packages

• Users

• Groups

• Cron jobs

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

8

• SSH keys

• Nagios configuration

For Puppet, the agent and master server installations are very similar, although most operating
systems and distribution packaging systems divide the master and agent functions into separate
packages. On some operating systems and distributions, you’ll also need to install Ruby and its libraries
and potentially some additional packages. Most good packaging systems will have most of the required
packages, like Ruby, as prerequisites of the Puppet and Facter packages. For other features (i.e., some
types of reporting that I’ll demonstrate later in this book), you may also need to install additional
packages. When we look at these functions, I’ll let you know what additional packages you’ll need to
install.

We’ll also demonstrate how to install Puppet from source, but we don’t recommend this approach.
It is usually operationally easier and simpler to use your operating system’s package management
system, especially if you are installing Puppet on a large number of hosts.

Installing on Red Hat Enterprise Linux and Fedora
On Red Hat Enterprise Linux and Red Hat based-derivatives, you need to install some prerequisites
(such as the Ruby programming language, the Ruby libraries and the Ruby Shadow library) to allow
Puppet to manage users and groups. You can do this with Red Hat’s package management tool, Yum.

yum install ruby ruby-libs ruby-shadow

Next, to get the latest releases of Puppet, you will need to add the EPEL repository (see sidebar) to
your host and then install packages from that repository. You can add the EPEL repository by adding the
epel-release RPM (.rpm package manager).

rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/
epel-release-5-3.noarch.rpm

 Note The EPEL repository is a volunteer-based community effort from the Fedora project to create a repository
of high-quality add-on packages for Red Hat Enterprise (RHEL) and its compatible spinoffs such as CentOS, Oracle
Enterprise Linux or Scientific Linux. You can find more details on EPEL including how to add it to your host at
http://fedoraproject.org/wiki/EPEL and http://fedoraproject.org/wiki/EPEL/FAQ#howtouse.

On the master, you need to install the puppet, puppet-server, and facter packages from the EPEL
repository.

yum install puppet puppet-server facter

The puppet package contains the agent, the puppet-server package contains the master, and the
facter package contains the system inventory tool Facter. As mentioned earlier, Facter gathers
information, or “facts,” about your hosts that are used to help customize your Puppet configuration.

On the agent, you only need to install the prerequisites and the puppet and facter packages.

yum install puppet facter

www.it-ebooks.info

http://download.fedora.redhat.com/pub/epel/5/i386/%EF%83%89
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse
http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

9

INSTALLING VIA RUBY GEMS

Like most Ruby-based applications, you can also install Puppet and Facter via Ruby Gems. To do this you’ll
need to install Ruby and the appropriate RubyGems package for your operating system. On Red Hat,
CentOS, Fedora, SUSE/SLES, Debian and Ubuntu, this package is called rubygems. Once this package is
installed the gem command should be available to use. You can then use this command to install Puppet
and Facter like so:

gem install puppet facter

Installing on Debian and Ubuntu
On Debian and Ubuntu we also need to install the Ruby packages as a prerequisite:

apt-get install ruby libshadow-ruby1.8

Then you can install the required packages for Puppet: puppet, puppetmaster, and facter. The
puppet package contains the Puppet agent, the puppetmaster package contains the master, and the
facter package contains the Facter system inventory tool.

On the master, you need to install this:

apt-get install puppet puppetmaster facter

On the agent, you only need to install the following packages:

apt-get install puppet facter

 Note Installing the puppet, puppetmaster, and facter packages will also install some prerequisite packages,
such as Ruby itself, if they are not already installed.

Installing on OpenSolaris
Installing Puppet on OpenSolaris requires installing Ruby first. Then install Puppet and Facter via a
RubyGem. Start by using the pkg command to install Ruby.

pkg install -q SUNWruby18

Once Ruby is installed (it can take a little while to download and install), there are two ways to install
Puppet. The first is to use the RubyGems packaging system. RubyGems is installed by default when the
SUNWruby18 package is installed. You can use the gem command to install the required Gems.

gem install puppet facter

Alternatively, if you use Blastwave packages, Puppet and Facter are also available from the
Blastwave repositories at http://www.blastwave.org and can be added using the pkgutil command.

www.it-ebooks.info

http://www.blastwave.org
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

10

Further instructions are available on the Puppet wiki at
http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Solaris.

Installing from Source
You can also install Puppet and Facter from source tarballs. We don’t recommend this approach
because it makes upgrading, uninstalling and generally managing Puppet across a lot of hosts difficult.
To do this you’ll need to ensure some prerequisites are installed, for example Ruby and its libraries,
using the appropriate packages for your host or via source again. First, download the Facter tarball from
the Puppet Labs site.

$ cd /tmp
$ wget http://puppetlabs.com/downloads/facter/facter-1.5.7.tar.gz

Unpack the tarball and run the install.rb script to install Facter.

$ tar -zxf facter-1.5.7.tar.gz
$ cd facter-1.5.7
./install.rb

This will install Facter into the default path for Ruby libraries on your host, for example
/usr/lib/ruby/ on many Linux distributions.

Next, we need to download and install Puppet using the same process:

$ cd /tmp
$ wget http://puppetlabs.com/downloads/puppet/puppet-2.6.1.tar.gz
$ tar -zxf puppet-2.6.1.tar.gz
$ cd puppet-2.6.1
./install.rb

Like the Facter steps, this will install Puppet into the default path for Ruby libraries on your host.

 Note You can find the latest Puppet and Facter releases at
http://projects.puppetlabs.com/projects/puppet/wiki/Downloading_Puppet.

Installing on Microsoft Windows
Since version 2.6.0, Puppet has supported running on Microsoft Windows. For the 2.6.0 release Puppet
only manages a limited subset of configuration, primarily managing files, but other configuration types
should be available in later releases.

Installing Puppet on Microsoft Windows can be achieved a couple of different ways, but the first
step of both methods is to install Ruby. The easiest way to do this is with the Ruby One-Click Installer
available at http://rubyinstaller.rubyforge.org/wiki/wiki.pl?RubyInstaller. You can also download
binaries at http://www.ruby-lang.org/en/downloads/ if you wish.

We’re going to use the One-Click installer. Download the latest version, which at the time of writing
is at http://rubyforge.org/frs/download.php/47082/ruby186-27_rc2.exe. Run the downloaded
executable and install Ruby. During the installation, select the Use RubyGems tick box.

www.it-ebooks.info

http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Solaris
http://puppetlabs.com/downloads/facter/facter-1.5.7.tar.gz
http://puppetlabs.com/downloads/puppet/puppet-2.6.1.tar.gz
http://projects.puppetlabs.com/projects/puppet/wiki/Downloading_Puppet
http://rubyinstaller.rubyforge.org/wiki/wiki.pl?RubyInstaller
http://www.ruby-lang.org/en/downloads/
http://rubyforge.org/frs/download.php/47082/ruby186-27_rc2.exe
http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

11

Once Ruby is installed, start the RubyGems Package Manager from the start menu:

Programs -> Ruby-186-27 -> RubyGems -> RubyGems Package Manager

From the command window that opens, you can then install the Facter and Puppet gems.

C:\gem install puppet facter

Installing on other Platforms
We’ve just explained how to install Puppet on some popular platforms. Puppet can also be installed on a
wide variety of other platforms. Puppet is also available in varying versions on:

• MacOS X via MacPorts and from
https://sites.google.com/a/explanatorygap.net/puppet/

• Solaris via Blastwave

• SLES/OpenSuSE via http://software.opensuse.org/

• Gentoo via Portage

• Mandrake and Mandriva via the Mandriva contrib repository

• FreeBSD via ports tree

• NetBSD via pkgsrc

• OpenBSD via ports tree

• ArchLinux via ArchLinux AUR

 Note You can find a full list of additional operating systems and specific instructions at
http://projects.puppetlabs.com/projects/puppet/wiki/Downloading_Puppet.

Puppet’s tarball also contains some packaging artifacts in the conf directory, for example an RPM
spec file and OS X build scripts, that can allow you to create your own packages for compatible operating
systems. Now you’ve installed Puppet on your chosen platform, we can start configuring it.

Configuring Puppet
Let’s start by configuring a Puppet master that will act as our configuration server. We’ll look at Puppet’s
configuration files, how to configure networking and firewall access and how to start the Puppet master.
Remember that we’re going to be looking at Puppet in its client-server mode. Here, the Puppet master
contains our configuration data, and Puppet agents connect via SSL and pull down the required
configuration.

On most platforms, Puppet’s configuration will be located under the /etc/puppet directory.
Puppet’s principal configuration file is called puppet.conf and is stored at /etc/puppet/puppet.conf. It is

www.it-ebooks.info

https://sites.google.com/a/explanatorygap.net/puppet/
http://software.opensuse.org/
http://projects.puppetlabs.com/projects/puppet/wiki/Downloading_Puppet
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

12

likely that this file has already been created when you installed Puppet, but if it hasn’t, then you can
create a simple file using the following command:

puppetmasterd --genconfig > puppet.conf

 Note We’re assuming your operating system uses the /etc/ directory to store its configuration files, as most
Unix/Linux operating systems and distributions do. If you’re on a platform that doesn’t, for example Microsoft
Windows, substitute the location of your puppet.conf configuration file.

The puppet.conf configuration file is constructed much like an INI-style configuration file and
divided into sections. Each section configures a particular element of Puppet. For example, the [agent]
section configures the Puppet agent, and the [master] section configures the Puppet master binary.
There is also a global configuration section called [main]. All components of Puppet will set options
specified in the [main] section.

 Note On releases before 2.6.0, each section was named for the Puppet binary command rather than the
function, for example the [master] section was called [puppetmasterd] and the [agent] section was
[puppetd]. If you have this older style configuration, then Puppet 2.6.0 and later versions will prompt you to
update your configuration file when you start Puppet.

At this stage, we’re only going to add one entry, certname, to the puppet.conf file. The certname
option specifies the name of the Puppet master. We’ll add the certname value to the [master] section (if
the section doesn’t already exist in your file, then create it).

[master]
certname=puppet.example.com

Replace puppet.example.com with the fully qualified domain name of your host.

 Note We’ll look at other options in the puppet.conf file in later chapters.

Adding the certname option and specifying our fully qualified domain name does two things: it
makes troubleshooting certificate issues easier, and it addresses a bug with the Ruby SSL code present
on many Linux-based hosts. This bug requires that we manually specify the name used by your Puppet
master’s SSL certificates. You can read more about the precise bug at
http://projects.puppetlabs.com/projects/puppet/wiki/Ruby_Ssl_2007_006.

www.it-ebooks.info

http://projects.puppetlabs.com/projects/puppet/wiki/Ruby_Ssl_2007_006
http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

13

We recommend you also create a DNS CNAME for your Puppet host, for example puppet.example.com,
and add it to your /etc/hosts file and your DNS configuration:

/etc/hosts
127.0.0.1 localhost
192.168.0.1 puppet.example.com puppet

Once we’ve configured appropriate DNS for Puppet we need to add the site.pp file which holds the
basics of the configuration items we want to manage.

The site.pp file
The site.pp file tells Puppet where and what configuration to load for our clients. We’re going to store
this file in a directory called manifests under the /etc/puppet directory.

 Note “Manifest” is Puppet’s term for files containing configuration information. Manifest files have a suffix of
.pp.

This directory and file is often already created when the Puppet packages are installed. If it hasn’t
already been created, then create this directory and file now:

mkdir /etc/puppet/manifests
touch /etc/puppet/manifests/site.pp

 Tip Puppet will not start without the site.pp file being present.

We’ll add some configuration to this file later in this chapter, but now we just need the file present.

 Note You can also override the name and location of the manifests directory and site.pp file using the
manifestdir and manifest configuration options, respectively. These options are set in the puppet.conf
configuration file in the [master] section. See
http://docs.puppetlabs.com/references/stable/configuration.html for a full list of configuration options.
We’ll talk about a variety of other options throughout this book.

www.it-ebooks.info

http://docs.puppetlabs.com/references/stable/configuration.html
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

14

Firewall Configuration
The Puppet master runs on TCP port 8140. This port needs to be open on your master’s firewall (and any
intervening firewalls and network devices), and your client must be able to route and connect to the
master. To do this, you need to have an appropriate firewall rule on your master, such as the following
rule for the Netfilter firewall:

-A INPUT -p tcp -m state --state NEW --dport 8140 -j ACCEPT

The preceding line allows access from everywhere to TCP port 8140. If possible, you should lock this
down to only networks that require access to your Puppet master. For example:

-A INPUT -p tcp -m state --state NEW -s 192.168.0.0/24 --dport 8140 -j ACCEPT

Here we’ve restricted access to port 8140 to the 192.168.0.0/24 subnet.

 Note You can create similar rules for other operating systems’ firewalls such as pf or the Windows Firewall.

Starting the Puppet Master
The Puppet master can be started via an init script on most Linux distributions. On Red Hat, we would
run the init script with the service command, like so:

service puppetmaster start

On Debian or Ubuntu, we run it using the invoke-rc.d command:

invoke-rc.d puppetmaster start

Other platforms should use their appropriate service management tools.

 Note Output from the daemon can be seen in /var/log/messages on Red Hat-based hosts and
/var/log/daemon.log on Debian and Ubuntu hosts. Puppet will log via the daemon facility to Syslog by default on
most operating systems. You will find output from the daemons in the appropriate location and files for your
operating system.

Starting the daemon will initiate your Puppet environment, create a local Certificate Authority,
certificates and keys for the master, and open the appropriate network socket to await client
connections. You can see Puppet’s SSL information and certificates in the /etc/puppet/ssl directory.

ls –l /etc/puppet/ssl
drwxrwx--- 5 puppet puppet 4096 2009-11-16 22:36 ca

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

15

drwxr-xr-x 2 puppet root 4096 2009-11-16 22:36 certificate_requests
drwxr-xr-x 2 puppet root 4096 2009-11-16 22:36 certs
-rw-r--r-- 1 puppet root 361 2009-11-16 22:36 crl.pem
drwxr-x--- 2 puppet root 4096 2009-11-16 22:36 private
drwxr-x--- 2 puppet root 4096 2009-11-16 22:36 private_keys
drwxr-xr-x 2 puppet root 4096 2009-11-16 22:36 public_keys

The directory on the master contains your Certificate Authority, certificate requests from your
clients, a certificate for your master and certificates for all your clients.

 Note You can override the location of the SSL files using the ssldir option.

You can also run the Puppet master from the command line to help test and debug issues. I
recommend doing this when testing Puppet initially. To do this we start the Puppet master daemon like
so:

puppet master --verbose --no-daemonize

The --verbose option outputs verbose logging and the --no-daemonize option keeps the daemon in
the foreground and redirects output to standard out. You can also add the --debug option to produce
more verbose debug output from the daemon.

A SINGLE BINARY

From version 2.6.0 and later, all the functionality of Puppet is available from a single binary, puppet, in the
style of tools like git, rather than the individual binaries previously used (the individual binaries are still
available for backwards-compatibility at this time). This means you can now start the Puppet master by
either running:

puppet master

Or,

puppetmasterd

The agent functionality is also available in the same way:

puppet agent

Or,

puppetd

You can see a full list of the available functionality from the puppet binary by running:

$ puppet --help

We reference both the individual binaries and the single binary commands in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

16

Connecting Our First Agent
Once you have the Puppet master configured and started, we can configure and initiate your first agent.
On the agent, as we mentioned earlier, you need to install the appropriate packages, usually puppet and
facter, using your operating system’s package management system. We’re going to install a client on a
host called node1.example.com and then connect to our puppet.example.com master.

When connecting our first client, we want to run the Puppet agent from the command line rather
than as a service. This will allow us to see what is going on as we connect. The Puppet agent daemon is
run using puppet agent (or in versions previous to 2.6.0, using the puppetd binary) and you can see a
connection to the master initiated in Listing 1-2.

 Tip You can also run a Puppet client on the Puppet master, but we’re going to start with the more traditional
client server. And yes, that means you can use Puppet to manage itself!

Listing 1-2. Puppet Client Connection to the Puppet Master

node1# puppet agent --server=puppet.example.com --no-daemonize --verbose
info: Creating a new certificate request for node1.example.com
info: Creating a new SSL key at /var/lib/puppet/ssl/private_keys/node1.example.com
.pem
warning: peer certificate won't be verified in this SSL session
notice: Did not receive certificate

In Listing 1-2, we executed the Puppet agent with three options. The first option, --server, specifies
the name or address of the Puppet master to connect to.

 Tip If we don’t specify a server, Puppet will look for a host called “puppet.” It’s often a good idea to create a
CNAME for your Puppet master, for example puppet.example.com.

We can also specify this in the main section of the /etc/puppet/puppet.conf configuration file on the
client.

[main]
server=puppet.example.com

Your client must be able to resolve the hostname of the master to connect to (this is why it is useful
to have a Puppet CNAME and to specify your Puppet master in the /etc/hosts file on your client).

The --no-daemonize option runs the Puppet client in the foreground and outputs to standard out. By
default, the Puppet client runs as a daemon.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

17

 Tip The --verbose option enables verbose output from the client. Adding the --debug option can provide
further output that is useful for troubleshooting.

In Listing 1-1, you can see the output from our connection. The agent has created a certificate
signing request and a private key to secure our connection. Puppet uses SSL certificates to authenticate
connections between the master and the agent. The agent sends the certificate request to the master and
waits for the master to sign and return the certificate.

At this point, the agent is still running and awaiting the signed certificate. It will continue to check
for a signed certificate every two minutes until it receives one or is canceled (using Ctrl-C, for example).

 Note You can change the time the Puppet agent will wait by using the --waitforcert option. You can specify a
time in seconds or 0 to not wait for a certificate, in which case the agent will exit.

Completing the Connection
To complete the connection and authenticate our agent we now need to sign the certificate the agent
has sent to the master. We do this using puppet cert (or the puppetca binary) on the master.

puppet# puppet cert --list
node1.example.com

 Tip You can find a full list of the binaries that come with Puppet at
http://puppetlabs.com/trac/puppet/wiki/PuppetExecutables.

The --list option displays all the certificates waiting to be signed. We can then sign our certificate
using the --sign option.

puppet# puppet cert --sign node1.example.com
Signed node1.example.com

You can sign all waiting certificates with the puppet cert --sign --all command.

 Note Rather than signing each individual certificate, you can also enable “autosign” mode. In this mode, all
incoming connections from specified IP addresses or address ranges are automatically signed. This obviously has
some security implications and should only be used if you are comfortable with it. You can find more details at
http://puppetlabs.com/trac/puppet/wiki/FrequentlyAskedQuestions#why-shouldn-t-i-use-autosign-

for-all-my-clients.

www.it-ebooks.info

http://puppetlabs.com/trac/puppet/wiki/PuppetExecutables
http://puppetlabs.com/trac/puppet/wiki/FrequentlyAskedQuestions#why-shouldn-t-i-use-autosign-for-all-my-clients
http://puppetlabs.com/trac/puppet/wiki/FrequentlyAskedQuestions#why-shouldn-t-i-use-autosign-for-all-my-clients
http://puppetlabs.com/trac/puppet/wiki/FrequentlyAskedQuestions#why-shouldn-t-i-use-autosign-for-all-my-clients
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

18

On the client, two minutes after we’ve signed our certificate, we should see the following entries (or
you can stop and restart the Puppet agent rather than waiting two minutes):

notice: Got signed certificate
notice: Starting Puppet client version 2.6.1

The agent is now authenticated with the master, but we have another message present:

err: Could not retrieve catalog: Could not find default node or by name with
'node1.example.com, node1' on node node1.example.com

The agent has connected and our signed certificate has authenticated the session with the master.
The master, however, doesn’t have any configuration available for our puppet node, node1.example.com,
and hence we have received an error message. We now have to add some configuration for this agent on
the master.

 Caution It is important that the time is accurate on your master and agent. SSL connections rely on the clock on
hosts being correct. If the clocks are incorrect then your connection may fail with an error indicating that your
certificates are not trusted. You should use something like NTP (Network Time Protocol) to ensure your host’s
clocks are accurate.

Creating Our First Configuration
Let’s get some more understanding of Puppet’s components, configuration language and capabilities.
We learned earlier that Puppet describes the files containing configuration data as manifests. Puppet
manifests are made up of a number of major components:

• Resources – Individual configuration items

• Files – Physical files you can serve out to your agents

• Templates – Template files that you can use to populate files

• Nodes – Specifies the configuration of each agent

• Classes – Collections of resources

• Definitions – Composite collections of resources

These components are wrapped in a configuration language that includes variables, conditionals,
arrays and other features. Later in this chapter we’ll introduce you to the basics of the Puppet language
and its elements. In the next chapter, we’ll extend your knowledge of the language by taking you through
an implementation of a multi-agent site managed with Puppet.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

19

 Note In addition to these components, Puppet also has the concept of a “module,” which is a portable collection
of manifests that contain resources, classes, definitions, files, and templates. We’ll see our first module shortly.

Extending the site.pp file
Our first step in creating our first agent configuration is defining and extending the site.pp file. See an
example of this file in Listing 1-3.

Listing 1-3. The site.pp File

import 'nodes.pp'
$puppetserver = 'puppet.example.com'

 Note Puppet manifest files are traditionally suffixed with .pp. If your manifest file has the .pp suffix, you can
drop the suffix when importing files.

The import directive tells Puppet to load a file called nodes.pp. This directive is used to include any
Puppet configuration we want to load. For example, if we specify resources in a file called resources.pp,
we would need to import it this way:

import 'resources.pp'

When Puppet starts, it will now load the nodes.pp file and process the contents. In this case, this file
will contain the node definitions we create for each agent we connect. You can also import multiple files
like so:

import 'nodes/*'
import 'classes/*'

The import statement will load all files with a suffix of .pp in the directories nodes and classes.
The $puppetserver statement sets a variable. In Puppet, configuration statements starting with a

dollar sign are variables used to specify values that you can use in Puppet configuration.

In Listing 1-3, we’ve created a variable that contains the fully qualified domain name of our Puppet

master, enclosed in double quotes.

 Note In Puppet manifests, strings with double-quotes are subject to variable interpolation and strings with
single quotes are not. If you want to use a variable in a string, you should enclose it in double-quotes, for example:
“This is a $variable string”. You can also add braces, { }, to variables in strings to define them more clearly, “This
is a ${variable} string”. You can find quoting rules for Puppet at
http://docs.puppetlabs.com/guides/more_language.html#quoting.

www.it-ebooks.info

http://docs.puppetlabs.com/guides/more_language.html#quoting
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

20

Agent Configuration
Let’s add our first agent definition to the nodes.pp file we’ve just asked Puppet to import. In Puppet
manifests, agents are defined using node statements.

touch /etc/puppet/manifests/nodes.pp.

You can see the node definition we’re going to add in Listing 1-4.

Listing 1-4. Our Node Configuration

node 'node1.example.com' {
 include sudo
}

For a node definition we specify the node name, enclosed in single quotes, and then specify the
configuration that applies to it inside curly braces { }. The client name can be the hostname or the fully
qualified domain name of the client. At this stage, you can’t specify nodes with wildcards (e.g.,
*.example.com) but you can use regular expressions, such as:

node /^www\d+\.example\.com/ {
 include sudo
}

This example will match all nodes from the domain example.com with the hostname www1, www12,
www123, etc.

 Note We’ll see more of node regular expressions in Chapter 3.

Next, we specify an include directive in our node definition. The include directive specifies a
collection of configuration that we want to apply to our host. There are two types of collections we can
include in a node:

• Classes – a basic collection of resources

• Modules – an advanced, portable collection of resources that can include classes,
definitions, and other supporting configuration

You can include multiple collections by using multiple include directives or separating each
collection with commas.

include sudo
include sshd
include vim, syslog-ng

In addition to including collections of resources, you can also specify individual resources to a node,
like so:

node 'node1.example.com' {

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

21

 include sudo
 package { 'vim': ensure => present }
}

In this case however, as we’ve seen in Listing 1-4, we’re just going to add a single collection of
resources: the sudo module.

 Note Puppet also has an inheritance model in which you can have one node inherit values from another node.
You can read about node inheritance at
http://docs.puppetlabs.com/guides/language_tutorial.html#nodes; we’ll talk more about it in Chapter 3.

Creating our first module
The next step is to create the sudo module. A module is a collection of manifests, resources, files,
templates, classes, and definitions. A single module would contain everything required to configure a
particular application. For example, it could contain all the resources (specified in manifest files), files
and associated configuration to configure Apache or the sudo command on a host.

Each module needs a specific directory structure and a file called init.pp. This structure allows
Puppet to automatically load modules. To perform this automatic loading, Puppet checks a series of
directories called the module path. The module path is configured with the modulepath configuration
option in the [main] section of the puppet.conf file. By default, Puppet looks for modules in the
/etc/puppet/modules and /var/lib/puppet/modules directories, but you can add additional locations if
required:

[main]
moduledir = /etc/puppet/modules:/var/lib/puppet/modules:/opt/modules

The automatic loading of modules means, unlike our nodes.pp file, modules don’t need to be loaded
into Puppet using the import directive.

Module Structure
Let’s start by creating a module directory and file structure in Listing 1-5. We’re going to create this
structure under the directory /etc/puppet/modules. We will name the module sudo. Modules (and
classes) must be normal words containing only letters, numbers, underscores and dashes.

Listing 1-5. Module Structure

mkdir –p /etc/puppet/modules/sudo/{files,templates,manifests}
touch /etc/puppet/modules/sudo/manifests/init.pp

The manifests directory will hold our init.pp file and any other configuration. The init.pp file is the
core of your module and every module must have one. The files directory will hold any files we wish to
serve as part of our module. The templates directory will contain any templates that our module might
use.

www.it-ebooks.info

http://docs.puppetlabs.com/guides/language_tutorial.html#nodes
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

22

The init.pp file
Now let’s look inside our sudo module, starting with the init.pp file, which we can see in Listing 1-6.

Listing 1-6. The sudo module’s init.pp file

class sudo {
 package { sudo:
 ensure => present,
 }

 if $operatingsystem == "Ubuntu" {
 package { "sudo-ldap":
 ensure => present,
 require => Package["sudo"],
 }
 }

 file { "/etc/sudoers":
 owner => "root",
 group => "root",
 mode => 0440,
 source => "puppet://$puppetserver/modules/sudo/etc/sudoers",
 require => Package["sudo"],
 }
}

Our sudo module’s init.pp file contains a single class, also called sudo. There are three resources in
the class, two packages and a file resource.

The first package resource ensures that the sudo package is installed, ensure => present. The
second package resource uses Puppet’s if/else syntax to set a condition on the installation of the sudo-
ldap package.

 Note Puppet also has two other conditional statements, a case statement and a selector syntax. You can see
more details of Puppet’s conditional syntaxes at
http://docs.puppetlabs.com/guides/more_language.html#conditionals.

Puppet will check the value of the operatingsystem fact for each connecting client. If the value of the
$operatingsystem fact is Ubuntu, then Puppet should install the sudo-ldap package.

 Note We discovered Facter and its values earlier in this chapter. Each fact is available as a variable, the fact
name prefixed with a $ sign, in your Puppet manifests.

www.it-ebooks.info

http://docs.puppetlabs.com/guides/more_language.html#conditionals
http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

23

Lastly, in this resource we’ve also specified a new attribute, require. The require attribute is a
metaparameter. Metaparameters are resource attributes that are part of Puppet’s framework rather than
belonging to a specific type. They perform actions on resources and can be specified for any type of
resource.

The require metaparameter creates a dependency relationship between the Package["sudo-ldap"]
resource and the Package["sudo"] resource. In this case, adding the require metaparameter to the
resource tells Puppet that the Package["sudo"] is required by the Package["sudo-ldap"] resource. Hence,
the Package["sudo"] resource must and will be installed first.

Relationships are an important part of Puppet. They allow you to instantiate real world relationships
between configuration components on your hosts. A good example of this is networking. A number of
resources on your hosts, for example a Web server or an MTA (Mail Transfer Agent), would rely on your
network being configured and active before they can be activated. Relationships allow you to specify
that certain resources, for example those configuring your network, are processed before those
resources that configure your Web server or MTA.

The usefulness of relationships does not end there. Puppet can also build triggering relationships
between resources. For example, if a file resource changes, then you can tell Puppet to restart a service
resource. This means you can change a service’s configuration file and have that change trigger a restart
of that service to ensure it is running with the updated configuration. We’ll see a lot more of these
relationships and other metaparameters in Chapter 3.

 Note You can see a full list of the available metaparameters at
http://docs.puppetlabs.com/references/stable/metaparameter.html.

The last resource in the sudo class is a file resource, File["/etc/sudoers"], which manages the
/etc/sudoers file. Its first three attributes allow us to specify the owner, group and permissions of the
file. In this case, the file is owned by the root user and group and has its mode set to 0440 (currently the
mode can only be set using octal notation).

The next attribute, source, allows Puppet to retrieve a file from the Puppet file server and deliver it to
the client. The value of this attribute is the name of the Puppet file server and the location and name of
the file to retrieve.

puppet://$puppetserver/modules/sudo/etc/sudoers

Let’s break down this value. The puppet:// part specifies that Puppet will use the Puppet file server
protocol to retrieve the file.

 Note Currently, the Puppet file server protocol is the only protocol available. In future versions of Puppet, the file
server will support other protocols, such as HTTP or rsync.

The $puppetserver variable contains the hostname of our Puppet server. Remember that we created
this variable and placed it in our site.pp file earlier? Instead of the variable, you could also specify the
host name of the file server here.

puppet://puppet.example.com/modules/sudo/etc/sudoers

www.it-ebooks.info

http://docs.puppetlabs.com/references/stable/metaparameter.html
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

24

 Tip One handy shortcut is to just remove the server name. Then Puppet will use whatever server the client is
currently connected to, for example our source line would look like: puppet:///modules/sudo/etc/sudoers.

The next portion of our source value tells Puppet where to look for the file. This is the equivalent of
the path to a network file share. The first portion of this share is modules, which tells us that the file is
stored in a module. Next we specify the name of the module the file is contained in, in this case sudo.
Finally, we specify the path inside that module to find the file.

All files in modules are stored under the files directory; this is considered the “root” of the
module’s file “share.” In our case, we would create the directory etc under the files directory and create
the sudoers file in this directory.

puppet$ mkdir –p /etc/puppet/modules/sudo/files/etc
puppet$ cp /etc/sudoers /etc/puppet/manifests/files/etc/sudoers

VERSION CONTROL

As your configuration gets more complicated, you should consider adding it to a version-control system
such as Subversion or Git. A version-control system allows you to record and track changes to files, and is
commonly used by software developers. For configuration management, version control allows you to
track changes to your configuration. This is highly useful if you need to revert to a previously known state
or make changes without impacting your running configuration.

You can find information about how to use Subversion at http://svnbook.red-bean.com/ and some
specific ideas about how to use it with Puppet at
http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Version_Control. We’ll also show
you how a version control system might work with Puppet in Chapter 3.

Applying Our First Configuration
We’ve created our first Puppet module! Let’s step through what will happen when we connect an agent
that includes this module.

1. It will install the sudo package.

2. If it’s an Ubuntu host, then it will also install the sudo-ldap package

3. Lastly, it will download the sudoers file and install it into /etc/sudoers.

Now let’s see this in action and include our new module on the agent we’ve created,
node1.example.com. Remember we created a node statement for our host in Listing 1.4:

node 'node1.example.com' {
 include sudo
}

www.it-ebooks.info

http://svnbook.red-bean.com/
http://projects.puppetlabs.com/projects/puppet/wiki/Puppet_Version_Control
http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

25

When the agent connects it will now include the sudo module. To do this we run the Puppet agent
again, as shown in Listing 1-7.

Listing 1-7. Applying Our First Configuration

puppet# puppet agent --server=puppet.example.com --no-daemonize --verbose --onetime

 Note Puppet has a handy mode called ”noop.” The “noop” mode runs Puppet but doesn’t make any changes on
your host. It allows you to see what Puppet would do, as a dry run. To run in “noop” mode, specify --noop on the
command line.

In Listing 1-7, we’ve run the Puppet agent and connected to the master. We’ve run the agent in the
foreground, in verbose mode and with the --onetime option that tells the Puppet agent to only run once
and then stop. We can see a configuration run commence on our host:

 Tip In Puppet, the combined configuration to be applied to a host is called a “catalog” and the process of
applying it is called a “run.” You can find a glossary of Puppet terminology at
http://projects.puppetlabs.com/projects/puppet/wiki/Glossary_Of_Terms.

notice: Starting Puppet client version 2.6.1
info: Caching catalog for node1.example.com
info: Applying configuration version '1272631279'
notice: //sudo/Package[sudo]/ensure: created
notice: //sudo/File[/etc/sudoers]/checksum: checksum changed
 '{md5}9f95a522f5265b7e7945ff65369acdd2' to '{md5}d657d8d55ecdf88a2d11da73ac5662a4'
info: Filebucket[/var/lib/puppet/clientbucket]: Adding
 /etc/sudoers(d657d8d55ecdf88a2d11da73ac5662a4)
info: //sudo/File[/etc/sudoers]: Filebucketed /etc/sudoers to puppet with sum
 d657d8d55ecdf88a2d11da73ac5662a4
notice: //sudo/File[/etc/sudoers]/content: content changed
 '{md5}d657d8d55ecdf88a2d11da73ac5662a4' to '{md5}9f95a522f5265b7e7945ff65369acdd2'
notice: Finished catalog run in 10.54 seconds

Let’s look at what has happened during our run. First we see that the agent has cached the
configuration for the host. By default, Puppet uses this cache if it fails to connect to the master during a
future run.

Next, we can see our resources being applied. First the sudo package is installed and then the
/etc/sudoers file is copied across. We can see that during the copy process Puppet has backed up the old
file, a process Puppet calls file bucketing. This means that if we’ve made a mistake and overwritten the
file incorrectly we can always recover it.

www.it-ebooks.info

http://projects.puppetlabs.com/projects/puppet/wiki/Glossary_Of_Terms
http://www.it-ebooks.info/

CHAPTER 1 GETTING STARTED WITH PUPPET

26

 Tip Puppet can back up files remotely to our master using the filebucket type. See
http://docs.puppetlabs.com/references/stable/type.html#filebucket. We’ll show you how to do this in
Chapter 3.

The last line of the catalog run tells us this process took 10.54 seconds to complete.
If we look on the Puppet master, we can see the results of the run logged there too.

notice: Starting Puppet server version 2.6.1
info: Autoloaded module sudo
info: Expiring the node cache of node1.example.com
info: Not using expired node for node1.example.com from cache; expired at Fri Apr 30
 08:44:46 -0400 2010
info: Caching node for node1.example.com
notice: Compiled catalog for node1.example.com in 0.02 seconds

Here we can see that Puppet has loaded our sudo module and compiled the catalog for
node1.example.com. This catalog is then sent down to the agent and applied on the target host.

If the Puppet agent is running as a daemon, it would then wait 30 minutes and then connect to the
master again to check if the configuration has changed on our host or if a new configuration is available
from the master. We can adjust this run interval using the runinterval option in the
/etc/puppet/puppet.conf configuration file on the agent host.

[agent]
runinterval=3600

Here we’ve adjusted the run interval to 3600 seconds, or 60 minutes.

Summary
So that’s it - we’ve used Puppet to configure our first agent. You’ve also been introduced to the
theoretical underpinnings of Puppet and how to:

• Install Puppet

• Configure Puppet

• Use Puppet to manage some simple configuration on a single host

In the next chapter, we’ll extend our Puppet configuration to multiple agents, learn more about
Puppet’s configuration language and learn how to build more complex configurations.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://docs.puppetlabs.com/references/stable/type.html#filebucket
http://www.it-ebooks.info/

 CHAPTER 1 GETTING STARTED WITH PUPPET

27

Resources
• Introduction to Puppet http://docs.puppetlabs.com/guides/introduction.html

• Installation - http://docs.puppetlabs.com/guides/installation.html

• Configuration Guide - http://docs.puppetlabs.com/guides/configuring.html

• Configuration Reference -
http://docs.puppetlabs.com/references/stable/configuration.html

www.it-ebooks.info

http://docs.puppetlabs.com/guides/introduction.html
http://docs.puppetlabs.com/guides/installation.html
http://docs.puppetlabs.com/guides/configuring.html
http://docs.puppetlabs.com/references/stable/configuration.html
http://www.it-ebooks.info/

C H A P T E R 2

29

Building Hosts with Puppet

In Chapter 1 we installed and configured Puppet, created our first module, and applied that module and
its configuration via the Puppet agent to a host. In this chapter, we’re going to extend this process to
build some more complete modules and hosts with Puppet for a hypothetical company, Example.com
Pty Ltd. Each host’s functionality we build will introduce new Puppet concepts and ideas.

Example.com Pty Ltd has four hosts we’re going to manage with Puppet: a Web server, a database
server, a mail server and our Puppet master server located in a flat network. You can see that network in
Figure 2-1.

Figure 2-1. The Example.com Pty Ltd Network

Like many organizations, though, Example.com is not a very homogenous environment and each
host uses a different operating system, as follows:

• mail.example.com – (Red Hat Enterprise Linux 5)

• db.example.com – (Solaris 10)

• web.example.com – (Ubuntu 10.04)

• puppet.example.com – (Ubuntu 10.04)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

30

To solve this problem, we’ll begin by working through how we use Puppet in a multiple operating
system environment. Be sure you’ve installed the base operating system on these hosts as described in
Chapter 1, because we’ll perform some basic configuration on the hosts. We’ll start with configuring SSH
for each host, then we’ll install and configure some role-specific applications for the hosts as follows:

• Postfix (mail.example.com)

• MySQL (db.example.com)

• Apache and a website (web.example.com)

• Manage the Puppet master with Puppet (puppet.example.com)

As we configure each host, we’ll introduce some of the different features and functions available in
Puppet. By the end of the chapter you’ll have a firm grasp of the basics. In subsequent chapters, we’ll
build on this knowledge and introduce some of Puppet’s more advanced features.

Getting Started
Before proceeding, we must have the proper setup, so we need to install the Puppet master and agent
and then create node definitions for each of our hosts.

 Note As we mentioned in Chapter 1, the Puppet software is called the “agent.” Puppet calls the definition of the
host itself a “node.”

Installing Puppet
First, we need to install the Puppet master and agent. We’re going to install the Puppet master on
puppet.example.com and the Puppet agent on all our hosts, including puppet.example.com. We’re
installing the agent on the Puppet master because we’re going to use Puppet to manage itself! We then
need to connect, create and sign certificates for each host. To do this, you should follow the installation
instructions for the relevant operating system from Chapter 1 on each of the four hosts. For example, for
installation on the Red Hat Enterprise Linux host, use the instructions in the Installing on Red Hat
Enterprise Linux and Fedora section. You can then move on to configuring the nodes (aka hosts).

 Tip If you use a provisioning tool like Kickstart or Preseed, you can also include Puppet installation and signing
as part of your build process. You can see an example of how to do that at
http://projects.puppetlabs.com/projects/1/wiki/Bootstrapping_With_Puppet.

www.it-ebooks.info

http://projects.puppetlabs.com/projects/1/wiki/Bootstrapping_With_Puppet
http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

31

Configuring Nodes
After installing the Puppet master and associated agents, we need to create node definitions for each of
our hosts in the node.pp file. We created this file in the /etc/puppet/manifests/ directory in Chapter 1. As
you can see in Listing 2-1, we’ve created empty node definitions for each of the nodes in our network.

Listing 2-1. Node defintions in nodes.pp

node 'puppet.example.com' {
}

node 'web.example.com' {
}

node 'db.example.com' {
}

node 'mail.example.com' {
}

We haven’t included any configuration on our node definitions – Puppet will just recognize the
node as it connects and do nothing.

As you might imagine, if you’ve got a lot of nodes, the nodes.pp file could become quite large and
complex. Puppet has some simple ways of dealing with this issue, described next.

Working With Similar Hosts
The first method works best for large number of similar hosts, such as Web servers, where the
configuration of the host is largely identical. For example, if our environment had multiple hosts called
web1, web2, web3, etc., we could specify:

node 'web1.example.com', 'web2.example.com', 'web3.example.com' { }

In version 0.25.0 and later, we can also specify these nodes in the form of a regular expression:

node /^web\d+\.example\.com$/ { }

This would match any host starting with webx where x is a digit or digits, such as web1 or web20.

Using External Sources
Puppet also has the ability to use external sources for your node data. These sources can include LDAP
directories, databases or other external repositories. This allows you to leverage existing sources of
information about your environment, such as asset management systems or identity stores. This
functionality is called External Node Classification, or ENC, and we’ll discuss it in more detail in
Chapter 3.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

32

Specifying a Default Node
You can also specify a special node called default. This is, as you’d imagine, a default node. If no other
node definition exists, then the contents of this node are applied to the host.

node default {
 include defaultclass
}

Node Inheritance Structure
Lastly, Puppet has a simple node inheritance structure. You can use this to have one node inherit the
contents of another node. Only one node can be inherited at a time. So, for example, we might want the
node web host to inherit the contents of a node called base.

node base {
 include sudo, mailx
}

node 'web.example.com' inherits base {
 …
}

Here we’ve defined the base node to include the modules sudo and mailx and then specified that the
web node inherits the contents of this node. This means the web node would include sudo and mailx in
addition to any classes included in its own node definition. Inheritance is cumulative and you can
specify an inheritance structure like so:

node base {
 …
}

node webserver inherits base {
 …
}

node 'web.example.com' inherits webserver {
 …
}

Here the webserver node inherits the contents of the base node, and then in turn the
web.example.com node cumulatively inherits the contents of both nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

33

 Caution When starting out with Puppet it is common to structure the assignment of classes to nodes using
inheritance and a base node. This structure allows classes common to every node to be placed in the base node.
This organization structure may pose a problem in the future as the number of nodes and the scale of puppet
increases and base classes need to be added or removed from only a subset of all nodes. In order to avoid future
refactoring, avoid using node inheritance in preference of a flat node classification tree. A good alternative to the
base node and class inheritance is to employ conditional statements, which we’ll introduce later in this chapter, to
determine which classes a node should and should not receive instead of relying on node inheritance.

Variable Scoping

The concept of node inheritance is a good place to talk about an important and sometimes tricky
concept in Puppet: variable scoping. Let’s imagine we’ve decided to configure some variables in our
nodes, for example:

node base {
 $location = "dc1"
 …
 $location = "dc2"
}

In most programming languages, the $location variable would start out with a value of "dc1" and
then, when it was next assigned, it would change to a value of "dc2". In Puppet, these same two
statements cause an error:

err: Cannot reassign variable location at /etc/puppet/manifests/node.pp:4

Why is this? Puppet is declarative and hence dynamically scoped. Allowing variable reassignment

would have to rely on order in the file to determine the value of the variable and order does not matter in
a declarative language. The principal outcome of this is that you cannot redefine a variable inside the
same scope it was defined in, like our node. Let’s take another example, of a class this time instead of a
node:

class ssh_sudo {
 $package = "openssh"
 package { $package: ensure => installed }

 $package = "sudo"
 package { $package: ensure => installed }
}

You can see that we’ve tried to define the $package variable twice. If we were to try to compile and
apply this configuration, the Puppet agent would return the following error:

err: Cannot reassign variable package at /etc/puppet/modules/ssh/manifests/init.pp:5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

34

 Note The error helpfully also tells us the file, and line number in the file, where we’ve tried to redefine the
variable.

So what’s a scope? Each class, definition, or node introduces a new scope, and there is also a top
scope for everything defined outside of those structures. Scopes are created hierarchically and the
important thing you need to remember about scope hierarchy is that it is created when Puppet code is
evaluated, rather than when it is defined, for example:

$package = "openssh"

class ssh {
 package { $package:
 ensure => installed,
 }
}

class ssh_server
 include ssh
 $package = "openssh-server"
}

include ssh_server

Here a top level scope, in which $package is defined, is present. Then there’s a scope for the
ssh_server class and a scope below that for the ssh class. When Puppet runs the $package variable will
have a value of "openssh-server" because this is what the variable was when evaluation occurred.

Naturally, in these different scopes, you can reassign the value of a variable:

class apache {
 $apache = 1
}

class passenger {
 $apache = 2
}

The same variable can be used and defined in both the apache and passenger classes without
generating an error because they represent different scopes.

Going back to node inheritance, you can probably see how this dynamic scoping is going to be
potentially confusing, for example:

class apache {
 $apacheversion = "2.0.33"
 package { "apache2":
 ensure => $apacheversion,
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

35

node 'web.example.com' {
 include apache
}

node 'web2.example.com' inherits 'web.example.com' {
 $apacheversion = "2.0.42"
}

Here we’ve created a class called apache and a package resource for the apache2 package. We’ve also
created a variable called $apacheversion and used that as the value of the ensure attribute of the package
resource. This tells Puppet that we want to install version 2.0.33 of Apache. We’ve then included our
apache class in a node, web.example.com.

But we’ve also decided to create another node, web2.example.com, which inherits the contents of the
web.example.com node. In this case, however, we’ve decided to install a different Apache version and
therefore we specified a new value for the $apacheversion variable. But instead of using this new value,
Puppet will continue to install the 2.0.33 version of Apache because the $apacheversion variable is
maintained in its original scope of the web.example.com node and the new variable value is ignored.

There is a work-around for this issue that you can see here:

class apache {
 $apacheversion = "2.0.33"
 package { "apache2":
 ensure => $apacheversion,
 }
}

class base {
 include apache
}

node 'web.example.com' {
 $apacheversion = "2.0.42"
 include base
}

Instead of defining a base node we’ve defined a base class that includes the apache class. When we
created our node, we specified the $apacheversion we want and then included the base class, ensuring
we’re in the right scope. We could put other like items in our base class and specify any required
variables.

 Note You can learn more about variable scoping, workarounds and related issues at
http://projects.puppetlabs.com/projects/puppet/wiki/Frequently_Asked_Questions#Common+Misconce

ptions.

With Puppet installed and node definitions in place, we can now move on to creating our modules
for the various hosts. But first, let’s do a quick refresher on modules in general.

www.it-ebooks.info

http://projects.puppetlabs.com/projects/puppet/wiki/Frequently_Asked_Questions#Common+Misconce
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

36

Making (More) Magic With Modules
In Chapter 1, we learned about modules: self-contained collections of resources, classes, files that can be
served, and templates for configuration files. We’re going to use several modules to define the various
facets of each host’s configuration. For example, we will have a module for managing Apache on our
Web server and another for managing Postfix on our mail server.

Recall that modules are structured collections of Puppet manifests. By default Puppet will search the
module path, which is by default /etc/puppet/modules/ and /var/lib/puppet/modules, for modules and
load them. These paths are controlled by the modulepath configuration option. This means we don’t
need to import any of these files into Puppet – it all happens automatically.

It’s very important that modules are structured properly. For example, our sudo module contains
the following:

sudo/
sudo/manifests
sudo/manifests/init.pp
sudo/files
sudo/templates

Inside our init.pp we create a class with the name of our module:

class sudo {
configuration…
}

Lastly, we also discovered we can apply a module, like the sudo module we created in Chapter 1, to a

node by using the include function like so:

node 'puppet.example.com' {
 include sudo
}

The included function adds the resources contained in a class or module, for example adding all the

resources contained in the sudo module here to the node puppet.example.com.
Let’s now see how to manage the contents of our modules using version control tools as we

recommended in Chapter 1.

 Note You don’t have to always create your own modules. The Puppet Forge at http://forge.puppetlabs.com
contains a large collection of pre-existing modules that you can either use immediately or modify to suit your
environment. This can make getting started with Puppet extremely simple and fast.

Version Controlling Your Modules
Because modules present self-contained collections of configuration, we also want to appropriately
manage the contents of these modules, allowing us to perform change control. To manage your content,
we recommend that you use a Version Control System or VCS.

www.it-ebooks.info

http://forge.puppetlabs.com
http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

37

Version control is the method most developers use to track changes in their application source
code. Version control records the state of a series of files or objects and allows you to periodically
capture that state in the form of a revision. This allows you to track the history of changes in files and
objects and potentially revert to an earlier revision should you make a mistake. This makes management
of our configuration much easier and saves us from issues like undoing inappropriate changes or
accidently deleting configuration data.

In this case, we’re going to show you an example of managing your Puppet manifests with a tool
called Git, which is a distributed version control system (DVCS). Distributed version control allows the
tracking of changes across multiple hosts, making it easier to allow multiple people to work on our
modules. Git is used by a lot of large development projects, such as the Linux kernel, and was originally
developed by Linux Torvalds for that purpose. It’s a powerful tool but it’sd easy to learn the basic steps.
You can obviously easily use whatever version control system suits your environment, for example many
people use Subversion or CVS for the same purpose.

First, we need to install Git. On most platforms we install the git package. For example, on Red Hat
and Ubuntu:

$ sudo yum install git
or,
$ sudo apt-get install git

Once Git is installed, let’s identify ourselves to Git so it can track who we are and associate some
details with actions we take.

$ git config --global user.name "Your Name"
$ git config --global user.email your@email.address.com

Now let’s version control the path containing our modules, in our case /etc/puppet/modules. We
change to that directory and then execute the git binary to initialize our new Git repository.

$ cd /etc/puppet/modules
$ git init

This creates a directory called .git in the /etc/puppet/modules directory that will hold all the details
and tracking data for our Git repository.

We can now add files to this repository using the git binary with the add option.

$ git add *

This adds everything currently in our path to Git. You can also use git and the rm option to remove
items you don’t want to be in the repository.

$ git rm filename

This doesn’t mean, however, that our modules are already fully tracked by our Git repository. Like
Subversion and other version control systems, we need to “commit” the objects we’d like to track. The
commit process captures the state of the objects we’d like to track and manage, and it creates a revision
to mark that state. You can also create a file called .gitignore in the directory. Every file or directory
specified in this file will be ignored by Git and never added.

Before we commit though, we can see what Git is about by using the git status command:

$ git status

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

mailto:your@email.address.com
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

38

This tells us that when we commit that Git will add the contents to the repository and create a
revision based on that state.

Now let’s commit our revision to the repository.

$ git commit –a –m "This is our initial commit"

The –m option specifies a commit message that allows us to document the revision we’re about to
commit. It’s useful to be verbose here and explain what you have changed and why, so it’s easier to find
out what’s in each revision and make it easier to find an appropriate point to return to if required. If you
need more space for your commit message you can omit the –m option and Git will open your default
editor and allow you to type a more comprehensive message.

The changes are now committed to the repository and we can use the git log command to see our
recent commit.

$ git log

We can see some information here about our commit. First, Git uses SHA1 hashes to track revisions;
Subversion, for example, uses numeric numbers – 1, 2, 3, etc. Each commit has a unique hash assigned
to it. We will also see some details about who created the commit and our commit message telling us
what the commit is all about.

Every time you add a new module or file you will need to add it to Git using the git add command
and then commit it to store it in the repository. I recommend you add and commit changes regularly to
ensure you have sufficiently granular revisions to allow you to easily roll back to an earlier state.

 Tip If you’re interested in Git, we strongly recommend Scott Chacon’s excellent book Pro Git – also published by
Apress. The book is available in both dead tree form and online at http://progit.org/book/. Scott is also one of
the lead developers of the Git hosting site, GitHub – http://www.github.com, where you can find a number of
Puppet related modules.

Our simple sudo module is a good introduction to Puppet, but it only showcased a small number of
Puppet’s capabilities. It’s now time to expand our Puppet knowledge and develop some new more
advanced modules, starting with one to manage SSH on our hosts. We’ll then create a module to manage
Postfix on mail.example.com, one to manage MySQL on our Solaris host, db.example.com, another to
manage Apache and web sites, and finally one to manage Puppet with Puppet itself.

We’ll also introduce you to some best practices for structuring, writing and managing modules and
configuration.

Creating a module to Manage SSH
We know that we first need to create an appropriate module structure. We’re going to do this under the
/etc/puppet/modules directory on our Puppet master.

$ cd /etc/puppet/modules
$ mkdir –p ssh/{manifests,templates,files}
$ touch ssh/manifests/init.pp

www.it-ebooks.info

http://progit.org/book/
http://www.github.com
http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

39

Next, we create some classes inside the init.pp file and some initial resources, as shown in Listing
2-2.

Listing 2-2. The ssh module

class ssh::install {
 package { "openssh":
 ensure => present,
 }
}

class ssh::config {
 file { "/etc/ssh/sshd_config":
 ensure = > present,
 owner => 'root',
 group => 'root',
 mode => 0600,
 source => "puppet:///modules/ssh/sshd_config",
 require => Class["ssh::install"],
 notify => Class["ssh::service"],
 }
}
class ssh::service {
 service { "sshd":
 ensure => running,
 hasstatus => true,
 hasrestart => true,
 enable => true,
 require => Class["ssh::config"],
 }
}

class ssh {
 include ssh::install, ssh::config, ssh::service
}

We’ve created three classes: ssh, ssh::install, ssh::config, and ssh::service. As we mentioned
earlier, modules can be made up multiple classes. We use the :: namespace syntax as a way to create
structure and organization in our modules. The ssh prefix tells Puppet that each class belongs in the ssh
module, and the class name is suffixed.

 Note We’d also want to create a sshd_config file in the ssh/files/ directory so that our
File["/etc/ssh/sshd_config"] resource can serve out that file. The easiest way to do this is to copy an existing
functional sshd_config file and use that. Later we’ll show you how to create template files that allow you to
configure per-host configuration in your files. Without this file Puppet will report an error for this resource.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

40

In Listing 2-2, we created a functional structure by dividing the components of the service we’re
managing into functional domains: things to be installed, things to be configured and things to be
executed or run.

Lastly, we created a class called ssh (which we need to ensure the module is valid) and used the
include function to add all the classes to the module.

Managing Our Classes
Lots of classes with lots of resources in our init.pp file means that the file is going to quickly get
cluttered and hard to manage. Thankfully, Puppet has an elegant way to manage these classes rather
than clutter the init.pp file. Each class, rather than being specified in the init.pp file, can be specified in
an individual file in the manifests directory, for example in a ssh/manifests/install.pp file that would
contain the ssh::install class:

class ssh::install {
 package { "openssh":
 ensure => present,
 }
}

When Puppet loads the ssh module, it will search the path for files suffixed with .pp, look inside
them for namespaced classes and automatically import them. Let’s quickly put our ssh::config and
ssh::service classes into separate files:

$ touch ssh/manifests/{config.pp,service.pp}

This leaves our init.pp file containing just the ssh class:

class ssh
 include ssh::install, ssh::config, ssh::service
}

Our ssh module directory structure will now look like:

ssh
ssh/files/sshd_config
ssh/manifests/init.pp
ssh/manifests/install.pp
ssh/manifests/config.pp
ssh/manifests/service.pp
ssh/templates

Neat and simple.

 Tip You can nest classes another layer, like ssh::config::client, and our auto-importing magic will still work
by placing this class in the ssh/manifests/config/client.pp file.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

41

The ssh::install Class
Now that we’ve created our structure, let’s look at the classes and resources we’ve created. Let’s start
with the ssh::install class containing the Package["openssh"] resource, which installs the OpenSSH
package.

It looks simple enough, but we’ve already hit a stumbling block – we want to manage SSH on all of
Example.com’s hosts, and across these platforms the OpenSSH package has different names:

• Red Hat: openssh-server

• Ubuntu: openssh-server

• Solaris: openssh

How are we going to ensure Puppet installs the correctly-named package for each platform? The
answer lies with Facter, Puppet’s system inventory tool. During each Puppet run, Facter queries data
about the host and sends it to the Puppet master. This data includes the operating system of the host,
which is made available in our Puppet manifests as a variable called $operatingsystem. We can now use
this variable to select the appropriate package name for each platform. Let’s rewrite our
Package["openssh"] resource:

package { "ssh":
 name => $operatingsystem ?
 /(Red Hat|CentOS|Fedora|Ubuntu|Debian)/ => "openssh-server",
 Solaris => "openssh",
 },
 ensure => installed,
}

You can see we’ve changed the title of our resource to ssh and specified a new attribute called name.
As we explained in Chapter 1, each resource is made up of a type, title and a series of attributes. Each
resource’s attributes includes its “name variable,” or ”namevar,” and the value of this attribute is used to
determine the name of the resource. For example, the Package and Service resources use the name
attribute as their namevar while the File type uses the path attribute as its namevar. Most of the time we
wouldn’t specify the namevar, as it is synonymous with the title, for example in this resource:

file { "/etc/passwd":
 …
}

We don’t need to specify the namevar because the value will be taken from the title, "/etc/passwd".
But often we’re referring to resources in many places and we might want a simple alias, so we can give
the resource a title and specify its namevar this way:

file { "passwd":
 path => "/etc/passwd",
 …
}

We can now refer to this resource as File["passwd"] as an aliased short-hand.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

42

 Note You should also read about the alias metaparameter, which provides a similar capability, at
http://docs.puppetlabs.com/references/latest/metaparameter.html#alias.

In our current example, the name of the package we’re managing varies on different hosts.
Therefore, we want to specify a generic name for the resource and a platform-selected value for the
actual package to be installed.

You can see that inside this new name attribute we’ve specified the value of the attribute as
$operatingsystem followed by a conditional syntax that Puppet calls a “selector.” To construct a selector,
we specify the a variable containing the value we want to select on as the value of our attribute, here
$operatingsystem, and follow this with a question mark (?). We then list on new lines a series of
selections, for example if the value of $operatingsystem is Solaris, then the value of the name attribute will
be set to openssh, and so on. Notice that we can specify multiple values in the form of simple regular
expressions, like /(Solaris|Ubuntu|Debian)/.

 Note Selector matching is case-insensitive. You can also see some other examples of regular expressions in
selectors at http://docs.puppetlabs.com/guides/language_tutorial.html#selectors.

We can also specify a value called default.

default => "ssh",

This value is used if no other listed selection matches. If we don’t specify a default value and no
selection matches then the name attribute would be set to a nil value.

As can you imagine, this requirement to select the appropriate value for a particular platform
happens a lot. This means we could end up scattering a lot of very similar conditional statements across
our Puppet code. That’s pretty messy; a best practice we recommend is to make this look a lot neater
and more elegant by moving all your conditional checks to a separate class.

We usually call that class module::params, so in our current case it would be named ssh::params.
Like before, we’re going to store that class in a separate file. Let’s create that file:

$ touch ssh/manifests/params.pp

We can see that class in Listing 2-3.

Listing 2-3. The ssh::params class

class ssh::params {
 case $operatingsystem {
 Solaris: {
 $ssh_package_name = 'openssh'
 }
 /(Ubuntu|Debian)/: {
 $ssh_package_name = 'openssh-server'

www.it-ebooks.info

http://docs.puppetlabs.com/references/latest/metaparameter.html#alias
http://docs.puppetlabs.com/guides/language_tutorial.html#selectors
http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

43

 }
 /(RedHat|CentOS|Fedora)/: {
 $ssh_package_name = 'openssh-server'
 }
 }
}

You can see that inside our ssh::params class we’ve created another type of conditional, the case
statement. Much like a selector, the case statement iterates over the value of a variable, here
$operatingsystem. Unlike a selector, case statements allow us to specify a block of things to do if the
value of the variable matches one of the cases. In our case we’re setting the value of a new variable we’ve
created, called $ssh_package_name. You could do other things here, such as include a class or a resource,
or perform some other function.

 Note You can read more about case statements at http://docs.puppetlabs.com/guides/language_
tutorial.html#case_statement. Also available is an if/else syntax that you can read about at
http://docs.puppetlabs.com/guides/language_tutorial.html#ifelse_statement.

And finally, we need to include our new class in the ssh class:\

class ssh {
 include ssh::params, ssh::install, ssh::config, ssh::service
}

These includes tell Puppet that when you include the ssh module, you’re getting all of these classes.

FUNCTIONS

The include directive we use to include our classes and modules is called a function. Functions are
commands that run on the Puppet master to perform actions. Puppet has a number of other functions,
including the generate function that calls external commands and returns the result, and the notice
function that logs messages on the master and is useful for testing a configuration. For example:

notice("This is a notice message including the value of the $ssh_package variable")

Functions only run on the Puppet master and cannot be run on the client, and thus can only work with the
resources available on the master.

You can see a full list of functions at
http://docs.puppetlabs.com/references/stable/function.html and we’ll introduce you to a variety
of other functions in subsequent chapters. You can also find some documentation on how to write your
own functions at
http://projects.puppetlabs.com/projects/puppet/wiki/Writing_Your_Own_Functions, and we’ll
talk about developing functions in Chapter 10.

www.it-ebooks.info

http://docs.puppetlabs.com/guides/language_
http://docs.puppetlabs.com/guides/language_tutorial.html#ifelse_statement
http://docs.puppetlabs.com/references/stable/function.html
http://projects.puppetlabs.com/projects/puppet/wiki/Writing_Your_Own_Functions
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

44

We’re going to come back to the ssh::params class and add more variables as we discover other
elements of our OpenSSH configuration that are unique to particular platforms, but for the moment how
does including this new class change our Package["ssh"] resource?

package { $ssh::params::ssh_package_name:
 ensure => installed,
}

You can see our namespacing is useful for other things, here using variables from other classes. We
can refer to a variable in another class by prefixing the variable name with the class it’s contained in,
here ssh::params. In this case, rather than our messy conditional, the package name to be installed will
use the value of the $ssh::params::ssh_package_name parameter. Our resource is now much neater,
simpler and easier to read.

 Tip So how do we refer to namespaced resources? Just like other resources,
Package[$ssh::params::ssh_package_name].

The ssh::config Class
Now let’s move onto our next class, ssh::config, which we can see in Listing 2-4.

Listing 2-4. The ssh::config class

class ssh::config {
 file { "/etc/ssh/sshd_config":
 ensure = > present,
 owner => 'root',
 group => 'root',
 mode => 0440,
 source => "puppet:///modules/ssh/sshd_config",
 require => Class["ssh::install"],
 notify => Class["ssh::service"],
 }
}

We know that the location of the sshd_config files will vary across different operating systems.
Therefore, we’re going to have to add another conditional for the name and location of that file. Let’s go
back to our ssh::params class from Example 2-3 and add a new variable:

class ssh::params {
 case $operatingsystem {
 Solaris {
 $ssh_package_name = 'openssh'
 $ssh_service_config = '/etc/ssh/sshd_config'
 }
…
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

45

We add the $ssh_service_config variable to each of the cases in our conditional and then update
our file resource in the ssh::config class:

file { $ssh::params::ssh_service_config:
 ensure = > present,
 …
}

Again, we have no need for a messy conditional in the resource, we can simply reference the
$ssh::params::ssh_service_config variable.

We can also see that the file resource contains two metaparameters, require and notify. These
metaparameters both specify relationships between resources and classes. You’ll notice here that both
metaparameters reference classes rather than individual resources. They tell Puppet that it should create
a relationship between this file resource and every resource in the referenced classes.

 Tip It is a best practice to establish relationships with an entire class, rather than with a resource contained
within another class, because this allows the internal structure of the class to change without refactoring the
resource declarations related to the class.

For example, the require metaparameter tells Puppet that all the resources in the specified class
must be processed prior to the current resource. In our example, the OpenSSH package must be
installed before Puppet tries to manage the service’s configuration file.

The notify metaparameter creates a notification relationship. If the current resource (the service’s
configuration file) is changed, then Puppet should notify all the resources contained in the ssh::service
class. In our current case, a “notification” will cause the service resources in the ssh::service class
restart, ensuring that if we change a configuration file that the service will be restarted and running with
the correct, updated configuration.

 Tip In Puppet 2.6.0, a shorthand method called “chaining” was introduced for specifying metaparameter
relationships, such as require and notify. You can read about chaining at
http://docs.puppetlabs.com/guides/language_tutorial.html#chaining_resources.

So why specify the whole ssh::service class rather than just the Service["sshd"] resource? This is
another piece of simple best practice that allows us to simplify maintaining our classes and the
relationships between them. Imagine that, instead of a single package, we had twenty packages. If we
didn’t require the class then we’d need to specify each individual package in our require statement, like
this:

require => [Package["package1"], Package["package2"], Package["package3"]],

www.it-ebooks.info

http://docs.puppetlabs.com/guides/language_tutorial.html#chaining_resources
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

46

 Note Adding []s around a list creates a Puppet array. You can specify arrays as the values of variables and
many attributes; for example, you can specify many items in a single resource: package { ["package1",
"package2", "package3"]: ensure => installed }. In addition to arrays, Puppet also supports a hash
syntax, which you can see at http://docs.puppetlabs.com/guides/language_tutorial.html#hashes.

We’d need to do that for every resource that required our packages, making our require statements
cumbersome, potentially error prone, and most importantly requiring that every resource that requires
packages be updated with any new package requirements.

By requiring the whole class, it doesn’t matter how many packages we add to the ssh::install class
– Puppet knows to install packages before managing configuration files, and we don’t have to update a
lot of resources every time we make a change.

 Tip In our current example we could make use of arrays to extend the variables in the ssh::params class. For
example, by changing $ssh_package_name to an array, we could specify multiple packages to be installed without
needing to create another Package resource in the ssh::install class. Puppet is smart enough to know that if
you specify a variable with a value of an array then it should expand the array, so changing the value of the
$ssh_package_name variable to [openssh, package2, package3] would result in the ssh::install class
installing all three packages. This greatly simplifies the maintenance of our ssh module, as we only need to
change values in one place to manage multiple configuration items.

The ssh::service Class
Let’s look at our last class, ssh::service, and update it to reflect our new practice:

class ssh::service {
 service { $ssh::params::ssh_service_name:
 ensure => running,
 hasstatus => true,
 hasresstart => true,
 enable => true,
 require => Class["ssh::config"],
 }
}

We’ve added our new variable, $ssh_service_name, to the ssh:params class too:

class ssh::params {
 case $operatingsystem {
 Solaris {
 $ssh_package_name = 'openssh'

www.it-ebooks.info

http://docs.puppetlabs.com/guides/language_tutorial.html#hashes
http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

47

 $ssh_service_config = '/etc/ssh/sshd_config'
 $ssh_service_name = 'sshd'
 }
…
}

Let’s also look at our Service[$ssh::params::ssh_service_name] resource (at the start of this
section), as this is the first service we’ve seen managed. You’ll notice two important attributes, ensure
and enable, which specify the state and status of the resource respectively. The state of the resource
specifies whether the service is running or stopped. The status of the resource specifies whether it is to
be started at boot, for example as controlled by the chkconfig or enable-rc.d commands.

Puppet understands how to manage a variety of service frameworks, like SMF and init scripts, and
can start, stop and restart services. It does this by attempting to identify the service framework your
platform uses and executing the appropriate commands. For example, on Red Hat it might execute:

$ service sshd restart

If Puppet can’t recognize your service framework, it will revert to simple parsing of the process table
for processes with the same name as the service it’s trying to manage. This obviously isn’t ideal, so it
helps to tell Puppet a bit more about your services to ensure it manages them appropriately. The
hasstatus and hasrestart attributes we specified in the ssh::service class is one of the ways we tell
Puppet useful things about our services. If we specify hasstatus as true, then Puppet knows that our
service framework supports status commands of some kind. For example, on Red Hat it knows it can
execute the following:

$ service sshd status

This enables it to determine accurately whether the service is started or stopped. The same principle
applies to the hasrestart attribute, which specifies that the service has a restart command.

Now we can see Puppet managing a full service, if we include our new ssh module in our Puppet
nodes, as shown in Listing 2-5.

Listing 2-5. Adding the ssh Module

class base {
 include sudo, ssh
}

node 'puppet.example.com' {
 include base
}

node 'web.example.com' {
 include base
}

node 'db.example.com' {
 include base
}

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

48

node 'mail.example.com' {
 include base
}

Here we’ve created a class called base, in which we’re going to place the modules that will be base or
generic to all our nodes. Thus far, these are our sudo and ssh modules. We then include this class in each
node statement.

 Note We talked earlier about node inheritance and some of its scoping issues. As we explained there, using a
class instead of node inheritance helps avoids these issues. You can read about it at
http://projects.puppetlabs.com/projects/puppet/wiki/Frequently_Asked_Questions#Common+Misconce

ptions.

With a basic SSH module in place, and we can now manage the SSH daemon and its configuration.

Creating a Module to Manage Postfix
Let’s now create a module to manage Postfix on mail.example.com. We start with a similar structure to
our SSH module. In this case, we know which platform we’re going to install our mail server on so we
don’t need to include any conditional logic. However, if we had multiple mail servers on different
platforms, it would be easy to adjust our module using the example we’ve just shown to cater for
disparate operations systems.

postfix
postfix/files/master.cf
postifx/manifests/init.pp
postfix/manifests/install.pp
postfix/manifests/config.pp
postfix/manifests/service.pp
postfix/templates/main.cf.erb

The postfix::install class
We also have some similar resources present in our Postfix module that we saw in our SSH module, for
example in the postfix::install class we install two packages, postfix and mailx:

class postfix::install {
 package { ["postfix", "mailx"]:
 ensure => present,
 }
}

Note that we’ve used an array to specify both packages in a single resource statement this is a useful
shortcut that allows you specify multiple items in a single resource.

www.it-ebooks.info

http://projects.puppetlabs.com/projects/puppet/wiki/Frequently_Asked_Questions#Common+Misconce
http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

49

The postfix::config class
Next, we have the postfix::config class, which we will use to configure our Postfix server.

class postfix::config {
 File {
 owner => "postfix",
 group => "postfix",
 mode => 0644,
 }

 file { "/etc/postfix/master.cf":
 ensure = > present,
 source => "puppet:///modules/postfix/master.cf",
 require => Class["postfix::install"],
 notify => Class["postfix::service"],
 }

 file { "/etc/postfix/main.cf":
 ensure = > present,
 content => template("postfix/main.cf.erb"),
 require => Class["postfix::install"],
 notify => Class["postfix::service"],
 }
}

You may have noticed some new syntax: We specified the File resource type capitalized and without
a title. This syntax is called a resource default, and it allows us to specify defaults for a particular resource
type. In this case, all File resources within the postfix::config class will be owned by the user postfix,
the group postfix and with a mode of 0644. Resource defaults only apply to the current scope, but you
can apply global defaults by specifying them in your site.pp file.

A common use for global defaults is to define a global “filebucket” for backing up the files Puppet
changes. You can see the filebucket type and an example of how to use it globally at
http://docs.puppetlabs.com/references/stable/type.html#filebucket.

 Tip A common use for global defaults is to define a global “filebucket” for backing up the files Puppet changes.
You can see the filebucket type and an example of how to use it globally at
http://docs.puppetlabs.com/references/stable/type.html#filebucket.

www.it-ebooks.info

http://docs.puppetlabs.com/references/stable/type.html#filebucket
http://docs.puppetlabs.com/references/stable/type.html#filebucket
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

50

METAPARAMETER DEFAULTS

Like resource defaults, you can also set defaults for metaparameters, such as require, using Puppet
variable syntax. For example:

class postfix::config {
 $require = Class["postfix::install"]
 …
}

This would set a default for the require metaparameter in the postfix::config class and means we
could remove all the require => Class["postfix::install"] statements from our resources in that
class.

We’ve also introduced a new attribute in our File["/etc/postfix/main.cf"] resource – content.
We’ve already seen the source attribute, which allows Puppet to serve out files, and we’ve used it in one
of our File resources, File["/etc/postfix/master.cf"]. The content attribute allows us to specify the
content of the file resources as a string. But it also allows us to specify a template for our file. The
template is specified using a function called template.

As previously mentioned, functions are commands that run on the Puppet master and return values
or results. In this case, the template function allows us to specify a Ruby ERB template (http://ruby-
doc.org/stdlib/libdoc/erb/rdoc/), from which we can create the templated content for our
configuration file. We specify the template like this:

 content => template("postfix/main.cf.erb"),

We’ve specified the name of the function, “template,” and inside brackets the name of the module
that contains the template and the name of the template file. Puppet knows when we specify the name
of the module to look inside the postfix/templates directory for the requisite file – here, main.cf.erb.

THE REQUIRE FUNCTION

In addition to the include function, Puppet also has a function called require. The require function
works just like the include function except that it introduces some order to the inclusion of resources.
With the include function, resources are not included in any sequence. The only exception is individual
resources, which have relationships (using metaparameters, for example) that mandate some ordering.
The require function tells Puppet that all resources being required must be processed first. For example,
if we specified:

class ssh {
require ssh::params
include ssh::install, ssh::config, ssh::service
}

then the contents of ssh::params would be processed before any other includes or resources in the ssh
class. This is useful as a simple way to specify some less granular ordering to your manifests than
metaparameter relationships, but it’s not recommended as a regular approach. The reason it is not

www.it-ebooks.info

http://ruby-doc.org/stdlib/libdoc/erb/rdoc/
http://ruby-doc.org/stdlib/libdoc/erb/rdoc/
http://ruby-doc.org/stdlib/libdoc/erb/rdoc/
http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

51

recommended is that Puppet does this by creating relationships between all the resources in the required
class and the current class. This can lead to cyclical dependencies between resources. It’s cleaner, more
elegant and simpler to debug if you use metaparameters to specify the relationships between resources
that need order.

In Listing 2-6 we can see what our template looks like.

Listing 2-6. The Postfix main.cf template

soft_bounce = no
command_directory = /usr/sbin
daemon_directory = /usr/libexec/postfix
mail_owner = postfix
myhostname = <%= hostname %>
mydomain = <%= domain %>
myorigin = $mydomain
mydestination = $myhostname, localhost.$mydomain, localhost, $mydomain
unknown_local_recipient_reject_code = 550
relay_domains = $mydestination
smtpd_reject_unlisted_recipient = yes
unverified_recipient_reject_code = 550
smtpd_banner = $myhostname ESMTP
setgid_group = postdrop

You can see a fairly typical Postfix main.cf configuration file with the addition of two ERB variables
that use Facter facts to correctly populate the file. Each variable is enclosed in <%= %> and will be
replaced with the fact values when Puppet runs. You can specify any variable in a template like this.

This is a very simple template and ERB has much of the same capabilities as Ruby, so you can build
templates that take advantage of iteration, conditionals and other features. You can learn more about
how to use templates further at http://docs.puppetlabs.com/guides/templating.html.

 Tip You can easily check the syntax of your ERB templates for correctness using the following command: erb -
x -T '-' mytemplate.erb | ruby –c. Replace mytemplate.erb with the name of the template you want to
check for syntax.

The postfix::service class
Next we have the postfix::service class, which manages our Postfix service:

class postfix::service {
 service { "postfix":
 ensure => running,
 hasstatus => true,
 hasrestart => true,
 enable => true,
 require => Class["postfix::config"],
 }
}

www.it-ebooks.info

http://docs.puppetlabs.com/guides/templating.html
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

52

And finally, we have the core postfix class where we include all the other classes from our Postfix
module:

class postfix {
 include postfix::install, postfix::config, postfix::service
}

We can then apply our postfix module to the mail.example.com node:

node "mail.example.com" {
 include base
 include postfix
}

Now when the mail.example.com node connects, Puppet will apply the configuration in both the
base and postfix modules.

CLASS INHERITANCE

As with nodes, Puppet classes also have a simple inherit-and-override model. A subclass can inherit the
values of a parent class and potentially override one or more of the values contained in the parent. This
allows you to specify a generic class and override specific values in subclasses that are designed to suit
some nodes, for example:

class bind::server {
 service {
 "bind":
 hasstatus => true,
 hasrestart => true,
 enable => true,
 }
}

class bind::server::enabled inherits bind::server {
 Service["bind"] { ensure => running, enable => true }
}
class bind::server::disabled inherits bind::server {
 Service["bind"] { ensure => stopped, enable => false }
}

Here, class bind::server is the parent class and defines a service that controls the bind service. It uses
the service resource type to enable the bind service at boot time and specify the service must be
stopped. We then specify two new subclasses, called bind::server::enabled and
bind::server::disabled, which inherit the bind::server class. They override the ensure and enable
attributes, and specify that the bind service must be running for all nodes with the
bind::server::enabled subclass included. If we wish to disable bind on some nodes, then we need to
simply include bind::server::disabled rather than bind::server::enabled. The use of class
inheritance allows us to declare the bind service resource in one location, the bind::server class, and

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

53

achieve the desired behavior of enabling or disabling the service without completely re-declaring the bind
service resource. This organization structure also ensures we avoid duplicate resource declarations,
remembering that a resource can only be declared once.

You can also add values to attributes in subclasses, like so:

class bind {
 service { "bind": require => Package["bind"] }
}

class bind::server inherits bind {
 Service["bind"] { require +> Package["bind-libs"] }
}

Here we have defined the proxy class containing the bind service, which in turn requires the bind
package to be installed. We have then created a subclass called bind::server that inherits the bind
service but adds an additional package, bind-libs, to the require metaparameter. To do this, we use the
+> operator. After this addition, the bind service would now functionally look like this:

service { "bind":
 require => [Package["bind"], Package["bind-libs"]]
}

We can also unset particular values in subclasses using the undef attribute value.

class bind {
 service { "bind": require => Package["bind"] }
}

class bind::client inherits bind {
 Service["bind"] { require => undef }
}

Here, we again have the bind class with the bind service, which requires the bind package. In the
subclass, though, we have removed the require attribute using the undef attribute value.

It is important to remember that class inheritance suffers from the same issues as node inheritance:
variables are maintained in the scope they are defined in, and are not overridden. You can learn more at
http://projects.puppetlabs.com/projects/1/wiki/Frequently_Asked_Questions#Class+Inherita
nce+and+Variable+Scope.

Managing MySQL with the mysql Module
Our next challenge is managing MySQL on our Solaris host, db.example.com. To do this we’re going to
create a third module called mysql. We create our module structure as follows:

mysql
mysql/files/my.cnf
mysql/manifests/init.pp
mysql/manifests/install.pp
mysql/manifests/config.pp

www.it-ebooks.info

http://projects.puppetlabs.com/projects/1/wiki/Frequently_Asked_Questions#Class+Inherita
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

54

mysql/manifests/service.pp
mysql/templates/

The mysql::install class
Let’s quickly walk through the classes to create, starting with mysql::install.

class mysql::install {
 package { ["mysql5", "mysql5client", "mysql5rt", "mysql5test", "mysql5devel"]:
 ensure => present,
 require => User["mysql"],
}

 user { "mysql":
 ensure => present,
 comment => "MySQL user",
 gid => "mysql",
 shell => "/bin/false",
 require => Group["mysql"],
}

 group { "mysql":
 ensure => present,
 }
}

You can see that we’ve used two new resource types in our mysql::install class, User and Group.
We also created a mysql group and then a user and added that user, using the gid attribute, to the group
we created. We then added the appropriate require metaparameters to ensure they get created in the
right order.

The mysql::config class
Next, we add our mysql::config class:
class mysql::config {
 file { "/opt/csw/mysql5/my.cnf":
 ensure = > present,
 source => "puppet:///modules/mysql/my.cnf",
 owner => "mysql",
 group => "mysql",
 require => Class["mysql::install"],
 notify => Class["mysql::service"],
 }

 file { "/opt/csw/mysql5/var":
 group => "mysql",
 owner => "mysql",
 recurse => true,
 require => File["/opt/csw/mysql5/my.cnf"],
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

55

You can see we’ve added a File resource to manage our /opt/csw/mysql5 directory. By specifying the
directory as the title of the resource and setting the recurse attribute to true, we are asking Puppet to
recurse through this directory and all directories underneath it and change the owner and group of all
objects found inside them to mysql.

The mysql::service class
Then we add our mysql::service class:

class mysql::service {
 service { "cswmysql5":
 ensure => running,
 hasstatus => true,
 hasrestart => true,
 enabled => true,
 require => Class["mysql::config"],
 }
}

Our last class is our mysql class, contained in the init.pp file where we load all the required classes
for this module:

class mysql {
 include mysql::install, mysql::config, mysql::service
}

Lastly, we can apply our mysql module to the db.example.com node.

node "db.example.com" {
 include base
 include mysql
}

Now, when the db.example.com node connects, Puppet will apply the configuration in both the
base and mysql modules.

AUDITING

In addition to the normal mode of changing configuration (and the --noop mode of modelling the proposed
configuration), Puppet has a new audit mode that was introduced in version 2.6.0. A normal Puppet
resource controls the state you’d like a configuration item to be in, like this for example:

file { '/etc/hosts':
 owner => 'root',
 group => 'root',
 mode => 0660,
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

56

This file resource specifies that the /etc/hosts file should be owned by the root user and group and have
permissions set to 0660. Every time Puppet runs, it will check that this file’s settings are correct and make
changes if they are not. In audit mode, however, Puppet merely checks the state of the resource and
reports differences back. It is configured using the audit metaparameter.

Using this new metaparameter we can specify our resource like this:

file { '/etc/hosts':
 audit => [owner, group, mode],
 }

Now, instead of changing each value (though you can also add and mix attributes to change it, if you wish),
Puppet will generate auditing log messages, which are available in Puppet reports (see Chapter 9):

audit change: previously recorded value owner root has been changed to owner daemon

This allows you to track any changes that occur on resources under management on your hosts. You can
specify this audit metaparameter for any resource and all their attributes, and track users, groups, files,
services and the myriad of other resources Puppet can manage.

You can specify the special value of all to have Puppet audit every attribute of a resource rather than
needing to list all possible attributes, like so:

file { '/etc/hosts':
 audit => all,
 }

You can also combine the audited resources with managed resources, allowing you to manage some
configuration items and simply track others. It is important to remember though, unlike many file integrity
systems, that your audit state is not protected by a checksum or the like and is stored on the client. Future
releases plan to protect and centralise this state data.

Managing Apache and Websites
As you’re starting to see a much more complete picture of our Puppet configuration, we come to
managing Apache, Apache virtual hosts and their websites. We start with our module layout:

apache
apache/files/
apache/manifests/init.pp
apache/manifests/install.pp
apache/manifests/service.pp
apache/manifests/vhost.pp
apache/templates/vhost.conf.erb

The apache::install class
Firstly, we install Apache via the apache::install class:
class apache::install {
 package { ["apache2"]:

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

57

 ensure => present,
 }
}

This class currently just installs Apache on an Ubuntu host; we could easily add an apache::params
class in the style of our SSH module to support multiple platforms.

The apache::service class
For this module we’re going to skip a configuration class, because we can just use the default Apache
configuration. Let’s move right to an apache::service class to manage the Apache service itself.

class apache::service {
 service { "apache2":
 ensure => running,
 hasstatus => true,
 hasrestart => true,
 enable => true,
 require => Class["apache::install"],
 }
}

This has allowed us to manage Apache, but how are we going to configure individual websites? To
do this we’re going to use a new syntax, the definition.

The Apache definition
Definitions are also collections of resources like classes, but unlike classes they can be specified and are
evaluated multiple times on a host. They also accept parameters.

 Note Remember that classes are singletons. They can be included multiple times on a node, but they will only
be evaluated ONCE. A definition, because it takes parameters, can be declared multiple times and each new
declaration will be evaluated.

We create a definition using the define syntax, as shown in Listing 2-7.

Listing 2-7. The First Definition

define apache::vhost($port, $docroot, $ssl=true, $template='apache/vhost.conf.erb',
$priority, $serveraliases = '') {

 include apache

 file {"/etc/apache2/sites-enabled/${priority}-${name}":
 content => template($template),
 owner => 'root',
 group => 'root',
 mode => '777',
 require => Class["apache::install"],

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

58

 notify => Class["apache::service"],
 }
}

We gave a definition a title (apache::vhost) and then specified a list of potential variables. Variables

can be specified as a list, and any default values specified, for example $ssl=true. Defaults will be
overridden if the parameter is specified when the definition is used.

Inside the definition we can specify additional resources or classes, for example here we’ve included
the apache class that ensures all required Apache configuration will be performed prior to our definition
being evaluated. This is because it doesn’t make sense to create an Apache VirtualHost if we don’t have
Apache installed and ready to serve content.

In addition to the apache class, we’ve added a basic file resource which manages Apache site files
contained in the /etc/apache2/sites-enabled directory. The title of each file is constructed using the
priority parameter, and the title of our definition is specified using the $name variable.

 Tip The $name variable contains the name, also known as the title, of a declared defined resource. This is the
value of the string before the colon when declaring the defined resource.

This file resource’s content attribute is specified by a template, the specific template being the value
of the $template parameter. Let’s look at a fairly simple ERB template for an Apache VirtualHost in
Listing 2-8.

Listing 2-8. VirtualHost Template

NameVirtualHost *:<%= port %>
<VirtualHost *:<%= port %>>
 ServerName <%= name %>
<%if serveraliases.is_a? Array -%>
<% serveraliases.each do |name| -%><%= " ServerAlias #{name}\n" %><% end -%>
<% elsif serveraliases != '' -%>
<%= " ServerAlias #{serveraliases}" -%>
<% end -%>
 DocumentRoot <%= docroot %>
 <Directory <%= docroot %>>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
 ErrorLog /var/log/apache2/<%= name %>_error.log
 LogLevel warn
 CustomLog /var/log/apache2/<%= name %>_access.log combined
 ServerSignature On
</VirtualHost>

Each parameter specified in the definition is used, including the $name variable to name the virtual
host we’re creating.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

59

You can also see some embedded Ruby in our ERB template:

<%if serveraliases.is_a? Array -%>
<% serveraliases.each do |name| -%><%= " ServerAlias #{name}\n" %><% end -%>
<% elsif serveraliases != '' -%>
<%= " ServerAlias #{serveraliases}" -%>
<% end -%>

Here we’ve added some logic to the serveraliases parameter. If that parameter is an array of values,
then create each value as a new server alias; if it’s a single value, then create only one alias.

Let’s now see how we would use this definition and combine our definition and template:

apache::vhost { 'www.example.com':
 port => 80,
 docroot => '/var/www/www.example.com',
 ssl => false,
 priority => 10,
 serveraliases => 'home.example.com',
}

Here we have used our definition much the same way we would specify a resource by declaring the
apache::vhost definition and passing it a name, www.example.com (which is also the value of the $name
variable). We’ve also specified values for the required parameters. Unless a default is already specified
for a parameter, you need to specify a value for every parameter of a definition otherwise Puppet will
return an error. We could also override parameters, for example by specifying a different template:

template => 'apache/another_vhost_template.erb',

So in our current example, the template would result in a VirtualHost definition that looks like
Listing 2-9.

Listing 2-9. The VirtualHost Configuration File

NameVirtualHost *:80
<VirtualHost *:80>
 ServerName www.example.com
 ServerAlias home.example.com
 DocumentRoot /var/www/www.example.com
 <Directory /var/www/www.example.com>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>
 ErrorLog /var/log/apache2/www.example.com_error.log
 LogLevel warn
 CustomLog /var/log/apache2/www.example.com_access.log combined
 ServerSignature On
</VirtualHost>

www.it-ebooks.info

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com_error.log
http://www.example.com_access.log
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

60

The final class in our module is the apache class in the init.pp file, which includes our Apache
classes:

class apache {
 include apache::install, apache::service
}

You can see we’ve included our three classes but not the definition, apache::vhost. This is because
of some module magic called “autoloading.” You learned how everything in modules is automatically
imported into Puppet, so you don’t need to use the import directive. Puppet scans your module and
loads any .pp file in the manifests directory that is named after the class it contains, for example the
install.pp file contains the apache::install class and so is autoloaded.

The same thing happens with definitions: The vhost.pp file contains the definition apache::vhost,
and Puppet autoloads it. However, as we declare definitions, for example calling apache::vhost where
we need it, we don’t need to do an include apache::vhost because calling it implies inclusion.

Next, we include our classes into our www.example.com node and call the apache::vhost definition to
create the www.example.com website.

node "www.example.com" {
 include base
 include apache

 apache::vhost { 'www.example.com':
 port => 80,
 docroot => '/var/www/www.example.com',
 ssl => false,
 priority => 10,
 serveraliases => 'home.example.com',
 }
}

We could now add additional web servers easily and create additional Apache VirtualHosts by
calling the apache::vhost definition again, for example:

apache::vhost { 'another.example.com':
 port => 80,
 docroot => '/var/www/another.example.com',
 ssl => false,
 priority => 10,
}

Managing Puppet with the Puppet Module
In our very last module we’re going to show you Puppet being self-referential, so you can manage
Puppet with Puppet itself. To do this we create another module, one called puppet, with a structure as
follows:

puppet
puppet/files/
puppet/manifests/init.pp
puppet/manifests/install.pp

www.it-ebooks.info

http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

61

puppet/manifests/config.pp
puppet/manifests/params.pp
puppet/manifests/service.pp
puppet/templates/puppet.conf.erb

Our first class will be the puppet::install class which installs the Puppet client package.

class puppet::install {
 package { "puppet" :
 ensure => present,
 }
}

All of the operating systems we’re installing on call the Puppet package puppet, so we’re not going
to use a variable here.

We do, however, need a couple of variables for our Puppet module, so we add a puppet::params
class.

class puppet::params {
 $puppetserver = "puppet.example.com"
}

For the moment, this class only contains a Puppet server variable that specifies the fully-qualified
domain name (FQDN) of our Puppet master.

Now we create our puppet::config class:

class puppet::config {

include puppet::params

 file { "/etc/puppet/puppet.conf":
 ensure = > present,
 content => template("puppet/puppet.conf.erb"),
 owner => "puppet",
 group => "puppet",
 require => Class["puppet::install"],
 notify => Class["puppet::service"],
 }
}

This class contains a single file resource that loads the puppet.conf.erb template. It also includes
the puppet::params class so as to make available the variables defined in that class. Let’s take a look at
the contents of our template too:

[main]
 user = puppet
 group = puppet
 report = true
 reports = log,store

3
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

62

[master]
 certname = <%= puppetserver %>

[agent]
 pluginsync = false
 report = true
 server = <%= puppetserver %>

This is a very simple template, which we can then expand upon, or you can easily modify to add
additional options or customize for your own purposes. You’ll notice we’ve included configuration for
both our master and the client. We’re going to manage one puppet.conf file rather than a separate one
for master and client. This is mostly because it’s easy and because it doesn’t add much overhead to our
template.

We can then add the puppet::service class to manage the Puppet client daemon.

class puppet::service {
 service { "puppet":
 ensure => running,
 hasstatus => true,
 hasrestart => true,
 enable => true,
 require => Class["puppet::install"],
 }
}

We can then create an init.pp that includes the puppet class and the sub-classes we’ve just created:

class puppet {
 include puppet::install, puppet::config, puppet::service
}

Just stopping here would create a module that manages Puppet on all our clients. All we need to do,
then, is to include this module on all of our client nodes, and Puppet will be able to manage itself. But
we’re also going to extend our module to manage the Puppet master as well. To do this, we’re going to
deviate slightly from our current design and put all the resources required to manage the Puppet master
into a single class, called puppet::master:

class puppet::master {

include puppet
include puppet::params

package { "puppet-server":
 ensure => installed,
}

service { "puppetmasterd":
 ensure => running,
 hasstatus => true,
 hasrestart => true,
 enable => true,

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 2 BUILDING HOSTS WITH PUPPET

63

 require => File["/etc/puppet/puppet.conf"],
 }
}

You can see that our class puppet::master includes the classes puppet and puppet::params. This will

mean all the preceding Puppet configuration will be applied, in addition to the new package and service
resources we’ve defined in this class.

We can now add this new module to our nodes, leaving them looking like this:

class base {
 include sudo, ssh, puppet
}

node 'puppet.example.com' {
 include base
 include puppet::master
}

node 'web.example.com' {
 include base
 include apache

 apache::vhost { 'www.example.com':
 port => 80,
 docroot => '/var/www/www.example.com',
 ssl => false,
 priority => 10,
 serveraliases => 'home.example.com',
 }
}

node 'db.example.com' {
 include base
 include mysql
}

node 'mail.example.com' {
 include base
 include postfix
}

We’ve added the puppet module to the base class we created earlier. This will mean it’s added to all

the nodes that include base. We’ve also added the puppet::master class, which adds the additional
resources needed to configure the Puppet master, to the puppet.example.com node.

Summary
In this chapter, you’ve been introduced to quite a lot of Puppet’s basic features and language, including:

• How to structure modules, including examples of modules to manage SSH,
Postfix, MySQL and Apache.

www.it-ebooks.info

http://www.example.com
http://www.it-ebooks.info/

CHAPTER 2 BUILDING HOSTS WITH PUPPET

64

• How to use language constructs like selectors, arrays and case statements

• A greater understanding of files and templates

• Definitions that allow you to manage configuration, such as Apache VirtualHosts

• Variable scoping

You’ve also seen how a basic Puppet configuration in a simple environment might be constructed,
including some simple modules to manage your configuration. Also, Puppet Forge contains a large
collection of pre-existing modules that you can either use immediately or modify to suit your
environment.

In the next chapter, we’ll look at how to scale Puppet beyond the basic Webrick server, using tools
like Mongrel and Passenger and allowing you to manage larger numbers of hosts.

Resources
• Puppet Documentation: http://docs.puppetlabs.com

• Puppet Wiki: http://projects.puppetlabs.com/projects/puppet/wiki

• Puppet Forge: http://forge.puppetlabs.com

www.it-ebooks.info

http://docs.puppetlabs.com
http://projects.puppetlabs.com/projects/puppet/wiki
http://forge.puppetlabs.com
http://www.it-ebooks.info/

C H A P T E R 3

65

Working with Environments

We’ve introduced you to installing and configuring Puppet. In this chapter, we show how you might
integrate Puppet into your organization’s workflow. This will allow you to use Puppet to make changes
and manage your infrastructure in a logical and stable way.

To do this, we introduce a Puppet concept called “environments.” Environments allow you to
define, maintain and separate your infrastructure into appropriate divisions. In most organizations, you
already have some of these divisions: development, testing, staging, pre-production and others. Just like
a set of production, testing, and development systems, which are separated from one another to
effectively isolate risky changes from production services, Puppet environments are designed to isolate
changes to the configuration from impacting critical production infrastructure.

In this chapter we also build upon the concept of modules, which we introduced in Chapters 1 and
2. We show you how to configure environments on your Puppet masters and how to control which
agents connect to which environment. Each agent can connect to a specific environment that will
contain a specific set of configuration.

Finally, we exercise the workflow of making changes using our version control system, testing those
changes in a safe and easy way using environments, then promoting the tested changes to the
production environment in Puppet.

In order to demonstrate all of this to you, we create another host for the Example.com Pty Ltd
organization we first introduced in Chapter 1. This new host is called mailtest.example.com. This host
has been introduced to allow Example.com to test changes to their email server without impacting the
production mail server. You can see the new node in Figure 3-1.

Figure 3-1. The Example.Com Pty Ltd network

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

66

To get started, we’ve installed the Red Hat Enterprise Linux operating system on
mailtest.example.com in order to match the operating system Puppet already manages on
mail.example.com. As we already have configuration to manage the mail.example.com host, we don’t
need to create any new manifests - we can re-use the existing ones to configure our new
mailtest.example.com host.

 Note This chapter starts to demonstrate the power of Puppet for re-using configuration: Rather than starting a
new configuration from scratch, we can use existing Puppet manifests to create a new mail server.

Configuring Puppet Environments
To configure Puppet environments, you need to add them to the Puppet master’s configuration. If you
add each environment to the Puppet master, then each Puppet agent can request a specific environment
when requesting a catalog from the master.

The first step to configure your Puppet master and agents to use environments is to add a stanza in
the /etc/puppet.conf configuration file on the Puppet master for each environment you want to
support. Let’s do this now, by creating the three environments shown in Listing 3-1.

Listing 3-1. Puppet Master environments in puppet.conf

[main]
 modulepath = $confdir/modules
 manifest = $confdir/manifests/site.pp

[development]
 modulepath = $confdir/environments/development/modules
 manifest = $confdir/environments/development/manifests/site.pp

[testing]
 modulepath = $confdir/environments/testing/modules
 manifest = $confdir/environments/testing/manifests/site.pp

As you can see, each environment section of the puppet configuration file defines two settings,
modulepath and manifest. The modulepath setting defines the path to the modules that will apply to each
environment, and the manifest option specifies the site.pp file that applies to that environment. Recall
from Chapter 1 that site.pp is the file that tells Puppet which configuration to load for our clients. These
settings allow each environment to have a distinct set of modules and configuration.

 Note When setting up environments, the Puppet master process should be restarted in order to activate
configuration changes. As described in Chapter 1, the restart process depends on how Puppet is installed on the
master. Most systems include an init script to accomplish this task.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

67

In Chapters 1 and 2, we introduced you to building modules to store your Puppet configuration. In
order to fully utilize environments, your Puppet manifests should be organized into modules. In this
chapter, we use the modules we’ve created to manage our production environment, the main
environment defined in Listing 3-1.

Populating the New Environments
Once you’ve defined the multiple environments on the Puppet master server, you need to populate
these new search paths with the Puppet modules and manifests you’ve already created in production. In
the “Version Controlling Your Modules” section of Chapter 2, our hypothetical company configured
Puppet modules using the Git version control system. We’ll expand on the file organization and
introduce a strategy to manage and migrate changes between Puppet environments.

 Note If you have not yet installed Git and would like to do so now, please refer back to the Git installation
information in Chapter 2.

We will use Git to make sure each of our three new environments; main (or production), development
and testing will receive an identical copy of our production environment. The version control system
will also allow us to easily keep these three environments synchronized when necessary, while also
allowing them to diverge when we want to try out new changes. Three environments with identical
modules and manifests will allow us to quickly make changes in the development or testing
environment without impacting the production environment. If we’re satisfied, we can easily merge the
changes into production.

 Note Many organizations with multiple people committing changes to the Puppet configuration will benefit from
a code review process. Information about the code review process used by the Puppet development community is
available at: http://projects.puppetlabs.com/projects/puppet/wiki/Development_Development_
Lifecycle .

In Chapter 2, we initialized the /etc/puppet/modules directory as a Git repository. Once a Git
repository exists, it may be cloned one or more times. Once there are multiple clones, changes to any of
the repositories may be fetched and merged into any other repository.

Creating a Clone
Let’s create a clone of the /etc/puppet/modules Git repository for the development and testing
environments now.

First, you need to create the directory structure necessary to contain the new module search path:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://projects.puppetlabs.com/projects/puppet/wiki/Development_Development_
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

68

$ cd /etc/puppet
$ mkdir –p environments/{development,testing}

Next, clone the original module repository you created in Chapter 2 into your development
environment:

$ cd /etc/puppet/environments/development
$ git clone ../../modules
Initialized empty Git repository in /etc/puppet/environments/development/modules/.git/

This command makes a new copy of the Git repository, called a “clone,” and automatically sets up a
reference to the repository we cloned from. This reference, named “origin,” refers to the original
repository this repository was cloned from. The origin is actually the repository in the production Puppet
environment, so you can add another name to be clear when you fetch updates:

$ cd /etc/puppet/environments/development/modules
$ git remote add production /etc/puppet/modules
$ git remote –v
production /etc/puppet/modules (fetch)
production /etc/puppet/modules (push)

As you can see, we’ve added a remote reference to the production environment module repository
in the development environment’s module repository. This remote reference allows Git to fetch
changes.

Similar to the development environment you just set up, you’ll also clone the production
environment modules into a testing environment.

$ cd /etc/puppet/environments/testing
$ git clone ../../modules
Initialized empty Git repository in /etc/puppet/environments/testing/modules/.git/
$ cd modules
$ git remote add production /etc/puppet/modules
$ git remote add development /etc/puppet/environments/development/modules

Notice how we’ve also added the development repository as a remote in the testing environment
repository. This will allow you to fetch changes you make in the development repository to the testing
repository.

 Tip For additional information on a branch and merge strategy using environments and Subversion rather than
Git, please see http://projects.puppetlabs.com/projects/1/wiki/Branch_Testing.

Making Changes to the Development Environment
Now that you have your three environments populated with the same Puppet modules, you can make
changes without affecting the production environment. We’re going to use a basic workflow of editing
and committing changes in the development branch first. This mirrors the common development life
cycle of moving from development to testing and finally to production. We’ll start with running a Puppet

www.it-ebooks.info

http://projects.puppetlabs.com/projects/1/wiki/Branch_Testing
http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

69

agent in the development environment to test the change we’ve made. Then, if everything goes well in
the development environment, you can merge this change into testing or into production.

 Tip In large Puppet setups where changes from multiple groups of people need to be managed, it is common to
run a selection of hosts against the testing environment. Periodically, the production environment repository will be
synchronized against the testing environment.

We’re going to edit the Postfix configuration file template we created in Chapter 2 to explore how
Puppet isolates the three environments we’ve created. We’ll edit the file main.cf.erb in the development
environment and then run the Puppet agent in this environment to see the change. We’ll also run the
Puppet agent in the production environment, which we have not changed yet, and make sure our
changes do not have any effect on production.

To start, edit the file main.cf.erb in /etc/puppet/environments/development/modules/postfix
/templates/ using your favorite text editor and add a new line at the very top of the file to look like:

This file managed by puppet: <%= this_will_fail %>
soft_bounce = no
command_directory = /usr/sbin
daemon_directory = /usr/libexec/postfix
mail_owner = postfix
myhostname = <%= hostname %>
mydomain = <%= domain %>
myorigin = $mydomain
mydestination = $myhostname, localhost.$mydomain, localhost, $mydomain
unknown_local_recipient_reject_code = 550
relay_domains = $mydestination
smtpd_reject_unlisted_recipient = yes
unverified_recipient_reject_code = 550
smtpd_banner = $myhostname ESMTP
setgid_group = postdrop

Now that you’ve made a change to the development environment, Git will let you know that the
status of the repository has changed:

$ git status
On branch master
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: main.cf.erb

no changes added to commit (use "git add" and/or "git commit -a")

Git has noticed that you’ve made a change to the main.cf.erb file and tells you this on the
“modified” line. As we learned in Chapter 2, we must add files changed in the working directory to the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

70

index, and then commit the index to the repository. Before you do this, you should double-check to
make sure the line you modified is what will actually be added in the new commit.

$ git diff
diff --git a/postfix/templates/main.cf.erb b/postfix/templates/main.cf.erb
index 3331237..2be61e0 100644
--- a/postfix/templates/main.cf.erb
+++ b/postfix/templates/main.cf.erb
@@ -1,3 +1,4 @@
+# This file managed by puppet: <%= this_will_fail %>
 soft_bounce = no
 command_directory = /usr/sbin
 daemon_directory = /usr/libexec/postfix

Notice the line beginning with the single plus sign. This indicates that you’ve added one line and
this addition will be recorded when we commit the change, as we will with the git commit command:

$ git commit –a –m 'Updated postfix configuration template'
[master 0fb0463] Updated postfix configuration template
 1 files changed, 1 insertions(+), 1 deletions(-)

You’ve now successfully changed the development environment. But before testing the change on
our mailtest.example.com system, let’s review the environment configuration changes you’ve made to
the Puppet Master.

• puppet.conf on the master now contains a development and testing section.

• The Puppet master process has been restarted to activate the change to
puppet.conf.

• You updated modulepath and manifest in the development and testing section.

• You cloned the modules VCS repository to
/etc/puppet/environments/{testing,development}/modules.

• You updated the postfix module and committed the change to the development
repository.

Testing the New Environments with the Puppet Agent
Now that you have multiple environments configured on the Puppet master system and have made a
change to the development environment, you’re able to test this change using the Puppet agent.

In order to tell Puppet to use an environment other than production, use the environment
configuration parameter or command line option:

$ puppet agent --noop --test --environment testing

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

71

 Tip Up through Puppet 2.6, the Puppet configuration on a node configures the environment that the node uses.
The Puppet master does not directly control which environment a machine connects to. This may change in the
future once issue #2834 is resolved; please watch http://projects.puppetlabs.com/issues/2834 for up-to-
date information. If you would like to manage the environment from the Puppet master, we recommend having
Puppet manage the node’s puppet.conf file and specify the environment parameter in the managed
configuration file.

Running the Puppet agent on mailtest.example.com in the testing environment should produce the
same results as running the agent in the production environment.

 Tip We recommend developing a habit of testing changes to Puppet using the --noop command line option. As
mentioned in Chapter 1, the --noop option tells Puppet to check the current state of the system against the
configuration catalog, but does it not manage the resources on the node. This provides a safe way determine if
Puppet is going to make a change. It’s also a unique feature of Puppet, compared to other tools.

You can switch between the production and testing environments by simply removing the
environment command line option. The default environment is production (defined in the main stanza in
the puppet.conf file); therefore, you need only leave the environment unspecified to switch back to the
production environment.

$ puppet agent --noop --verbose –test

Notice how no resources are changing when switching between the two environments. This is
because the testing environment is a clone of the production environment, and you have not made any
changes to either of these two environments. In the last section, however, you made a change to Postfix
module in the development environment, and we expect the Puppet agent to update the main.cf postfix
configuration file with this change. Let’s check the development environment now:

$ puppet agent --noop --verbose --test --environment development
err: Could not retrieve catalog from remote server: Error 400 on SERVER: Failed to parse
 template postfix/main.cf.erb: Could not find value for 'this_will_fail' at
 /etc/puppet/environments/development/modules/postfix/manifests/config.pp:17 on
 node mailtest.example.com
warning: Not using cache on failed catalog
err: Could not retrieve catalog; skipping run

Unlike the testing and production environment we ran the Puppet agent in, this run in the
development environment resulted in an error. Such a bad error, in fact, that we didn’t even receive a
valid configuration catalog from the Puppet master. So what happened?

www.it-ebooks.info

http://projects.puppetlabs.com/issues/2834
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

72

Notice that the error message returned by the Puppet master provides the exact line number in the
manifest the error occurred on. On this line we’re using the template we modified when we made a
change to the development environment, and this change references a variable that we have not defined
in the Puppet manifests. If we run the Puppet agent against the production environment, we can see
everything is still OK:

$ puppet agent --test --noop
...
notice: Finished catalog run in 0.68 seconds

Let’s go back and fix the problem with the ERB template by removing the reference to the undefined
puppet variable this_will_fail. As you can see in the following file difference, we’ve fixed the problem
in the first line of the template:

diff --git a/postfix/templates/main.cf.erb b/postfix/templates/main.cf.erb
index 3331237..241b4bb 100644
--- a/postfix/templates/main.cf.erb
+++ b/postfix/templates/main.cf.erb
@@ -1,3 +1,4 @@
+# This file managed by puppet.
 soft_bounce = no
 command_directory = /usr/sbin
 daemon_directory = /usr/libexec/postfix

Now, when we run Puppet agent in the development environment, we’re no longer getting the
error:

$ puppet agent --test --noop --environment development

This verification step allowed us to make changes and test them in an isolated environment without
impacting Puppet nodes with their agent running against the production environment. Now that you’re
confident our change will not break production, you can commit the changes:

$ git add /etc/puppet/environments/development/modules/postfix/templates/main.cf.erb
$ git commit -m 'Added comment header, postfix main.cf is managed by puppet.'
Created commit d69bc30: Added comment header, postfix main.cf is managed by puppet.
 1 files changed, 2 insertions(+), 1 deletions(-)

In the next section, we examine the workflow of merging changes like this into the testing and
production environments. This workflow helps teams of developers and system administrators work
together while making changes to the system, without impacting production systems, through the use of
Puppet environments.

Environment Branching and Merging
As you saw in the previous section, configuring multiple environments in Puppet requires three things:

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

73

• Modifying the puppet configuration file on the Puppet master

• Populating the directories specified in the modulepath

• Maintaining a set of version control working copies in each of those directories

One of the key benefits of version control systems is the ability to manage and organize the
contributions from a group of people. In this section, we’ll explore how a group of three people may use
Puppet Environments, version control, and the concept of a “branch” to effectively coordinate and
manage their changes to the configuration system. Branches are lines of independent development in a
repository that share a common history. A branch could be a copy of our development environment with
changes made to it; it shares a common history with the development environment but has a history of
its own too. Branches allow multiple people to maintain copies of an environment, work on them
independently and potentially combine changes between branches or back into the main line of
development.

Expanding on our hypothetical company, imagine we have a small team of people working together:
a system administrator, a developer and an operator. In this exercise, we’ll explore how this team
effectively makes changes that do not impact one another, can be merged into the main development
and testing branch, and ultimately make their way to the production infrastructure.

Setting Up a Central Repository
Before the small group is able to work together in harmony, you’ll need to make a few slight changes to
the version control system. Git is unique compared to other version control systems, such as Subversion,
in that each repository stands apart and is complete without the need to perform a checkout from a
central repository. When working with a team, however, it is convenient to have a central place to store
and track changes over time.

In this section, you’ll clone a copy of the /etc/puppet/modules repository into
/var/lib/puppet/git/modules.git and use this location as the “central” repository. It is central by
convention only; there is technically nothing different about the repository that makes it any different
from the other Git repositories we’ve been working with in this chapter. Once you have a repository
designated as the central location, everyone will clone this repository and submit their changes back to it
for review and testing. Let’s go through this process now.

Creating a Bare Repository for the Modules
First, you need to create a “bare” repository containing your Puppet modules. A bare repository in Git is
a repository with the history of commits, but no working copy. We want to create a bare repository to
help make sure files aren’t accidentally directly modified in the central location. Modifications should
only happen through commits pushed to this location. We’re going to perform these steps as the Puppet
user, who is usually running as puppet, in order to help ensure file permissions and ownership remain
consistent when different users are modifying the repository.

$ cd /var/lib/puppet
$ mkdir git
$ chown puppet:puppet git
$ sudo -H -u puppet -s
$ cd /var/lib/puppet/git
$ git clone --bare /etc/puppet/modules modules.git
Initialized empty Git repository in /var/lib/puppet/git/modules.git/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

74

 Note We recommend storing the central version control repository in the home directory of the Puppet user to
start. This may vary from system to system, and may not be /var/lib/puppet on your platform.

Making Individual Changes
Once you have a central repository, it’s time for everyone in the group to check out their own personal
copies to work on. We recommend they do this in their home directories. Changes will be made there
and submitted to the central repository for review. Let’s first clone a repository for our system
administrator, hereafter sysadmin:

sysadmin:~$ git clone puppet@puppet.example.com:git/modules.git
Initialized empty Git repository in ~/modules/.git/
remote: Counting objects: 36, done.
remote: Compressing objects: 100% (33/33), done.
remote: Total 36 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (36/36), 5.58 KiB, done.

After cloning the repository from the central location, you can begin to make changes. In order to
make sure you have the same changes you made to the main.cf.erb file in the previous section, pull the
change made to the main.cf.erb file from the repository in
/etc/puppet/environments/development/modules. You could directly fetch the change from the
repository Puppet is using in /etc/puppet, but it may become confusing to manage what changes are
located in which repositories.

To help coordinate with the rest of the team, instead push the change from the development
repository into the central repository. This should be done using the puppet user account:

puppet:~$ cd /etc/puppet/environments/development/modules
puppet:development/modules$ git remote rm origin
puppet:development/modules$ git remote add origin puppet@puppet.example.com:git/modules.git
puppet:development/modules$ git push origin master:master
Counting objects: 9, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (5/5), 499 bytes, done.
Total 5 (delta 2), reused 0 (delta 0)
To puppet@puppet.example.com:git/modules.git
 a13c3d8..d69bc30 master -> master

puppet:~$ cd /etc/puppet/environments/testing/modules
puppet:testing/modules$ git remote rm origin
puppet:testing/modules$ git remote add origin puppet@puppet.example.com:git/modules.git
puppet:~$ cd /etc/puppet/modules
puppet:/etc/puppet/modules$ git remote rm origin
puppet:/etc/puppet/modules$ git remote add origin puppet@puppet.example.com:git/modules.git

After executing these commands, you’ve updated each of the three Git repositories containing the
production, testing, and development working copies to point at your fourth, central repository. The
systems administrator now has a personal working copy which points to the central repository.

www.it-ebooks.info

mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules.git
http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

75

Developing a Change Using a Branch
In order to make a change, each team member should create a new Git branch for the topic he or she is
working on and make their changes in this branch. A topic branch will allow other team members to
easily fetch all of their work as a self-contained bundle, rather than requiring them to sort through each
commit or set of commits. This will also make it easier to merge each team member’s contributions into
the master branch when necessary, as you can see in Listing 3-2.

Listing 3-2. Merging in changes

sysadmin:~$ cd modules

sysadmin:~/modules$ git fetch origin
From puppet@puppet.example.com:git/modules
 a13c3d8..d69bc30 master -> origin/master

sysadmin:~/modules$ git checkout master
Already on "master"
Your branch is behind the tracked remote branch 'origin/master' by 1 commit,
and can be fast-forwarded.

sysadmin:~/modules$ git merge origin/master
Updating a13c3d8..d69bc30
Fast forward
 postfix/templates/main.cf.erb | 3 ++-
 1 files changed, 2 insertions(+), 1 deletions(-)

As you can see, we’ve pushed the change to main.cf.erb into the central repository. The sysadmin
was able to update her personal copy with this change.

The sysadmin now has her copy and is able to push and pull changes in the central repository, but
what about the developer and operator? They should each clone a copy of the central repository URL,
puppet@puppet.example.com:git/modules.git, into their home directory. We’ll run through the situation
where the operator needs to make and test a change to the sshd configuration file, while the developer
needs to make and test a change to the Postfix configuration files. These two changes will be tested
independently in the development environment and then merged together in the testing environment.

 Tip SSH Keys and Agent Forwarding should be employed when using Git in order to increase security, keep file
ownership consistent, and manage the central code using the Puppet user. To accomplish this, people with
authorization to change Puppet could have their public key added to ~puppet/.ssh/authorized_keys. For more
information about SSH public keys, please see: http://www.debian-administration.org/articles/530

Making Changes to the sshd Configuration File
We’ll go through the changes to Secure Shell or SSH the operator needs to make first. The operator is
working specifically to make sure only members of certain groups are allowed to log in to the system
using SSH.

www.it-ebooks.info

mailto:puppet@puppet.example.com:git/modules
mailto:puppet@puppet.example.com:git/modules.git
http://www.debian-administration.org/articles/530
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

76

To begin, you should create a topic branch to work on this problem. In Git, unlike other version
control systems, a branch does not create a new directory path in the working directory of the repository.
Instead, Git checks out the branch into the base directory of the repository.

Let’s create a topic branch based on the current master branch in our central “origin” repository,
like so:

operator:~/modules $ git checkout -b operator/ssh origin/master
Branch operator/ssh set up to track remote branch refs/remotes/origin/master.
Switched to a new branch "operator/ssh"
operator:~/modules $ git branch
* operator/ssh
 Master

Notice that the operator now has two branches in their personal ~/modules/ Git repository. Using a
topic branch, we are free to modify things without worrying about impacting the work of the rest of the
team. The branch provides a reference point to revert any of the changes we make to the Puppet
configuration. Similarly, the development, production, and testing environments in the /etc/puppet
directory on the Puppet master must explicitly check out this new branch in order for our changes to
affect any of the Puppet agent systems. This strategy is much less risky and easier to coordinate with
team members than directly editing the files contained in the /etc/puppet directory.

Now that the operator has his or her own branch, we’re ready to make a change. We’re going to add
two lines using two commits to illustrate the history tracking features of a version control system.

First, add the groups who should have access to the machine. To start, only the wheel group should
be allowed to log in, so add the following lines to the sshd_config template:

operator:~/modules $ git diff
diff --git a/ssh/files/sshd_config b/ssh/files/sshd_config
index 7d7f4b4..1fd84e5 100644
--- a/ssh/files/sshd_config
+++ b/ssh/files/sshd_config
@@ -3,4 +3,5 @@ Protocol 2
 SyslogFacility AUTHPRIV
 PermitRootLogin no
 PasswordAuthentication yes
+AllowGroups wheel adm
 UsePAM yes

As you can see, we’ve added a single line to the file ~/modules/ssh/files/sshd_config in the
personal clone of the repository in the operator’s home directory. We must commit and push this
change into the central repository, but we haven’t tested it yet so we should be careful and not merge the
branch we’re working on, operator/ssh, into the master branch yet.

operator:~/modules $ git commit -a -m 'Added AllowGroups to sshd_config'
Created commit eea4fbb: Added AllowGroups to sshd_config
 1 files changed, 1 insertions(+), 0 deletions(-)

operator:~/modules $ git push origin operator/ssh:operator/ssh
Counting objects: 9, done.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (5/5), 454 bytes, done.
Total 5 (delta 2), reused 0 (delta 0)

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

77

To puppet@puppet.example.com:git/modules.git
 * [new branch] operator/ssh -> operator/ssh

The git push command the operator used creates a new branch in the central repository with the
same name as the topic branch the operator is working on in his or her home directory. This is
important to prevent untested changes from making their way into the master branch. Once we’ve
pushed the new branch to the central repository, we should test the new branch in the development
environment.

 Note There is no limit to the number of environments you can configure on the central Puppet master. Many
large teams find it beneficial to create per-contributor environments in addition to the standard development,
testing and production environments. Per-contributor environments allow each person to test their own branches
without interfering with the development environments of other individuals.

puppet:~ $ cd /etc/puppet/environments/development/modules
puppet:modules $ git fetch origin
remote: Counting objects: 14, done.
remote: Compressing objects: 100% (8/8), done.
remote: Total 10 (delta 4), reused 0 (delta 0remote:)
Unpacking objects: 100% (10/10), done.
From puppet@puppet.example.com:git/modules
 d69bc30..fa9812f master -> origin/master
 * [new branch] operator/ssh -> origin/operator/ssh
puppet:modules $ git checkout -b operator/ssh origin/operator/ssh
Branch operator/ssh set up to track remote branch refs/remotes/origin/operator/ssh.
Switched to a new branch "operator/ssh"

Testing the Puppet Agent Against the sshd Configuration File
Now that we’ve switched to our new topic branch in the development environment, we’re able to test
the Puppet agent against the development environment.

puppet:~ $ puppet agent --test --environment development --noop
info: Caching catalog for scd.puppetlabs.vm
info: Applying configuration version '1289751259'
--- /etc/ssh/sshd_config 2010-11-14 08:16:45.000000000 -0800
+++ /tmp/puppet-file.13997.0 2010-11-14 08:16:57.000000000 -0800
@@ -3,4 +3,5 @@
 SyslogFacility AUTHPRIV
 PermitRootLogin no
 PasswordAuthentication yes
+AllowGroups wheel adm
 UsePAM yes
notice: /Stage[main]/Ssh::Config/File[/etc/ssh/sshd_config]/content: is
 {md5}9d4c3fba3434a46528b41a49b70b60e4, should be {md5}da54f2cdc309faf6d813a080783a31f6 (noop)

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

78

info: /Stage[main]/Ssh::Config/File[/etc/ssh/sshd_config]: Scheduling refresh of Service[sshd]
notice: /Stage[main]/Ssh::Service/Service[sshd]: Would have triggered 'refresh' from 1 events
notice: Finished catalog run in 0.39 seconds

Notice that this Puppet agent run is running in noop mode, and that the agent tells us it would have

changed /etc/ssh/sshd_config by inserting the line we just committed to the branch operator/ssh and
checked out in the development environment’s repository on the Puppet master.

You’re able to verify that the production environment remains unchanged, just like we did in the
“Making Changes to the Development Environment” section when we updated the Postfix configuration
file. Simply remove the environment command line option to cause the agent to execute in the default
production environment again:

puppet:~ $ puppet agent --test --noop
info: Caching catalog for scd.puppetlabs.vm
info: Applying configuration version '1289752071'
notice: Finished catalog run in 0.33 seconds

Making Changes to the Postfix Configuration File
While the system operator is working on the change to the sshd_config file, the developer in our
hypothetical company is working on a change to the Postfix configuration file. Just like the operator, he’ll
need a personal copy of the central repository we set up at puppet@puppet.example.com:git/modules.git
in his home directory.

Once the developer has cloned his personal copy of the central repository, he’s able to make his
change to the Postfix configuration file. He’ll also use a branch to track his changes and make it easy to
merge into the testing branch for use in the testing environment. Finally, after testing, he’ll use the tag
feature of the version control system to cut a new release of the configuration used in production, then
check out this tag in the repository used by the production Puppet environment.

To start, the developer creates his topic branch from the development branch named master. Note
that the changes his teammate, the operator, has made have not yet been merged into the master
branch, so the developer does not have them. We cover the process of merging multiple changes
together when we merge both of these changes into the testing branch in the next section.

developer:~ $ cd ~/modules
developer:~/modules $ git checkout -b developer/postfix master
Switched to a new branch "developer/postfix"

Now that the developer has his own topic branch, he’s free to change the code without impacting
the work of anyone else on the team. His changes can be discarded or merged at a later point in time.
Let’s look at his changes to the Postfix configuration file and how he committed them into the version
control system:

$ git log --abbrev-commit --pretty=oneline master..HEAD
7acf23d... Updated config.pp to use $module_name
0c164f6... Added manual change warning to postfix config

Using the git log command, you’re able to see the developer has made two commits since he
created his topic from the main master development branch. This specific command displays the series
of commits from the master development branch to the tip of the current topic branch. You’re able to

www.it-ebooks.info

mailto:puppet@puppet.example.com:git/modules.git
http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

79

use the git log command again to see exactly what the developer changed in these two commits, as
shown in Listing 3-3.

Listing 3-3. Listing Git changes

developer:~/modules $ git log --summary -p --stat master..
commit 7acf23dc50774aee1139e43aec5b1e8f60fa9da9
Author: Devevloper <developer@example.com>
Date: Sun Nov 14 09:45:16 2010 -0800

 Updated config.pp to use $module_name

 The $module_name variable has been introduced in Puppet
 2.6 and makes for easily renamed puppet modules without
 having to refactor much of the code.

 postfix/manifests/config.pp | 4 ++--
 1 files changed, 2 insertions(+), 2 deletions(-)

diff --git a/postfix/manifests/config.pp b/postfix/manifests/config.pp
index 9feb947..471822c 100644
--- a/postfix/manifests/config.pp
+++ b/postfix/manifests/config.pp
@@ -7,14 +7,14 @@ class postfix::config {

 file { "/etc/postfix/master.cf":
 ensure => present,
- source => "puppet:///modules/postfix/master.cf",
+ source => "puppet:///modules/${module_name}/master.cf",
 require => Class["postfix::install"],
 notify => Class["postfix::service"],
 }

 file { "/etc/postfix/main.cf":
 ensure => present,
- content => template("postfix/main.cf.erb"),
+ content => template("${module_name/main.cf.erb"),
 require => Class["postfix::install"],
 notify => Class["postfix::service"],
 }

commit 0c164f676da64cec5e6d02ac5cb8a60229e60219
Author: Developer <developer@example.com>
Date: Sun Nov 14 09:42:17 2010 -0800

 Added manual change warning to postfix config

 postfix/files/master.cf | 4 +++-
 1 files changed, 3 insertions(+), 1 deletions(-)

diff --git a/postfix/files/master.cf b/postfix/files/master.cf
index 280f3da..7482d4c 100644

www.it-ebooks.info

mailto:developer@example.com
mailto:developer@example.com
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

80

--- a/postfix/files/master.cf
+++ b/postfix/files/master.cf
@@ -1,3 +1,5 @@
+# This file managed by puppet. Manual changes will be reverted.
+#
 #
 # Postfix master process configuration file. For details on the format
 # of the file, see the master(5) manual page (command: "man 5 master").

Reviewing his changes, the developer notices he made a typographical mistake in the postfix
configuration file and decides to fix this problem. In the second section of the diff output in the Postfix
configuration file, the line containing template("${module_name/main.cf.erb") is missing a closing curly
brace around the variable module_name. He decides to fix this and make a third commit to his topic
branch. The output of git log now shows:

developer:~/modules $ git log --abbrev-commit --pretty=oneline master..
6b9f2b5... Fixup missing closing curly brace
7acf23d... Updated config.pp to use $module_name
0c164f6... Added manual change warning to postfix config

 Tip In order to help prevent typographical errors from being accepted into the repository, it is a good idea to
execute puppet --parseonly as a pre-commit hook in your version control system. Most version control systems
support hook scripts to accept or deny a commit. If you use Subversion or Git, example pre-commit hooks are
available online at http://projects.puppetlabs.com/projects/1/wiki/Puppet_Version_Control.

The developer is satisfied with his changes to Postfix, and he would like to try them out in the
development environment in a similar way the operator tested out her changes. The overall workflow
the developer follows is to push their topic branch to the central repository, fetch the changes in the
development environment’s repository, check out the topic branch, then run the Puppet agent against
the development environment.

Before publishing his topic branch to a different repository, he decides to clean up his commit
history to remove the entire commit that he created simply to fix a single character mistake he
introduced. The git rebase command allows him to quickly and easily modify his topic branch to clean
up this mistake.

developer:~modules/ $ git rebase -i master

This command will open, in your default text editor, a list of commits to the topic branch since it
diverged from the master development branch. In order to clean up the commit history, the developer
replaces “pick” with “squash” in the line listing his commit to add the missing curly brace. This will
effectively combine this commit with the commit above it, where the curly brace should have been
present in the first place.

pick 0c164f6 Added manual change warning to postfix config
pick 7acf23d Updated config.pp to use $module_name
squash 6b9f2b5 Fixup missing closing curly brace

k
www.it-ebooks.info

http://projects.puppetlabs.com/projects/1/wiki/Puppet_Version_Control
http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

81

Rebase fa9812f..6b9f2b5 onto fa9812f

Commands:
pick = use commit
edit = use commit, but stop for amending
squash = use commit, but meld into previous commit

If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.

Once the developer makes this change, he saves the file and quits the editor. git rewrites history for
him, giving him the option to change the commit message of the freshly cleaned commit:

".git/COMMIT_EDITMSG" 17L, 524C written
Created commit e4e27c7: Updated config.pp to use $module_name
 1 files changed, 2 insertions(+), 2 deletions(-)
Successfully rebased and updated refs/heads/developer/postfix

The developer is now ready to publish his topic branch to the rest of his colleagues and to the
puppet master system itself, in order to check out the topic branch in the
/etc/puppet/environments/development/modules repository.

developer:~/modules $ git push origin developer/postfix:developer/postfix
Counting objects: 21, done.
Compressing objects: 100% (14/14), done.
Writing objects: 100% (15/15), 1.79 KiB, done.
Total 15 (delta 3), reused 0 (delta 0)
To puppet@puppet.example.com:git/modules.git
 * [new branch] developer/postfix -> developer/postfix

Next, he logs into the puppet master system as the user puppet, fetches his topic branch from the
central repository, and then checks out his topic branch in the development environment. This process
will switch the current development environment away from whatever branch it was previously on. This
could potentially interfere with the work of the operator. If this becomes a common problem, it is
possible to set up more environments to ensure each contributor has their own location to test their
changes without interfering with others.

puppet:~ $ cd /etc/puppet/environments/development/modules
ppuppet:modules $ git fetch origin
remote: Counting objects: 21, done.
remote: Compressing objects: 100% (14/14), done.
remote: Total 15 (delta 3), reused 0 (delta 0)
Unpacking objects: 100% (15/15), done.
From puppet@puppet.example.com:git/modules
 * [new branch] developer/postfix -> origin/developer/postfix
puppet:modules $ git checkout -b developer/postfix origin/developer/postfix
Branch developer/postfix set up to track remote branch refs/remotes/origin/developer/postfix.
Switched to a new branch "developer/postfix"

The developer’s topic branch has now been checked out in the location the Puppet master is using
for the development environment.

9
www.it-ebooks.info

mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

82

Testing the Puppet Agent Against the Postfix Configuration File
You can run the Puppet agent against the development environment, as we have previously and as
shown in Listing 3-4, to verify your changes.

Listing 3-4. Testing the Puppet

agentroot:~ # puppet agent --test --noop --environment development
info: Caching catalog for scd.puppetlabs.vm
info: Applying configuration version '1289764649'
--- /etc/ssh/sshd_config 2010-11-14 12:11:28.000000000 -0800
+++ /tmp/puppet-file.25961.0 2010-11-14 12:11:40.000000000 -0800
@@ -3,5 +3,4 @@
 SyslogFacility AUTHPRIV
 PermitRootLogin no
 PasswordAuthentication yes
-AllowGroups wheel adm
 UsePAM yes
notice: /Stage[main]/Ssh::Config/File[/etc/ssh/sshd_config]/content: is {md5}da5
4f2cdc309faf6d813a080783a31f6, should be {md5}9d4c3fba3434a46528b41a49b70b60e4 (
noop)
info: /Stage[main]/Ssh::Config/File[/etc/ssh/sshd_config]: Scheduling refresh of
 Service[sshd]
notice: /Stage[main]/Ssh::Service/Service[sshd]: Would have triggered 'refresh'
from 1 events
--- /etc/postfix/master.cf 2010-11-14 11:54:37.000000000 -0800
+++ /tmp/puppet-file.22317.0 2010-11-14 11:58:15.000000000 -0800
@@ -1,3 +1,5 @@
+# This file managed by puppet. Manual changes will be reverted.
+#
 #
 # Postfix master process configuration file. For details on the format
 # of the file, see the master(5) manual page (command: "man 5 master").
notice: /Stage[main]/Postfix::Config/File[/etc/postfix/master.cf]/content: is
 {md5}3b4d069fa7e4eb6570743261990a0d97, should be {md5}710171facd4980c2802a354ee4cb4a4e (noop)
info: /Stage[main]/Postfix::Config/File[/etc/postfix/master.cf]: Scheduling refresh of
 Service[postfix] notice: /Stage[main]/Postfix::Service/Service[postfix]: Would have
 triggered 'refresh' from 1 events
notice: Finished catalog run in 0.61 seconds

The Puppet agent run against the development environment shows us that Puppet will update the
Postfix configuration file and notify the Postfix service as a result. Notice how the changes we’ve made to
this system by trying out the operator/ssh branch will now be reverted. This is because the developer
created his branch from the master branch and the operator has not yet merged her operator/ssh
branch back into master, therefore her changes are not present.

At this point, both the changes of the operator and the developer have been tried in using the
development environment. It’s now time to merge both change lists into a testing branch and make
them both available in the testing Puppet environment.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

83

Merging Changes into a Testing Environment
Unlike the development Puppet environment, where anything goes and people may perform a checkout
on their branches to quickly try out their changes and topic branches, the testing environment should
change less frequently. The process of merging topic branches from the master development branch
into a testing branch periodically, once every two weeks for example, has worked well for many projects
and companies. In this section, we work through the process of merging change lists into the testing
branch with the goal of ultimately promoting the testing branch to a production release.

Creating the Testing Branch
First, our system administrator will create a new branch, called “testing,” based on the current master
branch we started with. When starting out with Puppet, this testing branch and the process of merging
change lists should be set early on in order to provide a good reference point. It also provides and
staging area that’s not quite as risky as the development environment, and does not require a release
process like the production environment does.

The system administrator creates the new testing branch in a manner similar to how the operator
and developer created their topic branches. This should be done in the personal repository the system
administrator has in her home directory:

sysadmin:~modules/ $ git checkout testing master
Switched to a new branch "testing"

 Note There is no technical difference between a topic branch and a testing branch the system administrator
creates for the testing environment. The team is simply using a convention of treating the testing branch as a
long-lived branch to merge change lists into. Similarly, the master branch is the branch where current
development happens.

Merging the Changes into the Development Branch
Before checking out the testing branch on the Puppet master, the system administrator decides to merge
the change lists from the operator and the developer into the main development branch. This keeps the
main development branch in sync with the testing branch and allows the system administrator to
advance the master development branch with additional changes without affecting the testing
environment, which will only be updated on the Puppet master periodically.

sysadmin:~modules/ $ git fetch origin
From puppet@puppet.example.com:git/modules
 * [new branch] developer/postfix -> origin/developer/postfix
 * [new branch] operator/ssh -> origin/operator/ssh

sysadmin:~modules/ $ git merge --no-ff origin/developer/postfix
Merge made by recursive.
 postfix/files/master.cf | 4 +++-
 postfix/manifests/config.pp | 4 ++--

www.it-ebooks.info

mailto:puppet@puppet.example.com:git/modules
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

84

 2 files changed, 5 insertions(+), 3 deletions(-)

sysadmin:~modules/ $ git merge --no-ff origin/operator/ssh
Merge made by recursive.
 ssh/files/sshd_config | 1 +
 1 files changed, 1 insertions(+), 0 deletions(-)

 Tip It is a good idea to perform a git fetch origin to see if there are any changes in the central repository
prior to merging topic branches. If there are, then performing git merge origin/master while on the master
branch will bring those changes into the local repository.

The system administrator has merged the changes using the --no-ff option in order to create a
merge commit for each of the two topic branches. In the future, this merge commit will allow the team
to refer back to the change list as a whole rather than having to tease apart which commit is associated
with which topic. We’re able to verify that both the changes from the operator and the developer are
now in the master branch of the system administrator’s repository, by using the git log command:

sysadmin:~modules/ $ git log --abbrev-commit --pretty=oneline origin/master..
1bbda50... Merge commit 'origin/operator/ssh'
9b41d49... Merge commit 'origin/developer/postfix'
e4e27c7... Updated config.pp to use $module_name
0c164f6... Added manual change warning to postfix config
eea4fbb... Added AllowGroups to sshd_config

Notice that this time, the system administrator has used the git log command to display
abbreviated log messages from the current head of the origin/master branch to the current head of the
local checked out branch. He chose origin/master because he has not pushed the newly merged
changes to the central repository and this command therefore shows a list of changes that will be pushed
if he decides to do so.

Everything looks good, as he expected. He also doesn’t see the commit the developer made on his
own topic branch to add the missing curly brace, because the developer chose to rebase his topic branch
against the master branch before publishing his change list.

Merging into the Testing Branch
The team members decide to make the newly merged master branch the first testing branch, and they
decide to continue developing on the master branch over the next couple of weeks. In a few days or
weeks, the team will come together and decide on which of the change lists that each member has
contributed are ready for merging into the testing branch. The system administrator starts this process
by merging the changes he just made to the master branch into the testing branch, then pushing all of
these changes to the central repository:

sysadmin:~modules/ $ git checkout testing
Switched to branch "testing"

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

85

sysadmin:~modules/ $ git merge master
Updating fa9812f..1bbda50
Fast forward
 postfix/files/master.cf | 4 +++-
 postfix/manifests/config.pp | 4 ++--
 ssh/files/sshd_config | 1 +
 3 files changed, 6 insertions(+), 3 deletions(-)

sysadmin:~modules/ $ git push origin
Counting objects: 6, done.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 494 bytes, done.
Total 3 (delta 1), reused 0 (delta 0)
To puppet@puppet.example.com:git/modules.git
 fa9812f..1bbda50 master -> master

sysadmin:~modules/ $ git push origin testing:testing
Total 0 (delta 0), reused 0 (delta 0)
To puppet@puppet.example.com:git/modules.git
 * [new branch] testing -> testing

Notice that the system administrator executes two different push commands: one plain git push
origin, and one git push origin testing:testing. This is because git push, by default, will only push
the changes made to local branches into a remote repository if there is a branch with the same name in
both locations.

Performing Checkout on the Testing Branch
Previously, the operator and developer logged into the puppet master and activated their changes by
checking out their code in /etc/puppet/environments/development/modules. Similarly, the system
administrator needs to fetch and checkout the new testing branch into the
/etc/puppet/environments/testing/modules repository to activate the new configuration in the testing
environment. Before doing so, he verifies that the remote named “origin” is configured to connect to the
central repository at puppet@puppet.example.com:git/modules.git:

puppet:~ $ cd /etc/puppet/environments/testing/modules/
puppet:modules/ $ git remote -v
origin /etc/puppet/modules/.git

puppet:modules/ $ git remote rm origin
puppet:modules/ $ git remote add origin puppet@puppet.example.com:git/modules.git
puppet:modules/ $ git fetch origin
remote: Counting objects: 39, done.
remote: Compressing objects: 100% (24/24), done.
remote: Total 28 (delta 9), reused 0 (delta 0)
Unpacking objects: 100% (28/28), done.
From puppet@puppet.example.com:git/modules
 * [new branch] developer/postfix -> origin/developer/postfix
 * [new branch] master -> origin/master

www.it-ebooks.info

mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules.git:
mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

86

 * [new branch] operator/ssh -> origin/operator/ssh
 * [new branch] testing -> origin/testing

Now that the testing environment repository has an up-to-date list of the branches, including the
new testing branch, the system administrator performs a git checkout to activate the new changes on
the system:

puppet:modules/ $ git checkout -b testing --track origin/testing
Branch testing set up to track remote branch refs/remotes/origin/testing.
Switched to a new branch "testing"

Testing the Changes
The system administrator is finally able to test a Puppet agent against the new testing environment,
which now contains both changes: the SSH contribution from the operator, and the Postfix contribution
from the developer. The testing environment is the only place where both changes are currently active in
the configuration management system.

root:~ # puppet agent --test --noop --environment testing
info: Caching catalog for scd.puppetlabs.vm
info: Applying configuration version '1289770137'
…
info: /Stage[main]/Ssh::Config/File[/etc/ssh/sshd_config]: Scheduling refresh of Service[sshd]
notice: /Stage[main]/Ssh::Service/Service[sshd]: Triggered 'refresh' from 1 events
notice: Finished catalog run in 2.77 seconds

Production Environment Releases
Our team of Puppet contributors at Example.com has been effectively making changes to the
configuration management system. Using Puppet Environments and a version control system, they’re
able to work efficiently and independently of one another without creating conflicts or obstructing
another person’s work. We’ve seen how the operator and the developer were able to make two changes
in parallel, publishing those changes in a branch in the central version control repository for the system
administrator to merge into a testing branch.

The team has also tested a number of machines using the Puppet agent in the testing environment,
and is now ready to release the configuration to the production systems. This section covers how the
team creates their first release, and provides a process to follow for subsequent releases.

You’ll also see how a Git feature called “tagging” is useful to provide a method of referring to a
specific point in time when the production configuration was active. You’ll see how tags provide the
ability to quickly roll back changes that might not be desirable in the production environment.

First, the team decides to release the current testing branch into production. Before doing so, the
system administrator creates a tag so this release can be easily referred back to in the future. The system
administrator does this in his own personal repository in his home directory:

sysadmin:~ $ cd ~/modules/
sysadmin:~modules/ $ git checkout testing
Switched to branch "testing"
sysadmin:~modules/ $ git tag -m 'First release to production' 1.0.0
sysadmin:~modules/ $ git push --tags origin
Counting objects: 1, done.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 3 WORKING WITH ENVIRONMENTS

87

Writing objects: 100% (1/1), 177 bytes, done.
Total 1 (delta 0), reused 0 (delta 0)
To puppet@puppet.example.com:git/modules.git
 * [new tag] 1.0.0 -> 1.0.0

The process of creating a tag is often called “cutting a release.” The system administrator has done
just this, tagged the current testing branch as a release to production, and then published the new
tagged release into the central repository.

New branches, such as the testing or topic branches, were activated in the development and testing
environments in the previous section. The process of activating a new production release is very similar,
except instead of checking out a branch, which may change over time, a specific tag is checked out,
which is static and refers to a very specific point in the history of configuration changes.

To activate the new production release, the system administrator logs into the Puppet master
system as the user puppet, fetches the new tag from the central repository, and then checks out the
tagged production release. Unlike the development and testing environments, Example.com has chosen
to configure the production environment to use the working copy at /etc/puppet/modules rather than as
a sub directory of /etc/puppet/environments where the development and testing active working copies
reside.

puppet:~ $ cd /etc/puppet/modules
puppet:modules/ $ git fetch origin
remote: Counting objects: 21, done.
remote: Compressing remote: objects: 100% (13/13), done.
remote: Total 14 (delta 3), reused 0 (delta 0)
Unpacking objects: 100% (14/14), done.
From puppet@puppet.example.com:git/modules
 * [new branch] developer/postfix -> origin/developer/postfix
 fa9812f..1bbda50 master -> origin/master
 * [new branch] testing -> origin/testing
 * [new tag] 1.0.0 -> 1.0.0

Remember that the git fetch command does not affect the currently checked out configuration; it
only updates the internal git index of data. The system administrator then checks out the newly-released
production environment using the same familiar syntax we’ve seen so far:

puppet:modules/ $ git checkout tags/1.0.0
git checkout tags/1.0.0
Note: moving to "tags/1.0.0" which isn't a local branch
If you want to create a new branch from this checkout, you may do so
(now or later) by using -b with the checkout command again. Example:
 git checkout -b <new_branch_name>
HEAD is now at 1bbda50... Merge commit 'origin/operator/ssh'

The note about moving to a non-local branch may be safely ignored. A tag is static reference, and
the team should not have any need to directly modify the files in /etc/puppet/modules or make commits
from the active production environment repository.

After executing the git checkout command to place the 1.0.0 release of the configuration into the
production environment, everything is now active for the puppet agents. The system administrator
verifies this by executing puppet agent in the default environment:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

mailto:puppet@puppet.example.com:git/modules.git
mailto:puppet@puppet.example.com:git/modules
http://www.it-ebooks.info/

CHAPTER 3 WORKING WITH ENVIRONMENTS

88

root:~ # puppet agent --test --noop
info: Caching catalog for scd.puppetlabs.vm
info: Applying configuration version '1289772102'
notice: Finished catalog run in 0.53 seconds

You will also remember that the default environment is the production environment, and as such,
the system administrator did not need to set the --environment command line option. If something were
to have gone wrong in the production environment, a previous tag may be activated quickly, rolling back
the changes introduced by the release of a new production configuration. One of the team members
simply needs to execute git checkout tags/x.y.z to roll back the configuration.

The changes and workflow we’ve seen the operator, developer, and system administrator undertake
in this chapter may now be repeated in a cycle. This development, testing, and release cycle provides an
effective method to make changes to the configuration management system in a safe and predictable
manner. Changes to the production system can be made with confidence: They’ve been vetted through
the development and testing phases of the release process, they’ve been explicitly tagged in a release,
and they can be quickly and easily backed out if things go awry.

Summary
You’ve seen how Puppet environments enable a team of contributors to work effectively and efficiently.
Puppet environments, combined with a modern version control system, enable three people to make
changes simultaneously and in parallel without obstructing each other’s work. Furthermore, the tagging
and branching features of modern version control systems provide an effective release management
strategy. The process a single team member may follow in order to make changes is summarized as:

• Develop changes in a local topic branch

• Rebase against the master branch to remove any unnecessary commits

• Publish the topic branch to the central repository

• Activate and try the changes in the development puppet environment

• Periodically merge and activate change lists from multiple people into a testing
branch

• Periodically cut a release of the testing branch using version control tags.

Resources
• Debian stable, testing, unstable releases and distributions -

http://www.debian.org/doc/FAQ/ch-ftparchives.en.html

• Puppet Labs Environments Curated Documentation -
http://docs.puppetlabs.com/guides/environment.html

• Puppet Labs Environments Wiki Article -
http://projects.puppetlabs.com/projects/1/wiki/Using_Multiple_Environments

www.it-ebooks.info

http://www.debian.org/doc/FAQ/ch-ftparchives.en.html
http://docs.puppetlabs.com/guides/environment.html
http://projects.puppetlabs.com/projects/1/wiki/Using_Multiple_Environments
http://www.it-ebooks.info/

C H A P T E R 4

89

Puppet Scalability

We’ve seen that the Puppet agent and master require very little work to get up and running on a handful
of nodes using the default configuration. It is, however, a significantly more involved undertaking to
scale Puppet to handle hundreds of nodes. Yet many installations are successfully using Puppet to
manage hundreds, thousands and tens of thousands of nodes. In this chapter, we cover a number of
proven strategies that are employed to scale Puppet.

In this chapter you’ll see how to enable a single Puppet master system to handle hundreds of nodes
using the Apache web server. We also demonstrate how to configure more than one Puppet master
system to handle thousands of nodes using a load balancer. Throughout, we make a number of
recommendations to help you avoid the common pitfalls related to performance and scalability.

Finally, you’ll learn how to measure the performance of the Puppet master infrastructure in order to
determine when it’s time to add more capacity. We also provide two small scripts to avoid the
“thundering herd effect” and to measure catalog compilation time.

First, though, we need review some of the challenges you’ll be facing along the way.

Identifying the Challenges
Earlier in the book, you learned a bit about Puppet’s client-server configuration and the use of SSL to
secure connections between the agent and the master. Puppet uses SSL, specifically the HTTPS protocol,
to communicate. As a result, when we’re scaling Puppet we are in fact scaling a web service, and many of
the problems (and the solutions) overlap with traditional web scaling. Consequently, the two challenges
we’re going to need to address when scaling Puppet are:

• Scaling the transport

• Scaling SSL

The first challenge requires that we increase the performance and potential number of possible master
and agent connections. The second challenge requires that we implement good management of the SSL
certificates that secure the connection between the master and the agent. Both challenges require
changes to Puppet’s “out-of-the-box” configuration.

In Chapter 1 we started the Puppet Master using the puppet master command. The default puppet
master configuration makes use of the WEBRick Ruby-based HTTP server. Puppet ships WEBRick to
eliminate the need to set up a web server like Apache to handle the HTTPS requests out of the box.
While the WEBrick server provides quick and easy testing, it does not provide a scalable solution and
should not be used except to evaluate, test and develop Puppet. In production situations, a more robust
web server such as Apache or Nginx is necessary to handle the number of client requests.

Therefore, the first order of business when scaling Puppet is to replace the default WEBRick HTTP
server. In the following section, we first replace WEBrick with the Apache web server on a single Puppet
master system and then show how this strategy can be extended to multiple Puppet master systems
working behind a load balancer.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

90

The second change to Puppet’s out-of-the-box configuration is the management of the SSL
certificates that Puppet uses to secure the connection between agent and master. The Puppet master
stores a copy of every certificate issued, along with a revocation list. This information needs to be kept in
sync across the Puppet worker nodes. So, together with the transport mechanism between the agent and
master, we’ll explore the two main options of handling SSL certificates in a scalable Puppet deployment:

• Using a single Certificate Authority Puppet master

• Distributing the same Certificate Authority across multiple Puppet masters

Running the Puppet Master with Apache and Passenger
The first scaling example we’re going to demonstrate is the combination of the Apache web server with a
module called Phusion Passenger, which is also known as mod_rails, mod_passenger, or just Passenger.
Passenger is an Apache module that allows the embedding of Ruby applications, much like mod_php or
mod_perl allow the embedding of PHP and Perl applications. The Passenger module is not a standard
module that ships with Apache web server, and as a result, must be installed separately. Passenger is
available as a Ruby gem package, or may be downloaded and installed from http://www.modrails.com/.

For networks of one to two thousand Puppet managed nodes, a single Puppet master system
running inside of Apache with Passenger is often sufficient. Later in this chapter, we examine how to run
multiple Puppet master systems if you want a highly available system or support for an even larger
number of Puppet-managed nodes. These more complex configurations all build on the basic Apache
and Passenger configuration we introduce to you. We also build upon the Puppet master configuration
we created in Chapter 2 and the environment structure we introduced in Chapter 3.

First, you need to install Apache and Passenger, then configure Apache to handle the SSL
authentication and verification of the Puppet agent, and finally connect Apache to the Puppet master
and ensure everything is working as expected.

As we scale Puppet up, it is important to draw the distinction between the idea of a front-end HTTP
request handler and a back-end Puppet master worker process. The front-end request handler is
responsible for accepting the TCP connection from the Puppet agent, selecting an appropriate back-end
worker, routing the request to the worker, accepting the response and finally serving it back to the
Puppet agent. This distinction between a front-end request handler and a back-end worker process is a
common concept when scaling web services.

Installing Apache and Passenger on Enterprise Linux
To get started, you need to install Apache and Passenger. Apache and Passenger are a relatively simple
and easy to set up. Pre-compiled Passenger packages may not be available for your platform, however,
making configuration a little more complex. This section covers the installation of Apache and Passenger
on the Enterprise Linux family of systems such as CentOS, RedHat Enterprise Linux, and Oracle
Enterprise Linux.

In Listing 4-1, we’ve used the puppet resource command to ensure that Apache and the Apache SSL

libraries are installed. We’ve also ensured that the Apache service is not currently running. The next step
is to obtain Passenger, which is implemented as an Apache loadable module, similar to mod_ssl or
mod_perl.

Listing 4-1. Installing Apache on Enterprise Linux

puppet resource package httpd ensure=present
notice: /Package[httpd]/ensure: created

www.it-ebooks.info

http://www.modrails.com/
http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

91

package { 'httpd':
 ensure => '2.2.3-43.el5.centos'
}
puppet resource package mod_ssl ensure=present
notice: /Package[mod_ssl]/ensure: created
package { 'mod_ssl':
 ensure => '2.2.3-43.el5.centos'
}
puppet resource service httpd ensure=stopped
notice: /Service[httpd]/ensure: ensure changed 'running' to 'stopped'
service { 'httpd':
 ensure => 'running'
}

In order to install Passenger on our Enterprise Linux system, configure yum to access a local yum
repository with packages for Puppet and rubygem_passenger. An example of the yum repository
configuration for the x86_64 architecture is:

root:~ # yum list rubygem-passenger
Available Packages
rubygem-passenger.x86_64 2.2.11-3.el5 localyum

We’ve verified that the rubygem-passenger package is now available on this system, so we’re able to
install the package using puppet resource, as shown in Listing 4-2.

Listing 4-2. Installing Phusion Passenger on Enterprise Linux

puppet resource package rubygem-passenger ensure=present
notice: /Package[rubygem-passenger]/ensure: created
package { 'rubygem-passenger':
 ensure => '2.2.11-3.el5'
}

Installing Apache and Passenger on Debian-Based Systems
At the time of writing, Passenger packages are available in Debian 5, “Lenny.” The packages available in
the stable repository have known issues, however, and we recommend installing version 2.2.11 of
Passenger from the backports package repository.

DEBIAN BACKPORTS

Debian backports provide the means to install packages that are available in the testing and unstable
branch in a stable system. The packages are designed to link against libraries provided in Debian stable to
minimize compatibility issues. More information about using Debian backports is available at
http://backports.debian.org/

Installing Apache on Debian is very straightforward (see Listing 4-3). The packages available in the
stable release of the Debian operating system work extremely well with Puppet. Please ensure you’ve

www.it-ebooks.info

http://backports.debian.org/
http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

92

enabled Debian backports as per the instructions at http://backports.debian.org/ before attempting to
install the passenger package.

Listing 4-3. Installing Apache and Passenger on Debian / Ubuntu

puppet resource package apache2 ensure=present
notice: /Package[apache2]/ensure: created
package { apache2:
 ensure => '2.2.9-10+lenny8’
}

puppet resource package libapache2-mod-passenger ensure=present
notice: /Package[libapache2-mod-passenger]/ensure: created
package { libapache2-mod-passenger:
 ensure => ‘2.2.11debian-1~bpo50+1’
}

As an alternative to the Puppet resource commands shown in Listing 4-3, Passenger may be
installed from Debian backports using the command aptitude -t lenny-backports install
libapache2-mod-passener.

Installing Passenger Using Ruby Gems
Compiled binary packages of Passenger 2.2.11 are available for some platforms, but not all. Ruby Gems
provide an alternative way to install the Passenger module. The passenger gem behaves slightly
differently from most binary packages; the source code for Passenger is installed using the Gem format
complete with a shell script to assist in the compilation of the Apache module.

For this installation method to succeed, the Apache development packages for your platform will
need to be installed and present. The Passenger build scripts will link the library using the available
version of Apache development libraries (Listing 4-4).

Listing 4-4. Installing Passenger using Rubygems

gem install rack -v 1.1.0
gem install passenger -v 2.2.11
passenger-install-apache2-module

The output of the passenger-install-apache2-module script is quite long and has been truncated.
For additional information and troubleshooting tips related to installing Passenger using Ruby Gems
please see: http://www.modrails.com/install.html

 Tip Up-to-date information about Passenger versions known to work with Puppet is available online at:
http://projects.puppetlabs.com/projects/1/wiki/Using_Passenger

www.it-ebooks.info

http://backports.debian.org/
http://www.modrails.com/install.html
http://projects.puppetlabs.com/projects/1/wiki/Using_Passenger
http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

93

Configuring Apache and Passenger
If you haven’t already done so, make sure you’ve started the Puppet master at least once to create the
SSL certificates you’re going to configure Apache to use. Apache will then verify that the Puppet agent
certificate is signed with the generated Puppet CA, and present a certificate that the Puppet agent uses to
verify the authenticity of the server. Once you have you SSL certificates in place, configure Apache by
enabling the Passenger module and creating an Apache virtual host for the Puppet master service.

First, enable mod_passenger with the following configuration provided in Listing 4-5.

Listing 4-5. The Apache Passenger configuration file

/etc/httpd/conf.d/10_passenger.conf

The passenger module path should match ruby gem version
LoadModule passenger_module /usr/lib/ruby/gems/1.8/gems/passenger-
2.2.11/ext/apache2/mod_passenger.so
PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-2.2.11
PassengerRuby /usr/bin/ruby

Recommended Passenger Configuration
PassengerHighPerformance on
PassengerUseGlobalQueue on
PassengerMaxPoolSize control number of application instances,
typically 1.5x the number of processor cores.
PassengerMaxPoolSize 6
Restart ruby process after handling specific number of request to resolve MRI memory leak.
PassengerMaxRequests 4000
Shutdown idle Passenger instances after 30 min.
PassengerPoolIdleTime 1800
End of /etc/httpd/conf.d/10_passenger.conf

 Tip For more information about tuning Passenger, please see:
http://www.modrails.com/documentation/Users%20guide%20Apache.html

The second aspect of the Apache configuration is the Apache virtual host stanza. The virtual host
configures Apache to listen on TCP port 8140 and to encrypt all traffic using SSL and the certificates
generated for use with the Puppet master. The virtual host also configures Passenger to use the system’s
Ruby interpreter and provides the path to the Rack configuration file named config.ru (Listing 4-6).

Listing 4-6. Apache Puppet master configuration file

/etc/httpd/conf.d/20_puppetmaster.conf
Apache handles the SSL encryption and decryption. It replaces webrick and listens by default
on 8140
Listen 8140
<VirtualHost *:8140>

www.it-ebooks.info

http://www.modrails.com/documentation/Users%20guide%20Apache.html
http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

94

SSLEngine on
SSLProtocol -ALL +SSLv3 +TLSv1
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP
Puppet master should generate initial CA certificate.
ensure certs are located in /var/lib/puppet/ssl
Change puppet.example.com to the fully qualified domain name of the Puppet master, i.e.
$(facter fqdn).
SSLCertificateFile /var/lib/puppet/ssl/certs/puppet.example.com.pem
SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet.example.com.pem
SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem
SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
CRL checking should be enabled
disable next line if Apache complains about CRL
SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem
optional to allow CSR request, required if certificates distributed to client during
provisioning.
SSLVerifyClient optional
SSLVerifyDepth 1
SSLOptions +StdEnvVars

The following client headers record authentication information for down stream workers.
RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

RackAutoDetect On
DocumentRoot /etc/puppet/rack/puppetmaster/public/
<Directory /etc/puppet/rack/puppetmaster/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
</Directory>
</VirtualHost>
/etc/httpd/conf.d/20_puppetmaster.conf

This configuration file may appear a little overwhelming. In particular, the RequestHeader
statements are the source of much confusion among Puppet newcomers and veterans alike. When using
this configuration file example, make sure to replace puppet.example.com with the fully qualified domain
name of your own Puppet master system. The fully qualified domain name is easily found with the
command:

$ facter fqdn.

The first section of the configuration file makes sure Apache is binding and listening on TCP port
8140, the standard port for a Puppet master server.

Next, the virtual host stanza begins with <VirtualHost *:8140>. Please refer to the Apache version
2.2 configuration reference (http://httpd.apache.org/docs/2.2/) for more information about
configuring Apache virtual hosts.

SSL is enabled for the Puppet master specific virtual host using SSLEngine on and setting the
SSLCipherSuite parameters. In addition to enabling SSL encryption of the traffic, certificates are
provided to prove the identity of the Puppet master service. Next, revocation is enabled using the

www.it-ebooks.info

http://httpd.apache.org/docs/2.2/
http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

95

SSLCARevocationFile parameter. The puppet cert command will automatically keep the ca_crl.pem file
updated as we issue and revoke new Puppet agent certificates.

Finally, Apache is configured to verify the authenticity of the Puppet agent certificate. The results of
this verification are stored in the environment as a standard environment variable. The Puppet master
process running inside Passenger will check the environment variables set by the SSLOptions
+StdEnvVars configuration in order to authorize the Puppet agent.

In the section immediately following the SSL configuration, the results of verifying the Puppet
agent’s certificate are stored as client request headers as well as in standard environment variables. Later
in this chapter, you’ll see how Client Request Headers may be consulted by downstream workers in
order to provide authentication using standard environment variables.

The last section of the Puppet master virtual host is the Rack configuration. Rack provides a
common API for web servers to exchange requests and responses with a Ruby HTTP service like Puppet.
Rack is commonly used to allow web applications like the Puppet Dashboard to be hosted on multiple
web servers. This stanza looks for a special file called config.ru in /etc/puppet/rack/puppetmaster/ (see
Listing 4-7).

Listing 4-7. Puppet master Rack configuration file

/etc/puppet/rack/puppetmaster/config.ru
a config.ru, for use with every rack-compatible webserver.
$0 = "master"
if you want debugging:
ARGV << "--debug"
ARGV << "--rack"
require 'puppet/application/master'
run Puppet::Application[:master].run
EOF /etc/puppet/rack/puppetmaster/config.ru

 Tip If you installed Puppet from packages, check your “share” directory structure for a config.ru example
provided by the package maintainer, often located at /usr/share/puppet/ext/rack/files/config.ru. For up to
date Rack configuration files, check the ext directory in the most recently released version of Puppet. This may be
found online at https://github.com/puppetlabs/puppet/tree/master/ext/rack/files

Before creating this configuration file, you may need to create the skeleton directory structure for
Rack and the Puppet master rack application instance. To do so, you could execute the command:

mkdir -p /etc/puppet/rack/puppetmaster/{public,tmp}.

 Note The config.ru Rack configuration file should be owned by the puppet user and group. Passenger will
inspect the owner of this file and switch from the root system account to this less privileged puppet service
account when Apache is started.

www.it-ebooks.info

https://github.com/puppetlabs/puppet/tree/master/ext/rack/files
http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

96

Testing the Puppet Master in Apache
We’ve covered the steps required to install and configure Apache and Passenger. You’re now ready to
test your changes by starting the Apache service. Before doing so, make sure to double check the
ownership of the config.ru file. If there is a certificate problem, make sure the existing SSL certificates
are configured in the Puppet master Apache virtual host configuration file, as shown in Listing 4-6. You
also want to make sure the Puppet master is not already running.

In order to start Apache and the new Puppet master service, you can again use the puppet resource
command:

puppet resource service httpd ensure=running enable=true hasstatus=true
service { 'httpd':
 ensure => 'running',
 enable => 'true'
}

Running the Puppet agent against the Apache Puppet master virtual host will allow you to test the
system:

puppet agent --test
info: Caching catalog for puppet.example.lan
info: Applying configuration version '1290801236'
notice: Passenger is setup and serving catalogs.
notice: /Stage[main]//Node[default]/Notify[Passenger]/message: defined 'message' as 'Passenger
is setup and serving catalogs.'
notice: Finished catalog run in 0.38 seconds

The Puppet agent does not provide any indication that the Puppet master service has switched from
WEBrick to Apache. The best way to tell if everything is working is to use to Apache access logs (see
Listing 4-8). The Puppet master virtual host will use the combined access logs to record incoming
requests from the Puppet agent.

Listing 4-8. Puppet requests in the Apache access logs

tail /var/log/httpd/access_log
127.0.0.1 - - [24/Nov/2010:20:48:11 -0800] "GET
/production/catalog/puppet.example.com?facts=…& A&facts_format=b64_zlib_yaml HTTP/1.1" 200
1181 "-" "-"
127.0.0.1 - - [24/Nov/2010:20:48:12 -0800] "PUT /production/report/puppet.example.com
HTTP/1.1" 200 14 "-" "-"

In the access_log file we can see that the Puppet agent issues a HTTP GET request using the URI
/production/catalog/puppet.example.com. We can also see the Puppet agent sends the list of facts about
itself in the request URI. The Puppet master compiles the modules and manifests into a configuration
catalog and provides this catalog in the HTTP. The “200” status code indicates that this operation was
successful. Following the catalog run, the Puppet agent submits a report using the PUT request to the
URI /production/report/puppet.example.com. We cover more information about reports and reporting
features in Puppet in Chapter 10.

In addition to the Apache access_log, the Puppet master process itself continues to log information
about itself to the system log. This information is available in /var/log/messages on Enterprise Linux
bases systems and in /var/log/daemon on Ubuntu/Debian systems.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

97

And that’s it! You’ve added an Apache and Passenger front-end to your Puppet master that will
allow you to scale to a much larger number of hosts.

Load-Balancing Multiple Puppet Masters
You’ve replaced the WEBrick HTTP server with the Apache web server. Sometimes, though, you need
more capacity than a single machine can provide alone. In this case, you can scale the Puppet master
horizontally rather than vertically. Horizontal scaling uses the resources of multiple Puppet masters in a
cluster to get more capacity than any one system can provide. This configuration can cater for
environments with tens of thousands of managed nodes.

There are many options and strategies available to provide a front-end request handler. We’re going
to use HTTP load balancing to direct client requests to available back-end services. Each Puppet master
worker is configured independently, using different Apache virtual host configurations bound to
different ports on the loopback interface 127.0.0.1. This allows multiple Puppet master workers to be
configured and tested on the same operating system instance and easily redistributed to multiple hosts;
all you have to do is change the listening IP address and port numbers in the load balancer and worker
configuration files.

Load Balancing

For an introduction into the general problem of load balancing and scalable web architectures, we
recommend the Wikipedia article titled Load balancing (computing) at -
http://en.wikipedia.org/wiki/Load_balancing_(computing). In particular, the idea of horizontal and
vertical scaling is an important one to consider. The Puppet master scales well both horizontally and
vertically, either by adding more systems working in parallel or by increasing the amount of memory and
processor resources.

HTTP Load Balancing
The problem of scaling HTTP-based web services to tens of thousands of clients has been around for
quite some time. There are many technical solutions provided by commercial products like Citrix
NetScaler, Cisco IOS, and F5 BIG-IP. Many open-source software projects also exist, including Apache
itself, HAProxy, Nginx, and Pound. Puppet fits into the overall problem of HTTP load balancing nicely
because of its use of SSL and HTTP for communication.

We’re going to build upon the single Puppet master configuration we just created and then split the
work across two Puppet master systems. We’ll use the Apache Web server to handle the incoming
Puppet agent requests and route them to an available back-end Puppet master. If we require additional
capacity, we can add additional Puppet master processes. This configuration has the added benefit of
high availability. If a particular Puppet master system has trouble or needs to be taken out of service, the
front-end load balancer will stop routing Puppet agent requests to that master process.

We’re going to configure two Puppet master Apache virtual hosts, much like the virtual host we
created in the previous section. However, there is one important difference: we will disable SSL for the
Apache virtual hosts. Instead, we’ll configure a new front-end Apache virtual host to authorize incoming
Puppet agent requests and handle the SSL encryption and decryption of the traffic. This front-end load
balancer will terminate the SSL connection, be responsible for authenticating the Puppet agent request
and then present this authentication information to the back-end Puppet master workers for
authorization.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://en.wikipedia.org/wiki/Load_balancing_
http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

98

You’ll see how Apache is able to pass the authentication information along through the use of client
request headers, and how the back-end virtual hosts are able to set environment variables for the Puppet
master based on the values of these client request headers.

 Caution It is important to keep in mind that the load-balancing configuration discussed in this section
authorizes and terminates SSL connections at the load balancer. All traffic between the front-end load balancer
and the back-end Puppet master systems are therefore unencrypted and in plain text. Requests directly to the
worker virtual hosts may easily be forged and should only be allowed from the load balancer. If this is an
unacceptable configuration for your environment, please consider using a TCP load balancer in order to preserve
and pass through the SSL encryption to the back-end Puppet master virtual hosts.

Puppet Master Worker Configuration
When running the Puppet master behind a load balancer, there will be multiple Puppet master
processes running on different hosts behind the load balancer. The load balancer will listen on the
Puppet port of 8140. Incoming requests will be dispatched to available back-end worker processes, as
illustrated in Figure 4-1. The example configuration presented in this chapter configures the Puppet CA
and workers all on the same host using unique TCP ports bound to the loopback interface.

Figure 4-1. Puppet master workers

To get started with our load-balancing configuration, you’ll copy the existing Puppet master virtual
host we configured in the previous section into two additional virtual host configurations. Each of these
two virtual hosts will have SSL disabled. You’ll then create a third virtual host listening on the standard
Puppet master port of 8140 with SSL enabled. This virtual host will forward a request to any available
back-end virtual host.

First, move the existing Puppet master to port 8141 to free up port 8140 for the new front-end load
balancer virtual host. To do this, update the Listen and VirtualHost configuration items in the Apache
Puppet master configuration, in our case in the 20_puppetmaster.conf file we created earlier:

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

99

Listen 8141
Moved the Puppet master stand alone to port 8141.
The Load balancer listens on the standard Puppet master port
<VirtualHost *:8141>

This change to the virtual host only required two small edits to the TCP port configuration in
20_puppetmaster.conf.

Next, create a new Puppet master virtual host configuration for the first back-end worker in
/etc/httpd/conf.d/40_puppetmaster_worker_18140.conf.

In Listing 4-9, we configure a unique Rack DocumentRoot in order to uniquely identify the first
Puppet master worker. Commands such as passenger-status identify processes by their configured
DocumentRoot.

Listing 4-9. First Apache Puppet master worker virtual host configuration file

cat 40_puppetmaster_worker_18140.conf
Listen 18140
<VirtualHost 127.0.0.1:18140>
SSLEngine off

Obtain Authentication Information from Client Request Headers
SetEnvIf X-Client-Verify "(.*)" SSL_CLIENT_VERIFY=$1
SetEnvIf X-SSL-Client-DN "(.*)" SSL_CLIENT_S_DN=$1

RackAutoDetect On
DocumentRoot /etc/puppet/rack/puppetmaster_18140/public/
<Directory /etc/puppet/rack/puppetmaster_18140/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
</Directory>
</VirtualHost>

In addition to the configuration file, you need to duplicates the Rack configuration directory into the
new DocumentRoot location (see Listing 4-10).

Listing 4-10. Create the first Puppet master worker rack configuration

rsync -avxH /etc/puppet/rack/puppetmaster{,_18140}/
building file list ... done
created directory /etc/puppet/rack/puppetmaster_18140
./
config.ru
public/
tmp/
sent 621 bytes received 60 bytes 1362.00 bytes/sec
total size is 431 speedup is 0.63

Note the trailing slash in the rsync command, which is important and ensures that the directory
contents are copied into one another.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

100

 Caution The back-end worker process is listening on the local interface of 127.0.0.1. This prevents network
systems from reaching the unencrypted, plain text back-end worker virtual host. In a production deployment, the
back-end virtual host is often on a different machine than the front-end load balancer. Care must be taken to
ensure the unencrypted traffic is secure and protected. In general, the back-end virtual host should not accept
connections from any machine other than the front-end load balancer.

Front End Load Balancer Configuration
After we configure the first back-end Puppet master worker, we need to configure the front-end virtual
host. This front-end virtual host is going to perform a number of tasks:

1. Terminate the SSL connection

2. Authenticate the client request

3. Set the authentication information in client request headers

4. Pass the request along to one of the available back-end worker processes.

The configuration file for the front-end load balancer is very similar to the original Apache
Passenger configuration file with the addition of a reverse proxy stanza and the removal of the Passenger
and Rack configuration stanzas (Listing 4-11).

Listing 4-11. Apache front-end load balancer configuration file

cat 30_puppetmaster_frontend_8140.conf
Available back-end worker virtual hosts
NOTE the use of cleartext unencrypted HTTP.
<Proxy balancer://puppetmaster>
 BalancerMember http://127.0.0.1:18140
 BalancerMember http://127.0.0.1:18141
</Proxy>

Listen 8140
<VirtualHost *:8140>
SSLEngine on
SSLCipherSuite SSLv2:-LOW:-EXPORT:RC4+RSA
SSLProtocol -ALL +SSLv3 +TLSv1
SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP
Puppet master should generate initial CA certificate.
ensure certs are located in /var/lib/puppet/ssl
SSLCertificateFile /var/lib/puppet/ssl/certs/puppet.example.com.pem
SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet.example.com.pem
SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem
SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
CRL checking should be enabled
disable next line if Apache complains about CRL
SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

101

optional to allow CSR request, required if certificates distributed to client during
provisioning.
SSLVerifyClient optional
SSLVerifyDepth 1
SSLOptions +StdEnvVars

The following client headers record authentication information for down stream workers.
RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

<Location />
 SetHandler balancer-manager
 Order allow,deny
 Allow from all
</Location>

ProxyPass / balancer://puppetmaster/
ProxyPassReverse / balancer://puppetmaster/
ProxyPreserveHost On

</VirtualHost>

There are three main differences between the front-end load balancer configuration file in Listing 4-
11 and the stand-alone Apache Puppet master configuration in Listing 4-6. At the top of the load
balancer virtual host configuration, a pool of back-end virtual hosts is defined in the Proxy stanza. Notice
that two virtual hosts are listed, port 18140 and port 18141, even though we have only configured the one
listening on port 18140 so far.

Part of the responsibility of the front-end load balancer is to determine if each back-end worker is
online and available to handle requests. Since no worker virtual host is available on port 18141 yet, the
front-end virtual host will automatically take http://127.0.0.1:18141 out of rotation until it becomes
available. The Puppet agent nodes will not see an error message unless all back-end worker virtual hosts
are marked as offline.

 In addition to defining the list of back-end worker virtual hosts, the Proxy stanza gives the name
balancer://puppetmaster to the collection. When additional back-end virtual hosts are added to the
system, they should be listed using the BalancerMember keyword in the Proxy stanza. Once listed, they’ll
automatically be added to the rotation of back-end workers used by the front-end virtual host listening
on port 8140.

The second important section of the front-end virtual host configuration file is the three
RequestHeader lines. These three configuration statements configure the front-end load balancer to set
three client request headers containing authentication information. When a back-end Puppet master
virtual host receives a client request from the load balancer, it will inspect these client request headers
and set environment variables based on their contents. The Puppet master process will look to these
environment variables while authorizing the Puppet agent request.

For the Puppet agent running on mail.example.com, the client request headers used for
authentication look as shown in Listing 4-12.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

102

Listing 4-12. Puppet agent authentication and authorization request headers

X-SSL-Subject: /CN=mail.example.com
X-Client-DN: /CN=mail.example.com
X-Client-Verify: SUCCESS

The X-SSL-Subject and X-Client-DN headers contain the same information, the common name from
the verified SSL certificate presented by the Puppet agent. This information is provided in two headers to
support back-end HTTP servers other than Apache. The X-Client-Verify header indicates to the back-
end worker whether or not the load balancer was able to verify the authenticity of the client SSL
certificate. This value will be SUCCESS in Apache if the client certificate is signed by a trusted Certificate
Authority, is not listed in the Certificate Revocation List, and has not expired.

The information set in the client request headers directly matches the SetEnvIf configuration lines
configured in the back-end Puppet master virtual host. We can see these lines in
/etc/httpd/conf.d/40_puppetmaster_worker_18140.conf as we configured them in Listing 4-9:

 # Obtain Authentication Information from Client Request Headers
SetEnvIf X-Client-Verify "(.*)" SSL_CLIENT_VERIFY=$1
SetEnvIf X-SSL-Client-DN "(.*)" SSL_CLIENT_S_DN=$1

The authentication information in a load-balanced Puppet master configuration is passed from the
load balancer to the back-end workers using client request headers. This design allows heterogeneous
front-end and back-end HTTP systems to work together as long as the back-end HTTP server is able to
read the Puppet agent certificate common name and determine whether or not the certificate is
currently valid. Once read from the headers, the back-end HTTP server sets this information in two
environment variables for Puppet to reference.

The third important section in the front-end load balancer configuration in Listing 4-11 tells Apache
to route all requests to the pool of Puppet master virtual hosts. This section is composed of the three
lines, ProxyPass, ProxyPassReverse, ProxyPreserveHost. These three statements tell Apache the virtual
host listening on port 8140 should forward all Puppet agent requests to the pool of Puppet master
workers named balancer://puppetmaster.

 Tip Detailed information about mod_proxy and additional configuration options are available online at
http://httpd.apache.org/docs/2.0/mod/mod_proxy.html.

Testing the Load Balancer Configuration
We’re now almost ready to test the new Puppet master configuration using the Puppet agent. Before

doing so, you need to make sure each virtual host is logging information in a clearly defined location.
This will allow you to trace the Puppet agent request as it passes through the front-end load balancer to
the back-end worker virtual host.

To make it easier, let’s separate out the logging events for each virtual host by adding ErrorLog and
CustomLog configuration options to each configuration file, as shown in Listing 4-13.

www.it-ebooks.info

http://httpd.apache.org/docs/2.0/mod/mod_proxy.html
http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

103

Listing 4-13. Configuring front-end logging

ErrorLog /var/log/httpd/balancer_error.log
CustomLog /var/log/httpd/balancer_access.log combined
CustomLog /var/log/httpd/balancer_ssl_requests.log "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x
\"%r\" %b"

Only three lines need to be inserted into the <VirtualHost>…</VirtualHost> stanza to enable logging
on the front end. Every request coming into the Puppet master infrastructure will pass through the front-
end virtual host and will be logged to the balancer_access.log file.

Worker virtual hosts do not handle SSL encrypted traffic and only require two configuration lines to
be inserted into the VirtualHost stanza. Every request routed to a specific worker will be logged into that
worker’s access log file. In Listing 4-14, we’ve included the TCP port number of the worker to uniquely
identify the log file and the associated worker.

Listing 4-14. Configuring worker logging

ErrorLog /var/log/httpd/puppetmaster_worker_error_18140.log
CustomLog /var/log/httpd/puppetmaster_worker_access_18140.log combined

Once the front-end load balancer and back-end worker virtual hosts have been configured to log to
their own log files, you need to restart Apache and makes sure the log files were created properly.

service httpd restart
ls -l {balancer,puppetmaster}*.log
-rw-r--r-- 1 root root 0 Nov 26 15:36 balancer_access.log
-rw-r--r-- 1 root root 0 Nov 26 15:36 balancer_error.log
-rw-r--r-- 1 root root 0 Nov 26 15:36 balancer_ssl_requests.log
-rw-r--r-- 1 root root 0 Nov 26 15:36 puppetmaster_worker_access_18140.log
-rw-r--r-- 1 root root 0 Nov 26 15:36 puppetmaster_worker_error_18140.log

With the appropriate log files in place, you can now test the load balancer and the single back-end
worker using puppet agent:

puppet agent --test
info: Caching catalog for puppet.example.com
info: Applying configuration version '1290814852'
notice: Passenger is setup and serving catalogs.
notice: /Stage[main]//Node[default]/Notify[Passenger]/message: defined 'message' as 'Passenger
is setup and serving catalogs.'
notice: Finished catalog run in 0.43 seconds

Here we’ve run the puppet agent command and obtained a catalog from the Puppet master. The
Apache load-balancing virtual host listened on puppet.example.com port 8140 and received the Puppet
agent request, forwarded it along to the back-end Puppet master virtual host listening on port 18140,
and then provided the response back to the Puppet agent.

We can check the Apache logs to verify that this is what actually happened, as shown in Listings 4-15
through 4-17.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

104

Listing 4-15. Load balancer request log

less balancer_access.log
127.0.0.1 - - [26/Nov/2010:15:40:51 -0800] "GET /production/catalog/puppet.example.com?facts=…
&facts_format=b64_zlib_yaml HTTP/1.1" 200 944 "-" "-"
127.0.0.1 - - [26/Nov/2010:15:40:53 -0800] "PUT /production/report/puppet.example.com
HTTP/1.1" 200 14 "-" "-"

Listing 4-16. Load balancer error log

root:/var/log/httpd # less balancer_error.log
[Fri Nov 26 15:40:53 2010] [error] (111)Connection refused: proxy: HTTP: attempt to connect to
127.0.0.1:18141 (127.0.0.1) failed
[Fri Nov 26 15:40:53 2010] [error] ap_proxy_connect_backend disabling worker for (127.0.0.1)

Listing 4-17. First Puppet master worker request log

less puppetmaster_worker_access_18140.log
127.0.0.1 - - [26/Nov/2010:15:40:51 -0800] "GET /production/catalog/puppet.example.lan?facts=…
&facts_format=b64_zlib_yaml HTTP/1.1" 200 944 "-" "-"
127.0.0.1 - - [26/Nov/2010:15:40:53 -0800] "PUT /production/report/puppet.example.lan
HTTP/1.1" 200 14 "-" "-"

In Listing 4-15, you can see the incoming Puppet agent catalog request at 3:40:51 PM. The front-end
load balancer receives the request and, according to the balancer_error.log shown in Listing 4-16,
disables the worker virtual host on Port 18141. This leaves one additional worker in the
balancer://puppetmaster pool, which receives the request, as indicated in
puppetmaster_worker_access_18140.log shown in Listing 4-17. Finally, the Puppet agent uploads the
catalog run report a few seconds later.

What happens, however, if all the back-end workers are disabled? Well, let’s see. To do this, disable
the Puppet master virtual host by renaming the configuration file:

mv 40_puppetmaster_worker_18140.conf{,.disabled}

Restarting Apache:

service httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]

And then running the Puppet agent again:

puppet agent --test
err: Could not retrieve catalog from remote server: Error 503 on SERVER …
warning: Not using cache on failed catalog
err: Could not retrieve catalog; skipping run
err: Could not send report: Error 503 on SERVER …

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

105

We’ve discovered that the Puppet agent receives error 503 when no back-end Puppet master worker
virtual hosts are available. The front-end load balancer runs through its list of back-end workers defined
in the Proxy balancer://puppetmaster section of 30_puppetmaster_frontend_8140.conf file. Finding no
available back-end workers, the front-end returns HTTP error code 503, Service Temporarily
Unavailable to the client. This HTTP error code is also available in the front-end load balancer’s error log
file (Listing 4-18).

Listing 4-18. Apache front end load balancer error log

less balancer_error.log
[Fri Nov 26 15:59:01 2010] [error] (111)Connection refused: proxy: HTTP: attempt to connect to
127.0.0.1:18140 (127.0.0.1) failed
[Fri Nov 26 15:59:01 2010] [error] ap_proxy_connect_backend disabling worker for (127.0.0.1)
[Fri Nov 26 15:59:01 2010] [error] (111)Connection refused: proxy: HTTP: attempt to connect to
127.0.0.1:18141 (127.0.0.1) failed
[Fri Nov 26 15:59:01 2010] [error] ap_proxy_connect_backend disabling worker for (127.0.0.1)
[Fri Nov 26 15:59:01 2010] [error] proxy: BALANCER: (balancer://puppetmaster). All workers
are in error state

Now that you’ve seen one and no back-end masters working, let’s bring back both workers back
online. In doing so, you will configure the second Puppet master worker.

The second back-end worker running on TCP port 18141 is almost identical to the first worker
virtual host configuration, except the port number is incremented by one. First re-enable the first back-
end worker, and then define the second back-end worker:

mv 40_puppetmaster_worker_18140.conf{.disabled,}

This command renamed the disabled configuration file back to the original name of
40_puppetmaster_worker_18140.conf, effectively re-enabling the worker virtual host listening on port
18140.

sed s/18140/18141/ 40_puppetmaster_worker_18140.conf \
 > 41_puppetmaster_worker_18141.conf

This command reads the configuration file of the first worker and writes out a new configuration file
for the second worker. While the original file is being read and the new file written, the sed command is
performing a search-and-replace, replacing all instances of “18140” with “18141.” The results are two
nearly identical worker virtual hosts, the only difference being the port and the log files:

rsync -axH /etc/puppet/rack/puppetmaster{,_18141}/

The Rack configuration for each worker process is identical and needs no modification when
bringing additional workers online. Using the rsync command, we’re able to create an identical copy of
the existing Puppet rack configuration for use with the new worker virtual host.

Using the diff command, we’re able to easily visualize the lines modified by the sed command. As
you can see in Listing 4-19, the difference between the two worker configuration files is only a matter of
the listening port and the log files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

106

Listing 4-19. Comparison of two Puppet master worker virtual host configurations

diff -U2 4{0,1}*.conf
--- 40_puppetmaster_worker_18140.conf 2010-11-26 16:19:21.000000000 -0800
+++ 41_puppetmaster_worker_18141.conf 2010-11-26 16:19:31.000000000 -0800
@@ -1,4 +1,4 @@
-Listen 18140
-<VirtualHost 127.0.0.1:18140>
+Listen 18141
+<VirtualHost 127.0.0.1:18141>
 SSLEngine off

@@ -8,6 +8,6 @@

 RackAutoDetect On
-DocumentRoot /etc/puppet/rack/puppetmaster_18140/public/
-<Directory /etc/puppet/rack/puppetmaster_18140/>
+DocumentRoot /etc/puppet/rack/puppetmaster_18141/public/
+<Directory /etc/puppet/rack/puppetmaster_18141/>
 Options None
 AllowOverride None
@@ -16,6 +16,6 @@
 </Directory>

-ErrorLog /var/log/httpd/puppetmaster_worker_error_18140.log
-CustomLog /var/log/httpd/puppetmaster_worker_access_18140.log combined
+ErrorLog /var/log/httpd/puppetmaster_worker_error_18141.log
+CustomLog /var/log/httpd/puppetmaster_worker_access_18141.log combined
</VirtualHost>

As you can see, we configure a unique Rack DocumentRoot for each back-end Puppet master worker
process. This is important to allow Passenger to track and identify each of the multiple Puppet masters.
After configuring the second back-end worker virtual host, restart Apache:

service httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]

And test the Puppet agent again:

puppet agent --test
info: Caching catalog for puppet.example.lan
info: Applying configuration version '1290817197'
notice: Passenger is setup and serving catalogs.
notice: /Stage[main]//Node[default]/Notify[Passenger]/message: defined 'message' as 'Passenger
is setup and serving catalogs.'
notice: Finished catalog run in 0.44 seconds

Both back-end Puppet master virtual hosts are now online and responding to requests. You can
check the status of the Ruby processes Passenger has started using the passenger-status command. The

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

107

passenger-status command indicates that the Puppet master process IDs started by Passenger when
Puppet agent requests are routed to the back-end worker virtual hosts (see Listing 4-20).

Listing 4-20. The passenger-status command

passenger-status
----------- General information -----------
max = 6
count = 2
active = 0
inactive = 2
Waiting on global queue: 0

----------- Domains -----------
/etc/puppet/rack/puppetmaster_18140:
 PID: 25329 Sessions: 0 Processed: 1 Uptime: 27s

/etc/puppet/rack/puppetmaster_18141:
 PID: 25341 Sessions: 0 Processed: 1 Uptime: 25s

You can see the two Passenger processes servicing the front-end. With that, we’ve configured a simple
and very scalable Puppet master implementation. To scale it further, all you now need to do is follow a
subset of these steps to add additional back-end workers to the configuration and into the pool.

We also chose to configure the front-end and back-end virtual hosts all on the same system, as we
can see through the use of 127.0.0.1 in each of the back-end configuration files and the Proxy section of
the front-end virtual host. The choice to run all of the worker processes on the same host has greatly
simplified the signing of SSL certificates when connecting new Puppet agent nodes. As mentioned
previously in this chapter, the serial number and certificate revocation lists must be kept in sync across
Puppet master systems that issue new client certificates. In the next section, you’ll see how to manage
back-end worker processes on separate systems.

Puppet CA Load Balancing Configuration
Thus far in this chapter, you’ve configured the Puppet master service in a stand-alone Apache virtual
host. Scaling the Puppet master system horizontally, you configured a number of Apache virtual hosts
working together behind a reverse proxy load balancer. In both configurations, all of the Puppet master
worker virtual hosts are running on the same host.

With multiple Puppet master workers running on the same system, all workers write Puppet
certificates to the same file system location. For this reason, you don’t need to worry which worker
accepts the certificate signing requests. But if you’d like to scale even further than what we’ve already
done, and spread our Puppet master workers onto multiple systems, then management of certificates
becomes an issue that you need to address.

There are a couple of ways you can address this issue:

• Synchronize the Puppet CA directory across all of the worker systems

• Make one worker system the active Puppet CA service and a second worker system
the hot standby Puppet CA service

We’re going to show you how to use a hot (active) standby CA model to keep your certificate data
synchronized. This architecture allows you to keep all Puppet CA data in one place, thereby minimizing
the effort needed to maintain the Puppet master infrastructure (see Figure 4-2).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

108

To do this, you will configure a second system to periodically synchronize the Puppet CA files. If the
active Puppet CA system falls offline, the front-end load balancer will automatically redirect certificate
requests to the hot standby. With the CA kept in sync, the hot standby will be ready to serve certificate-
signing requests for new hosts.

The hot standby model requires the front-end Apache load balancer to redirect all certificate
requests from all Puppet agent nodes to a specific set of Puppet master workers. We’ll demonstrate how
to do this and see how to test the new configuration. Finally, we’ll show how to take the primary Puppet
CA offline for maintenance and back online again, including handling if Puppet agents have submitted
certificate requests to the hot standby.

Figure 4-2. Puppet agent HTTPS load balancing

Puppet CA Worker Configuration
The first step to take when scaling the Puppet master infrastructure across multiple worker systems is to
add two additional work virtual hosts for the Puppet CA service. While developing and testing, we’re
going to configure these using the 127.0.0.1 local host address. In a production configuration, the
addresses of each Puppet master and Puppet CA worker should be on different hosts.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

109

First create two new virtual hosts using the existing configurations of the two we created earlier. The
virtual host workers listening on port 18142 and 18143 will be specifically for the active and hot standby
Puppet CA service:

sed s/18140/18142/ 40_puppetmaster_worker_18140.conf \
 > 42_puppetmaster_worker_18142.conf

Substitute all instances of the string “18140” with the string “18142” and write the output to the new
configuration file named 42_puppetmaster_worker_18142.conf. This configuration file is the virtual host
for the Puppet CA.

rsync -axH /etc/puppet/rack/puppetmaster{,_18142}/

Next, copy the entire contents of the original Rack configuration from Listing 4-7 without
modification. This configuration will use the default SSL directory:

sed s/18140/18143/ 40_puppetmaster_worker_18140.conf \
 > 43_puppetmaster_worker_18143.conf
rsync -axH /etc/puppet/rack/puppetmaster{,_18143}/

Repeat the process of searching and replacing the port number for the standby Puppet CA worker.
The virtual host listening on port 18142 will become the active Puppet CA back-end worker. The virtual
host listening on port 18143 will become the hot standby Puppet CA back-end worker.

In order to simulate the two different Puppet CA workers living on two different systems, you’ll need
to duplicate the existing CA directory into a new location. This configuration prevents the two Puppet
CA systems from sharing the same CA directory and certificate revocation list:

rsync -axH /var/lib/puppet/ssl/ca{,.standby}/

The rsync command duplicates the existing Puppet CA directory into a new directory at
/var/lib/puppet/ssl/ca.standby/:

vim /etc/puppet/rack/puppetmaster_18143/config.ru

We’re editing the file to add a single line immediately above the existing “ARGV” line. The new line
contains ARGV << "--cadir" << "/var/lib/puppet/ssl/ca.standby". A complete listing of the standby
CA’s Rack configuration is provided in Listing 4-21.

Listing 4-21. Standby Puppet CA Rack configuration

$0 = "master"
if you want debugging:
ARGV << "--debug"
ARGV << "--cadir" << "/var/lib/puppet/ssl/ca.standby"
ARGV << "--rack"
require 'puppet/application/master'
run Puppet::Application[:master].run

Using this configuration, the Active Puppet CA worker will continue to use /var/lib/puppet/ssl/ca/
while the standby worker will use /var/lib/puppet/ssl/ca.standby/.

We should now restart the Apache service to make sure the changes are valid but at this point the
front-end HTTPS reverse proxy has not yet been configured to route any requests to either of these two
Puppet CA workers.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

110

We now need to configure the front-end load balancer to redirect all certificate related requests to
the new port 18142 worker. We also configure the load balancer to fall back to the hot standby running at
18143 if the primary Puppet CA worker is offline (see Listing 4-22).

Listing 4-22. Standby Puppet CA Load Balancer configuration

vim 30_puppetmaster_frontend_8140.conf
<Proxy balancer://puppetmasterca>
 # Puppet CA Active Worker
 BalancerMember http://127.0.0.1:18142
 # Puppet CA Hot Standby
 BalancerMember http://127.0.0.1:18143 status=+H
</Proxy>

As we can see in Listing 4-22, a new Proxy section configures the load balancer to first connect to
http://127.0.0.1:18142, and then connect to http://127.0.0.1:18143 when a request is sent to the balancer
named puppetmasterca. The option status=+H tells the front end that the second member is a hot
standby.

With the back-end Puppet CA workers configured, the load balancer must now be configured to
route certificate requests, and only certificate requests, to the two member workers. This configuration
listing goes in the main Apache front-end virtual host block, as shown in Listing 4-23.

Listing 4-23. Load Balancer certificate request routing configuration

Ordering of ProxyPass directives is important
Direct all Puppet agent CA requests to a specific set of workers.
ProxyPassMatch ^(/.*?)/(certificate.*?)/(.*)$ balancer://puppetmasterca
ProxyPassReverse ^(/.*?)/(certificate.*?)/(.*)$ balancer://puppetmasterca
Direct all other Puppet agent requests to the default set of workers.
 ProxyPass / balancer://puppetmaster/
 ProxyPassReverse / balancer://puppetmaster/
 ProxyPreserveHost On

Here, we configured the load balancer to handle requests matching a pattern indicating they are
certificate-related. We configured the load balancer to direct these requests to the group of workers
named balancer://puppetmasterca, which were defined in Listing 4-22. Using this group of workers
guarantees that the load balancer will send the request to the worker on 18142 if it is online, and 18143 if
18142 is down, and return HTTP status 503 Temporarily Unavailable if neither is available.

The ProxyPassMatch directive configures a regular expression to match against the request URI of
the Puppet agent. In this case, we have configured the URI containing certificate in the second path
element as a match. This ensures that certificate requests are directed appropriately, regardless of the
environment or the Puppet agent name.

After configuring the two back-end Puppet CA worker virtual hosts on ports 18142 and 18143, you
need to restart Apache:

service httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]

Let’s test the new configuration, with a new system named mock.example.com:

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

111

puppet agent --test
info: Creating a new SSL key for mock.example.com
info: Caching certificate for ca
info: Creating a new SSL certificate request for mock.example.com
info: Certificate Request fingerprint (md5): 3C:56:A1:FD:6A:4B:2F:C5:72:8C:66:1E:39:D2:99:AB
Exiting; no certificate found and waitforcert is disabled

Once the new Puppet agent creates a certificate-signing request and submits it to the load balancer,
we can check the Apache logs to make sure that CA requests are being routed properly to the worker
listening on port 18142.

In Listing 4-24, you can see a number of HTTP 404 status results on the second and third line of the
logs. Apache is returning status 404 “Not Found” because the Puppet node mock.example.com is a new
node and no signed certificates or certificate requests exist for this system. Until we sign the new
certificate request using the puppet cert --sign command, the Puppet CA worker will continue to
return 404 “Not Found” status codes to the Puppet agent on mock.example.com.

Listing 4-24. HTTP 404 status results due to certificate errors

less puppetmaster_worker_access_18142.log
127.0.0.1 - - [27/Nov/2010:15:04:05 -0800] "GET /production/certificate/ca HTTP/1.1" 200 839
"-" "-"
127.0.0.1 - - [27/Nov/2010:15:04:06 -0800] "GET /production/certificate/mock.example.com
HTTP/1.1" 404 43 "-" "-"
127.0.0.1 - - [27/Nov/2010:15:04:06 -0800] "GET
/production/certificate_request/mock.example.com HTTP/1.1" 404 51 "-" "-"
127.0.0.1 - - [27/Nov/2010:15:04:06 -0800] "PUT
/production/certificate_request/mock.example.com HTTP/1.1" 200 4 "-" "-"
127.0.0.1 - - [27/Nov/2010:15:04:06 -0800] "GET /production/certificate/mock.example.com
HTTP/1.1" 404 43 "-" "-"
127.0.0.1 - - [27/Nov/2010:15:04:06 -0800] "GET /production/certificate/mock.example.com
HTTP/1.1" 404 43 "-" "-"

To make sure the Puppet agent is routed to the correct worker system, you need to sign the new

certificate request:

puppetca --sign mock.example.com
notice: Signed certificate request for mock.example.com
notice: Removing file Puppet::SSL::CertificateRequest mock.example.com \
 at '/var/lib/puppet/ssl/ca/requests/mock.example.com.pem'

Note that the primary Puppet CA worker is using the default CA directory. If the active worker falls
offline, requests will be redirected to the Puppet CA worker on 18143 and therefore the
/var/lib/puppet/ssl/ca.standby/ directory.

Once the certificate has been signed, you can run the Puppet agent on the new node again to make
sure the agent is able to download its signed certificate from the master.

puppet agent --test
info: Caching certificate for mock.example.com
info: Caching certificate_revocation_list for ca
info: Caching catalog for mock.example.com

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

112

info: Applying configuration version '1290900612'
notice: Passenger is setup and serving catalogs.
notice: /Stage[main]//Node[default]/Notify[Passenger]/message: defined 'message' as 'Passenger
is setup and serving catalogs.'
notice: Finished catalog run in 0.06 seconds

You can also check the logs again to make sure HTTP Status 200 is present, now that the Puppet
agent has the signed certificate:

tail -2 puppetmaster_worker_access_18142.log
127.0.0.1 - - [27/Nov/2010:15:04:31 -0800] "GET /production/certificate/mock.example.com
HTTP/1.1" 200 875 "-" "-"
127.0.0.1 - - [27/Nov/2010:15:04:32 -0800] "GET /production/certificate_revocation_list/ca
HTTP/1.1" 200 589 "-" "-"

You can see two log entries, matching up with the Puppet agent downloading its signed certificate
and the certificate revocation list maintained by the Puppet CA worker. Both entries contain HTTP
Status 200 “OK” codes, indicating that the Puppet agent successfully transferred the certificate and
revocation list from the Puppet CA.

You can also see that the access logs for the active Puppet CA worker does not contain any catalog
requests. Check the access logs of the two load balanced Puppet master workers running on ports 18140
and 18141 in order to make sure catalog requests are being routed correctly to only those two systems:

less puppetmaster_worker_access_18140.log
127.0.0.1 - - [27/Nov/2010:15:04:32 -0800] "GET
/production/catalog/mock.example.lan?facts_format=b64_zlib_yaml&facts=… HTTP/1.1" 200 942 "-
" "-"

Note that the catalog requests are still being directed by the front-end load balancer to the worker
running on Port 18140, while certificate requests are being directed to the active Puppet CA on port
18142.

With this, you’ve configured the front-end HTTP load balancer to direct all certificate related
requests to a single Puppet CA worker. This redirection ensures that the certificate revocation list and
serial.txt files are maintained properly.

Synchronizing the Hot Standby Puppet CA Directory
Now that the certificate requests are being handled properly, the next step is to configure the hot
standby Puppet CA worker. If the primary Puppet CA worker fails, another worker should quickly take
over responsibility for responding to certificate requests. We will take advantage of the load balancer’s
ability to redirect requests in order to quickly fail over to the backup Puppet CA worker.

You first need to configure a periodic task to automatically synchronize the CA directory across the
primary and secondary workers. Next, you’ll configure the load balancer to use the secondary worker as
a hot standby, automatically activated in the event the primary worker goes offline. Finally, you will test
the new configuration and work through the exercise of testing the fail-over and fail-back to the primary
Puppet CA worker.

In the following examples, we have configured both Puppet CA workers on the same system using
two distinct certificate authority directories. Copy the existing certificate authority directory to the hot

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

113

standby using rsync. This command could also be configured as a cron task, to keep the hot standby
directory contents up to date:

cadir=$(puppet master --configprint cadir)

This command sets an environment variable named $cadir set to the default value of the cadir
configuration setting used by the primary CA worker.

rsync -avxH --delete ${cadir}{,.standby}/

This rsync command synchronizes the primary CA directory into the standby CA directory, deleting
any files existing in the destination and not in the source.

Puppet CA Hot Standby
Once the certificate data has been synchronized, you can test failover between the two virtual hosts on
ports 18142 and 18143. In the previous section, we configured the virtual host running on port 18143 as a
hot standby. We also configured /etc/puppet/rack/puppetmaster_18143/config.ru to use a unique CA
directory named ca.standby.

We’re going to use the iptables firewall to block traffic to the primary Puppet CA worker,
effectively simulating a failure of the service. We expect the load balancer configuration to automatically
redirect certificate requests to the hot standby.

$ sudo iptables -I INPUT -i lo -p tcp --dport 18142 -j REJECT --reject-with icmp-
host-prohibited

Once the primary Puppet CA worker is inaccessible, you can test that certificate requests are
automatically redirected to the secondary worker listening on port 18143, using the curl command

$ curl --silent -o /dev/null -D /dev/stdout -q -k -H "Accept: s"
https://puppet:8140/production/certificate/ca
HTTP/1.1 200 OK
Date: Sat, 04 Dec 2010 23:37:35 GMT
Server: Apache/2.2.3 (CentOS)
X-Powered-By: Phusion Passenger (mod_rails/mod_rack) 2.2.11
Content-Length: 839
Status: 200
Content-Type: text/plain; charset=UTF-8
Connection: close

You can see the results of this curl in the logs:

$ tail -n2 /var/log/httpd/balancer_error.log
[Sat Dec 04 15:42:36 2010] [error] (113)No route to host: proxy: HTTP: attempt to connect to
127.0.0.1:18142 (127.0.0.1) failed
[Sat Dec 04 15:42:36 2010] [error] ap_proxy_connect_backend disabling worker for (127.0.0.1)

And:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

114

$ tail -n1 /var/log/httpd/puppetmaster_worker_access_18143.log
127.0.0.1 - - [04/Dec/2010:15:42:36 -0800] "GET /production/certificate/ca HTTP/1.1" 200 839
"-" "curl/7.15.5 (x86_64-redhat-linux-gnu) libcurl/7.15.5 OpenSSL/0.9.8b zlib/1.2.3
libidn/0.6.5"

The first command we’ve executed is a standard curl HTTP request. Rather than display the
contents of the request body, we display the HTTP Response headers on standard output. The HTTP
header output provides an indication of the status of the response, with anything other than status 200
indicating an error.

After requesting the Puppet CA certificate, you can look at the error log file of the front-end load
balancer to see how the request as handled. As expected, the iptables firewall rule prevented the load
balancer from forwarding the request to the primary Puppet CA worker listening on port 18142. The load
balancer properly failed over to the hot standby Puppet CA worker listening on port 18143 and
forwarded the request to the virtual host.

Looking at the access logs in puppetmaster_worker_access_18143.log of the Puppet CA worker
listening on port 18143, we can see the incoming request and resulting HTTP 200 OK status code for the
response.

Now we want to make sure we can still provision new Puppet managed nodes while the hot standby
certificate authority is currently active. With a different CA directory configured on the hot standby, the
process of listing and signing certificates is slightly different, requiring the use of the puppet cert --
cadir configuration option:

puppet agent --certname test.example.lan --test --noop
info: Creating a new SSL key for test.example.lan
info: Creating a new SSL certificate request for test.example.lan
info: Certificate Request fingerprint (md5): A5:47:AE:F9:08:A8:5D:EF:5D:82:7E:3F:8C:8C:09:82
Exiting; no certificate found and waitforcert is disabled

The first time a Puppet agent is run, a new certificate request is generated and submitted to the
Puppet master. Since the primary Puppet CA worker is offline, we expect to see the pending certificate
request in the standby directory:

puppet cert --cadir /var/lib/puppet/ssl/ca.standby --list
test.example.lan

In order to see the pending certificate-signing request in the standby directory, you need to provide
the --cadir option, as we’ve done using the puppet cert command shown in Listing 4-25.

Listing 4-25. Signing a CSR on the standby Puppet CA

puppet cert --cadir /var/lib/puppet/ssl/ca.standby --sign test.example.lan
notice: Signed certificate request for test.example.lan
notice: Removing file Puppet::SSL::CertificateRequest test.example.lan at
'/var/lib/puppet/ssl/ca.standby/requests/test.example.lan.pem'

Similar to listing the pending requests, you’re able to sign a specific request waiting in the standby
directory using puppet cert with the --cadir option.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

115

puppet agent --certname test.example.lan --test --noop
warning: peer certificate won't be verified in this SSL session
info: Caching certificate for test.example.lan
info: Caching catalog for test.example.lan
info: Applying configuration version '1291556503'
notice: /Stage[main]//Node[default]/Notify[Passenger]/message: is absent, should be Passenger
is setup and serving catalogs. (noop)
notice: Finished catalog run in 0.40 seconds

Finally, you can reconnect the Puppet agent and obtain the signed certificate using the same
command we started with. The peer certificate warning in this output may be safely ignored.

Primary Puppet CA Fail Back
The failover to the secondary CA is now working properly, and new certificates can be signed. Let’s

test the process of re-activating the primary Puppet CA Worker. The load balancer will automatically
start using the primary worker when it comes online again, so the process becomes a matter of
synchronizing the secondary certificate authority back to the primary CA directory. You need to
synchronize changes before re-activating the firewall rule to allow traffic back to the primary certificate
authority.

Similar to the rsync command synchronizing the primary CA directory into the standby location, the
rsync command shown in Listing 4-26 reverses the direction and synchronizes the standby CA directory
into the primary location before re-enabling the primary CA using the host firewall.

Listing 4-26. How to rsync standby CA back to the primary CA

rsync -avxH --delete /var/lib/puppet/ssl/ca{.standby,}/
building file list ... done
./
inventory.txt
serial
requests/
signed/
signed/test.example.lan.pem
sent 2103 bytes received 104 bytes 4414.00 bytes/sec
total size is 5980 speedup is 2.71

iptables -L INPUT -n -v --line-number
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
num pkts bytes target prot opt in out source destination
1 0 0 REJECT tcp -- lo * 0.0.0.0/0 0.0.0.0/0
tcp dpt:18142 reject-with icmp-host-prohibited
2 290K 59M RH-Firewall-1-INPUT all -- * * 0.0.0.0/0 0.0.0.0/0

iptables -D INPUT 1

The two iptables commands first list the rules associated with incoming traffic. We see that rule #1
is rejecting traffic destined for the port used by the primary CA worker. The second iptables command
deletes rule #1 to allow traffic once again.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

116

You performed three simple tasks to re-activate the primary Puppet CA Worker. First, you
synchronized the CA directory from the standby in Listing 4-23. Notice that three files have changed
since the hot standby worker has become active. These three files changed when you signed the
certificate request for test.example.lan in Listing 4-22. Immediately after synchronizing the CA
directory, you removed the iptables rule blocking access to the primary Puppet CA worker. The first
iptables command lists rules in the INPUT chain by number and the second iptables command
removes rule number one from the firewall policy.

 Caution When failing back to the primary Puppet CA worker, there will be short delay where certificate
requests are still directed to the hot standby. This delay is determined by how frequently the load balancer polls
failed worker nodes to find out if they’re back online. In situations where a large number of certificate requests are
being handled while the Puppet CA is being switched online, it is recommended to make the ca.standby directory
read-only to the puppet user and group to prevent changes from occurring after synchronization.

An Alternative: Load Balancing with DNS Round Robin

Up until now, we’ve relied on an HTTP load balancer using Apache to scale. This configuration allows us to
easily redirect and consolidate all certificate requests to a single Puppet CA worker. However, we could
also use DNS round robin to achieve the same ends.

DNS round robin is commonly used to cluster a group of worker processes providing the same service. In
this configuration, redirection to different workers is performed at the name resolution stage instead of
using a reverse HTTP proxy. As a result, the Puppet master infrastructure is no longer able to make
decisions about the redirection based on the client request. Furthermore, if a specific Puppet master
worker is offline, the DNS system is not checking the state of the worker and as a result, a portion of the
Puppet agent systems will receive timeout errors when they are directed to connect to the failed worker
system. We recommend deploying HTTP load balancing whenever possible to scale Puppet because of
these shortcomings in DNS round robin.

Like our HTTP load balancing, all certificate-related requests should be consolidated onto one worker
system to mitigate problems with certificate serial numbers and revocation lists diverging among the
Puppet CA systems. To this end, the Puppet agent supports the configuration of a different Puppet CA
server from the Puppet master server the configuration catalog is obtained from. When configuring Puppet
using round robin DNS, it is recommended to maintain a single Puppet CA worker in addition to the
number of Puppet master workers required. The Puppet agent configuration should set the --ca_server
configuration option to bypass the round robin DNS configuration and contact the appropriate Puppet CA
worker directly.

Measuring Performance
Catalog retrieval time is the primary measure of how one or more Puppet masters are performing.
Catalog compilation is a very I/O-, CPU- and memory-intensive process. All of the imported manifests
must be located and read from the file system, and CPU and memory are used to parse and compile the

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 4 PUPPET SCALABILITY

117

catalog. In order to measure this process, you can use a simple curl script to periodically obtain a
compiled catalog. If the command takes longer than is normal for the environment, there is a strong
indication additional capacity should be added to the Puppet master infrastructure.

Using the un-encrypted Puppet master back-end workers configured when setting up the Apache
load balancer, you can write a small script to measure the catalog compilation time of the node
test.example.com.

To do this, you need to know the four components of a catalog request:

• The URI containing the environment, catalog, and node to obtain a catalog from

• The SSL authentication headers

• A list of facts and their values

• A header telling the Puppet master what encoding formats the client accepts

All of this information is available in the Apache access logs (see Listing 4-27). The list of facts is
easily obtained by running the Puppet agent normally, then inspecting the HTTP access logs and
copying the URL into a script.

Listing 4-27. Curl URL based on Apache access logs

tail balancer_access.log
127.0.0.1 - - [05/Dec/2010:05:41:41 -0800] "GET \
/production/catalog/test.example.lan?facts_format=b64_zlib_yaml&facts=eNqdVVt… HTTP/1.1"
200 944 "-" "-"

The path following the GET verb contains /production/catalog/test.example.lan. This indicates a
catalog request for the host test.example.lan from the production environment. The query portion of
the URL contains two pieces of information: the format of the facts listing, and the listing of facts itself.
These pieces of information are encoded in the facts_format and facts query parameters of the URL.

To construct the full URL, prefix the URL from Listing 4-28 with http://127.0.0.1:18141, the
address of the Apache worker virtual host. The command the operator uses to measure catalog
compilation time is:

Listing 4-28. Curl catalog request command

$ time curl -v -H "Accept: pson, yaml" \
 -H "X-Client-DN: /CN=test.example.com" \
 -H "X-Client-Verify: SUCCESS" \
'http://127.0.0.1:18141/production/catalog/test.example.com?facts=…&facts_format=b64_zlib_ya
ml

Placing this command in a script and executing it on the Puppet master worker nodes allows us to
know when catalog compilation time grows beyond normal thresholds.

Splay Time
Related to catalog compilation time, Puppet agent processes sometimes present a thundering herd
problem when all systems have their clocks synchronized and are configured to run from the cron
daemon at a specific time. The catalog compilation process is quite processor–intensive, and if the

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 PUPPET SCALABILITY

118

Puppet master receives too many requests in a short period of time, the systems may start to thrash and
degrade in performance.

When running a Puppet agent out of cron, we recommend introducing a small random splay time to
ensure that all of the Puppet agent nodes do not request their configuration catalog at exactly the same
moment. The Example.com operator follows this recommendation and uses the Puppet agent wrapper
script shown in Listing 4-29 when executing the Puppet agent out of cron.

Listing 4-29. Bash script to splay Puppet agents

#! /bin/bash
set -e
set -u
sleep $((RANDOM % 300))
exec puppet agent --no-daemonize --onetime

The sleep command in this shell script causes a delay between zero and five minutes. With
hundreds of Puppet agent managed nodes, this random delay will ensure incoming requests to the
Puppet Mater workers are spread out over a short window of time.

Summary
In this chapter, you’ve configured the Puppet master infrastructure in a number of ways. Specifically,
you configured the Apache web server as a reverse HTTPS proxy to handle the SSL verification and
authentication of incoming Puppet agent managed nodes. Once authenticated, the Apache system
behaves as a HTTP load balancer, distributing requests automatically to some number of back-end
Puppet master worker virtual hosts.

In addition, we showed you how to handle incoming certificate requests in a special manner,
forwarding all certificate requests to a single Puppet CA worker process with a hot standby ready and
waiting for redundancy. The consolidation of certificate requests to a single Puppet CA worker mitigates
the overhead and problems associated with keeping the Puppet CA certificate revocation list, serial
numbers, and index synchronized across workers.

In addition to HTTP load balancing, distributing incoming requests using DNS round robin is a
viable alternative when using the --ca_server Puppet agent configuration option. Similar to the HTTP
load-balancing configuration, the ca_server option allows the operator to consolidate certificate
requests onto a single worker system and alleviates the issues managing and synchronizing the
certificate authority database files.

Finally, you learned how to measure the catalog compilation time of the Puppet master workers and
use splay time to avoid overwhelming the Puppet masters.

Resources
• Using Passenger -

http://projects.puppetlabs.com/projects/1/wiki/Using_Passenger

• Apache Configuration Reference - http://httpd.apache.org/docs/2.2/

• Apache Mod Proxy Balancer -
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

• DNS Round Robin - http://en.wikipedia.org/wiki/Round_robin_DNS

• Puppet REST API - http://docs.puppetlabs.com/guides/rest_api.html

www.it-ebooks.info

http://projects.puppetlabs.com/projects/1/wiki/Using_Passenger
http://httpd.apache.org/docs/2.2/
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://en.wikipedia.org/wiki/Round_robin_DNS
http://docs.puppetlabs.com/guides/rest_api.html
http://www.it-ebooks.info/

C H A P T E R 5

119

Externalizing Puppet Configuration

In Chapter 2 we talked about the ways that you could define your hosts or nodes to Puppet. We talked
about specifying them in a variety of forms as node statements in your Puppet manifest files. We also
mentioned that Puppet has the capability to store node information in external sources. This avoids the
need to specify large numbers of nodes manually in your manifests files, a solution which is time-
consuming and not scalable.

Puppet has two ways to store node information externally:

• External Node Classification

• LDAP server classification

The first capability is called External Node Classification (ENC). ENC is a script-based integration
system that Puppet queries for node data. The script returns classes, inheritance, variables and
environment configuration that Puppet can then use to define a node and configure your hosts.

 Tip External node classifiers are also one of the means by which tools like the Puppet Dashboard and Foreman
can be integrated into Puppet and provide node information, as you will see in Chapter 7.

The second capability allows you to query Lightweight Directory Access Protocol (LDAP) directories
for node information. This integration is used less often than ENCs, but it is especially useful because
you can specify an existing LDAP directory, for example your asset management database or an LDAP
DNS back end, for your node data.

Using external node classification, either via an ENC or via LDAP, is the recommended way to scale
your Puppet implementation to cater for large volumes of hosts. Most of the multi-thousand node sites
using Puppet, for example Google and Zynga, make use of external node classification systems to allow
them to deal with the large number of nodes. Rather than managing files containing hundreds,
thousands or even tens of thousands of node statements, you can use this:

node mail.example.com { … }
node web.example.com { … }
node db.example.com { … }
…

This allows you to specify a single source of node information and make quick and easy changes to
that information without needing to edit files.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

120

In this chapter, we discuss both approaches to storing node information in external sources. First
we look at creating an external node classifier, and we provide some simple examples of these for you to
model your own on; then we demonstrate the use of the LDAP node classifier.

External Node Classification
Writing an ENC is very simple. An ENC is merely a script that takes a node name, for example
mail.example.com, and then returns the node’s configuration in the form of YAML data. YAML or Yet
Another Markup Language (http://www.yaml.org/) is a serialization language used in a variety of
programming languages. YAML is human-friendly, meaning it’s structured and is designed to be easy for
humans to read. It is often used as a configuration file format; for example, the database configuration
file used in Ruby on Rails applications, database.yml, is a YAML file.

Let’s look at some simple YAML examples to get an idea for how it works. YAML is expressed in a
hash where structure is important. Let’s start by specifying a list of items:

- foo
- bar
- baz
- qux

The start of a YAML document is identified with three dashes, “---“. Every ENC needs to return these
three dashes as the start of its output. We’ve then got a list of items preceded by dashes.

We can also express the concept of assigning a value to an item, for example:

foo: bar

Here we’ve added our three dashes and then expressed that the value of item “foo” is “bar.” We can

also express grouped collections of items (which we’re going to use heavily in our ENCs):

foo:
 - bar
baz:
 - qux

We’ve again started with our three dashes and then specified the names of the lists we’re creating:
foo and baz. Inside each list are the list items, again preceded with a dash, but this time indented one
space to indicate their membership of the list.

This indentation is very important. For the YAML to be valid, it must be structured correctly. This
can sometimes be a real challenge but there are some tools you can use to structure suitable YAML. For
example, VIM syntax highlighting will recognize YAML (if the file you’re editing has a .yml or .yaml
extension) or you can use the excellent Online YAML Parser to confirm the YAML you’re generating is
valid: http://yaml-online-parser.appspot.com/.

But before we generate our first YAML node, we need to configure Puppet to use an external node
classifier instead of our file-based node configuration.

www.it-ebooks.info

http://www.yaml.org/
http://yaml-online-parser.appspot.com/
http://www.it-ebooks.info/

 CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

121

 Note You can see a more complete example of structured YAML at http://www.yaml.org/start.html.

Configuring Nodes Using An External Node Classifier
To use external nodes, we first need to tell Puppet to use a classifier to configure our nodes rather than
use node definitions. We do this by specifying the node_terminus option and the name and location of
our classifier in the [master] (or [puppetmasterd] in pre-2.6.0 versions) section of the puppet.conf
configuration file on our Puppet master. You can see this in Listing 5-1, where we’ve specified a classifier
called puppet_node_classifier located in the /usr/bin directory.

Listing 5-1. The external_nodes configuration option

[master]
node_terminus = exec
external_nodes = /usr/bin/puppet_node_classifier

The node_terminus configuration option is used to configure Puppet for node sources other than the
default flat file manifests. The exec option tells Puppet to use an external node classifier script.

A classifier can be written in any language, for example shell script, Ruby, Perl, Python, or a variety
of other languages. The only requirement is that the language can output the appropriate YAML data.
For example, you could also easily add a database back end to a classifier that queries a database for the
relevant hostname and returns the associated classes and any variables.

Following are some example node classifiers written in different languages.

 Note You can have nodes specified both in Puppet manifests and external node classifiers. For this to work
correctly, though, your ENC must return an empty YAML hash.

An External Node Classifier in a Shell Script
In Listing 5-2, you can see a very simple node classifier, the puppet_node_classifier script we specified
in Listing 5-1. This classifier is written in shell script.

Listing 5-2. Simple Node Classifier

#!/bin/sh
cat <<"END"

classes:
 - base
parameters:
 puppetserver: puppet.example.com
END
exit 0

www.it-ebooks.info

http://www.yaml.org/start.html
http://www.it-ebooks.info/

CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

122

The script in Listing 5-2 will return the same classes and variables each time it is called irrelevant of
what hostname is passed to the script.

$ puppet_node_classifier web.example.com

Will return:

classes:
 - base
parameters:
 puppetserver: puppet.example.com

The classes block holds a list of the classes that belong to this node, and the parameters block
contains a list of the variables that this node specifies. In this case, the node includes the base class and
has a variable called $puppetserver with a value of puppet.example.com.

Puppet will use this data to construct a node definition as if we’d defined a node statement. That
node statement would look like Listing 5-3.

Listing 5-3. Node definition from Listing 5-2’s classifier

node web.example.com {
 $puppetserver = 'puppet.example.com'
 include base
}

This is the simplest ENC that we can devise. Let’s look at some more complex variations of this
script that can return different results depending on the particular node name being passed to the
classifier, in the same way different nodes would be configured with different classes, definitions, and
variables in your manifest files.

 Tip Any parameters specified in your ENC will be available as top-scope variables.

A Ruby External Node Classifier
Let’s look at another example of an ENC, this time specifying a list of hosts or returning an empty YAML
hash if the host is not found. This ENC is written in Ruby, and you can see it in Listing 5-4.

Listing 5-4. Ruby node classifier

#!/usr/bin/env ruby

require 'yaml'

node = ARGV[0]
default = { 'classes' => []}

unless node =~ /(^\S+)\.(\S+\.\S+)$/

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

123

 print default.to_yaml
 exit 0
end

hostname = $1

base = { 'environment' => 'production',
 'parameters' => {
 'puppetserver' => 'puppet.example.com'
 },
 'classes' => ['base'],
 }

case hostname
 when /^web?\w+$/
 web = { 'classes' => 'apache' }
 base['classes'] << web['classes']
 puts YAML.dump(base)
 when /^db?\w+$/
 db = { 'classes' => 'mysql' }
 base['classes'] << db['classes']
 puts YAML.dump(base)
 when /^mail?\w+$/
 mail = { 'classes' => 'postfix' }
 base['classes'] << mail['classes']
 puts YAML.dump(base)
 else
 print default.to_yaml
end

exit 0

Our simple ENC here captures the incoming node name and rejects and returns an empty hash
(defined in the default variable) if it is not an appropriately formed fully-qualified domain name
(FQDN).

We then set up some basic defaults, the puppetserver variable, our environment, and a base class.
The ENC then takes the host name portion of the FQDN and checks it against a list of host names, for
example matching it against web, web1, web123 and so on for database and mail hosts.

For example, if we passed the ENC a node name of web.example.com, it would return a YAML hash
of:

parameters:
 puppetserver: puppet.example.com
classes:
 - base
 - apache
environment: production

Which would result in a node definition of:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

124

node web.example.com {
 $puppetserver = puppet.example.com
 include base
 include apache
}

This would specify that this node belonged to the production environment.
If the ENC doesn’t match any host names, then it will return an empty YAML hash.

A Perl External Node Classifier
In Listing 5-5, you can see another node classifier written in Perl.

Listing 5-5. Perl-based node classifier

#!/usr/bin/perl -w
use strict;
use YAML qw(Dump);

my $hostname = shift || die "No hostname passed";

$hostname =~ /^(\w+)\.(\w+)\.(\w{3})$/
 or die "Invalid hostname: $hostname";

my ($host, $domain, $net) = ($1, $2, $3);

my @classes = ('base', $domain);
my %parameters = (
 puppetserver => "puppet.$domain.$net"
);

print Dump({
 classes => \@classes,
 parameters => \%parameters,
});

In Listing 5-5, we’ve created a Perl node classifier that makes use of the Perl YAML module. The
YAML module can be installed via CPAN or your distribution’s package management system. For
example, on Debian it is the libyaml-perl package, or on Fedora it is the perl-YAML package.

The classifier slices our hostname into sections; it assumes the input will be a fully qualified domain
name and will fail if no hostname or an inappropriately structured hostname is passed. The classifier
then uses those sections to classify the nodes and set parameters. If we called this node classifier with
the hostname web.example.com, it would return a node classification of:

classes:
 - base
 - example
parameters:
 puppetserver: puppet.example.com

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

125

This would result in a node definition in Puppet structured like:

node 'web.example.com' {
 include base, example

 $puppetserver = "puppet.example.com"
}

 Note From Puppet 2.6.5 and later, you can also specify parameterized classes and resources in external node
classifiers (see http://docs.puppetlabs.com/guides/external_nodes.html for more details).

Back-Ending a Node Classification
Lastly, as mentioned, we could also back-end our node classification script with a database, as you can
see in Listing 5-6.

Listing 5-6. A database back-end node classifier

#!/usr/bin/perl -w
use strict;
use YAML qw(Dump);
use DBI;

my $hostname = shift || die "No hostname passed";

$hostname =~ /^(\w+)\.(\w+)\.(\w{3})$/
 or die "Invalid hostname: $hostname";

my ($host, $domain, $net) = ($1, $2, $3);

MySQL Configuration
my $data_source = "dbi:mysql:database=puppet;host=localhost";
my $username = "puppet";
my $password = "password";

Connect to the server
my $dbh = DBI->connect($data_source, $username, $password)
 or die $DBI::errstr;

Build the query
my $sth = $dbh->prepare(qq{SELECT class FROM nodes WHERE node = '$hostname'})
 or die "Can't prepare statement: $DBI::errstr";

Execute the query
my $rc = $sth->execute
 or die "Can't execute statement: $DBI::errstr";

www.it-ebooks.info

http://docs.puppetlabs.com/guides/external_nodes.html
http://www.it-ebooks.info/

CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

126

Set parameters
my %parameters = (
 puppet_server => "puppet.$domain.$net"
);

Set classes
my @class;
while (my @row=$sth->fetchrow_array)
 { push(@class,@row) }

Check for problems
die $sth->errstr if $sth->err;

Disconnect from database
$dbh->disconnect;

Print the YAML
print Dump({
 classes => \@class,
 parameters => \%parameters,
});

This node classifier would connect to a MySQL database called puppet running on the local host.
Using the hostname, the script receiving it would query the database and return a list of classes to assign
to the node. The nodes and classes would be stored in a table. The next lines comprise a SQL statement
to create a very simple table to do this:

CREATE TABLE `nodes` (
`node` varchar(80) NOT NULL,
`class` varchar(80) NOT NULL) TYPE=MyISAM;

The classes, and whatever parameters we set (which you could also place in the database in another
table), are then returned and outputted as the required YAML data.

 Tip You can also access fact values in your node classifier scripts. Before the classifier is called, the
$vardir/yaml/facts/ directory is populated with a YAML file named for the node containing fact values, for
example /var/lib/puppet/yaml/facts/web.example.com.yaml. This file can be queried for fact values.

All of these external node classifiers are very simple and could easily be expanded upon to provide
more sophisticated functionality. It is important to remember that external nodes override node
configuration in your manifest files. If you enable an external node classifier, any duplicate node
definitions in your manifest files will not be processed and will in fact be ignored by Puppet.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

127

 Note In Puppet versions earlier than 0.23, external node scripts were structured differently. We’re not going to
cover these earlier scripts, but you can read about them at
http://docs.puppetlabs.com/guides/external_nodes.html.

Storing Node Configuration in LDAP
In addition to external node classifiers, Puppet also allows the storage of node information in LDAP
directories. Many organizations already have a wide variety of information about their environments,
such as DNS, user and group data, stored in LDAP directories. This allows organizations to leverage
these already-existing assets stored in LDAP directories or to decouple their configuration from Puppet
and centralize it. Additionally, it also allows LDAP-enabled applications to have access to your
configuration data.

 Note The use of LDAP nodes overrides node definitions in your manifest files and your ENC. If you use LDAP
node definitions, you cannot define nodes in your manifest files or in an ENC.

Installing Ruby LDAP Libraries
The first step in using LDAP for your node configuration is to ensure the Ruby LDAP libraries are
installed. First, check for the presence of the LDAP libraries:

ruby -rldap -e "puts :installed"

If this command does not return installed, the libraries are not installed. You can either install
them via your distribution’s package management system or download them from the Ruby/LDAP site.
For Red hat and derivatives, this is the ruby-ldap package. For Ubuntu/Debian, the package is libldap-
ruby1.8.

If there isn’t a package for your distribution, you can download the required libraries either in the
form of an RPM or a source package from the Ruby/LDAP site. The Ruby/LDAP site is located at
http://ruby-ldap.sourceforge.net/.

Check out the current Ruby LDAP source code:

$ svn checkout http://ruby-activeldap.googlecode.com/svn/ldap/trunk/ ruby-ldap-ro

Then, change into the resulting directory and then make and install the code:

$ cd ruby-ldap-ro
$ ruby extconf.rb
$ sudo make && make install

Setting Up the LDAP Server
Next, you need to set up your LDAP server. We’re going to assume you’ve either already got one running
or can set one up yourself. For an LDAP server, you can use OpenLDAP, Red Hat Directory Server (or

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://docs.puppetlabs.com/guides/external_nodes.html
http://ruby-ldap.sourceforge.net/
http://ruby-activeldap.googlecode.com/svn/ldap/trunk/
http://www.it-ebooks.info/

CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

128

Fedora Directory Server), Sun’s Directory Server, or one of a variety of other servers. We’re going to use
OpenLDAP for the purposes of demonstrating how to use LDAP node definitions.

 Tip For some quick start instructions on setting up OpenLDAP, you can refer to
http://www.openldap.org/doc/admin23/quickstart.html.

Adding the Puppet Schema
Now we need to add the Puppet schema to our LDAP directory’s configuration.

 Caution You may need to tweak or translate the default LDAP schema for some directory servers, but it is
suitable for OpenLDAP.

The Puppet schema document is available in the Puppet source package in the
ext/ldap/puppet.schema file, or you can take it from the project’s Git repository at
https://github.com/puppetlabs/puppet/blob/master/ext/ldap/puppet.schema.

We need to add it to our schema directory and slapd.conf configuration file. For example, on an
Ubuntu or Debian host, the schema directory is /etc/ldap/schema, and the slapd.conf configuration is
located in the /etc/ldap directory. On Red Hat, the configuration file is located in /etc/openldap and the
schemas are located in /etc/openldap/schema. Copy the puppet.schema file into the appropriate
directory, for example on Ubuntu:

$ cp puppet/ext/ldap/puppet.schema /etc/ldap/schema

Now you can add an include statement to your slapd.conf configuration file; there should be a
number of existing statements you can model:

include /etc/ldap/schema/puppet.schema

Or you can add a schema to a running OpenLDAP server, like so:

$ ldapadd -x -H ldap://ldap.example.com/ -D "cn=config" -W -f puppet.ldif

To update OpenLDAP with the new schema, you may also now need to restart your server.

/etc/init.d/slapd restart

Now that you’ve added the schema and configured the LDAP server, you need to tell Puppet to use
an LDAP server as the source of its node configuration.

Configuring LDAP in Puppet
LDAP configuration is very simple. Let’s look at the required configuration options from the [master]
section of the puppet.conf configuration file in Listing 5-7.

www.it-ebooks.info

http://www.openldap.org/doc/admin23/quickstart.html
https://github.com/puppetlabs/puppet/blob/master/ext/ldap/puppet.schema
http://www.it-ebooks.info/

 CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

129

Listing 5-7. LDAP configuration in Puppet

[master]
node_terminus = ldap
ldapserver = ldap.example.com
ldapbase = ou=Hosts,dc=example,dc=com

First, we set the node_terminus option to ldap to tell Puppet to look to an LDAP server as our node
source. Next, we specify the hostname of our LDAP server, in this case ldap.example.com, in the
ldapserver option. Lastly, in the ldapbase option, we specify the base search path. Puppet recommends
that hosts be stored in an OU called Hosts under our main directory structure, but you can configure this
to suit your environment.

If required, you can specify a user and password using the ldapuser and ldappassword options and
override the default LDAP port of 389 with the ldapport option. There is some limited support for TLS or
SSL, but only if your LDAP server does not require client-side certificates.

 Tip You can see a full list of the potential LDAP options at
http://docs.puppetlabs.com/references/stable/configuration.html.

After configuring Puppet to use LDAP nodes, you should restart your Puppet master daemon to
ensure that the new configuration is updated.

Now you need to add your node configuration to the LDAP server. Let’s take a quick look at the
Puppet LDAP schema in Listing 5-9.

Listing 5-8. The LDAP schema

attributetype (1.3.6.1.4.1.34380.1.1.3.10 NAME 'puppetClass'
 DESC 'Puppet Node Class'
 EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetype (1.3.6.1.4.1.34380.1.1.3.9 NAME 'parentNode'
 DESC 'Puppet Parent Node'
 EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26
 SINGLE-VALUE)

attributetype (1.3.6.1.4.1.34380.1.1.3.11 NAME 'environment'
 DESC 'Puppet Node Environment'
 EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetype (1.3.6.1.4.1.34380.1.1.3.12 NAME 'puppetVar'
 DESC 'A variable setting for puppet'
 EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

www.it-ebooks.info

http://docs.puppetlabs.com/references/stable/configuration.html
http://www.it-ebooks.info/

CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

130

objectclass (1.3.6.1.4.1.34380.1.1.1.2 NAME 'puppetClient' SUP top AUXILIARY
 DESC 'Puppet Client objectclass'
 MAY (puppetclass $ parentnode $ environment $ puppetvar))

The Puppet schema is made up of an object class, puppetClient, and four attributes: puppetclass,
parentnode, environment and puppetvar. The object class puppetClient is assigned to each host that is a
Puppet node. The puppetclass attribute contains all of the classes defined for that node. At this stage,
you cannot add definitions, just classes. The parentnode attribute allows you to specify node inheritance,
environment specifies the environment of the node, and puppetvar specifies any variables assigned to the
node.

In addition, any attributes defined in your LDAP node entries are available as variables to Puppet.
This works much like Facter facts (see Chapter 1); for example, if the host entry has the ipHost class, the
ipHostNumber attribute of the class is available as the variable $ipHostNumber. You can also specify
attributes with multiple values; these are created as arrays.

You can also define default nodes in the same manner as doing so in your manifest node definitions:
creating a host in your directory called default. The classes assigned to this host will be applied to any
node that does not match a node in the directory. If no default node exists and no matching node
definition is found, Puppet will return an error.

You can now add your hosts, or the relevant object class and attributes to existing definitions for
your hosts, in the LDAP directory. You can import your host definitions using LDIF files or manipulate
your directory using your choice of tools such as phpldapadmin
(http://phpldapadmin.sourceforge.net/wiki/index.php/Main_Page).

Listing 5-9 is an LDIF file containing examples of node definitions.

Listing 5-9. LDIF nodes

LDIF Export for: ou=Hosts,dc=example,dc=com
dn: ou=Hosts,dc=example,dc=com
objectClass: organizationalUnit
objectClass: top
ou: Hosts

dn: cn=default,ou=Hosts,dc=example,dc=com
cn: default
description: Default
objectClass: device
objectClass: top
objectClass: puppetClient
puppetclass: base

dn: cn=basenode,ou=Hosts,dc=example,dc=com
cn: basenode
description: Basenode
objectClass: device
objectClass: top
objectClass: puppetClient
puppetclass: base

dn: cn=web,ou=Hosts,dc=example,dc=com
cn: web
description: Webserver

www.it-ebooks.info

http://phpldapadmin.sourceforge.net/wiki/index.php/Main_Page
http://www.it-ebooks.info/

 CHAPTER 5 EXTERNALIZING PUPPET CONFIGURATION

131

objectClass: device
objectClass: top
objectClass: puppetClient
parentnode: basenode
puppetclass: apache

dn: cn=web1.example.com, ou=Hosts,dc=example,dc=com
cn: web1
description: webserving host
objectclass: device
objectclass: top
objectclass: puppetClient
objectclass: ipHost
parentnode: web
ipHostNumber: 192.168.1.100

This listing includes a default node, a node called basenode, and a template node called web. Each
node has particular classes assigned to it, and the web node has the basenode defined as its parent node
and thus inherits its classes also. Lastly, we define a client node, called web1, which inherits the web node
as a parent.

Summary
In this chapter we’ve explored how you can use both external node classification and the LDAP node
terminus. Both of these allow you to scale to larger numbers of nodes without needing to maintain large
numbers of nodes in your manifest files. In Chapter 7, we’ll also look at how you can use Puppet
Dashboard or the Foreman dashboard as an external node classifier.

Resources
The following links will take you to Puppet documentation related to external nodes:

• External nodes http://docs.puppetlabs.com/guides/external_nodes.html

• LDAP nodes http://projects.puppetlabs.com/projects/puppet/wiki/Ldap_Nodes

• Puppet configuration reference
 http://docs.puppetlabs.com/references/stable/configuration.html

www.it-ebooks.info

http://docs.puppetlabs.com/guides/external_nodes.html
http://projects.puppetlabs.com/projects/puppet/wiki/Ldap_Nodes
http://docs.puppetlabs.com/references/stable/configuration.html
http://www.it-ebooks.info/

C H A P T E R 6

133

Exporting and Storing
Configuration

So far in the book, you’ve seen how Puppet models configuration on a single host. In many cases,
however, you have configuration on multiple hosts that have a relationship; for example, your
monitoring system needs to know about configuration on hosts being monitored. In this chapter we look
at three features that exist in Puppet to help model resources on multiple hosts: virtual resources,
exported resources, and stored configuration.

The first feature, virtual resources, is a method of managing resources where multiple
configurations require a resource. For example, a user may be required on some hosts but not others.
Virtual resources allow you to define a resource but be selective about where you instantiate that
resource.

The second feature, exported resources, allows us to take resources defined on one host and use
them on other hosts; for example, it allows us to tell a Puppet-managed load balancer about each of the
workers available to it. Puppet collects and stores each of these resources when configuration runs
occur, and then it provides these resources and their information to other hosts if they ask.

Lastly, stored configuration provides a mechanism to store these resources. Stored configurations
allow Puppet to write resources into a SQL database. This database will then be queried by Puppet and
required resources will be collected and included in the configuration catalog.

In this chapter you will learn how to use virtual and exported resources, including how to use the
exported resource feature to collect specific resources from stored configuration. We cover a number of
use cases, including the automatic management of SSH host keys, automated load balancer re-
configuration, and automated monitoring with Nagios.

We demonstrate how to configure Puppet with a SQL server for stored configurations and how to
prune old configuration data from the SQL database in order to prevent other systems from collecting
stale resources. We also show you how to use message queuing to allow you to better scale your stored
configuration environment and how to accommodate a multiple-Puppet-master environment, like we
demonstrated in Chapter 5.

Virtual Resources
Virtual resources are closely related to the topic of exported resources. Because of the similarity, it’s
important to cover virtual resources first to provide a foundation for learning about exported resources.

Virtual resources are designed to address the situation where multiple classes require a single
resource to be managed. This single resource doesn’t clearly “belong” to any one class, and it is
cumbersome to break each of these resources out into a unique class. Virtual resources also help solve
the problem of duplicate resource declaration errors in Puppet.

To illustrate the problem, consider the Example.com operator. He would like the ability to declare
user resources to manage the accounts for his colleagues, but each person should have their account

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

134

managed on only some systems. For example, all developer accounts need to be managed on all
development and testing systems, while being absent from the production systems. Conversely, the
system administrator accounts need to be present on every system. Finally, there are service accounts,
e.g., the apache and mysql users and groups required by multiple Puppet classes, such as the apache,
mysql, and webapp classes. The webapp class requires the mysql and apache service accounts, but should
not declare the resource itself since the mysql class will likely have a conflicting resource declaration.

Virtual resources provide the ability for the Example.com operator to define a large set of user
resources in once place and selectively add a smaller subset of those users to the configuration catalog.
The operator doesn’t need to worry about duplicate resource declarations, because the resources are
only declared once and then instantiated, or “realized,” one or more times.

Declaring a virtual resource is easy, just add the @ character to the beginning of the resource
declaration to make the resource virtual. You can then use one of two methods to realize your virtual
resources:

• The “spaceship” syntax <| |>1

• The realize function

Declaring and Realizing a Virtual Resource
Let’s see how the Example.com operator might declare and realize the user and service accounts in
Listing 6-1.

Listing 6-1. Virtual user resources <modulepath>/accounts/virtual.pp

class accounts::virtual {
 @user { “mysql”:
 ensure => present,
 uid => 27,
 gid => 27,
 home => “/var/lib/mysql”,
 shell => “/bin/bash”,
 }
 @user { “apache”:
 ensure => present,
 uid => 48,
 gid => “apache”,
 home => “/var/www”,
 shell => “/sbin/nologin”,
 }
}

Resources declared virtually will not be managed until they’re realized. Simply declaring the
accounts::virtual class makes these virtual resources available, but is not enough to manage the mysql
and apache user accounts. Listing 6-2 shoes how the operator makes sure the mysql user account is
present on the system.

1 So named because the syntax looks like a spaceship.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

135

Listing 6-2. Realizing a virtual resource using the spaceship operator

class webapp {
 include accounts::virtual
 package { “webapp”: ensure => present }
 User <| title == “mysql” |>
}

In the last line of this webapp class, the operator uses the spaceship operator to find the user resource

with the title of mysql. This syntax specifies a very specific resource to realize, however an error will not
be thrown if there is no virtual user resource with the title mysql. The spaceship operator is analogous to
a search function, where returning no results is perfectly valid. In situations where a specific resource is
required, the realize function may be used to generate an error if the virtual resource is not found.

Applying the Realize Function
The realize function provides another method to make a virtual resource real. A specific resource
identified by the type and title must be passed as an argument to the realize function. This requirement
of a specific resource makes the realize function much less flexible than the collection syntax and
spaceship operator. The realize function is more appropriate to use when an error should be thrown if
the virtual resource has not been declared in the catalog. For example, the operator may want catalog
compilation to fail if there is no mysql user resource, as you can see in Listing 6-3.

Listing 6-3. The realize() function

class webapp {
 realize(User[“mysql”)
 package { “webapp”:
 ensure => present,
 }
}

The configuration catalog resulting from the webapp class defined in Listing 6-3 is the same as the
configuration catalog generated from the webapp class shown in listing 6-2. We’ve seen the operator
realize a specific resource, the mysql user, but how does he handle the situation where he’d like to make
a number of virtual resources real? Puppet provides a convenient way to solve this problem without
forcing the operator to specify each and every resource by name.

Making Virtual Resources Real
When using the spaceship operator, any parameter may be used to collect resources. This feature allows
a large number of relationships to be managed in a concise and clear style. For example, if there are
multiple user accounts with a primary group of “apache,” the operator may realize all of them using a
single statement:

User <| gid == “apache” |>

So far you’ve seen how to realize collections of virtual resources using the spaceship operator and
specific resources using the realize function. A key aspect of the Puppet model is specifying
relationships between resources, and we haven’t yet discussed how to establish a relationship to a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

136

realized virtual resource. Prior to Puppet 2.6.0, this was very difficult to configure, but new syntax added
in version 2.6.0 makes this problem very easy to solve.

In Puppet 2.6.0, resource collections may also have a block associated with them to add additional
parameters. When realizing virtual resources, the relationship metaparameters may be specified to
ensure the resource is managed in the correct order. Look at Listing 6-4 to see how the Example.com
operator ensures the mysql user account is always managed before the webapp package.

Listing 6-4. Specifying parameters in a collection

class webapp {
 User <| title == mysql |> { before => Package[“webapp”] }
 package { “webapp”:
 ensure => present,
 }
}

As you can see, appending a block containing parameters after the collection will add the parameter
to all of the realized resources. This also works for collections that contain many resources, such as:

User <| gid == “apache” |> { before => Package[“apache”] }

In addition to a block associated with a collection, Puppet version 2.6.0 and newer also supports a
new relationship-chaining syntax. This syntax allows relationships to be declared without using the
metaparameters before, require, subscribe and notify as we’ll see in the next section.

Relationship-Chaining Syntax
A major new feature in Puppet 2.6.0, the relationship-chaining syntax allows you to replace the before,
require, subscribe and notify parameters with arrow operators. These new operators allow relationships
to be declared outside of the blocks where resources themselves are declared.

For example, two resources may be declared without any relation to each other, and their
relationship established at a later point in time.

define apache::account($ensure=present) {
 user { “apache”:
 ensure => $ensure,
 gid => 48
 }
 group { “apache”:
 ensure => $ensure,
 gid => 48,
 }
 if ($ensure == present) {
 Group[“apache”] -> User[“apache”]
 } else {
 User[“apache”] -> Group[“apache”]
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

137

In this code example, Puppet will manage the group before the user if the apache account is present.
However, if the apache account is absent, then the user is managed before the group to prevent the
operating system from complaining that a group cannot be removed when a user exists with the same
gid number.

The complete list of syntax arrows are ->, <-, ~> and <~. The tilde arrows add notifications to the
relationship just like the subscribe and notify parameters.

Group[“apache”] -> User[“apache”]

The apache group is before the apache user.

User[“apache”] <- Group[“apache”]

The apache user requires the apache group.

File[“httpd.conf”] ~> Service[“httpd”]

The httpd.conf file notifies the httpd service.

Service[“httpd”] <~ File[“httpd.conf”]

The httpd service subscribes to the httpd.conf file.
Additional information about the new relationship-chaining syntax in Puppet 2.6.0 is available

online at: http://docs.puppetlabs.com/guides/language_tutorial.html.
In the next section, we expand on the concept of virtual resources and make resources available

across nodes and configuration catalogs. Resources available for collection across nodes are called
exported resources, though it’s important to think of them in terms of the virtual resources feature they
are designed to resemble.

Getting Started with Exported and Stored Configurations
Now that you’re ready to look at exported resources and stored configuration using the groundwork
we’ve introduced with virtual resources, let’s start with a database server.

The Stored Configuration Database Server
The first step in using exported resources is to install and create the database your stored configuration
will use. You can use a variety of database back-ends to store your configuration, including:

• MySQL

• PostgreSQL

• SQlite3, and

• Oracle

To allow Puppet to use these different database back ends, Puppet uses the Ruby Active Record
object relational mapper (see the Ruby Active Record sidebar). Many people start with the SQLite3
database as a stored configuration back end because it’s fast and easy to set up. Unfortunately, it relies
on direct file access to write transactions, and this makes it difficult to scale for larger configurations. As
a result, we recommend you use a more fully-featured database server. In this chapter, we demonstrate
how to use MySQL as our stored configuration database server.

www.it-ebooks.info

http://docs.puppetlabs.com/guides/language_tutorial.html
http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

138

RUBY ACTIVE RECORD

The Ruby Active Record library is best known from the Ruby on Rails web application framework. Active
Record is an Object Relational Mapper (ORM), which is an abstraction layer that allows a programming
language to support a variety of database servers. The library provides the means to model relational data
stored in SQL as objects and classes in Ruby without the need to write complicated, cross-database-
compatible SQL statements. More information about Active Record is available at:
http://ar.rubyonrails.org/.

Your database server needs to be installed on a host that is accessible through the network by your
Puppet master or Puppet masters. You can install the database server locally on your Puppet master, but
we don’t recommend this for performance and scalability reasons.

In the following sections we show you how to install the MySQL server on Enterprise Linux- and
Debian/Ubuntu-based systems.

 Note For other platforms, please consult the installation procedure for MySQL (or the database server of your
choice) for additional information.

Installing Packages on Enterprise Linux-Based Systems
MySQL server packages are available from the vendor-provided media on most Enterprise Linux-based
systems without the need to enable third-party repositories. Either the yum package manager or Puppet
may be used to install MySQL. Unfortunately, the MySQL Ruby library package, mysql-ruby, is not
available from the vendor package repositories and should be obtained from the Enhanced Packages for
Enterprise Linux third party repository.

 Note The Enhanced Packages for Enterprise Linux package repository contains many third-party packages not
included in the main Enterprise Linux distribution. These packages are compiled and maintained to cleanly
interoperate with Enterprise Linux releases. Additional information about the EPEL repository is available online at
http://fedoraproject.org/wiki/EPEL/FAQ.

To install MySQL on Red Hat Enterprise Linux using Puppet, add this line of code:

yum install mysql-server

You also need to ensure taht the Ruby MySQL bindings are present on each Puppet master system:

yum install ruby-mysql

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://ar.rubyonrails.org/
http://fedoraproject.org/wiki/EPEL/FAQ
http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

139

With the MySQL server RPM packages and Ruby client libraries installed, the next step is to use
RubyGems to install the Rails framework.

Installing Packages on Debian and Ubuntu
The first step to configure stored configurations is to install and configure a SQL server. On Debian and
Ubuntu systems, this task is easily accomplished by installing the mysql-server package:

aptitude install mysql-server

In addition to the MySQL server packages, the client libraries allowing Ruby programs to connect to
a MySQL server need to be installed. On Debian and Ubuntu, these client libraries are contained in the
libmysql-ruby1.8 and libmysql-ruby packages.

aptitude install libmysql-ruby1.8 libmysql-ruby

Once the MySQL server packages and Ruby client libraries are present on the system, you can move
on to installing the Ruby on Rails framework.

Installing Rails Using Gems
Exported resources and stored configurations in Puppet take advantage of the Ruby on Rails framework
to model and store Puppet resources in a relational database supported by the Active Record library.
Installing the Rails framework is straightforward if you are working with a recent version of Ruby and the
rubygems package.

In this section, we will install Ruby on Rails using the gem system command, which is well supported
on Enterprise Linux- and Debian-based systems. Indeed, any system with the gem command will support
this installation process.

First, install Rails for Puppet versions 0.25.x, 2.6.x and later, as you can see in Listing 6-5.

Listing 6-5. Installing Ruby on Rails using RubyGems

gem install rails -v 2.3.5 --no-ri --no-rdoc
Successfully installed rails-2.3.5
1 gem installed

There is a problem with Puppet and ActiveRecord versions prior to version 2.3.5, so you need to
update the ActiveRecord library to at least this version:

gem install activerecord -v 2.3.5 --no-ri --no-rdoc
Successfully installed activerecord-2.3.5
1 gem installed

Once Rails and ActiveRecord have been installed, you can verify that the proper versions are present
using the gem list command.

gem list
*** LOCAL GEMS ***
actionmailer (2.3.5)
actionpack (2.3.5)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

140

activerecord (2.3.5)
activeresource (2.3.5)
activesupport (2.3.5)
rails (2.3.5)
rake (0.8.7)

Notice that activerecord and activesupport are both available at version 2.3.5. With these libraries
installed, you’re ready to proceed with the Puppet settings to enable stored configurations.

Configuring Puppet Master for Stored Configuration
In the previous sections you installed Ruby on Rails, ActiveRecord, and the MySQL Ruby libraries for the
platform the Puppet master is executing on. You’re now ready to configure the Puppet master to connect
to the database and store configuration information. This configuration is done in the puppet.conf file
located in the configuration directory, /etc/puppet by default.

Before configuring the Puppet master we need to make sure a database has been created for use
with Puppet. Any database name will suffice; in this example, the operator uses the default name of
“puppet” accompanied by a MySQL account named “puppet” with a password of “teppup.”

First, connect to the MySQL command line interface:

mysql -u root -p
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 36
Server version: 5.0.51a-24+lenny4 (Debian)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Once connected, create a new database named “puppet”:

mysql> create database puppet;
Query OK, 1 row affected (0.00 sec)

Finally, create a MySQL account named “puppet” to access this new database. Notice the password
is set to “teppup.” The username and password should be changed to something more secure and
reflected in puppet.conf.

grant all privileges on puppet.* to puppet@localhost identified by 'teppup';
Query OK, 1 rows affected (0.05 sec)

With the database and account created in MySQL, you’re ready to configure
/etc/puppet/puppet.conf. The lines in Listing 6-6 need to be inserted in the [master] section of the
configuration file.

Listing 6-6. puppet.conf MySQL stored configuration settings

vim /etc/puppet/puppet.conf
[master]
 storeconfigs = true
 dbadapter = mysql

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

141

 dbname = puppet
 dbuser = puppet
 dbpassword = teppup
 dbserver = localhost
 dbsocket = /var/run/mysqld/mysqld.sock

If you chose to change the name of the database, the account, or the account password, please make
sure to reflect those changes in the puppet.conf settings.

The database tables will not be created until the Puppet master compiles a catalog. We can easily
test the configuration of Stored Configs using a standalone Puppet master and agent. After the agent
runs, we can expect the tables and configuration information to be visible in the mysql console.

 Note When using a load balancer configuration as we demonstrated in Chapter 5, each Puppet master worker
process must be configured to connect to the same SQL server instance.

puppet master --verbose --no-daemonize --masterport 8141
notice: Starting Puppet master version 2.6.4

This command starts the standalone Puppet master with the new Stored Configuration settings on
an alternate port number, 8141, using the masterport option. Next, we connect a single Puppet agent to
this server in order to trigger the table creation in the “puppet” database:

puppet agent --test --masterport 8141
info: Caching catalog for debian.example.com
info: Applying configuration version '1293480381'
notice: Finished catalog run in 0.01 seconds

The Puppet Agent runs without trouble. Looking back at the output of the Puppet master, we should
see the following information noting the establishment of a database connection to the MySQL server:

info: Connecting to mysql database: puppet
info: Expiring the node cache of debian.example.com
info: Not using expired node for debian.example.com from cache; expired at Mon Dec 27 15:05:21
-0500 2010
info: Caching node for debian.example.com
notice: Compiled catalog for debian.example.com in environment production in 0.03 seconds

Once a Puppet agent has connected to a Puppet master with Stored Configurations enabled, the
database tables should be created automatically. The automatic creation of the database tables may be
verified using the mysql command line utility, as shown in Listing 6-7.

Listing 6-7. Verifying stored configuration tables

mysql -u puppet -p \
 -D puppet \
 -e 'select name,last_compile from hosts;' \

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

142

 --batch
name last_compile
mail.example.com 2010-12-14 15:06:21

This command may appear slightly complicated, so let’s work through each of the options. The -u
option specifies the MySQL account to use when connecting to the MySQL server. The -p option
prompts for a password, and the -D option specifies the database to connect to. These three options may
be different for you if you chose to change any of the default names or passwords when setting up the
MySQL database. The -e option tells the mysql command to execute once and exit after doing so. The
select command prints the name and last_compile field from all rows in the hosts table. Finally, the --
batch option tells the mysql command to output the information in a simplified format.

The results of the mysql command show the host named “mail” is successfully storing configuration
information in the MySQL database.

Adding a MySQL Table Index
With the MySQL tables created in the puppet database, we have the option to add an index improving the
access time of storing and retrieving configuration information. This index is optional, but we
recommend it for sites with more than one hundred Puppet-managed hosts.

First, connect to the puppet database using the puppet MySQL account:

mysql -u puppet -p -D puppet
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 54
Server version: 5.0.51a-24+lenny4 (Debian)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Next, add the index for fields frequently accessed by Stored Configurations, as shown in Listing 6-8.

Listing 6-8. Adding an index on the resources table

mysql> create index exported_restype_title on resources (exported, restype, title(50));
Query OK, 5 rows affected (0.09 sec)
Records: 5 Duplicates: 0 Warnings: 0

This command creates an index on the exported, restype and title fields in the resources table.

 Note Up-to-date information regarding the tuning of database settings and indices is available on the Puppet
community wiki. Stored configurations are being increasingly used at large sites, and improvements to
performance and settings are an evolving and ongoing process. For more information, please see:
http://projects.puppetlabs.com/projects/1/wiki/Using_Stored_Configuration.

www.it-ebooks.info

http://projects.puppetlabs.com/projects/1/wiki/Using_Stored_Configuration
http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

143

Using Exported Resources
With stored configurations enabled in the Puppet master, we can now export resources from a node’s
catalog. These exported resources may then be collected on another node, allowing nodes to exchange
configuration information dynamically and automatically. In this section we’ll examine a number of
common use cases for exported resources.

The first example will export the public SSH host identification key from each Puppet-managed
node and store the resources centrally in the stored configuration database. Every node may then collect
all of the public host keys from all other nodes. This configuration increases security and eliminates the
“unknown host” warning commonly shown when logging in via SSH for the first time.

The second example we provide uses exported resources to dynamically re-configure a load
balancer when additional Puppet master worker processes come online.

Finally, you’ll see how to dynamically and automatically reconfigure the Nagios monitoring system
to check the availability to new Puppet managed systems.

Automated SSH Public Host Key Management
When new systems are brought online in a large network, the known_hosts files of all other systems
become stale and out of date, causing “unknown host” warnings when logging in using SSH. Puppet
provides a simple and elegant solution to this problem using stored configurations and exported
resources. When new systems are brought online, Puppet updates the known_hosts file on all other
systems by adding the public host key of the new system. This automated management of the
known_hosts file also increases security, by reducing the likelihood of a “man-in-the-middle” attack
remaining unnoticed.

We learned in this chapter any resource may be declared virtually using the @ symbol before the
resource declaration. A similar syntax, @@, is used when resources should be declared virtually and
exported to all other nodes using stored configurations. The use of @@ allows any node’s catalog to collect
the resource. Listing 6-9 shows how this looks for SSH public keys.

Listing 6-9. Exporting ssh key resources

class ssh::hostkeys {
 @@sshkey { "${fqdn}_dsa":
 host_aliases => ["$fqdn", "$hostname", "$ipaddress"],
 type => dsa,
 key => $sshdsakey,
 }
 @@sshkey { "${fqdn}_rsa":
 host_aliases => ["$fqdn", "$hostname", "$ipaddress"],
 type => rsa,
 key => $sshrsakey,
 }
}

This Puppet code snippet looks a little strange compared to what we’ve worked with so far.
The class ssh::hostkeys should be included in the catalog of all nodes in the network for their SSH

public host keys to be exported and collectible. All of the resources and parameters are set to variables
coming from Facter fact values. In Listing 6-10, two sshkey resources have been declared as virtual
resources and exported to the central stored configuration database, as indicated by the @@ symbols. The
titles of each resource contain the suffixes _dsa or _rsa, preventing these two resources from conflicting

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

144

with each other. To make sure each resource has a unique title for the entire network, the title also
contains the fully qualified domain name of the node exporting the public host keys.

The host_aliases parameter provides additional names and addresses the node may be reached by.
This information is important to prevent the “unknown host” warnings when connecting to the node
from another system. In this example, we’re providing the fully qualified domain name, short hostname,
and IP address of the system. Each of these values comes from facter and is automatically provided.

They type and key parameters provide the public key information itself. The values of $sshdsakey
and $sshrsakey also come from Facter and are automatically available on each host.

Exporting these two sshkey resources is not sufficient to configure the known_hosts file on each
node. We must also collect all exported sshkey resources for Puppet to fully manage and keep updated
the known_hosts file shown in Listing 6-10.

Listing 6-10. Collecting exported sshkey resources

class ssh::knownhosts {
 Sshkey <<| |>> { ensure => present }
}

The ssh::knownhosts class should be included in the catalog for all nodes where Puppet should
manage the SSH known_hosts file. Notice that we’ve used double angle braces to collect resources from
the stored configuration database. This is similar to collecting virtual resources, however virtual
resources only use a single pair of angle braces. We’re also specifying that the ensure parameter should
take on the value “present” when collecting the exported sshkey resources.

 Note The ability to specify additional parameters when a resource is collected is new in Puppet 2.6.x and later.
It will not work with Puppet 0.25.x and earlier.

With the two classes configured and added to the node classification for every host in the network,
the operator verifies host keys are collected on every node in the network.

First, our operator runs the Puppet agent on the mail.example.com host. Since this is the first host to
run the Puppet agent, he expects only two SSH keys to be collected: the keys exported by the mail host
itself, as you can see in Listing 6-11.

Listing 6-11. The first Puppet agent on mail.example.com

puppet agent --test
info: Caching catalog for mail.example.com
info: Applying configuration version '1293584061'
notice: /Stage[main]//Node[default]/Sshkey[mail.example.com_dsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[mail.example.com _rsa]/ensure: created
notice: Finished catalog run in 0.02 seconds

Note the two sshkey resources being collected from the stored configuration database, the ssh dsa
and rsa public key exported from the mail.example.com host.

In Listing 6-12, the operator runs Puppet on the web server, expecting the public keys for both the
web host and the mail host to be collected.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

145

Listing 6-12. The second Puppet agent run on web.example.com

puppet agent --test
info: Caching catalog for web.example.com
info: Applying configuration version '1293584061'
notice: /Stage[main]//Node[default]/Sshkey[mail.example.com_rsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[mail.example.com_dsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[web.example.com_rsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[web.example.com_dsa]/ensure: created
notice: Finished catalog run in 0.43 seconds

The Puppet agent on web.example.com manages a total of four ssh host key resources, as shown in
Listing 6-12. The rsa and dsa keys from both the mail host and the web host are now being exported and
stored in the configuration database.

Finally, running the Puppet agent once more on the mail.example.com host should result in the two
public keys exported by the web host being collected and managed. Listing 6-13 shows how the operator
verifies this.

Listing 6-13. The third Puppet agent run on mail.example.com

puppet agent --test
info: Caching catalog for mail.example.com
info: Applying configuration version '1293584061'
notice: /Stage[main]//Node[default]/Sshkey[web.example.com_rsa]/ensure: created
notice: /Stage[main]//Node[default]/Sshkey[web.example.com_dsa]/ensure: created
info: FileBucket adding /etc/ssh/ssh_known_hosts as {md5}815e87b6880446e4eb20a8d0e7298658
notice: Hello World!
notice: /Stage[main]//Node[default]/Notify[hello]/message: defined 'message' as 'Hello World!'
notice: Finished catalog run in 0.04 seconds

As expected, the two SSH public key resources exported by the web host are correctly being
collected on the mail host. By exporting and collecting two sshkey resources, the staff of Example.com
can rely on all hosts automatically knowing the identity of all other hosts, even as new hosts are added to
the network. So long as Puppet runs frequently, every system will have a known_hosts file containing the
public key of every other system in the network.

In the next example, you’ll see how this feature also allows the automatic addition of worker nodes
to a load balancer pool.

Exporting Load Balancer Worker Resources
In the previous example, SSH public key resources were exported and stored in the configuration
database so that every host in the network is able to collect the public identification keys of every other
host in the network. Along the same lines, but on a much smaller scale, you can also export resources to
a single node on the network, such as a load balancer.

In this example, HTTP worker nodes will export configuration resources that only the load balancer
will collect. This combination eliminates the need to manually reconfigure the load balancer every time
a new worker node is added to the network.

Each load balancer worker will export a defined resource type representing the load balancer
configuration. Let’s see how the Example.com operator configures this system now. The load balancer
software being used in this example is Apache. The Example.com operator models the configuration of a

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

146

HTTP worker using a file fragment placed into the directory /etc/httpd/conf.d.members/. Let’s first take
a look at the defined resource type, shown in Listing 6-14.

Listing 6-14. Load balancer worker-defined resource type

define balancermember($url) {
 file { “/etc/httpd/conf.d.members/worker_${name}.conf”:
 ensure => file,
 owner => 0,
 group => 0,
 mode => “0644”,
 content => “ BalancerMember $url \n”,
 }
}

This configuration file fragment contains a single line, the URL to a member of the load balancer
pool. Using a defined resource type is recommended since all resources declared within will be exported
when the defined type itself is exported.

The load balancer configuration is similar to the Apache configuration presented in the Scaling
Puppet chapter. Without using exported resources, the Example.com operator might define his load
balancer configuration statically, as shown in Listing 6-15.

Listing 6-15. Load balancer front-end configuration

<Proxy balancer://puppetmaster>
 BalancerMember http://puppetmaster1.example.com:18140
 BalancerMember http://puppetmaster2.example.com:18140
 BalancerMember http://puppetmaster3.example.com:18140
</Proxy>

In this example, three Puppet master workers have been statically defined. If the Example.com
operator would like to add additional capacity, he would have to add a fourth line to this Apache
configuration block. Exported resources allow him to save this manual step and automatically add the
configuration once a new worker node comes online and is configured by Puppet. To accomplish this,
the Example.com operator replaces all of the BalancerMember statements with an Include statement to
read in all of the file fragments. In the Puppet manifest, these configuration statements are modeled
using the balancermember defined type, shown in Listing 6-16.

Listing 6-16. Including exported file fragments in the load balancer configuration

<Proxy balancer://puppetmaster>
 Include /etc/httpd/conf.d.members/*.conf
</Proxy>

The Example.com operator no longer needs to manually add each line once he configures Apache to
include all files in the conf.d.members directory. Instead, he configures Puppet to manage the individual
file fragments using exported resources.

The Puppet configuration to export each load balancer member is very similar to what we saw with
the SSH host key example. The Puppet configuration is very simple. Each worker node needs to export a
single balancermember resource for itself:

www.it-ebooks.info

http://puppetmaster1.example.com:18140
http://puppetmaster2.example.com:18140
http://puppetmaster3.example.com:18140
http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

147

class worker {
 @@balancermember { “${fqdn}”:
 url => “http://${fqdn}:18140”,
 }
}

Notice that the Example.com operator uses the fully qualified domain name as the title of the
resource. In doing so, he is guaranteed there will be no duplicate resource declarations because each
worker node should have a unique value for their fqdn fact. Declaring the defined resource in this
manner exports two resources into the stored configuration database, the balancermember resource and
the contained file resource shown in Listing 6-14. Neither of these resources will be collected on the
worker nodes themselves.

The last step in automating the configuration is for the Example.com operator to collect all of the
exported resources on the load balancer node itself, as you can see in Listing 6-17.

Listing 6-17. Collecting exported load balancer workers

class loadbalancer_members {
 Balancermember <<| |>> { notify => Service[“apache”] }
}

The operator uses the double angle brace syntax to collect all balancermember resources from the
stored configuration database. In addition, he’s using a parameter block to notify the Apache service of
any changes puppet makes to the balancermember resources. Just like with virtual resources, a parameter
block may be specified to add additional parameters to collected resources. This syntax is new in Puppet
2.6.x; previous versions of Puppet could not create relationships to collected resources.

In this example, we’ve seen a simplified version of the file fragment pattern using Apache’s Include
configuration statement. Web server worker nodes can easily model their configuration in Puppet using
a defined resource type. Using a defined resource type, the Example.com operator exports load balancer
resources to automatically reconfigure the front-end load balancer as new members come online.

In the next section, you’ll see how exported resources are ideal for automatically reconfiguring a
central Nagios monitoring system as new hosts are added to the network.

Automating Nagios Service Checks
So far, you’ve seen how exported resources enable Puppet to automatically reconfigure the
Example.com systems as new machines are brought online. You’ve seen how to automate the
management of SSH known hosts keys to improve security, and how to automatically reconfigure
Apache as additional capacity is added into a load balancer pool.

In this final example of exported resources, you’ll see how the Example.com operator configures
Puppet to automatically monitor new systems as they’re brought online. The problem of monitoring
service availability is something all sites share. Puppet helps solve this problem quickly and easily, and
reduces the amount of time and effort required to manage the monitoring system itself.

This example specifically focuses on Nagios. Puppet has native types and providers for Nagios built
into the software. The concepts in this section, however, apply to any software requiring a central system
to be reconfigured when new hosts come online and need to be monitored.

In Nagios, the system performing the service checks is called the monitor system. The Nagios
service running on the monitor system looks to the configuration files in /etc/nagios to sort out which
target systems need to be monitored. The Example.com operator wants Puppet to automatically
reconfigure the monitor system when a new target system comes online.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

148

To accomplish this goal, the Example.com operator first configures two classes in Puppet. The first
class, named nagios::monitor, manages the Nagios service and collects the service check resources
exported by the nagios::target class. Let’s take a look at these two classes now (see Listing 6-18).

Listing 6-18. /etc/puppet/modules/nagios/manifests/monitor.pp

Manage the Nagios monitoring service
class nagios::monitor {

 # Manage the packages
 package { ["nagios", "nagios-plugins"]: ensure => installed }

 # Manage the Nagios monitoring service
 service { "nagios":
 ensure => running,
 hasstatus => true,
 enable => true,
 subscribe => [Package["nagios"], Package["nagios-plugins"]],
 }

 # collect resources and populate /etc/nagios/nagios_*.cfg
 Nagios_host <<||>> { notify => Service["nagios"] }
 Nagios_service <<||>> { notify => Service["nagios"] }
}

As you can see, the Example.com operator has configured Puppet to manage the Nagios packages
and service. The class nagios::monitor should be included in the catalog for the monitor node. In
addition to the packages and the service, two additional resource types are collected from the stored
configuration database, all nagios_host and nagios_service resources. When collecting these host and
service resources, the operator adds the notify metaparameter to ensure that the Nagios monitoring
service automatically reloads its configuration if any new nodes have exported their information to the
stored configuration database.

 Note Additional information about the nagios_host and nagios_service Puppet types are available online.
There are a number of additional resource types related to Nagios management in addition to these two basic
service checks. If you need to make Nagios aware of the interdependencies between hosts to reduce the number
of notifications generated during a service outage, or manage custom Nagios service checks and commands,
please see the comprehensive and up-to-date Puppet type reference at
http://docs.puppetlabs.com/references/stable/type.html.

Let’s see how the Example.com operator implements the nagios::monitor class in the Puppet
configuration. With the nagios::monitor class added to the monitor node’s classification in site.pp, the
Example.com operator runs the Puppet agent on node monitor1, as you can see in Listing 6-19.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://docs.puppetlabs.com/references/stable/type.html
http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

149

Listing 6-19. The first Puppet agent run to configure Nagios

puppet agent --test
info: Caching catalog for monitor1
info: Applying configuration version '1294374100'
notice: /Stage[main]/Nagios::Monitor/Package[nagios]/ensure: created
info: /Stage[main]/Nagios::Monitor/Package[nagios]: Scheduling refresh of Service[nagios]
notice: /Stage[main]/Nagios::Monitor/Package[nagios-plugins]/ensure: created
info: /Stage[main]/Nagios::Monitor/Package[nagios-plugins]: Scheduling refresh of
Service[nagios]
notice: /Stage[main]/Nagios::Monitor/Service[nagios]/ensure: ensure changed 'stopped' to
'running'
notice: /Stage[main]/Nagios::Monitor/Service[nagios]: Triggered 'refresh' from 2 events
notice: Finished catalog run in 14.96 seconds

Notice that the first Puppet agent configuration run on monitor1 does not mention anything about
managing Nagios_host or Nagios_service resources. This is because no nodes have yet been classified
with the nagios::target class, and as a result there are no exported host or service resources in the
stored configuration database.

The Example.com operator configures Puppet to export Nagios service and host resources using the
class nagios::target. As you can see in Listing 6-20, the class contains only exported resources. The
resources will not be managed on any nodes until they are collected like the operator is doing in Listing
6-18.

Listing 6-20. /etc/puppet/modules/manifests/target.pp

This class exports nagios host and service check resources
class nagios::export::target {

 @@nagios_host { "$fqdn":
 ensure => present,
 alias => $hostname,
 address => $ipaddress,
 use => "generic-host",
 }

 @@nagios_service { "check_ping_${hostname}":
 check_command => "check_ping!100.0,20%!500.0,60%",
 use => "generic-service",
 host_name => "$fqdn",
 notification_period => "24x7",
 service_description => "${hostname}_check_ping"
 }

}

In Listing 6-20, the Example.com operator has configured two exported resources, one of which
provides the monitor node with information about the target host itself. This resource defines a Nagios
host in /etc/nagios/*.cfg on the nodes collecting these resources. The title of the nagios_host resource
is set to the value of the $fqdn fact. Using the fully qualified domain name as the resource title ensures

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

150

there will be no duplicate resources in the stored configuration database. In addition, the operator has
added an alias for the target host using the short hostname in the $hostname fact. Finally, the address of
the target node is set to the $ipaddress variable coming from Facter.

Once a resource describing the target host is exported, the operator also exports a basic service
check for the host. As we see, this service check is performing a basic ICMP ping command to the target
node. The host_name parameter of the resource is also provided from Facter via the $fqdn fact. The
check_command looks a bit confusing, and rightly so, as this parameter is directly using the Nagios
configuration file syntax. Reading the check_ping line left to right, we interpret it to mean that Nagios
will issue a warning when the ping takes longer than 100 milliseconds or experiences 20% packet loss.
Nagios will also issue a critical alert if the ping command takes longer than 500 milliseconds to complete
or experiences more than 60% packet loss. The notification period is also set to be 24 hours a day, 7 days
a week, which is a default notification period provided by the default Nagios configuration. Finally, the
operator has configured a descriptive label for the service using the short name of the host set by Facter.

Let’s see how the monitor1 node is configured automatically when a target node is classified with
this nagios::target class. First, the Example.com operator runs the Puppet agent on a new system
named target1 (Listing 6-21).

Listing 6-21. Puppet agent on target1 exporting Nagios checks

puppet agent --test
info: Caching catalog for target1
info: Applying configuration version '1294374100'
notice: Finished catalog run in 0.02 seconds

It appears the puppet agent run on target1 didn’t actually manage any resources. This is true; the
resources exported in the nagios::target class are actually being exported to the stored configuration
database rather than being managed on the node. They are not being collected on the node target1,
which is why the output of Listing 6-21 does not mention them.

We expect the Puppet agent on the node monitor1 to collect the resources exported by node target1.
Let’s see the results in Listing 6-22.

Listing 6-22. Puppet agent collecting resources in monitor1

puppet agent --test
info: Caching catalog for monitor1
info: Applying configuration version '1294374100'
notice: /Stage[main]/Nagios::Monitor/Nagios_service[check_ping_puppet]/ensure: created
info: /Stage[main]/Nagios::Monitor/Nagios_service[check_ping_puppet]: Scheduling refresh of
Service[nagios]
notice: /Stage[main]/Nagios::Monitor/Nagios_host[target1.example.com]/ensure: created
info: /Stage[main]/Nagios::Monitor/Nagios_host[target1.example.com]: Scheduling refresh of
Service[nagios]
notice: /Stage[main]/Nagios::Monitor/Service[nagios]: Triggered 'refresh' from 2 events
notice: monitor
notice: /Stage[main]//Node[monitord]/Notify[monitor]/message: defined 'message' as 'monitor'
notice: Finished catalog run in 0.87 seconds

As we expect, running the Puppet agent on monitor1 after target1 has checked in causes the
resources to be collected from the stored configuration database. Looking back to the nagios::monitor
class in Listing 6-18, we also see the operator has added the notify parameter to ensure that the Nagios
service automatically reloads the new configuration information after all of the resources are collected.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

151

When the Example.com operator brings new systems online, he needs only to ensure they have the
nagios::target class included in their catalog, and Puppet will automatically take care of reconfiguring
the central Nagios monitoring system. In addition, if the operator would like more than one system to
monitor all of these nodes, he only needs to include the nagios::monitor class in the catalog of
additional monitors and they’ll automatically collect all of the host and service resources from the stored
configuration database.

In the next section, we’ll cover methods to scale stored configuration to support a large number of
nodes and reduce the amount of time each Puppet agent requires to submit a copy of its configuration
to the Puppet master.

Scaling Stored Configurations
Puppet stored configurations require the Puppet agent to upload the configuration catalog after each
catalog run. This process introduces a potential bottleneck when many Puppet agents are running
concurrently. In this section, we cover enabling thin stored configurations, an option added in Puppet
0.25.x to reduce the amount of information stored in the SQL database.

We also cover the Puppet queue daemon and queue service for stored configurations, which
enables Puppet agents to operate asynchronously with regard to database updates.

Thin Stored Configurations
The default behavior of stored configurations is to store a complete copy of every catalog in the SQL
database. If only a small number of resources are being exported and collected, there may be too much
overhead associated with storing the complete catalog. Thin stored configurations were added in Puppet
0.25.0 to address this problem. With thin stored configurations, only exported resources, node facts, and
tags are stored in the SQL database. This limited set of information greatly reduces the number of
synchronous database updates required for each Puppet agent run.

Thin stored configurations are very easy to set up. The option is located in puppet.conf on each
Puppet master system. See how the Example.com operator enables thin stored configurations for his
network in Listing 6-23.

Listing 6-23. Enabling thin stored configurations in puppet.conf

/etc/puppet/puppet.conf
[master]
 storeconfigs = true
 thin_storeconfigs = true
 dbadapter = mysql
 dbname = puppet
 dbuser = puppet
 dbpassword = teppup
 dbserver = localhost
 dbsocket = /var/run/mysqld/mysqld.sock

Only the line thin_storeconfigs = true needs to be added into the master section of puppet.conf.
The Puppet master should then be restarted to reflect this change.

Alternatively, the --thin_storeconfigs=true command line argument may be passed to the puppet
master application. No client-side configuration settings are required to enable thin stored
configurations.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

152

Queue Support for Stored Configurations
Queue support is intended to take much of the load related to stored configurations off the Puppet
master systems themselves. To accomplish this task, all database updates are moved to a separate
process, named puppetqd in 0.25.x and puppet queue starting with version 2.6.0.

Puppet queue uses the ActiveMQ middleware service to handle message passing and queuing. In
this section, you’ll see how the Example.com operator sets up ActiveMQ on one system and uses the
stomp Ruby gem to connect all of the Puppet master systems to the message bus.

 Note Apache ActiveMQ is a message broker middleware service designed to handle asynchronous and
synchronous message passing. ActiveMQ is written in Java and requires a Java runtime on any system providing
the ActiveMQ service. More information about Apache ActiveMQ is available online at
http://activemq.apache.org/.

The first step while setting up setting up queue support for stored configurations is to install
ActiveMQ. Active MQ requires a Java runtime, available for most Unix platforms at
http://www.oracle.com/technetwork/java/. The information presented here uses Java 6 update 16.
Please refer to the Apache ActiveMQ documentation for the recommended version of Java for the
version of ActiveMQ you’re installing.

Once Java and ActiveMQ are installed, the Stomp protocol must be enabled in the ActiveMQ
configuration, and then the ActiveMQ service will be started. We’ll see how the operator configures and
starts ActiveMQ on Debian and Enterprise Linux based systems in the following two sections. With
ActiveMQ up and running, we’ll also see how the operator configures the Puppet Master and Puppet
Queue applications to connect to the message bus using the Stomp ruby library.

Installing ActiveMQ on Enterprise Linux-Based Systems
For an Enterprise Linux-based system, the Example.com operator first installs the Java 6 runtime from
Oracle. Official packages for Java are not available in most online package repositories due to restrictions
in the distribution terms of the license. The operator has chosen to download the RPM to the local
system as a result, as shown in Listing 6-24.

Listing 6-24. Installing Java on Enterprise Linux

rpm -Uvh jdk-6u16-linux-amd64.rpm
Preparing... ### [100%]
 1:jdk ### [100%]

Once Java is installed and available, the next step is to install the ActiveMQ packages. These
packages are available online at http://puppetlabs.com/downloads/mcollective/. We create a new
directory and download them in Listing 6-25.

www.it-ebooks.info

http://activemq.apache.org/
http://www.oracle.com/technetwork/java/
http://puppetlabs.com/downloads/mcollective/
http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

153

Listing 6-25. Installing ActiveMQ on Enterprise Linux

mkdir /tmp/activemq
cd /tmp/activemq
wget http://puppetlabs.com/downloads/mcollective/tanukiwrapper-3.2.3-1jpp.x86_64.rpm
wget http://puppetlabs.com/downloads/mcollective/activemq-5.4.0-2.el5.noarch.rpm
rpm -Uvh *.rpm
Preparing... ### [100%]
 1:tanukiwrapper ### [50%]
 2:activemq ### [100%]

As you can see in Listing 6-25, the Example.com operator creates a temporary directory named
/tmp/activemq and downloads two packages required for ActiveMQ into this directory. Using the rpm
command installs both packages. For a production environment we recommend staging these packages
in a local YUM repository to simplify and automate management of these packages using Puppet.

Once Java and Apache ActiveMQ are installed, we’re ready to proceed with the configuration of the
stomp protocol. The stomp protocol is supported but not enabled by default in ActiveMQ. Before
connecting the Puppet queue process to the message bus, stomp support must be enabled in the
ActiveMQ configuration as we can see from Listing 6-26.

Listing 6-26. Enabling the stomp connector in /etc/activemq/activemq.xml

diff --git a/activemq.xml b/activemq.xml
index 5ac00dd..7051a14 100755
--- a/activemq.xml
+++ b/activemq.xml
@@ -119,6 +119,8 @@
 -->
 <transportConnectors>
 <transportConnector name="openwire" uri="tcp://0.0.0.0:61616"/>
+ <!-- Enable Stomp for Puppet Queue -->
+ <transportConnector name="stomp" uri="stomp://127.0.0.1:61613"/>
 </transportConnectors>

 </broker>

The Example.com operator has added a single line specifying the address and port ActiveMQ should
bind to and listen for stomp messages on. This line should be added to the transportConnectors section
of the /etc/activemq/activemq.xml file.

Once ActiveMQ has been configured to handle stomp messages, the service needs to be started
(Listing 6-27).

Listing 6-27. Starting the ActiveMQ service on Enterprise Linux

/etc/init.d/activemq start
Starting ActiveMQ Broker...

/etc/init.d/activemq status
ActiveMQ Broker is running (2635).

www.it-ebooks.info

http://puppetlabs.com/downloads/mcollective/tanukiwrapper-3.2.3-1jpp.x86_64.rpm
http://puppetlabs.com/downloads/mcollective/activemq-5.4.0-2.el5.noarch.rpm
http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

154

tail /var/log/activemq/activemq.log
… Listening for connections at: stomp://puppet.example.com:61613

The Example.com operator uses the ActiveMQ init script to start the service. Since ActiveMQ is a
Java service, the operator verifies that the service is actually up and running by calling the status method
of the init script. If there is a problem with the configuration file, the service may fail to start up properly
and would not give an indication of the problem in the start command. Finally, checking the log files to
make sure ActiveMQ is listening for stomp messages on port 6163 is a sensible final verification that
things are working as expected. If there is a problem starting the server, a listing of the problem will be
present in the file /var/log/activemq.log.

Installing ActiveMQ on Debian-Based Systems
The Java JDK is easy to install on Debian-based systems by adding the “non-free” Apt repositories for
Java to the /etc/apt/sources.list configuration file:

deb http://debian.osuosl.org/debian/ lenny main non-free
deb-src http://debian.osuosl.org/debian/ lenny main non-free
deb http://security.debian.org/ lenny/updates main non-free
deb-src http://security.debian.org/ lenny/updates main non-free
deb http://volatile.debian.org/debian-volatile lenny/volatile main non-free
deb-src http://volatile.debian.org/debian-volatile lenny/volatile main non-free

 Note By default, all of the software installed on a Debian system is completely free, open source software.
While ActiveMQ is distributed under an open source license, the Sun Java runtime is not. In an effort to
accommodate non-free software like Java in a free software project, the Debian maintainers have created the
“non-free” and “contrib” repositories. These additional package repositories provide a good compromise between
the conflicting goals of commercial and free open source software. More information about the non-free and
contrib repositories is available online at http://www.debian.org/social_contract.

Once this additional repository is enabled, the operator uses the aptitude executable to install the
Java Development Kit:

aptitude update
aptitude install sun-java6-jdk sudo aptitude install sun-java6-bin

With Java installed, the operator downloads the ActiveMQ release archive and starts the service.
ActiveMQ archives are available online at http://activemq.apache.org/download.html. ActiveMQ
packages are not available in Debian Lenny, so the operator installs the service into
/var/lib/activemq/opt/activemq.

First, he creates the activemq service account so the service doesn’t run as the root user:

puppet resource group activemq ensure=present
notice: /Group[activemq]/ensure: created

www.it-ebooks.info

http://debian.osuosl.org/debian/
http://debian.osuosl.org/debian/
http://security.debian.org/
http://security.debian.org/
http://volatile.debian.org/debian-volatile
http://volatile.debian.org/debian-volatile
http://www.debian.org/social_contract
http://activemq.apache.org/download.html
http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

155

puppet resource user activemq ensure=present \
 gid=activemq managehome=true \
 home=/var/lib/activemq \
 shell=/bin/bash \
 comment=ActiveMQ

With the user and group in place, the operator unpacks the archive and moves it into the activemq
home directory. These commands create the directory /var/lib/activemq/opt/activemq. In addition, the
operator makes sure to give ownership to the activemq user.

tar xzf apache-activemq-5.4.2-bin.tar.gz
mkdir ~activemq/opt/
mv apache-activemq-5.4.2 ~activemq/opt/activemq
chown -R activemq:activemq ~activemq/opt/

Before starting the message service, the operator must generate a default configuration and make a
small change to enable the stomp messaging service. Using the setup command, they write a default
configuration file into the home directory of the service account.

sudo -H -u activemq ./bin/activemq setup ~activemq/.activemqrc
INFO: Creating configuration file: /var/lib/activemq/.activemqrc

Once the configuration file has been created, a single line must be added to the activemq.xml
configuration file. As you can see in Listing 6-28, a stomp URI line is inserted in the transportConnectors
section.

Listing 6-28. Debian activemq.xml stomp configuration

diff -U2 ~activemq/opt/activemq/conf/activemq.xml{.orig,}
--- activemq.xml.orig 2011-01-13 22:30:46.000000000 -0800
+++ activemq.xml 2011-01-13 22:31:36.000000000 -0800
@@ -122,4 +122,5 @@
 <transportConnectors>
 <transportConnector name="openwire" uri="tcp://0.0.0.0:61616"/>
+ <transportConnector name="stomp" uri="stomp://127.0.0.1:61613"/>
 </transportConnectors>

Once the XML configuration file has been updated to work with stomp, the operator is ready to start
the service (Listing 6-29).

Listing 6-29. Starting the ActiveMQ service

sudo -H -u activemq ./bin/activemq start
INFO: Loading '/var/lib/activemq/.activemqrc'
INFO: Using java '/usr/bin/java'
INFO: Starting - inspect logfiles specified in logging.properties and log4j.properties to get
details
INFO: pidfile created : '/var/lib/activemq/opt/activemq/data/activemq.pid' (pid '3476')

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

156

The sudo command in Listing 6-29 ensures the ActiveMQ service is running under the unprivileged
activemq account, with the home directory environment variable reset to /var/lib/activemq using the -H
flag.

Puppet Master Queue Configuration
With ActiveMQ up and running, we now need to connect the Puppet queue daemon process to the
message bus to handle queued messages and write them to the database. The first step in this process is
to install the stomp gem. This Ruby library provides a stomp protocol interface for Ruby applications
(Listing 6-30).

Listing 6-30. Installing the stomp gem for Puppet queue

gem install stomp
Successfully installed stomp-1.1.6
1 gem installed
Installing ri documentation for stomp-1.1.6...
Installing RDoc documentation for stomp-1.1.6…

After the installation of the stomp gem, a slight change to /etc/puppet/puppet.conf is needed to
configure the Puppet master to hand off configuration information to ActiveMQ rather than performing
the database writes itself. In the [main] section of the puppet.conf file, the puppet queue application will
be configured to read from ActiveMQ and write to the database, offloading the work from the master
(shown in Listing 6-31).

Listing 6-31. /etc/puppet/puppet.conf with queue support enabled

vim /etc/puppet/puppet.conf
[main]
 dbadapter = mysql
 queue_type = stomp
 queue_source = stomp://localhost:61613
 dbname = puppet
 dbuser = puppet
 dbpassword = teppup
 dbserver = localhost
 dbsocket = /var/run/mysqld/mysqld.sock

 [master]
 storeconfigs = true
 thin_storeconfigs = true
 async_storeconfigs = true

Note that the operator has changed the configuration slightly from Listing 6-7 and 6-23, where he
had initially configured stored configurations. When queue support is enabled, the puppet queue
daemon will pick up the settings in the [main] section to read data from the ActiveMQ stomp interface
and write the information to the SQL database. In addition, the Puppet master application will use the
settings in [main] and the settings in [master] to read from the SQL database and write to the ActiveMQ
queue.

With these settings in place, let’s see how the operator tests out the new queue system. First, he
starts the Puppet master as he normally would:

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 6 EXPORTING AND STORING CONFIGURATION

157

puppet master --no-daemonize --verbose

Then, he does a normal Puppet agent run. He hasn’t yet started the Puppet queue application, so we
expect any configuration updates to be queued in the ActiveMQ system until the Puppet queue
application is running and drains the queue.

puppet agent --test
info: Caching catalog for puppet.example.com
info: Applying configuration version '1294903443'
notice: Finished catalog run in 0.02 seconds

Everything looks good so far. The Puppet Agent is able to communicate with the master and obtain
a configuration catalog, but exported resources won’t be written to the SQL database until the Puppet
queue application is started in Listing 6-32.

Listing 6-32. Starting the Puppet queue application

puppet queue --no-daemonize --verbose
notice: Starting puppetqd 2.6.4
info: Loaded queued catalog in 0.03 seconds
info: Connecting to mysql database: /var/run/mysqld/mysqld.sock
notice: Processing queued catalog for puppet.example.lan in 2.67 seconds

Once the operator starts the Puppet queue daemon, it immediately connects to the ActiveMQ stomp
port specified in the puppet.conf [main] section and drains the queued configuration update. As
additional Puppet agents retrieve catalogs, the Puppet master will place configuration updates in the
queue which the Puppet queue daemon will drain and write to the SQL database. It is important to
remember the Puppet master still reads directly from the database, so the Puppet queue daemon isn’t
required to be running for catalogs to be compiled.

In this section, we’ve seen how the Example.com operator configures the ActiveMQ messaging
service to queue up expensive database updates. The Puppet queue daemon is then responsible for
asynchronously handling each of these configuration updates and writing to the SQL database. This
combination greatly reduces the performance impact of many Puppet agent systems checking in with
the Puppet master. In the next section, we’ll see how the operator periodically prunes the SQL database
when a node with exported resources and stored configurations is retired.

Expiring Stale Resources
A potential pitfall of using stored configurations is the situation where nodes retired from service still
have configuration resources stored in the configuration database. Without periodically pruning the
configuration database, these stale resources will linger indefinitely, tainting the configurations of
remaining nodes. The Example.com operator incorporates a small utility to remove nodes from the
configuration database when they take them offline.

Pruning a single node is quite straightforward using the puppetstoredconfigclean.rb script in the
ext directory of the Puppet source code. If this script is not installed on your system, it may be
downloaded from https://github.com/puppetlabs/puppet/tree/2.6.4/ext.

$ wget https://github.com/puppetlabs/puppet/tree/2.6.4/ext/puppetstoredconfigclean.rb

www.it-ebooks.info

https://github.com/puppetlabs/puppet/tree/2.6.4/ext
https://github.com/puppetlabs/puppet/tree/2.6.4/ext/puppetstoredconfigclean.rb
http://www.it-ebooks.info/

CHAPTER 6 EXPORTING AND STORING CONFIGURATION

158

To clean out a node from the configuration database, simply give its short hostname as an argument
to the script. In Listing 6-33, the operator removes the stored configurations for the nodes mail01dev,
mail02dev, and mail03dev.

Listing 6-33. Removing Retired Nodes from the Configuration Database

ruby puppetstoredconfigclean.rb mail0{1,2,3}dev
Killing mail01dev...done.
Killing mail02dev...done.
Killing mail03dev...done.

After running the stored configuration cleaning script, any resources exported by these nodes will
no longer be collected in any Puppet manifest.

 Note In future releases, a Puppet command will be available to remove this configuration rather than requiring
an external script.

Summary
Exported resources and stored configuration are two very powerful features in Puppet. Using the central
stored configuration database, each Puppet master system is capable of exporting and collecting
resources as new hosts are brought online.

In this chapter, you’ve learned about the basics of virtual resources and how to export resources
from one catalog and collect them in another. You saw three examples of how we might use exported
resources:

• SSH public host keys that are easily stored centrally and distributed

• Adding load balancer members to an Apache configuration

• Exported resources to allow Nagios to automatically add new systems

You also saw how to scale stored configuration using ActiveMQ message queues, and the Puppet
Queuing daemon. And finally, you learned how to prune expired hosts and resources from your stored
configuration database.

Resources
• Virtual Resources http://docs.puppetlabs.com/guides/virtual_resources.html

• Exported Resources
http://docs.puppetlabs.com/guides/exported_resources.html

• Using Stored Configuration
http://projects.puppetlabs.com/projects/1/wiki/Using_Stored_Configuration

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://docs.puppetlabs.com/guides/virtual_resources.html
http://docs.puppetlabs.com/guides/exported_resources.html
http://projects.puppetlabs.com/projects/1/wiki/Using_Stored_Configuration
http://www.it-ebooks.info/

C H A P T E R 7

159

Puppet Consoles: Puppet
Dashboard and The Foreman

Until recently, you needed to manage Puppet via its manifest files and from the command line. As
Puppet has matured, a small ecosystem of tools has emerged, including two console products: Puppet
Dashboard and The Foreman.

Both console products are relatively new. The company that supports Puppet development, Puppet
Labs, created Puppet Dashboard. Israeli developer Ohad Levy in turn wrote The Foreman. Both are Ruby
on Rails applications and both are undergoing regular development.

Each tool suits a slightly different sort of environment. Puppet Dashboard can be used as an
External Node Classifier (ENC) as well as a reporting tool, and is moving towards being an integration
interface for a variety of new Puppet functions including audit and inventory capabilities. The Foreman
has a stronger focus on provisioning and data center management and already includes some inventory
capabilities.

In this chapter, we show you how to install and configure both consoles and demonstrate some of
their features and capabilities. We show you how to use both consoles:

• As ENCs (we learned about ENCs in Chapter 5)

• To display data about the status and state of your hosts

• To display and analyze Puppet reports

• To make use of additional capabilities to provision and manage Puppet and your
hosts

Later, in Chapter 8, you’ll learn more about Puppet’s integration with other tools.

 Note Both consoles are being rapidly developed and extended. We recommend you keep an eye on both of
them for future developments to help determine what tools suit you best.

Puppet Dashboard
Puppet Dashboard is a Ruby on Rails application designed to display information about your Puppet
masters and agents. It allows you to view graphs and reporting data aggregated from one or more Puppet
masters. It also makes inventory data (your host’s Facts and other information) from your Puppet agents

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

160

available on one or more Puppet masters. Lastly, it can be used as an ENC to configure your Puppet
nodes and specify the classes and parameters available on those nodes.

We’re going to take you through installing the Dashboard, making use of its features, integrating
with Puppet masters, and maintaining the Dashboard, including backups and management of data.

Let’s start by installing the Dashboard.

Installing Puppet Dashboard
Installing the Puppet Dashboard requires some basic prerequisites, typical of a Ruby on Rails
application. These include Ruby 1.8.x (Dashboard doesn’t yet work with 1.9.x) and a MySQL database to
store data in. Currently Dashboard only supports MySQL as a database back end. There are plans to
support additional back ends in later releases.

We’re going to take you through installing Version 1.0.4 of Dashboard on both Red Hat and Ubuntu,
including how to install the required prerequisites.

Installing the Red Hat Prerequisites
First, we need to add the Extra Packages for Enterprise Linux (EPEL) package repository (which we first
saw in Chapter 1).

1. Add the epel-release RPM Package Manager (as of this writing, this is the
current RPM – you should go to the EPEL website to find the latest version):

$ sudo rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/
epel-release-5.4.noarch.rpm

2. Install any of the required packages you haven’t already added:

$ sudo yum install -y mysql mysql-devel mysql-server ruby ruby-devel ruby-irb ruby-mysql
 ruby-rdoc ruby-ri

3. Start MySQL and configure it to start at boot. Use the service command to
start the service:

$ sudo service mysqld start

4. Then use the chkconfig command to configure MySQL to start when the host
boots:

$ sudo chkconfig mysqld on

5. We also need to install the RubyGems package manager. Unfortunately, the
RubyGems package manager provided with Red Hat (and CentOS) 5.x releases
isn’t suitable. We need to manually install an appropriate version. To do this,
we download the RubyGems source and install it. This will download, unpack
and install the gem command and required libraries.

$ cd /tmp
$ wget http://production.cf.rubygems.org/rubygems/rubygems-1.3.5.tgz
$ tar –xzf rubygems-1.3.5.tgz
$ cd rubygems-1.3.5
$ sudo ruby setup.rb

www.it-ebooks.info

http://download.fedora.redhat.com/pub/epel/5/i386/%EF%83%89
http://production.cf.rubygems.org/rubygems/rubygems-1.3.5.tgz
http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

161

6. Once you’ve installed RubyGems, you need to install the rake gem.

$ sudo gem install rake

That’s it, you’re done installing the Red Hat prerequisites.

Installing the Ubuntu Prerequisites
On Ubuntu 10.04 and later, you need to install several packages.

1. Start with the following:

$ sudo apt-get install -y build-essential irb libmysql-ruby libmysqlclient-dev
 libopenssl-ruby libreadline-ruby mysql-server rake rdoc ri ruby ruby-dev

2. Install the RubyGems package manager. Unfortunately, the RubyGems
package manager provided with Ubuntu 10.04 and earlier is not a recent
enough version to support the required RubyGems. We need to manually
install an appropriate version. To do this we download the RubyGems source
and install it. This will download, unpack and install the gem command and
required libraries:

$ cd /tmp
$ wget http://production.cf.rubygems.org/rubygems/rubygems-1.3.7.tgz
$ tar –xzf rubygems-1.3.7.tgz
$ cd rubygems-1.3.7
$ sudo ruby setup.rb

3. Use the update-alternatives command to add the newly installed RubyGems
version as an alternative command.

$ sudo update-alternatives --install /usr/bin/gem gem /usr/bin/gem1.8 1

Now that we have all the prerequisites, we can install the Dashboard itself.

Installing the Dashboard Package
The Dashboard is available in package form as RPMs (Red Hat, et al) and DEBs (Debian and Ubuntu, et
al) from the Puppet Labs package repositories. For RPMs this is http://yum.puppetlabs.com, and for
DEBs this is http://apt.puppetlabs.com. Puppet Dashboard can also be installed from source, via tarball
available from the Puppet Labs download site (http://www.puppetlabs.com/downloads/) or by cloning
the GitHub repository at https://github.com/puppetlabs/puppet-dashboard.

RPM Packages via Yum

To install the Dashboard from an RPM, you need to add the Puppet Labs Yum repository to your
Dashboard host.

1. Create an entry:

$ sudo vi /etc/yum.repos.d/puppetlabs.repo

www.it-ebooks.info

http://production.cf.rubygems.org/rubygems/rubygems-1.3.7.tgz
http://yum.puppetlabs.com
http://apt.puppetlabs.com
http://www.puppetlabs.com/downloads/
https://github.com/puppetlabs/puppet-dashboard
http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

162

The entry should be:

 [puppetlabs]
name=Puppet Labs Packages
baseurl=http://yum.puppetlabs.com/base/
enabled=1
gpgcheck=1
gpgkey=http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs

2. Run the Yum package manager:

$ sudo yum update

This will update the Yum package repository data.

3. Run the Yum package manager again to install the Dashboard itself:

$ sudo yum install puppet-dashboard

The Dashboard package will be installed and the Dashboard site itself will be installed into the
/usr/share/puppet-dashboard directory.

DEB Packages via APT

To install the Debian or Ubuntu DEB packages, you need to add details of the Puppet Labs APT
repository to your Dashboard host.

1. Edit the /etc/apt/sources.list file by adding the following lines:

deb http://apt.puppetlabs.com/ubuntu lucid main
deb-src http://apt.puppetlabs.com/ubuntu lucid main

2. Add the Puppet Labs GPG key to validate the downloaded packages, like so:

$ sudo gpg --recv-key 4BD6EC30
$ sudo gpg -a --export 4BD6EC30 > /tmp/key
$ sudo apt-key add /tmp/key

3. Then, run an update to refresh APT:

$ sudo apt-get update

4. Finally, install the Puppet Dashboard package:

$ sudo apt-get install puppet-dashboard

The Dashboard package will be installed and the Dashboard site will be installed in the
/usr/share/puppet-dashboard directory.

 Note You can also download the relevant RPM or DEB package directly from the repository sites and install it via
the appropriate command line tool.

www.it-ebooks.info

http://yum.puppetlabs.com/base/
http://yum.puppetlabs.com/RPM-GPG-KEY-puppetlabs
http://apt.puppetlabs.com/ubuntu
http://apt.puppetlabs.com/ubuntu
http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

163

Installing from Source

We don’t recommend installing the Dashboard from source because packages are much easier to
manage and update, but it is possible. You can download a tarball from the Puppet Labs Download page:

$ wget http://www.puppetlabs.com/downloads/dashboard/puppet-dashboard-1.0.4.tgz

You can then unpack the tarball in an appropriate directory, for example:

$ cd /var/www/html
$ sudo tar –xzf puppet-dashboard-1.0.4.tgz

Alternately, you can clone the current Dashboard source code from GitHub. You will need to have
installed Git to clone the required repository:

$ git clone https://github.com/puppetlabs/puppet-dashboard.git

You can then change into the resulting directory:

$ cd puppet-dashboard

And continue installing the Dashboard.

 Caution Development versions of Puppet Dashboard may be unstable and could potentially have bugs and
issues. We recommend you use the packages, or even the tarball, to install the Dashboard.

Configuring the Dashboard
Once you have installed Puppet Dashboard, you need to create a database to hold the Dashboard’s data,
configure that database in the Dashboard and populate that database with the appropriate tables. This is
a three-step process:

1. Edit the YAML configuration file (database.yml) to specify the database

2. Create the database “Dashboard” with the Ruby rake command based on the
edited configuration file

3. Populate the database

We start by editing the /usr/share/puppet-dashboard/config/database.yml file, which specifies our
database configuration.

 Note We assume you’ve installed the Dashboard via a package. If you have not, then be sure to use the
appropriate directory where you installed the Dashboard.

www.it-ebooks.info

http://www.puppetlabs.com/downloads/dashboard/puppet-dashboard-1.0.4.tgz
https://github.com/puppetlabs/puppet-dashboard.git
http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

164

The database.yml file is a YAML configuration file and any settings we specify in the file need to be
valid YAML.

Ruby on Rails applications use the concept of environments (production, development, etc.) to
allow you to specify multiple databases and configurations for different purposes in a single application.
For our purposes, we’re just going to create a single environment for a production Dashboard instance,
as you can see in Listing 7-1.

Listing 7-1. The database.yml configuration file

production:
 database: dashboard
 username: dashboard
 password: password
 encoding: utf8
 adapter: mysql

The database.yml file contains a series of database configurations for the different Rails
environments. Inside each environment block we need to specify the name of the database we’re using,
the username and password used to connect to that database, as well as the encoding and database type.
In this case, we’re going to leave all of the default settings except the password. Select an appropriate
password and save the file.

We’re now going to use the Ruby rake command to automatically create a database based on the
configuration in the database.yml file. To do this we need to change to the root of the Dashboard.
Assuming we’ve used the package installation, that would be /usr/share/puppet-dashboard:

$ cd /usr/share/puppet-dashboard

Now run a rake command, like so:

$ sudo rake RAILS_ENV=production db:create

This will create a database called “dashboard,” with a user of dashboard secured with the password
you specified in the database.yml configuration file.

 Tip The RAILS_ENV=production environment variable tells Ruby on Rails that we’re working in the production
environment. Every time you run a rake command you need to specify the RAILS_ENV environment variable with
the appropriate environment.

You could also manually create the database using the MySQL command line interface, for example:

$ sudo mysql –p
mysql> CREATE DATABASE dashboard CHARACTER SET utf8; CREATE USER 'dashboard'@'localhost'
 IDENTIFIED BY 'password'; GRANT ALL PRIVILEGES ON dashboard.* TO 'dashboard'@'localhost';

After you’ve created the database, you then need to populate this database with the appropriate
tables. To do this, use another rake command. First make sure you’re in the root of the Puppet
Dashboard application, then run the required rake task.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

165

$ cd /usr/share/puppet-dashboard
$ sudo rake RAILS_ENV=production db:migrate

Running Puppet Dashboard
Once you have the Dashboard database configured, you can run it. Puppet Dashboard is a Ruby on Rails
application that can be run in a number of different ways, such as using the internal Webrick server or
via integration with a server like Passenger (which we talked about in Chapter 4). Webrick is a good way
to quickly get started with the Dashboard, but it doesn’t scale very well and performs poorly when you
have a large number of Puppet agents reporting to the Dashboard. We recommend using a server like
Passenger to run the Dashboard, it is a better performing and scalable solution than the internal Webrick
server.

In the next two sections, we’re going to show you how to use either the Webrick server or Passenger
to run the Dashboard.

Running Puppet Dashboard with Webrick
Running with the built-in Webrick web server is very simple; indeed, the init scripts provided with the
Dashboard packages do exactly this. However, there are some important limitations to consider with
Webrick. It’s quite slow and can’t easily handle multiple simultaneous requests.

To run the Webrick server, change into the root of the Dashboard application: /usr/share/puppet-
dashboard and run:

$ sudo ./script/server -e production

This will run the Webrick server on port 3000. You can now browse to your host, for example
http://dashboard.example.com:3000 and view the Dashboard.

Or you can run the init script that comes with the Puppet Dashboard package like so:

$ sudo /etc/init.d/puppet-dashboard start

Running Puppet Dashboard with Passenger
Passenger is rather more sophisticated and far better performing than Webrick, and it can be combined
with Apache or Nginx. We’re going to show you integration with Apache, but we’ll provide you some
resources where you can read about how to integrate with Nginx too. The main advantage of Passenger
is that it is drastically faster and more scalable than Webrick as an engine for running the Dashboard.

Running Passenger, however, is somewhat more complex than using Webrick. It requires a web
server, which Passenger integrates with as a module, and then some further configuration on the
Dashboard side. We’re going to take you through the steps required to:

• Install any prerequisite packages including Apache and Passenger

• Configure an Apache virtual host to run Passenger and the Dashboard

www.it-ebooks.info

http://dashboard.example.com:3000
http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

166

 Note Passenger integration is also called mod_rails, and is similar in implementation to other embedded
Apache modules like mod_php. We also talked about Passenger in Chapter 4 when we looked at how to scale
Puppet with it.

Installing Prerequisite Packages

Our first step is to install the required prerequisite packages. This includes Apache, the MySQL Ruby
bindings and Passenger itself.

Red Hat
On Red Hat and related distributions, this involves installing the following packages (we’ve assumed
you’ve still got the EPEL repository enabled):

$ sudo yum install ruby ruby-libs ruby-devel httpd httpd-devel

Unfortunately, Passenger is not yet available for Red Hat as a package due to some packaging issues.
We can however install Passenger from a gem, for example:

$ sudo gem install passenger

Once we’ve installed the Ruby Gem we need to use the passenger-install-apache2-module script to
create the required Apache Passenger module.

$ sudo passenger-install-apache2-module

Follow the provided instructions to create and install the Apache Passenger module.

Ubuntu and Debian
On Ubuntu and Debian, the required packages are:

$ sudo apt-get install apache2 libapache2-mod-passenger rails librack-ruby libmysql-ruby

You might have already installed some of these packages, either to run Puppet or earlier in this
chapter when you were setting up the Dashboard.

 Note Passenger is only sometimes available as a package on operating systems other than Red Hat or Ubuntu.
Often, the easiest method of installing Passenger is via Ruby Gems, with gem install passenger.

Configure an Apache Virtual Host

Next, you need to configure an Apache virtual host for our Dashboard implementation, which will
include enabling the required Passenger module. The Puppet Dashboard provides an example of this
virtual host, which you can see in Listing 7-2. We will put the file in our Apache configuration directory,

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

167

for example /etc/httpd/conf.d or /etc/apache2/conf.d, on Red Hat and Debian/Ubuntu flavored hosts,
respectively.

Listing 7-2. Apache Virtual Host for Passenger

LoadModule passenger_module /var/lib/gems/1.8/gems/passenger-
2.2.11/ext/apache2/mod_passenger.so
PassengerRoot /var/lib/gems/1.8/gems/passenger-2.2.11
PassengerRuby /usr/bin/ruby

PassengerHighPerformance on
PassengerMaxPoolSize 12
PassengerPoolIdleTime 1500
PassengerStatThrottleRate 120
RailsAutoDetect On

<VirtualHost *:80>
 ServerName dashboard.example.com
 DocumentRoot /usr/share/puppet-dashboard/public/
 <Directory /usr/share/puppet-dashboard/public/>
 Options None
 AllowOverride AuthConfig
 Order allow,deny
 allow from all
 </Directory>
 ErrorLog /var/log/apache2/dashboard.example.com_error.log
 LogLevel warn
 CustomLog /var/log/apache2/dashboard.example.com_access.log combined
 ServerSignature On
</VirtualHost>

The virtual host file first loads the mod_passenger module, in this case customized for a Debian or
Ubuntu environment. If we’d installed Passenger via a gem those lines might look more like this:

 LoadModule passenger_module /usr/lib/ruby/gems/1.8/gems
/passenger-2.2.9/ext/apache2/mod_passenger.so
 PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-2.2.9
 PassengerRuby /usr/bin/ruby

The next options control Passenger-specific options. You can read about each in more detail at
http://www.modrails.com/documentation/Users%20guide%20Apache.html#_configuring_phusion_
passenger.

Last is a very simple virtual host definition that specifies the location of the Dashboard application.
The important options to note are DocumentRoot and Directory. For Passenger to serve out a Ruby on
Rails application, these need to be set to the public directory underneath the root of the Rails
application, in our case /usr/share/puppet-dashboard/public.

We can now reload Apache and browse to the URL and see the Dashboard, for example on Red Hat:

$ sudo service httpd restart

You can see the home page of the Dashboard in Figure 7-1.

www.it-ebooks.info

http://www.modrails.com/documentation/Users%20guide%20Apache.html#_configuring_phusion_
http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

168

Figure 7-1. The Dashboard home page

 Tip If you’d prefer to use the Nginx server rather than Apache, you can see some instructions at
http://wiki.rubyonrails.org/deployment/nginx-passenger. Other deployment options include Unicorn
(http://unicorn.bogomips.org/) and Thin (http://wiki.rubyonrails.org/deployment/nginx-thin).

With Puppet Dashboard installed we can now use it, starting with looking a how to integrate our
Puppet masters and agents into the Dashboard.

DASHBOARD SECURITY

One of the limitations of the current Dashboard tool is its lack of authentication, authorization and
encryption. Currently Dashboard does not provide any of these, though they are on the product’s roadmap.
The best way to protect your Dashboard from unauthorized access is to:

Configure a combination of host- and network-based firewalls to limit access to
the Dashboard from appropriate network segments

HTTP Basic authentication, for example using Apache. If you do specify HTTP basic
authentication, remember that ANY connection – including report aggregation and
external nodes – will need to be authenticated. This means including the HTTP
Basic username and password in any supplied URL, for example setting the
reporturl option in the puppet.conf file to
http://username:password@dashboard.example.com.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://wiki.rubyonrails.org/deployment/nginx-passenger
http://unicorn.bogomips.org/
http://wiki.rubyonrails.org/deployment/nginx-thin
http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

169

Integrating Puppet Dashboard
Now that you’ve installed the Dashboard, you can integrate Puppet and start to make use of some of its
capabilities. We’re going to demonstrate:

• Importing Puppet reports

• Live aggregation of Puppet reports

• Displaying reports

• Using the Dashboard for external node classification

Finally, we’ll look at logging, database and data management, including backing up your Dashboard
data.

But the first capability we’re going to use is the Dashboard’s ability to display Puppet reports and
reporting statistics. We can do this in two ways: by importing existing reports using a Rake task, usually
scheduled via a cron job, or by configuring Puppet to send its reports directly to the Dashboard.

 Note If desired, you can both import your existing historical data into the Dashboard with the Rake task, and
ensure regular updates by configuring Puppet to send reports to the Dashboard.

Importing Existing Reports
Let’s first see how we can incorporate existing reports from Puppet. The Dashboard comes with a Rake
task to perform this action. Change into the root directory, /usr/share/puppet-dashboard, of the
Dashboard application. Then, run the reports:import task.

$ sudo rake RAILS_ENV=production reports:import

By default, the task will look in /var/puppet/lib/reports for any reports to be imported. If your
reports aren’t located here then you can specify a location on the command line:

$ sudo rake RAILS_ENV=production reports:import REPORT_DIR=/path/to/your/reports

You can run this command multiple times, for example via a cron job. Any reports that have already
been imported will be skipped. You should see lists of nodes appear in your Dashboard as reports for
each are added. You can see some initial nodes in Figure 7-2.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

170

Figure 7-2. Initial nodes in the Dashboard

 Tip You can see a full list of all reports on the Dashboard by clicking the Reports link in the top menu bar.

Live Report Aggregation
In addition to manual report importation, you can also configure Puppet to send your reports to the
Dashboard. There are two methods to do this, depending on what version of Puppet you have running.
For both methods you need to make changes on both the Puppet master and clients.

 Note Many of the changes we’re going to describe relate to reports and reporting capability we will talk about in
Chapter 9.

Puppet 2.6.0 and later

For versions 2.6.0 and later, you need to enable reporting on our clients (if you haven’t already) by
setting the report option in the [agent] section of the puppet.conf file, like so:

[agent]
report = true

On the master you need to enable a new type of report called http, which sends report data over an
HTTP connection, and specify a location to send our HTTP report, reporturl. You don’t have to specify a
URL, in which case it will default to the local host on port 3000. To do this you need to update the
[master] section of the Puppet’s master’s puppet.conf file.

[master]
reports = http

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

171

reporturl = http://dashboard.example.com:80/reports

You then need to restart the Puppet master to update its configuration. Now, when Puppet clients
connect, they will send a report to the URL you specified; Puppet Dashboard will receive and then
process the report.

Puppet 0.25.x and earlier

For versions 0.25.x and earlier, you need to use a report processor provided with the Dashboard product
rather than the in-built HTTP report type (which is not available in these earlier releases). You first need
to enable reporting on our Puppet clients by setting the report option in the [puppetd] section of the
puppet.conf file to true.

[puppetd]
report = true

Then on the Puppet master, find the value of your libdir, the location of the Puppet libraries:

$ puppetmasterd --configprint libdir

By default this will be something like /var/lib/puppet/lib. Create a directory under this path:

$ sudo mkdir –p /var/lib/puppet/lib/puppet/reports

Then copy the Puppet report processor into this directory from your Dashboard installation.

$ sudo cp /usr/share/puppet-dashboard/ext/puppet/puppet_dashboard.rb
 /var/lib/puppet/lib/reports

This special report processor assumes that your Dashboard instance is on the local host at port
3000. If this is not the case, you can edit the puppet_dashboard.rb file to change the target of the report.
Change the following options at the top of the file:

HOST = 'localhost'
PORT = 3000

Update your puppet.conf file on the Puppet master in the [puppetmasterd] section:

[puppetmasterd]
reports = puppet_dashboard

And lastly, restart the Puppet master daemon.

Viewing Reports
Now that you’ve got Puppet adding its reports to the Dashboard, you can examine them and view the
results. Click on a particular node to see details of its recent configuration runs, and you should see a
screen similar to Figure 7-3.

www.it-ebooks.info

http://dashboard.example.com:80/reports
http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

172

Figure 7-3. The node detail screen

The screen shows a list of recent runs, the total resources applied, any resources that failed, and the
total runtime of the run in seconds.

Drilling down into an individual run will show log output, specifically that related to any failed
resources. Also more resource metrics and timings on individual resource types will be displayed. You
can see an example of this screen in Figure 7-4.

Figure 7-4. A Puppet configuration run

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

173

External Node Classification
In addition to its ability to display reports and data, the Dashboard can also act as an external classifier.
We discussed external node classification (ENC) and why it’s useful to simplify and organize large
number of nodes in Chapter 5. This can become even easier with a web interface like the Dashboard that
configures these nodes, classes and parameters.

To enable the Dashboard’s external node classification capability, you need to configure Puppet to
use an ENC. On Puppet 2.6.x and later, this means adding an ENC to your master’s puppet.conf
configuration file:

[master]
node_terminus = exec
external_nodes = /usr/share/puppet-dashboard/bin/external_node

 Note On Puppet 0.25.x and earlier versions, this section is called [puppetmasterd] rather than [master].

The external_node ENC assumes that your Dashboard is located on the local host at port 3000. If
this isn’t the case, you can edit it to suit your environment. Open this file and find the line:

DASHBOARD_URL="http://dashboard:3000"

Modify the line to reflect where your Dashboard is located. You will then need to restart the Puppet
master to update your ENC configuration. Or, if you don’t want to edit the file, you can specify a local
environment variable on the Puppet master, PUPPET_DASHBOARD_URL, that contains this information.

Inside the Dashboard you can now create three kinds of configuration: nodes, classes and groups. A
node is the normal Puppet node and contains the node’s hostname and a description of the node.
Remember that the node’s hostname needs to match the real node so that when Puppet queries the
Dashboard, the right host is returned. You can also add any parameters (which are the same as Puppet
variables) and any classes or groups that the node is assigned to. You can see the Add Node page in
Figure 7-5.

Figure 7-5. Adding a node

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

174

You can also create one or more classes that can be assigned to nodes or groups by clicking the Add
Class link. These are simply class names – this doesn’t directly create a Puppet class, it just lists those
classes that should be applied to a particular node. You will still need to write the required Puppet
manifests on your master.

Lastly, you can create Groups as you can see in Figure 7-6.

Figure 7-6. Adding Groups

Groups don’t directly have a representation in Puppet manifests, but are rather a way of grouping
your nodes on the Dashboard itself. Once you’ve created a Group (in which you can also add parameters
and additional classes, which will be cumulatively applied to any node that is a member of the Group),
you can then add nodes to it. Clicking on the newly created group in the left hand will display a screen
showing all of the nodes assigned to that Group, as you can see in Figure 7-7.

Figure 7-7. The Group summary screen

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

175

 Note You can add classes, parameters and groups to existing nodes by clicking on the node and then on the
Edit button. You can also delete nodes, classes and groups by clicking on the dramatically-named Destroy button.

With your node configuration in place on the Dashboard, when the Puppet master runs and uses
the external node classifier to query for node data it will contact the Dashboard. The Dashboard’s API
will return the required data, class and parameter information to populate the required node.

 Tip You can see more detail on this process in Chapter 5.

Logging, Database Backup and Performance
With the Dashboard there are also a few simple management and maintenance tasks you need to know
about.

First, like all Rails applications, Puppet Dashboard logs information and errors produced to logs
contained in the /usr/share/puppet-dashboard/logs directory. These logs are useful to find diagnostic
and informational data about the running of the Dashboard. Each Rails environment, production,
development, etc., produces a separate log file named for the environment being logged. For example,
check the production.log file for log data for your Rails production instance, or check development.log
for development instance data.

These log files can accumulate and grow in size, and you should be sure sure to regularly prune
them. The Dashboard comes with a Rake task to do this for you that you can manually schedule (or
better yet, configure Puppet to run it as a cron job for you). To use the Rake task, change into the root of
the Rails application, usually /usr/share/puppet-dashboard, and run:

$ sudo rake log:clear

 Tip You can also use logrotate, or a similar tool, to prune log files as part of your regular log management.

Second, like most database-driven applications, performance of the Puppet Dashboard can
sometimes be improved by running optimization techniques over its MySQL database. Again, the
Dashboard contains a Rake task that can perform this optimization for you. From the root of the
application, run:

$ sudo rake RAILS_ENV=production db:raw:optimize

Third, you should back up your Dashboard’s database. The best way to do this is to use the
appropriate database backup tool used in your environment. If you don’t have a tool, then you can use
another in-built Rake task to create a dump of the database, which you can then back up:

$ sudo rake RAILS_ENV=production db:raw:dump

q
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

176

This will create a SQL dump of the Dashboard database in a file called production.sql in the current
directory. You can override this file name an location using the following command line:

$ sudo rake RAILS_ENV=production FILE=/path/to/backup/file.sql db:raw:dump

Conveniently, there is also a Rake task to restore the database:

$ sudo rake RAILS_ENV=production FILE=production.sql db:raw:restore

 Note Lots of Rake tasks? You can see a full list of the available tasks by running rake –T in the root directory
of the Dashboard application.

Lastly, you can purge older reports from your Dashboard database using another Rake task,
reports:prune. For example, to prune reports 3 months old or older, you would use:

 $ sudo rake RAILS_ENV=production reports:prune upto=3 unit=mon

You can run the rake reports:prune task without any options to get a full list of the task’s options.

 Note The Dashboard is a relatively new product – it’s growing and changing all the time. Keep an eye on new
releases for new features and capabilities.

The Foreman
The other entry in the Puppet GUI ecosystem is The Foreman, or simply Foreman
(http://theforeman.org/). Foreman is an integrated data center lifecycle management tool that provides
provisioning, configuration management and reporting. Like Puppet Dashboard, Foreman is a Ruby on
Rails application.

Foreman, unlike the Dashboard, has much more of a focus on provisioning and managing data
center capabilities, for example integration with bootstrapping tools, PXE boot servers, DHCP servers
and provisioning tools.

Here, we focus on getting started with Foreman so you learn how to:

• Install Foreman

• Configuring Foreman

• Integrate Foreman with Puppet

Installing Foreman
Installing Foreman requires some prerequisites. First, you need to install Puppet, a version later than
0.24.4. You can see how to do this in Chapter 1 of the book. You also need to install some additional
packages. On Red Hat and related distributions, you need to install the following packages:

www.it-ebooks.info

http://theforeman.org/
http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

177

$ sudo yum install rubygems rubygem-rake rubygem-rack rubygem-sqlite3-ruby

Alternatively, on Ubuntu and Debian-based hosts, you will need:

$ sudo apt-get install rubygems rake librack-ruby libsqlite3-ruby

Both of these package installations might also prompt you to install additional dependencies,
depending on your distribution and its version.

Once you have the required prerequisites, you can install Foreman itself. Levy has packaged
Foreman for both RPM- and DEB-based distributions.

Installing Foreman via RPM
The easiest way to install Foreman via RPM is to add the Foreman Yum repository to your environment.
To do this, create a Yum repository entry for the Foreman repository, in /etc/yum.repos.d/foreman.repo:

[foreman]
name=Foreman Repo
baseurl=http://yum.theforeman.org/stable
gpgcheck=0
enabled=1

Then run:

$ sudo yum install foreman

You will also need to have the EPEL repository enabled, which you can see from the instructions
specified in Chapter 1 or via http://fedoraproject.org/wiki/EPEL/FAQ#howtouse. Foreman will load
several additional packages from the EPEL repository.

 Note You can also install Foreman from source if you wish, though we recommend for manageability that you
stick with packages. You can find the Foreman source at git://github.com/ohadlevy/foreman.git, or grab a daily
snapshot of the Foreman development code at http://theforeman.org/foreman-nightly.tar.bz2.

Installing via DEB
Foreman is also available as an Ubuntu/Debian package. To make use of the current packages, add the
following line to your /etc/apt/sources.list file:

deb http://deb.theforeman.org/ stable main

You then need to download the Foreman GPG key, add it to APT and update like so:

$ wget http://deb.theforeman.org/foreman.asc
$ sudo apt-key add foreman.asc
$ sudo apt-get update

www.it-ebooks.info

http://yum.theforeman.org/stable
http://fedoraproject.org/wiki/EPEL/FAQ#howtouse
http://theforeman.org/foreman-nightly.tar.bz2
http://deb.theforeman.org/
http://deb.theforeman.org/foreman.asc
http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

178

Now Foreman should be available to install as a package. It is available in three versions:

• Foreman with Sqlite3 – foreman-sqlite3

• Foreman with PostgreSQL – foreman-pgsql

• Foreman with MySQL – foreman-mysql

We’re going to install the MySQL version:

$ apt-get install foreman-mysql

 Tip Levy has also made available a Puppet module that can be configured to install Foreman and take care of
much of the installation process for you. You can find the module at http://github.com/ohadlevy/puppet-
foreman.

Configuring Foreman
The primary configuration we have to perform for Foreman is to its database back end. Foreman
supports a variety of databases including MySQL, Sqlite3, PostgreSQL and Oracle. It also supports
sharing a database with Puppet’s stored configuration capability (see Chapter 6). We’re going to choose
a MySQL database, so we need to install the required packages.

Configuring Foreman on Red Hat
On Red Hat-based hosts you first need to install the required packages:

$ sudo yum install -y mysql mysql-devel mysql-server ruby-mysql

Next, you will need to manage MySQL. To do this, start MySQL and configure it to start at boot. Use
the service command to start the service:

$ sudo service mysqld start

Then use the chkconfig command to configure to MySQL to start when the host boots:

$ sudo chkconfig mysqld on

Configuring Foreman on Ubuntu and Debian
On Ubuntu and Debian based hosts, you need to install the required packages:

$ sudo apt-get install -y libmysql-ruby libmysqlclient-dev mysql-server

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://github.com/ohadlevy/puppet-foreman.Configuring
http://github.com/ohadlevy/puppet-foreman.Configuring
http://github.com/ohadlevy/puppet-foreman.Configuring
http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

179

Managing Foreman’s Database
On both Red Hat and Ubuntu/Debian machines, you need to:

1. Create a database for Foreman, and secure it with a user and password.

$ sudo mysql –p
mysql> CREATE DATABASE foreman CHARACTER SET utf8; CREATE USER 'foreman'@'localhost'
 IDENTIFIED BY 'password'; GRANT ALL PRIVILEGES ON foreman.* TO 'foreman'@'localhost';

2. Edit the database.yml file and specify the database details you just used.

production:
 database: foreman
 username: foreman
 password: password
 encoding: utf8
 adapter: mysql

 Note Alternately, you can modify the database.yml file to use the same database as your stored configuration
database in Puppet. See Chapter 6 for more details on stored configuration.

3. Run a Rake task to populate your database with the appropriate tables:

$ sudo RAILS_ENV=production rake db:migrate

Importing Data from Puppet
You can also import existing data from Puppet. If you are using stored configuration with Puppet and
you are sharing the database with Foreman, you can run:

$ sudo RAILS_ENV=production rake puppet:migrate:populate_hosts

If you’re not using stored configuration and your Puppet master is located on the same host as
Foreman, then you should run the following Rake task:

$ sudo RAILS_ENV=production rake puppet:import:hosts_and_facts

You should regularly run this task via cron to keep your nodes and facts up-to-date.
If your Puppet master is not on the same host as Foreman, you can choose between two

approaches. The first uses the same import Rake task but requires that you transfer (or mount) your
Puppet facts YAML output files (usually located in the /var/lib/puppet/yaml/facts directory) from the
master to the Foreman host:

$ sudo rake RAILS_ENV=production puppet:import:hosts_and_facts dir=/path/to/yaml/files

The second approach uses Foreman’s ability to receive Fact data from Puppet. Foreman comes with
a script you can install onto your Puppet masters and run with cron:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

180

$ wget --no-check-certificate https://github.com/ohadlevy/puppet-foreman/raw
/master/foreman/files/push_facts.rb

You will need to update this line of the script to point to the location of your Foreman installation:
url=http://foreman

 Tip For more information on importing data to Foreman to Puppet, see:
http://theforeman.org/projects/foreman/wiki/Puppet_Facts.

Starting Foreman
Like Puppet Dashboard, Foreman is a Rails application and can run using a variety of servers, including
the in-built Webrick server and an external server such as Apache running Passenger.

To run Foreman with Webrick, change into the root of the Foreman application, usually
/usr/share/foreman, and run:

$ sudo ./script/server -e production

Or, you can run the supplied init script to achieve the same result:

$ sudo service foreman start

This will start Foreman on the local host running on port 3000. You can then place Apache or
another proxy in front of it if required.

Running Foreman using Apache and Passenger is a more performant and scalable solution. Levy
has included some examples of how to configure Foreman for use with Apache and Passenger, including
making the Puppet module we discussed earlier capable of automatically configuring Foreman and
Passenger (https://github.com/ohadlevy/puppet-foreman).

Once Foreman is running, you should see the home page displayed in Figure 7-8.

www.it-ebooks.info

https://github.com/ohadlevy/puppet-foreman/raw%EF%83%89
http://theforeman.org/projects/foreman/wiki/Puppet_Facts
https://github.com/ohadlevy/puppet-foreman
http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

181

Figure 7-8. The Foreman

Integrating Foreman’s Capabilities
Foreman has a lot of features that you can use to manage your environment, including recently-added
capabilities to manage DNS and DHCP for provisioned hosts. We’re going to cover the highlights of its
functionality, focusing on its integration with Puppet, including:

• Using Foreman as an External Node Classifier

• Displaying reports in Foreman

• Displaying nodes in Foreman

• Using Foreman to trigger Puppet runs

You can read more about the overall functionality at
http://theforeman.org/projects/foreman/wiki/Features.

Using Foreman as an ENC
Like Puppet Dashboard, Foreman can be used as an ENC. To do that, click on the Hosts tab to display
the list of hosts currently in Foreman, as shown in Figure 7-9.

www.it-ebooks.info

http://theforeman.org/projects/foreman/wiki/Features
http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

182

Figure 7-9. Foreman’s Hosts display

You can add hosts to Foreman by clicking the New Host link, shown in Figure 7-10.

Figure 7-10. Adding a new host to Foreman

Populate the environment, the required classes and any proposed parameters, and click Submit to
add the new host. You can also define global and per domain parameters in the Settings tab. If you
define more than one parameter with the same name, Foreman has a hierarchical override structure
with parameters processed in order of global, domain, and host, with the last one processed setting the
value.

In addition to this manual configuration, Foreman can also import some information from your
existing Puppet information so you can pre-seed your external node classifier. To import all the classes
contained in your Puppet modules, run the following Rake task:

$ sudo RAILS_ENV=production rake puppet:import:puppet_classes

This task will include all classes in modules specified in your modulepath.
Once you have defined your hosts, you need to specify Foreman as the ENC for your Puppet

instance. To do this, update the puppet.conf configuration file on the Puppet master:

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

183

[master]
node_terminus = exec
external_nodes = /usr/share/theforeman/extras/puppet/foreman/files/external_node.rb

 Note On Puppet 0.25.x and earlier the section is called [puppetmasterd].

The external_node.rb script is an ENC that is provided with Foreman. It assumes your Foreman
instance is running on a host named foreman on port 3000. Adjust this line to point it at your actual
Foreman instance:

foreman_url=http://foreman:3000

 Tip You can click on the YAML link in an individual host definition to see what the ENC output would be for that
host. This is a good way of confirming your host is accurately configured.

Displaying Reports in Foreman
Foreman has the capability to import and display your Puppet reports. Foreman uses a custom report on
your Puppet master to send reports. To use this custom report, you need to ensure all clients have
reporting enabled by setting the report option on each client:

[agent]
report = true

You then need to add your Foreman report to the master and configure it to send the report to the
right location. The Foreman custom report is contained in /usr/share/foreman/extras/puppet/foreman
/files/foreman-report.rb.

Inside this file, find the line:

$foreman_url=http://foreman:3000

Ensure that this line points to the correct Foreman host and port for our environment. Then, copy
this report into the Puppet reports directory on each of your Puppet masters; for example, on Red Hat it
would look like this:

$ sudo cp /usr/share/foreman/extras/puppet/foreman/files/foreman-report.rb
 /usr/lib/ruby/1.8/puppet/reports/foreman.rb

Next, enable this report in the Puppet master’s puppet.conf file:

reports = log, foreman

Restart the Puppet master and reports should begin to flow to Foreman. You can review these
reports via the Reports tab that you can see in Figure 7-11.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

184

Figure 7-11. Displaying reports in Foreman

If you have reports you’d like to purge from Foreman, both to improve performance and to remove
aged data, you can run another Rake task to expire reports. You can remove reports via date and via their
status. To expire all reports older than a particular period, use the following Rake task from the root
directory of the Foreman application:

$ sudo RAILS_ENV="production" rake reports:expire days=7

This removes all reports older than 7 days.
We can also remove all reports, except those with errors or failed resources, for example:

$ sudo RAILS_ENV="production" rake reports:expire days=10 status=0

This task would remove all reports older than 10 days which were successful and contain no errors
or failed resources.

Displaying Nodes Information in Foreman
In addition to acting as an ENC, you can also use Foreman to display data about your Puppet nodes.
Foreman can take this data from two sources: your existing stored configuration database, or via a
manual import of Puppet data.

If you’re using the same database for Puppet’s stored configuration as for Foreman, then this data
will automatically be populated into Foreman and you can see it via the Facts tab, as shown in Figure 7-
12, or using the individual Fact links for each host. If you are not using the stored configuration
database, then you can use the tasks we described in the Configuring Foreman section to keep your
Puppet data up to date.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

185

Figure 7-12. Displaying Facts in Foreman

You can also use the Search functions to find a specific Fact value.

 Note The Foreman also has a REST API that you can interact with. It uses JSON and provides access to most of
its capabilities via a web services interface. You can see full details on the API and how to interact with it at
http://theforeman.org/projects/foreman/wiki/API.

Using Foreman to trigger Puppet
Lastly, you can also use Foreman to trigger Puppet runs using the puppet kick (formerly puppetrun)
command Foreman will execute the puppet kick command from the host running Foreman and trigger
a Puppet run on a host. To use the capability you need to have Puppet installed on the Foreman host
(which you should have in place anyway), and it will look for the puppetrun binary in /usr/bin. You also
need the following enabled in the Foreman settings file, config/settings.yml:

:puppetrun: true

And we also need to allow Foreman to do some sudo magic to be able to use the puppetrun
command and access your certificates. Add something like the following to your sudoers file on the
Foreman host:

Defaults:foreman !requiretty foreman_user ALL = NOPASSWD: /usr/bin/puppetrun

www.it-ebooks.info

http://theforeman.org/projects/foreman/wiki/API
http://www.it-ebooks.info/

CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

186

Each client host you wish to trigger a Puppet run on needs to have listen enabled, for example:

[agent]
listen = true

 Note We cover Puppet run/kick in Chapter 8.

You will also need to allow the connection in the /etc/puppet/auth.conf, for example (replacing
foreman.example.com with the hostname of your Foreman host):

path /run method save allow foreman.example.com

You’ll also need to ensure port 8139 is open between the Foreman host and your Puppet clients.
With all this enabled, you should now see a new option in the Hosts display called Run Puppet. Click

on this to perform a Puppet run.

 Tip The Foreman supports both authentication and encryption. You can read about how to integrate it with an
LDAP directory at http://theforeman.org/projects/foreman/wiki/LDAP_Authentication. You can also see
how to force The Foreman to use SSL for all connections at http://theforeman.org/projects/foreman
/wiki/Force_SSL.

Summary
In this chapter, we’ve explored how you can use both the Puppet Dashboard and The Foreman as web-
based front ends to your Puppet environment. We examined how to install, configure, use, and manage
each tool, and we looked at their respective capabilities. Both offer powerful additional visualization and
management capabilities that you’ll find useful in managing your environment, and enable you to
provide graphing to your team.

Resources
The following links will take you to documentation related to the Puppet Dashboard, The Foreman and
related topics:

• The Puppet Dashboard http://www.puppetlabs.com/puppet/related-
projects/dashboard/

• The Foreman http://theforeman.org/projects/foreman

• The Foreman mailing list http://groups.google.com/group/foreman-users

• The Foreman IRC channel #theforeman on Freenode

www.it-ebooks.info

http://theforeman.org/projects/foreman/wiki/LDAP_Authentication
http://theforeman.org/projects/foreman
http://www.puppetlabs.com/puppet/related-projects/dashboard/
http://www.puppetlabs.com/puppet/related-projects/dashboard/
http://www.puppetlabs.com/puppet/related-projects/dashboard/
http://theforeman.org/projects/foreman
http://groups.google.com/group/foreman-users
http://www.it-ebooks.info/

 CHAPTER 7 PUPPET CONSOLES: PUPPET DASHBOARD AND THE FOREMAN

187

• The Foreman Forums http://theforeman.org/projects/foreman/boards

• External nodes http://docs.puppetlabs.com/guides/external_nodes.html

• Puppet configuration reference http://docs.puppetlabs.com/references
/stable/configuration.html

www.it-ebooks.info

http://theforeman.org/projects/foreman/boards
http://docs.puppetlabs.com/guides/external_nodes.html
http://docs.puppetlabs.com/references
http://www.it-ebooks.info/

C H A P T E R 8

189

Tools and Integration

Puppet, by itself, provides a large number of features and functionality. As you’ve learned so far in this
book, Puppet enables you to manage the configuration state of a wide variety of resources. Files, users,
groups, software packages and running services are prime examples. Configuration management is an
extremely complex and multi-faceted problem, however, and as result we cannot expect Puppet alone to
address every problem. In this chapter, we cover a number of additional tools that work extremely well
with Puppet. These tools address many of the problems Puppet alone does not address.

The first problem is concerned with de-duplicating effort. The Puppet Forge provides a central place
for members of the Puppet community to publish and download re-usable modules. The Puppet
Module tool works with the Forge, providing a convenient command line interface, much like the yum
and apt-get packaging commands provide. This chapter demonstrates how to download, install, and use
modules from the forge.

In addition, you’ll learn how puppet-module can be used to generate a skeleton module structure
and package modules. Even if the modules will never be published outside of your organization, these
features provide a way to track module versions and distribute them to other groups internally.

While not an external tool, the Ruby DSL in Puppet 2.6 provides an alternative to declaring
configuration resources using the Puppet language. The declarative nature of the Puppet language is a
great way to express configuration state, but you may run across a configuration that is awkward or
impossible to express using the Puppet language itself. In these situations, Puppet allows you to declare
classes and resources using the Ruby programming language, providing additional functionality. You’ll
see how the Example.com developer uses the Ruby DSL to transform data external to Puppet into
resources and their parameter values in the configuration catalog. One example of a problem that’s
difficult to solve with the Puppet language is the management of login accounts. As people join and
leave Example.com, the developer would have to add and remove resource declarations in the Puppet
manifests. A more ideal solution would be if Puppet could automatically declare resources based on
information from an outside data source like LDAP. The Ruby DSL is ideally suited to the task of iterating
over an arbitrary amount of external data, then declaring resources using the data.

As Puppet configurations change, testing the change is always a good idea before pushing to the
production infrastructure. Puppet is designed to model the desired state of a system, which is closely
related to how that system behaves. With the idea of desired behavior in mind, the natural language
specifications of Cucumber inspired Nikolay Sturm to develop cucumber-puppet. Cucumber-puppet
allows you to describe the desired behavior of Puppet infrastructure and test the configuration model
stored in the catalog.

Puppet Forge and Module Tool
The Puppet Forge, located at http://forge.puppetlabs.com/, provides an online repository of Puppet
modules. This service provides the means to publish and locate modules for commonly managed
services like iptables, apache, and NTP. In addition, there are modules targeted for specific use cases,
such as Hadoop.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://forge.puppetlabs.com/
http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

190

If you find yourself needing to quickly deploy a complex infrastructure like Hadoop, the Puppet
Forge will save you much time and effort. Modules on the Forge provide a reference configuration that
may be easily modified if necessary. The Forge strives to become to Puppet what CPAN is to Perl hackers.
Puppet modules may be manually downloaded from the Forge using a standard web browser, but the
process is made much easier through the use of the Puppet Module tool, called puppet-module.

The puppet-module command provides an interface to the Forge API. This command line interface
allows you to create skeleton Puppet Modules for your own work, search the forge for existing modules,
and install them into your configuration. In this section, we cover the process of downloading an
already-existing module and publishing a new module to the forge.

Installing the Puppet Module Tool
Unlike Puppet, which is distributed in many package repositories for various operating systems, the
Puppet Module Tool is primarily distributed through the RubyGems package repository. This has the
advantage of making installation straightforward and easy on all platforms with RubyGems installed.
Listing 8-1 shows how the Example.com operator installs the Puppet Module tool.

Listing 8-1. Installing Puppet Module using Gems

$ gem install puppet-module
**

 Thank you for installing puppet-module from Puppet Labs!

 * Usage instructions: read "README.markdown" or run `puppet-module usage`
 * Changelog: read "CHANGES.markdown" or run `puppet-module changelog`
 * Puppet Forge: visit http://forge.puppetlabs.com/

**
Successfully installed puppet-module-0.3.2
1 gem installed
Installing ri documentation for puppet-module-0.3.2...
Installing RDoc documentation for puppet-module-0.3.2...

puppet-module version
0.3.2

The operator first installs puppet-module using the gem command, then he checks to make sure the
command is executable and at the correct version.

■ Note The Puppet Module tool project page and source code are hosted on GitHub at
https://github.com/puppetlabs/puppet-module-tool. An alternative to installing the software using
RubyGems is to clone a copy of the source and use the install.rb script included in the source. This also gives you
the ability to easily modify and contribute to the project.

www.it-ebooks.info

http://forge.puppetlabs.com/
https://github.com/puppetlabs/puppet-module-tool
http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

191

Searching and Installing a Module from the Forge
The first step to download and install a Puppet module is to search for the name of a module providing
the configuration you’re looking for. A common service managed on many systems is the iptables host-
based firewall. Whether you need to configure Apache, MySQL, or some other network-based service,
the host-based firewall will need to be managed to grant access to the service. Before setting out to write
his own Puppet module to accomplish this task, in Listing 8-2 the operator uses the puppet-module
search command to see if one has been published to the Forge already.

Listing 8-2. Searching for modules using puppet-module

$ puppet-module search iptables
=====================================
Searching http://forge.puppetlabs.com

1 found.

bobsh/iptables (1.2.0)

The operator notices there is already a module to manage the iptables firewall, published by bobsh
(Ken Barber). To automatically download and install the module, the operator uses the install action in
Listing 8-3. The module will be installed into the current working directory, so it’s a good idea to change
directories to somewhere located in the Puppet module search path.

Listing 8-3. Installing a module using puppet-module

$ cd /etc/puppet/modules

$ puppet-module install bobsh/iptables
Installed "bobsh-iptables-1.2.0" into directory: bobsh-iptables

$ tree bobsh-iptables/
bobsh-iptables/
|-- COPYING
|-- Modulefile
|-- README.rst
|-- REVISION
|-- Rakefile
|-- lib
| `-- puppet
| |-- test
| | `-- iptables.rb
| `-- type
| `-- iptables.rb
|-- metadata.json
`-- tests
 |-- 010_basic.pp
 |-- 020_icmp_types.pp
 |-- 021_icmp_any.pp
 |-- 030_multiple_sources.pp
 |-- 040_state_types.pp

u
www.it-ebooks.info

http://forge.puppetlabs.com
http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

192

 `-- 050_sport_and_dport.pp

5 directories, 14 files

The operator first uses the puppet-module install command to download and unpack the iptables
module. Once installed, the module contents indicate that the documentation is in the README.rst file.
Examples are also located in the bobsh-iptables/tests/ directory. These examples provide a quick way to
get started using the new iptables type provided by the module.

Now that the operator has a module installed from the Forge, let’s see how he uses the module in his
Puppet manifests.

Using a Module
The iptables module provides a new Puppet type named iptables. We’ll see how the Example.com
operator writes a simple manifest to use this newly installed iptables type.

First, the Example.com operator generates a new module named site-firewall using the puppet-
module tool. The process he uses is shown in Listing 8-4. He picks the name “site” because this module
is specific to his deployment and will not be distributed outside of Example.com. In this situation, the
puppet-module tool provides a quick and convenient way to generate the skeleton directory structure of
the module.

Listing 8-4. Generating a skeleton module with puppet-module

cd ~
puppet-module generate site-firewall
===
Generating module at ~/site-firewall

site-firewall
site-firewall/files
site-firewall/files/README.markdown
site-firewall/templates
site-firewall/templates/README.markdown
site-firewall/manifests
site-firewall/manifests/init.pp
site-firewall/manifests/README.markdown
site-firewall/spec
site-firewall/spec/spec.opts
site-firewall/spec/unit
site-firewall/spec/unit/puppet
site-firewall/spec/unit/puppet/provider
site-firewall/spec/unit/puppet/provider/README.markdown
site-firewall/spec/unit/puppet/type
site-firewall/spec/unit/puppet/type/README.markdown
site-firewall/spec/README.markdown
site-firewall/spec/spec_helper.rb
site-firewall/tests
site-firewall/tests/init.pp
site-firewall/lib
site-firewall/lib/puppet
site-firewall/lib/puppet/facter

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

193

site-firewall/lib/puppet/facter/README.markdown
site-firewall/lib/puppet/parser
site-firewall/lib/puppet/parser/functions
site-firewall/lib/puppet/parser/functions/README.markdown
site-firewall/lib/puppet/provider
site-firewall/lib/puppet/provider/README.markdown
site-firewall/lib/puppet/type
site-firewall/lib/puppet/type/README.markdown
site-firewall/Modulefile
site-firewall/metadata.json
site-firewall/README

As we can see in Listing 8-4, the generate action creates quite a bit of boilerplate for the operator to
fill in and use as a guide. This saves quite a bit of work over the manual method of creating the module
directory structure. The puppet-module tool prefixes each module with the author of the class, so the
module is actually named “firewall.” Once the skeleton directory structure is created, Listing 8-5 shows
how the operator adds a few iptables resources to the firewall class in init.pp. In your configuration, it is
a good idea to commit the boilerplate code to version control at this point if you wish to do so. This will
allow you to easily track changes you make to the generated code.

Listing 8-5. Adding resources to the firewall class

$ vim site-firewall/manifests/init.pp
Add the following resources:

$ diff --git a/manifests/init.pp b/manifests/init.pp
index ec7243a..bee3943 100644
--- a/manifests/init.pp
+++ b/manifests/init.pp
@@ -13,5 +13,19 @@
 # [Remember: No empty lines between comments and class definition]
 class firewall {

+ Iptables {
+ source => "0.0.0.0",
+ destination => "0.0.0.0",
+ }
+
+ iptables { "100 Puppet Prod":
+ dport => "8140",
+ }
+ iptables { "101 Puppet Test":
+ dport => "8141",
+ }
+ iptables { "101 Puppet Dev":
+ dport => "8142",
+ }

 }

The diff output in Listing 8-5 indicates that a number of iptables resources have been added to the
firewall class in the init.pp file. Once these resources have been declared, the operator packages the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

194

generated module and places it in the module search path with the two commands shown in Listing 8-6.
If the module is directly copied into the module path without being built, Puppet will fail to load the
module since the metadata has not been automatically generated. The workflow for developing modules
generated by puppet-module is to develop them outside of the module search path, then build and
install them using puppet-module.

Listing 8-6. Placing a custom module into the Puppet module path

$ puppet-module build
==
Building /root/site-firewall for release
--
Done. Built: pkg/site-firewall-0.0.1.tar.gz

$ mv pkg/site-firewall-0.0.1 /etc/puppet/modules/firewall

The first command builds the module package and fills in the metadata for the module. The second
command moves the built module into the puppet-module search path. We’re now ready to try out the
module and make sure the search path is working correctly. The operator uses puppet apply –e, shown
in Listing 8-7, to evaluate a single class declaration.

Listing 8-7. Using the iptables module by loading the firewall class

$ puppet apply -e 'include firewall' --noop
notice: /Iptables[100 Puppet Prod]: rules would have changed... (noop) in 0.00 seconds

$ puppet apply -e 'include firewall'
Saving firewall rules to /etc/sysconfig/iptables: [OK]
notice: /Iptables[100 Puppet Prod]: rules have changed... in 0.39 seconds

Finally, in Listing 8-8, the operator verifies the rules are properly being managed using the iptables
command.

Listing 8-8. Verifying that the iptables rules are being managed by Puppet

$ iptables -L INPUT -n
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT tcp -- 0.0.0.0 0.0.0.0 tcp dpt:8140 /* 100 Puppet
 Prod */
ACCEPT tcp -- 0.0.0.0 0.0.0.0 tcp dpt:8142 /* 101 Puppet Dev */
ACCEPT tcp -- 0.0.0.0 0.0.0.0 tcp dpt:8141 /* 101 Puppet
 Test */

Using the iptables command, we’re able to see Puppet is correctly using the iptables module to
manage the host-based firewall. In the next section we’ll learn how the operator uses the puppet-module
tool to build his own Puppet modules.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

195

Creating a Module with the Puppet-Module Tool
The Puppet Forge is an excellent resource to download and re-use Puppet modules from the
community. Modules you develop may also easily be published to the Forge. There are a number of
benefits to publishing modules. First, people who use your modules may add functionality and help fix
bugs, saving you time and effort. In addition, providing re-usable modules allows the Puppet
community to focus on developing new functionality that could directly benefit you. Publishing your
own modules also allows other Puppet users to save time and effort.

In this section, we’ll see how the operator develops and publishes a small module to manage the
NTP service on Debian and Redhat systems. It is important to keep in mind that modules published to
the forge may be used on a wide variety of platforms. We’ll learn how the operator uses conditionals in
the Puppet manifests to clearly indicate when a particular platform is or is not supported.

Managing Modules with Git
As we learned in the previous section, the puppet-module generate command is useful for generating a
skeleton module structure. This module structure is not directly usable by Puppet, and must first be
built into a module package using the build action. To get started, the Example.com operator generates
the skeleton structure and adds the tree to a Git repository to track changes and history, as shown in
Listing 8-9.

Listing 8-9. Using puppet-module generate and git add

$ cd ~/src/modules/
$ puppet-module generate operator-ntp
===
Generating module at /root/src/modules/operator-ntp

…
$ cd operator-ntp

$ git init
Initialized empty Git repository in .git/

$ git add .

$ git commit -a -m 'Initial commit'
Created initial commit fb7d7b2: Initial commit
 17 files changed, 223 insertions(+), 0 deletions(-)
 create mode 100644 Modulefile
 create mode 100644 README
 create mode 100644 files/README.markdown
 create mode 100644 lib/puppet/facter/README.markdown
 create mode 100644 lib/puppet/parser/functions/README.markdown
 create mode 100644 lib/puppet/provider/README.markdown
 create mode 100644 lib/puppet/type/README.markdown
 create mode 100644 manifests/README.markdown
 create mode 100644 manifests/init.pp
 create mode 100644 metadata.json

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

196

 create mode 100644 spec/README.markdown
 create mode 100644 spec/spec.opts
 create mode 100644 spec/spec_helper.rb
 create mode 100644 spec/unit/puppet/provider/README.markdown
 create mode 100644 spec/unit/puppet/type/README.markdown
 create mode 100644 templates/README.markdown
 create mode 100644 tests/init.pp

With the newly generated NTP module, the operator uses the git init, add and commit actions to
track the history of changes to the module. The module source code may then be published to the
Internet using http://github.com/. Many module authors in the Puppet community publish their
source code to github. Storing the module inside of a Git repository also allows the operator to track
changes, tag releases, and quickly test out topic branches for new functionality.

Managing Platform-Specific Resources
The next step is to add functionality for a specific platform to the module. This module is designed to
manage the NTP service and bind to a configurable set of upstream NTP servers. First, the operator adds
support for Debian based systems. In Listing 8-10, he uses the new parameterized class feature of
Puppet 2.6 to allow people using the module to specify the list of servers to synchronize against.

Listing 8-10. Debian-specific functionality in the NTP module

$ vim manifests/init.pp
Class: ntp

This module manages the ntp service.

Tested platforms:
- Debian 6.0 Squeeze

Parameters:

$servers = ["0.debian.pool.ntp.org iburst",
"1.debian.pool.ntp.org iburst",
"2.debian.pool.ntp.org iburst",
"3.debian.pool.ntp.org iburst",]

Actions:

Installs, configures, and manages the ntp service.

Requires:

Sample Usage:

class { "ntp": servers => ['time.apple.com'] }

[Remember: No empty lines between comments and class definition]
class ntp($servers=["0.debian.pool.ntp.org iburst",

www.it-ebooks.info

http://github.com/
http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

197

 "1.debian.pool.ntp.org iburst",
 "2.debian.pool.ntp.org iburst",
 "3.debian.pool.ntp.org iburst",],
 $ensure="running",
 $autoupdate=false
) {

 if ! ($ensure in ["running", "stopped"]) {
 fail("ensure parameter must be running or stopped")
 }

 if $autoupdate == true {
 $package_ensure = latest
 } elsif $autoupdate == false {
 $package_ensure = present
 } else {
 fail("autoupdate parameter must be true or false")
 }

 case $operatingsystem {
 debian, ubuntu: {
 $supported = true
 $pkg_name = ["ntp"]
 $svc_name = "ntp"
 $config = "/etc/ntp.conf"
 $config_tpl = "ntp.conf.debian.erb"
 }
 default: {
 $supported = false
 notify { "${module_name}_unsupported":
 message => "The ${module_name} module is not supported on ${operatingsystem}",
 }
 }
 }

 if ($supported == true) {

 package { $pkg_name:
 ensure => $package_ensure,
 }

 file { $config:
 ensure => file,
 owner => 0,
 group => 0,
 mode => 0644,
 content => template("${module_name}/${config_tpl}"),
 require => Package[$pkg_name],
 }

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

198

 service { "ntp":
 ensure => $ensure,
 name => $svc_name,
 hasstatus => true,
 hasrestart => true,
 subscribe => [Package[$pkg_name], File[$config]],
 }

 }

}

Building and Testing a Puppet Module
Once the main NTP class has been filled in, the operator builds the module using the puppet-module
build command. The process shown in Listing 8-11 fills in the metadata for the module and creates a
module usable by Puppet. He then moves this module into the module search path at
/etc/puppet/modules/ntp to test the module. When building the module, make sure you are in the top
level of the module directory structure containing the Modulefile file.

Listing 8-11. Using the puppet-module build and install commands

$ puppet-module build
===
Building /root/src/modules/operator-ntp for release

Done. Built: pkg/operator-ntp-0.0.1.tar.gz

$ cd /etc/puppet/modules
$ puppet-module install ~/src/modules/operator-ntp/pkg/operator-ntp-0.0.1.tar.gz
$ ln -s operator-ntp ntp

The operator first builds a new module package using the puppet-module build command. Once
built, the operator changes directories to /etc/puppet/modules to install the module. The Puppet
autoloader will not find the module unless it is in the “ntp” directory, because the main class is named
ntp. To address this problem, the operator simply creates a symbolic link from NTP to the forge module
name. This will allow future versions to easily replace the existing version.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

199

A NOTE ABOUT MODULE NAMES

If Puppet cannot find a module with a name exactly matching the module being created, the following
errors may be encountered. While building the NTP module, puppet-module creates a module named
operator-ntp. This module should be renamed when installing the module to ensure the autoloader
properly loads the class.

puppet apply --verbose -e 'class { ntp: ensure => stopped }'
Puppet::Parser::AST::Resource failed with error ArgumentError: Invalid resource type
class at line 1 on node debian.puppetlabs.vm

puppet apply --verbose -e 'include ntp'
info: Could not find class ntp for debian.puppetlabs.vm
Could not find class ntp at line 1 on node debian.puppetlabs.vm

Both of these errors may be corrected by symbolically linking /etc/puppet/modules/ntp to
/etc/puppet/modules/operator-ntp after installing the module with puppet-module install.

It’s now time to test out the newly developed module. To make sure the autoloader properly finds
the NTP module, in Listing 8-12 the operator executes a simple puppet apply command evaluating a
single class declaration.

Listing 8-12. Testing a new Puppet module with puppet apply on Debian

$ puppet apply --verbose -e 'class { ntp: ensure => running}'
info: Applying configuration version '1298492452'
notice: /Stage[main]/Ntp/Package[ntp]/ensure: ensure changed 'purged' to 'present'
info: /Stage[main]/Ntp/Package[ntp]: Scheduling refresh of Service[ntp]
info: FileBucket got a duplicate file /etc/ntp.conf ({md5}3e250ecaf470e1d3a2b68edd5de46bfd)
info: /Stage[main]/Ntp/File[/etc/ntp.conf]: Filebucketed /etc/ntp.conf to puppet with sum
 3e250ecaf470e1d3a2b68edd5de46bfd
notice: /Stage[main]/Ntp/File[/etc/ntp.conf]/content: content changed
 '{md5}3e250ecaf470e1d3a2b68edd5de46bfd' to '{md5}6e3461437c627101cf53e634abc62400'
info: /Stage[main]/Ntp/File[/etc/ntp.conf]: Scheduling refresh of Service[ntp]
notice: /Stage[main]/Ntp/Service[ntp]: Triggered 'refresh' from 2 events

$ puppet apply --verbose -e 'class { ntp: ensure => running }'
info: Applying configuration version '1298492574'

Here, the operator uses puppet apply -e to evaluate a single statement from the command line. The
operator makes sure the class is idempotent by running Puppet a second time with the same command.
Finally, to make sure the service can be easily stopped, he changes the ensure parameter. Once the
module has been tested on a Debian system, the operator makes sure the module can properly stop the
service, as shown in Listing 8-13.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

200

Listing 8-13. Testing to ensure that the NTP service can be stopped

$ puppet apply --verbose -e 'class { ntp: ensure => stopped }'
info: Applying configuration version '1298492670'
notice: /Stage[main]/Ntp/Service[ntp]/ensure: ensure changed 'running' to 'stopped'

$ puppet apply --verbose -e 'class { ntp: ensure => stopped }'
info: Applying configuration version '1298492677'

These two commands leave the package installed and configured, but stop the service. The operator
has verified that his new module works well on a Debian-based system. The last step before publishing
his module to the Forge is to add Enterprise Linux support for the module. By using conditionals and
variables for the package, file and service resources, he’s able to easily modify the existing class to
support Enterprise Linux.

Adding Enterprise Linux Support to the NTP Module
Once the NTP module has been tested on Debian-based systems, the operator needs to make sure the
module also works well on Enterprise Linux systems. First, the operator exercises the logic preventing
the module from running on unsupported operating systems. On an Enterprise Linux system, as shown
in Listing 8-14, he installs the module as normal.

Listing 8-14. Installing the NTP module on Enterprise Linux

$ facter operatingsystem
CentOS

$ puppet-module install ~/src/modules/operator-ntp/pkg/operator-ntp-0.0.1.tar.gz
Installed "operator-ntp-0.0.1" into directory: operator-ntp

$ ln -s operator-ntp ntp
$ cd ~

Once installed on the Enterprise Linux system, the operator uses the same commands he used on
the Debian system to test the newly-developed NTP module, shown in Listing 8-15.

Listing 8-15. Initial test of the NTP module on Enterprise Linux

puppet apply --verbose -e 'class { ntp: ensure => running }'
info: Applying configuration version '1298493317'
notice: The ntp module is not supported on CentOS
notice: /Stage[main]/Ntp/Notify[ntp_unsupported]/message: defined 'message' as 'The ntp module
is not supported on CentOS'

The operator expects to receive this message because Enterprise Linux support has not yet been
developed. Let’s see how he modifies the module to support both Debian and Enterprise Linux systems.
In Listing 8-16, he installs the NTP package to obtain a template of the NTP configuration file and copies
it into the templates directory of the module. Then, he checks the service name to see if it matches the
Debian service name or not.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

201

Listing 8-16. Obtaining the NTP service name and configuration for Enterprise Linux

$ yum install ntp
…
Installed:
 ntp.x86_64 0:4.2.2p1-9.el5.centos.2.1

$ cd ~/src/modules/operator-ntp/
$ cp /etc/ntp.conf ./templates/ntp.conf.el.erb
$ git add ./templates/ntp.conf.el.erb
$ chkconfig --list | grep ntp
ntpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off

The operator notices the name of the service on Enterprise Linux-based systems is “ntpd,” which
differs slightly from the “ntp” on Debian-based systems. Luckily, Puppet handles these minor
differences with ease. Let’s see how, in Listing 8-17, he modifies the NTP class to handle this difference
and manage the NTP service.

Listing 8-17. Extending the NTP class to support Enterprise Linux and Debian

$ git diff
diff --git a/Modulefile b/Modulefile
index 180cb31..cd60026 100644
--- a/Modulefile
+++ b/Modulefile
@@ -1,10 +1,10 @@
 name 'operator-ntp'
-version '0.0.1'
+version '0.0.2'
 source 'UNKNOWN'
 author 'Example.com Operator'
 license 'UNKNOWN'
-summary 'UNKNOWN'
-description 'UNKNOWN'
+summary 'NTP Module'
+description 'NTP Module for Debian, Ubuntu, CentOS, RHEL, OEL'
 project_page 'UNKNOWN'

 ## Add dependencies, if any:
diff --git a/manifests/init.pp b/manifests/init.pp
index 622b216..ee655f7 100644
--- a/manifests/init.pp
+++ b/manifests/init.pp
@@ -30,10 +30,7 @@
 # }
 #
 # [Remember: No empty lines between comments and class definition]
-class ntp($servers=["0.debian.pool.ntp.org iburst",
- "1.debian.pool.ntp.org iburst",
- "2.debian.pool.ntp.org iburst",
- "3.debian.pool.ntp.org iburst",],

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

202

+class ntp($servers="UNSET",
 $ensure="running",
 $autoupdate=false
) {
@@ -57,6 +54,28 @@ class ntp($servers=["0.debian.pool.ntp.org iburst",
 $svc_name = "ntp"
 $config = "/etc/ntp.conf"
 $config_tpl = "ntp.conf.debian.erb"
+ if ($servers == "UNSET") {
+ $servers_real = ["0.debian.pool.ntp.org iburst",
+ "1.debian.pool.ntp.org iburst",
+ "2.debian.pool.ntp.org iburst",
+ "3.debian.pool.ntp.org iburst",]
+ } else {
+ $servers_real = $servers
+ }
+ }
+ centos, redhat, oel: {
+ $supported = true
+ $pkg_name = ["ntp"]
+ $svc_name = "ntpd"
+ $config = "/etc/ntp.conf"
+ $config_tpl = "ntp.conf.el.erb"
+ if ($servers == "UNSET") {
+ $servers_real = ["0.centos.pool.ntp.org",
+ "1.centos.pool.ntp.org",
+ "2.centos.pool.ntp.org",]
+ } else {
+ $servers_real = $servers
+ }
 }
 default: {
 $supported = false
diff --git a/templates/ntp.conf.debian.erb b/templates/ntp.conf.debian.erb
index e4275de..f51414f 100644
--- a/templates/ntp.conf.debian.erb
+++ b/templates/ntp.conf.debian.erb
@@ -20,7 +20,7 @@ filegen clockstats file clockstats type day enable
 # pool: <http://www.pool.ntp.org/join.html>

 # Managed by puppet class { "ntp": servers => [...] }
-<% servers.each do |server| -%>
+<% servers_real.each do |server| -%>
 server <%= server %>
 <% end -%>

diff --git a/templates/ntp.conf.el.erb b/templates/ntp.conf.el.erb
index cfb4c8c..db2aa9c 100644
--- a/templates/ntp.conf.el.erb
+++ b/templates/ntp.conf.el.erb
@@ -14,9 +14,11 @@ restrict -6 ::1

www.it-ebooks.info

http://www.pool.ntp.org/join.html
http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

203

 # Use public servers from the pool.ntp.org project.
 # Please consider joining the pool (http://www.pool.ntp.org/join.html).
-server 0.centos.pool.ntp.org
-server 1.centos.pool.ntp.org
-server 2.centos.pool.ntp.org
+
+# Managed by puppet class { "ntp": servers => [...] }
+<% servers_real.each do |server| -%>
+server <%= server %>
+<% end -%>

 #broadcast 192.168.1.255 key 42 # broadcast server
 #broadcastclient # broadcast client

The operator has made a number of small edits to the NTP module, as shown in the difference
between the Debian-only module and the newly-added Enterprise Linux support. These changes justify
a new build of the module with a new version number. Working through the difference, let’s review the
changes made:

• Increment the version in the Modulefile. This allows overwriting the already-installed
module.

• Add a description and summary for the Modulefile. These will show up on the Forge when
published.

• Add a case selection for the CentOS, RedHat, and OEL operating systems.

• Add a conditional to set different default upstream servers from the Debian or CentOS pool
if the user does not specify their own list of servers.

These changes modify the variables used by the Package, File and Service resources declared in the
bottom section of the NTP class. Once these changes are made, the operator builds a new version of the
package. He then installs the package on both the Enterprise Linux and Debian systems, using the
commands shown in Listing 8-18.

Listing 8-18. Building and installing version 0.0.2 of the NTP module

$ cd ~/src/modules/operator-ntp
$ puppet-module build
===
Building ~/src/modules/operator-ntp for release

Done. Built: pkg/operator-ntp-0.0.2.tar.gz

$ cd /etc/puppet/modules
$ puppet-module install ~/src/modules/operator-ntp/pkg/operator-ntp-0.0.2.tar.gz
======================================
Existing module 'operator-ntp' found

Overwrite module installed at ./operator-ntp? [y/N]: y
Installed "operator-ntp-0.0.2" into directory: operator-ntp

www.it-ebooks.info

http://www.pool.ntp.org/join.html
http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

204

Releasing the NTP Module to the Forge
After installing version 0.0.2 of the NTP module on both the Enterprise Linux and Debian systems, a final
test shown in Listing 8-19 verifies that the module is ready for publication.

Listing 8-19. Final test of NTP module on Debian and Enterprise Linux

debian # puppet apply --verbose -e 'class { ntp: ensure => running, autoupdate => true }'
info: Applying configuration version '1298498306'
notice: /Stage[main]/Ntp/Package[ntp]/ensure: ensure changed 'purged' to 'latest'
info: /Stage[main]/Ntp/Package[ntp]: Scheduling refresh of Service[ntp]
info: FileBucket got a duplicate file /etc/ntp.conf ({md5}3e250ecaf470e1d3a2b68edd5de46bfd)
info: /Stage[main]/Ntp/File[/etc/ntp.conf]: Filebucketed /etc/ntp.conf to puppet with sum
 3e250ecaf470e1d3a2b68edd5de46bfd
notice: /Stage[main]/Ntp/File[/etc/ntp.conf]/content: content changed
 '{md5}3e250ecaf470e1d3a2b68edd5de46bfd' to '{md5}6e3461437c627101cf53e634abc62400'
info: /Stage[main]/Ntp/File[/etc/ntp.conf]: Scheduling refresh of Service[ntp]
notice: /Stage[main]/Ntp/Service[ntp]: Triggered 'refresh' from 2 events
debian # puppet apply --verbose -e 'class { ntp: ensure => running, autoupdate => true }'
info: Applying configuration version '1298498352'

centos # puppet apply --verbose -e 'class { ntp: ensure => running, autoupdate => true }'
info: Applying configuration version '1298499949'
notice: /Stage[main]/Ntp/Package[ntp]/ensure: created
info: /Stage[main]/Ntp/Package[ntp]: Scheduling refresh of Service[ntp]
info: FileBucket got a duplicate file /etc/ntp.conf ({md5}5baec8bdbf90f877a05f88ba99e63685)
info: /Stage[main]/Ntp/File[/etc/ntp.conf]: Filebucketed /etc/ntp.conf to puppet with sum
 5baec8bdbf90f877a05f88ba99e63685
notice: /Stage[main]/Ntp/File[/etc/ntp.conf]/content: content changed
 '{md5}5baec8bdbf90f877a05f88ba99e63685' to '{md5}35ea00fd40740faf3fd6d1708db6ad65'
info: /Stage[main]/Ntp/File[/etc/ntp.conf]: Scheduling refresh of Service[ntp]
notice: /Stage[main]/Ntp/Service[ntp]/ensure: ensure changed 'stopped' to 'running'
notice: /Stage[main]/Ntp/Service[ntp]: Triggered 'refresh' from 2 events

As we can see, the NTP service is being properly managed and brought online for both Enterprise
Linux and Debian systems. The operator commits this change to the Git repository using the commands
in Listing 8-20 before publishing the module to the Forge.

Listing 8-20. Final commit before publishing to the Forge

$ cd ~/src/modules/operator-ntp
$ git add *
$ git commit -m 'Add Enterprise Linux support'
$ git tag 0.0.2

The operator is able to track when this version of the NTP module was released to the Forge by using
the git tag action. Finally, he’s ready to publish the package created by the puppet-module build
command. Doing so requires registration at http://forge.puppetlabs.com/. For up-to-date information
about how to publish a module, please log into the Forge and use the “Add a Module” link located at:
http://forge.puppetlabs.com/modules/new.

www.it-ebooks.info

http://forge.puppetlabs.com/
http://forge.puppetlabs.com/modules/new
http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

205

You’ve just seen how the Example.com operator uses the puppet-module tool to install a module
from the Puppet Forge. The iptables module allowed the operator to quickly manage host-based firewall
rules without writing his own module from scratch. In addition, we saw how the operator quickly
generated a skeleton module structure, and added a few resources to the NTP class to manage time
synchronization. In the next section you’ll see how the Ruby DSL allows the Example.com developer to
leverage Ruby to declare resources and classes in the configuration catalog.

Puppet Ruby DSL
The Ruby DSL included in Puppet 2.6 provides the full power of the Ruby language directly in Puppet
Modules. Within a single module, manifest files may be written in either of the Puppet or Ruby
languages. These manifest files may be intermixed in the same catalog compilation. The file extension
determines the language used; manifests with a “pp” or “rb” extension indicate a Puppet or Ruby
manifest, respectively. For most problems and configurations, the simple language of Puppet manifests
are more than adequate. However, in the situation where a dynamic data set is accessed through the
ENC API, the Ruby DSL is an ideal solution to the problem of declaring resources from the data. Ruby’s
ability to iterate over Hashes and Arrays with the each method provides a convenient way to declare a
large number of resources. This solution would be difficult to implement using the Puppet language,
which lacks loops and iterators.

The Ruby DSL in Puppet is currently a subset of the Puppet DSL. As such, there are a number of
limitations when using the Ruby DSL. Specifically, the run-stages feature of Puppet 2.6 is not supported
when declaring classes from Ruby. However, declaring a class using the Puppet DSL does allow
association with a stage. In this situation, the Ruby DSL may be used to define a class that is then
declared in the Puppet DSL.

In addition, the Ruby DSL in Puppet 2.6.4 cannot easily declare resources and variables in top
scope. To work around this issue, we recommended that you use an External Node Classifier or a Puppet
syntax site.pp to define variables at top scope. The Ruby DSL works particularly well when declaring
resources inside of a class.

In this section we’ll see how the Example.com developer uses the Ruby DSL to manage an arbitrary
number of resources by reading data from an external location. The Puppet Ruby DSL is a subset of the
full Puppet DSL, so not every feature of Puppet is supported. For example, the Ruby DSL does not work
well with the new Run Stages feature of Puppet 2.6. In these situations, the resources should be declared
using the Puppet DSL rather than Ruby.

The Problem: Resources from Data
It can be difficult to pull in data external to Puppet, but it is required for configuration management. R.I.
Pienaar wrote the extlookup function to address this concern, but it too has problems if the number of
resources to declare is not known in advance. For example, most Puppet deployments have an accounts
module to manage system and login accounts on systems managed by Puppet. As people join and leave
the company, the number of account resources change. Ideally, the data related to a person could be
defined in once place and the configuration automatically updates itself to reflect this change. Without
the Ruby DSL, Puppet manifests need to be edited to declare or remove account resources.

Puppet 2.6 also supports a new data type in the form of a hash table. Let’s see how the Example.com
developer uses a hash of hashes set by an external node classifier to declare an arbitrary number of
account resources using the Ruby DSL.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

206

Declaring Resources from Data
To get started with the Ruby DSL, the Example.com developer decides to write a very simple module
using Ruby rather than Puppet syntax. The goal of this module it to modify the message of the day file.
The /etc/motd file will contain a parameter set by an External Node Classifier script. Once he’s
comfortable with this configuration, he plans to extend the ENC script to contain a hash of user
accounts. With the account information coming from the ENC, he can iterate over each entry, managing
the appropriate resources with Puppet. First, let’s take a look at the output of this basic ENC script in
Listing 8-21.

Listing 8-21. Basic ENC script output for the Ruby DSL

$ cd /etc/puppet
$./resources_enc.rb

parameters:
 enc_location: Florida
classes:

- motd_location

This simple ENC script declares the motd_location class the developer will write using the Ruby

DSL. It also sets a single parameter, named enc_location, to the string “Florida.” The ENC script the
developer is using for this simple test is shown in Listing 8-22.

Listing 8-22. Basic ENC script for Ruby DSL

#!/usr/bin/env ruby

Load the YAML library in ruby. Provide the to_yaml method for all
Ruby objects.
require 'yaml'

The output hash. Must contain the "parameters" and "classes" key.
See: http://docs.puppetlabs.com/guides/external_nodes.html
@out = Hash.new

Output Array of classes, Hash of Parameters
@out["classes"] = Array.new
@out["parameters"] = Hash.new

Add the motd_location class to the catalogs
@out["classes"] << "motd_location"
Add a location parameter
@out["parameters"]["enc_location"] = "Florida"

Output the YAML node classification to standard output.
puts @out.to_yaml
Must exit with a status of zero for classification to succeed.
exit(0)

www.it-ebooks.info

http://docs.puppetlabs.com/guides/external_nodes.html
http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

207

A Small Puppet Module Using the Ruby DSL
Finally, in Listing 8-23 the developer creates a small basic module using the Ruby DSL rather than the
Puppet DSL. This module manages the file resource for the message of the day. This is implemented as a
standard Puppet module except the init.pp file is replaced with an init.rb file in the manifests
directory. The module looks like:

Listing 8-23. motd_location Ruby DSL module

cd /etc/puppet/modules
tree motd_location
motd_location
••• manifests
 ••• init.rb

Notice instead of the init.pp file, the developer has named the file init.rb to indicate the Ruby DSL
is being used. The basic motd_location class is defined in this file and looks like Listing 8-24.

Listing 8-24. motd_location Ruby DSL

<modulepath>/motd_location/manifests/init.rb
Message of the Day class implemented in the Ruby DSL

hostclass :motd_location do

 # Lookup the enc_location parameter set by the ENC
 # Assign it to the location variable in Ruby
 location = scope.lookupvar("enc_location")

 # Set a Ruby String variable to represent the contents
 # of the message of the day file
 motd_content = "This system is in: #{location}\n"

 # Declare a file resource using Ruby syntax
 # This is equivalent to the Puppet Syntax:
 # file { motd:
 # ensure => "file",
 # path => "/etc/motd",
 # content => $motd_content,
 # owner => 0,
 # group => 0,
 # mode => 0644,
 # }
 file("motd",
 :ensure => "file",
 :path => "/etc/motd",
 :content => motd_content,
 :owner => 0,
 :group => 0,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

208

 :mode => 0644)

End

The hostclass method is equivalent to the Puppet class motd_location { … } syntax and defines
the new class. This motd_location class carries out three actions:

• Assigns a local ruby variable named location

• Assigns a local ruby variable named motd_content

• Declares a file resource in the configuration catalog

Using the scope.lookupvar method, the developer obtains the value of the enc_location string set by
the ENC. When accessing parameters set by the ENC, by Facter, or in the node definitions of site.pp,
scope.lookupvar should be used to obtain the value. Assigning the value to a local variable also has the
benefit of bringing the value into the local scope.

To define the contents of /etc/motd, the developer assigns another string variable, substituting the
value of the location variable. In Ruby the #{} statement performs substring substitution and replaces
the value of the variable contained inside the curly braces.

Finally, the Puppet file resource is declared using a similar syntax to the Puppet syntax. The file
method is called, specifying the title of the resource as the first argument. In addition, a list of the
properties of the file is also specified. This file method declares a file resource and is equivalent to file {
motd: … } in Puppet syntax.

Testing the Ruby DSL
With this module and node classification configured, the developer is ready to test the Ruby DSL as
shown in Listing 8-25.

Listing 8-25. Testing the Ruby DSL with the motd_location class

$ puppet apply --noop /etc/puppet/manifests/site.pp
--- /etc/motd 2011-02-24 01:20:12.000000000 -0500
+++ /tmp/puppet-file20110224-19081-ekisu3-0 2011-02-24 01:41:41.000000000 -0500
@@ -0,0 +1 @@
+This system is in: Florida
notice: /Stage[main]/Motd_location/File[motd]/content: is
 {md5}d41d8cd98f00b204e9800998ecf8427e, should be {md5}3f9e49a378a930da4e06760635fcb810 (noop)

As we can see from the output of Puppet, the /etc/motd file would have a single line added
containing the value of the enc_location parameter. This parameter was set by the ENC and declared in
the motd_location module using the Ruby DSL.

Account Information from an ENC
With a basic module in place, the developer decides to extend the ENC script. The extended ENC script
provides all of the information about the accounts to manage. This information will be provided and
stored in a Hash data type, which is also new in Puppet 2.6. Once the data is defined, a new module
named accounts_ruby will declare resources from the data. To accomplish this, the developer will iterate

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

209

over all of the information set by the ENC and declare user resources similar to the file resource declared
in the motd_location module.

If the developer used the Puppet DSL instead of the Ruby DSL this task would be particularly
difficult. The Puppet language does not have loops and cannot easily iterate over a set of data. Let’s see
how the developer solves this problem in Listing 8-26. First, the extended ENC script produces output
containing the account information:

Listing 8-26. ENC script with account information

$ /etc/puppet/resources_enc.rb
--
parameters:
 enc_location: Florida
 account_resources:
 alice:
 groups:
 - sudo
 - sudo_nopw
 - devel
 comment: Alice
 gid: 601
 uid: 601
 shell: /bin/bash
 password: "!!"
 home: /home/alice
 bob:
 groups:
 - sudo
 - sudo_nopw
 - ops
 comment: Bob
 gid: 602
 uid: 602
 shell: /bin/zsh
 password: "!!"
 home: /home/bob
classes:
- motd_location
- accounts_ruby

The output of the ENC script in Listing 8-26 now contains considerably more information. Notice a
second class named accounts_ruby has been added. In addition, a new parameter named
account_resources contains a Hash key for each user account to be created. The value of the key is itself
a Hash containing each parameter of the account resource. The ENC script producing this node
classification is shown in Listing 8-27.

Listing 8-27. ENC script for Ruby DSL accounts module

$ cat /etc/puppet/resources_enc.rb
#!/usr/bin/env ruby

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

210

Load the YAML library in ruby. Provide the to_yaml method for all
Ruby objects.
require 'yaml'

The output hash. Must contain the "parameters" and "classes" key.
See: http://docs.puppetlabs.com/guides/external_nodes.html
@out = Hash.new

Output Array of classes, Hash of Parameters
@out["classes"] = Array.new
@out["parameters"] = Hash.new

Add the motd_location class to the catalogs
@out["classes"] << "motd_location"
And, add the accounts_ruby class to the catalog
@out["classes"] << "accounts_ruby"

Add a location parameter
@out["parameters"]["enc_location"] = "Florida"

Store account information dynamically in the account_resources
parameter. These values could come from LDAP, SQL, etc...
@out["parameters"]['account_resources'] = Hash.new

@out["parameters"]['account_resources']["alice"] = {
 "comment" => "Alice",
 "home" => "/home/alice",
 "uid" => 601,
 "gid" => 601,
 "groups" => ["sudo", "sudo_nopw", "devel"],
 "shell" => "/bin/bash",
 "password" => "!!",
}

@out["parameters"]['account_resources']["bob"] = {
 "comment" => "Bob",
 "home" => "/home/bob",
 "uid" => 602,
 "gid" => 602,
 "groups" => ["sudo", "sudo_nopw", "ops"],
 "shell" => "/bin/zsh",
 "password" => "!!",
}

puts @out.to_yaml
exit(0)

This ENC script performs the following actions:

• Loads the YAML ruby library providing the to_yaml method

• Defines a hash named @out with two keys: classes and parameters

• Adds the account_resources parameter to the parameter hash

www.it-ebooks.info

http://docs.puppetlabs.com/guides/external_nodes.html
http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

211

• Adds the account information for Bob and Alice to the account_resources hash

• Puts the @out output hash as a YAML string to standard output

• Exits with a status code of 0 indicating to Puppet that node classification is successful

Accounts Ruby DSL Module
With the account information defined by the ENC in a parameter named account_resources, the
developer then writes the accounts_ruby class. This class declares user resources for all of the accounts.
Once the developer writes the class new accounts only need to be added to node classification for
Puppet to manage them. The Puppet module and manifests themselves need not be modified as people
join the organization. This implementation cleanly separates code and data. The implementation also
allows the developer the freedom to improve the ENC script without modifying Puppet. Information
may be retrieved from data sources like the Human Resources directory, LDAP, or an SQL database. The
complete Ruby DSL accounts_ruby class the developer has written is shown in Listing 8-28.

Listing 8-28. The accounts_ruby class

$ cat <modulepath>/accounts_ruby/manifests/init.rb
Define a new accounts_ruby class. This is equivalent to:
class accounts_ruby { ... }
hostclass :accounts_ruby do

 # Bring the accounts resources defined in the ENC into a local
 # Ruby variable.
 accounts = scope.lookupvar("account_resources")

 # Perform a sanity check on the data provided by the ENC.
 raise Puppet::Error,
 "account_resources must be a Hash" unless accounts.kind_of?(Hash)

 # First declare groups required by the accounts. These groups may be
 # referenced in /etc/sudoers to grant sudo access and access without
 # a password entry.
 group([:sudo, :sudo_nopw], :ensure => "present")

 # Iterate over each account
 # The Hash key will be stored in the local title variable
 # The value of the hash entry will be stored in parameters
 # The parameters are the resource parameters for each user account.
 accounts.each do |title, parameters|

 # Some more sanity checking on the data passed in from the ENC.
 raise Puppet::Error,
 "account_resources[#{title}] must be a Hash" unless parameters.kind_of?(Hash)

 # Manage the home directory of this account with a file resource.
 file(parameters["home"],
 :ensure => "directory",
 :owner => title,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

212

 :group => title,
 :mode => 0700)

 # Each account should have a group of the same name.
 group(title,
 :ensure => "present",
 :gid => parameters["gid"])

 # Declare the user resource with the parameters for this account.
 user(title,
 :ensure => "present",
 :uid => parameters["uid"],
 :gid => parameters["gid"],
 :comment => parameters["comment"],
 :groups => parameters["groups"],
 :shell => parameters["shell"],
 :password => parameters["password"],
 :home => parameters["home"],
 :managehome => false)

 end

end

The accounts_ruby module class in Listing 8-28 carries out a number of actions when declared in the
Puppet catalog. These actions are:

• Defines a new Puppet class named accounts_ruby using the hostclass method.

• Sets a local accounts Ruby variable containing the information set by the ENC in the
account_resources parameter.

• Validates the data from the ENC is stored in something like a Hash

• Declares two Group resources, sudo and sudo_nopw.

• Iterates over every account entry and:

• Declares a file, group and user resource for the account.

The Ruby code composing the accounts_ruby module may be a little much to absorb at first. Like
Puppet, Ruby code is often quite readable; so let’s see how the developer solves the accounts problem.
First, he defines a new class named accounts_ruby using the hostclass method. He passes a Ruby Block
to the hostclass method. This block will be evaluated when the class is declared in the catalog. Recall
from Listing 8-26 that the ENC script is declaring this class in the classes list.

With the new class defined in the init.rb file of the module manifests directory, the developer
proceeds to bring the data defined in the ENC into the local scope. This is again accomplished with the
scope.lookupvar method. In addition, the data is validated using the kind_of? method. This method
returns true or false if the receiving object is a kind of the specified class. In this case the developer is
checking to see if a Hash was actually passed into Puppet by the ENC or not. In the Puppet DSL, the
fail() function may be used to abort catalog compilation if this check does not pass. In the Ruby DSL,
an exception class named Puppet::Error is one way to abort catalog compilation if invalid data has been
passed in.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

213

With the data validated, the sudo and sudo_pw groups are declared, just like they would be in a
manifest written in Puppet syntax. With the basic requirements established, the developer then uses the
Ruby idiom of calling the each method on the accounts Hash to iterate over each entry supplied by the
ENC. This method also takes a block and executes this block of code once for each entry in the Hash.
Inside the block, the hash key and value are stored in the local variables title and parameters, indicating
these variables represent the resource title and contain parameters about the resource.

Finally, inside the block the developer declares three resources. First, a file resource manages the
home directory of the user account. Next, a new group with the same name as the account is declared.
Finally, the user account itself is declared. The parameters for all of these resources are retrieved from
the information passed in the ENC script.

Testing the Ruby DSL Accounts Module
Let’s see, in Listing 8-29, how the accounts_ruby module looks when Puppet runs.

Listing 8-29. Running Puppet with the accounts_ruby module

puppet apply --verbose --noop /etc/puppet/manifests/site.pp
info: Applying configuration version '1298536173'
notice: /Stage[main]/Accounts_ruby/Group[alice]/ensure: is absent, should be present (noop)
notice: /Stage[main]/Accounts_ruby/User[alice]/ensure: is absent, should be present (noop)
notice: /Stage[main]/Accounts_ruby/File[/home/alice]/ensure: is absent, should be directory
 (noop)
notice: /Stage[main]/Accounts_ruby/Group[bob]/ensure: is absent, should be present (noop)
notice: /Stage[main]/Accounts_ruby/User[bob]/ensure: is absent, should be present (noop)
notice: /Stage[main]/Accounts_ruby/File[/home/bob]/ensure: is absent, should be directory
(noop)

As we can see, Puppet is being run in no-operation mode, and would have created six resources:
three for Bob and three for Alice, each person having a user, group and home directory managed for
them. The developer has not explicitly declared any relationships among these resources, Puppet is
managing them using the implicit relationships between file owners and groups and a user resources
relationship to its group members. The relationship graph looks like that shown in Figure 8-1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

214

Figure 8-1. Relationship graph for accounts_ruby

Adding new accounts managed by Puppet is now simply a matter of setting them in the ENC. No
code in Puppet needs to be changed. Let’s see how the developer adds a new account in Listing 8-30.
The ENC script is modified to produce a third entry in the account_resources parameter for a local
administrator account.

Listing 8-30. Extending the Ruby DSL ENC to have a third account resource

/etc/puppet/resources_enc.rb

parameters:
 enc_location: Florida
 account_resources:
 alice:
 groups:
 - sudo
 - sudo_nopw
 - devel
 comment: Alice
 gid: 601
 uid: 601
 shell: /bin/bash
 password: "!!"
 home: /home/alice
 localadmin:
 groups:
 - sudo
 - sudo_nopw
 - ops
 comment: Local Administrator
 gid: 600

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

215

 uid: 600
 shell: /bin/bash
 password: "!!"
 home: /home/localadmin
 bob:
 groups:
 - sudo
 - sudo_nopw
 - ops
 comment: Bob
 gid: 602
 uid: 602
 shell: /bin/zsh
 password: "!!"
 home: /home/bob
classes:
- motd_location
- accounts_ruby

Notice there is now a third entry in the output of the external node classifier script. This information
contains only the data related to the Local Administrator account. The modification to the script is
simply a matter of adding the hash entry to the account_resources object, as you can see in the diff
shown in Listing 8-31.

Listing 8-31. Adding a third account resource to the ENC script

git diff
diff --git a/resources_enc.rb b/resources_enc.rb
index d7a94d9..bd0e46e 100755
--- a/resources_enc.rb
+++ b/resources_enc.rb
@@ -25,6 +25,16 @@ require 'yaml'
 # parameter. These values could come from LDAP, SQL, etc...
 @out["parameters"]['account_resources'] = Hash.new

+@out["parameters"]['account_resources']["localadmin"] = {
+ "comment" => "Local Administrator",
+ "home" => "/home/localadmin",
+ "uid" => 600,
+ "gid" => 600,
+ "groups" => ["sudo", "sudo_nopw", "ops"],
+ "shell" => "/bin/bash",
+ "password" => "!!",
+}
+
 @out["parameters"]['account_resources']["alice"] = {
 "comment" => "Alice",
 "home" => "/home/alice",

The developer is directly declaring Hash resources in the script, but this information could just as
easily come from YAML data files stored on disk, LDAP or an SQL database. Finally, the developer runs

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

216

Puppet as shown in Listing 8-32. Puppet manages additional resources based on the new data coming
through the ENC API.

Listing 8-32. Puppet adding additional resources from the ENC information

$ puppet apply --verbose --noop /etc/puppet/manifests/site.pp
notice: /Stage[main]/Accounts_ruby/Group[alice]/ensure: is absent, should be present (noop)
notice: /Stage[main]/Accounts_ruby/Group[localadmin]/ensure: is absent, should be present
 (noop)
notice: /Stage[main]/Accounts_ruby/User[alice]/ensure: is absent, should be present (noop)
notice: /Stage[main]/Accounts_ruby/File[/home/alice]/ensure: is absent, should be directory
 (noop)
notice: /Stage[main]/Accounts_ruby/User[localadmin]/ensure: is absent, should be present
 (noop)
notice: /Stage[main]/Accounts_ruby/File[/home/localadmin]/ensure: is absent, should be
 directory (noop)
notice: /Stage[main]/Accounts_ruby/Group[bob]/ensure: is absent, should be present (noop)
notice: /Stage[main]/Accounts_ruby/User[bob]/ensure: is absent, should be present (noop)
notice: /Stage[main]/Accounts_ruby/File[/home/bob]/ensure: is absent, should be directory
(noop)

This shows that Puppet is now managing nine resources instead of the six in the previous run.
Puppet is managing the Local Administrator account simply by adding additional data to the external
node classifier. This implementation would have been very difficult to carry out using only the Puppet
language, since there is no easy way to iterate over a Hash. By using the each method in Ruby, the
developer is able to declare an arbitrary and dynamically changing number of resources based on
external data.

In the next section, we switch gears and examine another valuable tool in the Puppet ecosystem.
Cucumber Puppet allows you to easily and clearly test your Puppet infrastructure.

Cucumber Puppet
A common problem with Puppet and configuration management in general is testing. After working
with Puppet for some time, the Example.com operator has the nagging question, “How can I test
changes I make to my systems with Puppet?” A frequently-used solution to this problem is to maintain
an entirely separate network identically configured to the production network. Changes to Puppet are
then deployed to the testing network prior to deploying them to production. While effective, this strategy
incurs the overhead of maintaining a separate network. Additional hardware and time must be invested
in the testing network.

Automated testing tools like Cucumber Puppet do not fully replace a rigorous testing network
identically configured to production. However, in situations where a testing network is not available or
feasible, Cucumber Puppet solves many of the problems related to testing and change control.

Cucumber Puppet is a tool that allows you to specify the desired behavior of a Puppet configuration
catalog. Once specified, the tool also allows you to verify changes to the Puppet modules and manifests,
resulting in a configuration catalog with the same specified behavior. This functionality allows you to
make changes with confidence, knowing unintended side effects will not be introduced.

If you’re already familiar with Cucumber, the specifications used by Cucumber Puppet will be
familiar. Cucumber Puppet is inspired by the natural language descriptions of application behavior used
in Cucumber. More information about Cucumber is available at http://cukes.info/. Let’s see how the

www.it-ebooks.info

http://cukes.info/
http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

217

Example.com operator installs and uses Cucumber Puppet to test and validate changes to his Puppet
configuration.

Installing Cucumber Puppet
Similar to the puppet-module tool discussed in this chapter, The Cucumber Puppet tool, cucumber-
puppet, is not available as a native package on most operating systems. However, the software is easily
installed using the RubyGems gem command (see Listing 8-33).

Listing 8-33. Installing cucumber-puppet with RubyGems

gem install cucumber-puppet
Building native extensions. This could take a while...

(::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::)

Thank you for installing cucumber-0.10.0.
Please be sure to read http://wiki.github.com/aslakhellesoy/cucumber/upgrading
for important information about this release. Happy cuking!

(::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::) (::)

Successfully installed json-1.4.6
Successfully installed gherkin-2.3.3
Successfully installed term-ansicolor-1.0.5
Successfully installed builder-3.0.0
Successfully installed diff-lcs-1.1.2
Successfully installed cucumber-0.10.0
Successfully installed gem-man-0.2.0
Successfully installed highline-1.6.1
Successfully installed extlib-0.9.15
Successfully installed templater-1.0.0
Successfully installed cucumber-puppet-0.1.1
11 gems installed

If you’re installing on a Debian-based system, the gem command may be configured to install
executable scripts in a location not in the PATH environment variable. On a Debian system, this location
is /var/lib/gems/1.8/bin. If you encounter the “command not found” message shown in Listing 8-34,
which the operator experiences on a Debian 6.0 system, you may use the gem environment command
shown in Listing 8-35 to find where the executable scripts are installed.

Listing 8-34. Testing if the cucumber-puppet executable is in the PATH variable

which cucumber-puppet
cucumber-puppet not found

Listing 8-35. Using the gem environment to locate the executable directory

gem environment
RubyGems Environment:
 - RUBYGEMS VERSION: 1.3.7

www.it-ebooks.info

http://wiki.github.com/aslakhellesoy/cucumber/upgrading
http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

218

 - RUBY VERSION: 1.8.7 (2010-08-16 patchlevel 302) [i486-linux]
 - INSTALLATION DIRECTORY: /var/lib/gems/1.8
 - RUBY EXECUTABLE: /usr/bin/ruby1.8
 - EXECUTABLE DIRECTORY: /var/lib/gems/1.8/bin
 - RUBYGEMS PLATFORMS:
 - ruby
 - x86-linux
 - GEM PATHS:
 - /var/lib/gems/1.8
 - /root/.gem/ruby/1.8
 - GEM CONFIGURATION:
 - :update_sources => true
 - :verbose => true
 - :benchmark => false
 - :backtrace => false
 - :bulk_threshold => 1000
 - REMOTE SOURCES:
 - http://rubygems.org/

In this example, the gem command installs executables to /var/lib/gems/1.8/gems. The operator
adds this file system location to the PATH variable, as shown in Listing 8-36, to complete the installation
of cucumber-puppet.

Listing 8-36. Adding the gem executable directory to the PATH

export PATH="/var/lib/gems/1.8/bin:$PATH"
which cucumber-puppet
/var/lib/gems/1.8/bin/cucumber-puppet

Once the cucumber-puppet command is available, we may proceed with writing a story describing
the desired Puppet catalog behavior.

Writing a Story
The behavior of Puppet is described in Cucumber “stories.” Before writing a story describing the catalog
behavior and features, the cucumber-puppet testing directory needs to be created. On a testing system,
basic example step definitions should be installed using the cucumber-puppet-gen command (see
Listing 8-37).

Listing 8-37. Installing basic step defintions with cucumber-puppet-gen

cd /etc/puppet
cucumber-puppet-gen world
Generating with world generator:
 [ADDED] features/support/world.rb
 [ADDED] features/steps
 [ADDED] features/support/hooks.rb

Once the basic steps have been installed, the Example.com operator configures cucumber-puppet
by modifying the hooks.rb file. Before doing so, he adds and commits the new files to the Git repository
as shown in Listing 8-38.

www.it-ebooks.info

http://rubygems.org/
http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

219

Listing 8-38. Adding cucumber-puppet steps to Git

cd /etc/puppet
git add features
git commit -m 'Add cucumber-puppet generated steps'

Once added to Git, the operator modifies the hooks.rb file to configure cucumber-puppet, as shown
in Listing 8-39.

Listing 8-39. Changes to hooks.rb to configure cucumber-puppet

git diff
diff --git a/features/support/hooks.rb b/features/support/hooks.rb
index 77db992..3588300 100644
--- a/features/support/hooks.rb
+++ b/features/support/hooks.rb
@@ -1,7 +1,9 @@
 Before do
 # local configuration
 # @confdir = File.join(File.dirname(__FILE__), '..', '..')
+ @confdir = "/etc/puppet"
 # @manifest = File.join(@confdir, 'manifests', 'site.pp')
+ @manifest = "/etc/puppet/manifests/site.pp"
 # adjust facts like this
 @facts['architecture'] = "i386"
 End

As you can see, the operator added two lines to the hooks.rb file. First, the configuration directory
for Puppet is set to /etc/puppet. This corresponds to the confdir configuration setting. Next, the main
site.pp file is configured using the @manifest variable. This setting should point to the full path of the
site.pp file, /etc/puppet/manifests/site.pp by default.

Once cucumber-puppet is configured, the catalog policy in Listing 8-40 is used to test and verify the
behavior of the catalog. The Example.com operator uses the cucumber-puppet-gen command to
generate a template catalog policy file.

Listing 8-40. The initial web server cucumber-puppet policy.feature file

cd /etc/puppet/
cucumber-puppet-gen policy
Generating with policy generator:
 [ADDED] features/catalog

git add features/catalog/

git commit -m 'Add initial catalog policy template'
[master a0c6c3c] Add initial catalog policy template
 1 files changed, 14 insertions(+), 0 deletions(-)
 create mode 100644 features/catalog/policy.feature

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

220

With these three commands, the operator generates a new template for the catalog policy, adds the
policy to the Git index, and then commits the new file to the repository. The cucumber-puppet policies
closely resemble the natural language stories of Cucumber, as shown in Listing 8-41.

Listing 8-41. A template cucumber-puppet policy

cat /etc/puppet/features/catalog/policy.feature
Feature: General policy for all catalogs
 In order to ensure applicability of a host's catalog
 As a manifest developer
 I want all catalogs to obey some general rules

 Scenario Outline: Compile and verify catalog
 Given a node specified by "features/yaml/<hostname>.example.com.yaml"
 When I compile its catalog
 Then compilation should succeed
 And all resource dependencies should resolve

 Examples:
 | hostname |
 | localhost |

There are a few key sections of the policy file. First, the Scenario section is tested for every node
listed in the Examples section. Cucumber-puppet substitutes the name listed underneath the hostname
header into the filename listed in the Given a node specified by section. This node cache contains a list
of top-level parameters set by site.pp, the ENC, and Facter. Using the cached node information stored
on the Puppet master allows cucumber-puppet to effectively simulate a catalog request from each
Puppet agent.

In order to populate these node definition files, the Example.com operator copies the cached node
files from the Puppet Master as shown in Listing 8-42. These node files are located in $yamldir /node/,
where $yamldir is a configuration setting on the Master system. Let’s see how the operator provides this
information to cucumber-puppet.

Listing 8-42. Copying node YAML files from the Puppet Master into cucumber-puppet

cd /etc/puppet
mkdir /etc/puppet/features/yaml

puppet master --configprint yamldir
/var/lib/puppet/yaml

cp /var/lib/puppet/yaml/node/{www,mail}.example.com.yaml \
 /etc/puppet/features/yaml/

First, the operator changes to the Puppet configuration directory, then creates the
/etc/puppet/features/yaml directory. He then determines where the Puppet Master caches nodes
compiled by the Puppet Master using the --configprint yamldir option. With this information, he
copies the cached node information for the mail and web server into the cucumber-puppet directory
structure.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

221

With the node information in place, he modifies the catalog policy slightly to test catalog
compilation for the mail and web server, replacing the localhost entry in the template. This
modification is shown in Listing 8-43.

Listing 8-43. Add www and mail to the cucumber-puppet catalog policy

git diff
diff --git a/features/catalog/policy.feature b/features/catalog/policy.feature
index c742189..1ea545e 100644
--- a/features/catalog/policy.feature
+++ b/features/catalog/policy.feature
@@ -11,4 +11,5 @@ Feature: General policy for all catalogs

 Examples:
 | hostname |
- | localhost |
+ | www |
+ | mail |

We can see that the operator replaces the localhost entry with two additional entries for www and
mail. These names will be substituted into the file path when cucumber-puppet loads the node
information. They also match the two YAML node files copied from the Puppet master yaml directory.

With this information in place, the operator commits the changes using the commands in Listing
8-44 and is ready to start testing changes to the Puppet manifests.

Listing 8-44. Committing node information and catalog policy to the git repository

$ git status
#On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

new file: features/yaml/mail.example.com.yaml
new file: features/yaml/www.example.com.yaml

Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: features/catalog/policy.feature

git commit -m 'Add mail and web node YAML, update catalog policy'
[master c71e527] Add mail and web node YAML, update catalog policy
 3 files changed, 141 insertions(+), 1 deletions(-)
 create mode 100644 features/yaml/mail.example.com.yaml
 create mode 100644 features/yaml/www.example.com.yaml

www.it-ebooks.info

http://www.example.com.yaml
http://www.example.com.yaml
http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

222

Testing the Basic Catalog Policy
With the YAML node caches copied into place and the catalog policy updated, the operator simply
executes cucumber-puppet as shown in Listing 8-45, testing his current manifests.

Listing 8-45. Testing manifests with cucumber-puppet

$ cucumber-puppet features/catalog/policy.feature
Feature: General policy for all catalogs
 In order to ensure applicability of a host's catalog
 As a manifest developer
 I want all catalogs to obey some general rules

 Scenario Outline: Compile and verify catalog
 Given a node specified by "features/yaml/<hostname>.example.com.yaml"
 When I compile its catalog
 Then compilation should succeed
 And all resource dependencies should resolve

 Examples:
 | hostname |
 | www |
 | mail |

2 scenarios (2 passed)
8 steps (8 passed)
0m0.104s

While in the /etc/puppet directory, the operator executes cucumber-puppet with the path to the
catalog policy file. Cucumber-puppet then tests both the mail and web server and validates that the
catalog compilation succeeds. The operator expects as much, but a basic site.pp file is being used with
an empty node declaration of node default { }.

Testing the failure case
To verify that cucumber-puppet will properly report catalog failures, he modifies the site.pp in Listing 8-
46 to contain the following node definitions:

Listing 8-46. /etc/puppet/manifests/site.pp test failure with cucumber-puppet

/etc/puppet/manifests/site.pp
node default {
 notify { "unclassified":
 message => "This node is not classified",
 }
}

node www {
 notify { "web":
 message => "This node is the web server.",
 }

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

223

}

node mail {
 notify { "mail":
 message => "This node is the mail server.",
 }
 fail("This is a deliberate catalog compilation failure")
}

The operator has reconfigured the site.pp to deliberately fail a catalog compilation when compiling
the catalog for the mail server. The web server, however, should still produce a valid catalog. He then
verifies these expectations in Listing 8-47 by re-running the cucumber-puppet command.

Listing 8-47. Verifying that catalog failures are caught by cucumber-puppet

cucumber-puppet features/catalog/policy.feature
Feature: General policy for all catalogs
 In order to ensure applicability of a host's catalog
 As a manifest developer
 I want all catalogs to obey some general rules

 Scenario Outline: Compile and verify catalog
 Given a node specified by "features/yaml/<hostname>.example.com.yaml"
 When I compile its catalog
 Then compilation should succeed
 And all resource dependencies should resolve

 Examples:
 | hostname |
 | www |
 |This is a deliberate catalog compilation failure at /etc/puppet/manifests/site.pp:17
 on node mail.example.com
 mail |
 exit (SystemExit)
 features/catalog/policy.feature:8:in `When I compile its catalog'

Failing Scenarios:
cucumber features/catalog/policy.feature:6 # Scenario: Compile and verify catalog

2 scenarios (1 failed, 1 passed)
8 steps (1 failed, 2 skipped, 5 passed)
0m0.132s

The operator uses the fail function to deliberately fail the catalog compilation for the mail server. As
expected, cucumber-puppet reports one failed and one successful scenario. The specific error message
and line number is returned in the output of cucumber-puppet, allowing the operator to quickly correct
the problem.

So far, you’ve learned how the operator configures cucumber-puppet to test and validate catalog
compilation. Next, you’ll see how to validate that specific critical resources remain part of the
configuration catalog when changes are made to the Puppet modules and manifests.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

224

Validating Specific Resources
In the previous section, you learned how to validate catalog compilation successfully after making
changes to the Puppet manifests. In this section, you’ll see how the operator adds additional scenarios to
ensure specific resources remain defined in the configuration catalog.

Catalog compilation errors will be obvious when they occur; the affected nodes will no longer
receive a valid catalog. A resource omitted from the catalog is much more difficult to identify, however,
because the affected node will still receive and apply the rest of the Puppet catalog. Cucumber-puppet
allows the operator to make changes to conditional logic and verify that key resources are not excluded
by the change. Let’s see how this works.

First, the operator adds another step to the catalog policy. This step expresses his requirement that
every Puppet catalog manages a localadmin account. This ensures that he’ll always be able to log in to
the systems Puppet manages. The local administrator account will grant access even if the central LDAP
server is down. With the accounts_ruby module introduced in this chapter, accounts may no longer be
directly managed in the Puppet manifests. Instead, external data supplied through the ENC script
determines the accounts that are and are not managed by Puppet. This configuration introduces the
possibility of the external data changing and therefore the localadmin account being omitted from the
configuration catalog.

Adding a Check Step to the Policy
Adding a step to the cucumber-puppet policy is straightforward and readable. Let’s see what the change
and resulting policy check look like in Listing 8-48.

Listing 8-48. Adding a step to the catalog policy

git diff /etc/puppet/features/catalog/policy.feature
diff --git a/features/catalog/policy.feature b/features/catalog/policy.feature
index ea81ae0..51f374e 100644
--- a/features/catalog/policy.feature
+++ b/features/catalog/policy.feature
@@ -8,6 +8,7 @@ Feature: General policy for all catalogs
 When I compile its catalog
 Then compilation should succeed
 And all resource dependencies should resolve
+ And it should have a localadmin account

 Examples:
 | hostname |

The operator adds a single line to the policy file describing the step cucumber-puppet should
validate. He hasn’t yet implemented this check or step, but cucumber-puppet provides useful
information to guide the process. In Listing 8-49 the operator runs cucumber-puppet to see what
happens when an unimplemented step is encountered.

Listing 8-49. Cucumber-puppet with missing steps

cucumber-puppet features/catalog/policy.feature
Feature: General policy for all catalogs
 In order to ensure applicability of a host's catalog

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

225

 As a manifest developer
 I want all catalogs to obey some general rules

 Scenario Outline: Compile and verify catalog
 Given a node specified by "features/yaml/<hostname>.example.com.yaml"
 When I compile its catalog
 Then compilation should succeed
 And all resource dependencies should resolve
 And it should have a localadmin account

 Examples:
 | hostname |
 | login |
 Undefined step: "it should have a localadmin account" (Cucumber::Undefined)
 features/catalog/policy.feature:11:in `And it should have a localadmin account'

1 scenario (1 undefined)
5 steps (1 undefined, 4 passed)
0m0.421s

You can implement step definitions for undefined steps with these snippets:

Then /^it should have a localadmin account$/ do
 pending # express the regexp above with the code you wish you had
end

Cucumber-puppet provides helpful output about how to add the step definition using a template
snippet. Let’s see how the operator uses this information to validate the administrator account. First, he
copies and pastes the snippet into the file /etc/puppet/features/steps/user.rb. Then, he runs cucumber
puppet in Listing 8-50 to verify that the step is being matched by the regular expression.

Listing 8-50. Adding a pending step to cucumber-puppet

cucumber-puppet features/catalog/policy.feature
Feature: General policy for all catalogs
 In order to ensure applicability of a host's catalog
 As a manifest developer
 I want all catalogs to obey some general rules

 Scenario Outline: Compile and verify catalog #
 features/catalog/policy.feature:6
 Given a node specified by "features/yaml/<hostname>.example.com.yaml"
 When I compile its catalog
 Then compilation should succeed
 And all resource dependencies should resolve
 And it should have a localadmin account

 Examples:
 | hostname |
 | login |
 TODO (Cucumber::Pending)
 ./features/steps/user.rb:18:in `/^it should have a localadmin account$/'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

226

 features/catalog/policy.feature:11:in `And it should have a localadmin account'

1 scenario (1 pending)
5 steps (1 pending, 4 passed)
0m0.516s

Implementing the Cucumber Check
After adding the step snippet to the user.rb file, running cucumber-puppet indicates the step is pending.
This validates that the regular expression is matching the line added to the policy. Next, the operator
modifies the regular expression for the step. In addition, he adds the bit of Ruby code shown in Listing 8-
51 to ensure that the account resource is declared.

Listing 8-51. Implementing validation of the localadmin user resource

git diff
diff --git a/features/steps/user.rb b/features/steps/user.rb
index 92e0170..1644d28 100644
--- a/features/steps/user.rb
+++ b/features/steps/user.rb
@@ -14,6 +14,8 @@ Then /^the user should be in groups "([^\"]*)"$/ do |groups|
 fail unless g_s == groups
 end

-Then /^it should have a localadmin account$/ do
- pending # express the regexp above with the code you wish you had
+Then /^it should have a (\w+) account$/ do |user|
+ steps %Q{
+ Then there should be a resource "User[#{user}]"
+ }
 End

The operator adjusts the regular expression to match any user account, not just the specific
localadmin account. The \w+ (word character) portion of the regular expression performs this match. In
addition, the surrounding parentheses cause the word within to be placed in the user variable. Finally,
an additional step is added, substituting the name of the user account inside the resource title.

Running cucumber-puppet in Listing 8-52 indicates that all steps are passing successfully.

Listing 8-52. Cucumber-puppet validating the localadmin account

cucumber-puppet features/catalog/policy.feature
Feature: General policy for all catalogs
 In order to ensure applicability of a host's catalog
 As a manifest developer
 I want all catalogs to obey some general rules

 Scenario Outline: Compile and verify catalog Given a node specified by
 "features/yaml/<hostname>.example.com.yaml"
 When I compile its catalog
 Then compilation should succeed

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

227

 And all resource dependencies should resolve
 And it should have a localadmin account

 Examples:
 | hostname |
 | login |

1 scenario (1 passed)
5 steps (5 passed)
0m0.391s

Catching Changes in the ENC Data
The operator isn’t convinced yet. He wants to make sure that cucumber-puppet will catch the situation
where the administrator account is not set by the ENC. To test this situation, he modifies the ENC script
shown in Listing 8-32 and removes the administrator account. This updated script is shown in Listing
8-53.

Listing 8-53. Removing the administrator account from the ENC

git diff /etc/puppet/resoruces_enc.rb
diff --git a/resources_enc.rb b/resources_enc.rb
index bd0e46e..d7a10c5 100755
--- a/resources_enc.rb
+++ b/resources_enc.rb
@@ -25,15 +25,15 @@ require 'yaml'
 # parameter. These values could come from LDAP, SQL, etc...
 @out["parameters"]['account_resources'] = Hash.new

-@out["parameters"]['account_resources']["localadmin"] = {
- "comment" => "Local Administrator",
- "home" => "/home/localadmin",
- "uid" => 600,
- "gid" => 600,
- "groups" => ["sudo", "sudo_nopw", "ops"],
- "shell" => "/bin/bash",
- "password" => "!!",
-}
+# @out["parameters"]['account_resources']["localadmin"] = {
+# "comment" => "Local Administrator",
+# "home" => "/home/localadmin",
+# "uid" => 600,
+# "gid" => 600,
+# "groups" => ["sudo", "sudo_nopw", "ops"],
+# "shell" => "/bin/bash",
+# "password" => "!!",
+# }

 @out["parameters"]['account_resources']["alice"] = {
 "comment" => "Alice",

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

228

The operator simply commented out the administrator account from the external node classifier
script. The cucumber-puppet node cache must be updated for the new test to be valid. To update the
cache, the operator runs Puppet Agent as shown in Listing 8-54 and then copies the YAML node file into
the features directory.

Listing 8-54. Updating the cucumber-puppet node cache

cp /var/lib/puppet/yaml/node/login.example.com.yaml \
 /etc/puppet/features/yaml/

After updating the node definition, the operator validates that cucumber-puppet catches the
missing administrator account (see Listing 8-55).

Listing 8-55. Cucumber-puppet identifies the missing administrator account

cucumber-puppet features/catalog/policy.feature
Feature: General policy for all catalogs
 In order to ensure applicability of a host's catalog
 As a manifest developer
 I want all catalogs to obey some general rules

 Scenario Outline: Compile and verify catalog
 Given a node specified by "features/yaml/<hostname>.example.com.yaml"
 When I compile its catalog
 Then compilation should succeed
 And all resource dependencies should resolve
 And it should have a localadmin account

 Examples:
 | hostname |
 | login |
 (RuntimeError)
 ./features/steps/puppet.rb:69:in `/^there should be a resource "([^\"]*)"$/'
 features/catalog/policy.feature:11:in `And it should have a localadmin account'

Failing Scenarios:
cucumber features/catalog/policy.feature:6 # Scenario: Compile and verify catalog

1 scenario (1 failed)
5 steps (1 failed, 4 passed)
0m0.369s

As expected, cucumber-puppet catches the missing user resource. The operator is confident now
that the additional step is properly catching the missing account resource.

As you’ve just seen, cucumber-puppet provides a convenient and easy to use method for testing
Puppet Catalogs. By defining policy steps for resources that should by managed, the operator remains
confident while making changes. If the Local Administrator account information is no longer set by the
ENC script, the problem will be quickly caught. In addition, changes to the puppet manifests and
modules can be made with confidence so long as critical resources are being tested and verified with
cucumber-puppet.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 8 TOOLS AND INTEGRATION

229

Summary
In this chapter, you’ve seen a number of tools related to, and part of, Puppet 2.6. First, the Puppet
Module tool provides a command line interface to working with Puppet modules. The operator is
able to use puppet-module to generate module skeleton templates. Once the configuration code is
filled into the template, the operator is able to package and publish the module to
forge.puppetlabs.com. Even if you don’t plan to publish modules to the Forge, puppet-module provides
the means to track module versions and install them into your own Puppet configuration. In addition to
generating skeleton templates for modules, puppet-module allows you to search, download and install
publically-available modules. You learned how the operator easily installed and made use of a module
managing the host-based iptables firewall. Downloading and using public modules greatly reduces time
and effort.

In addition to the module tool, you learned about the new Ruby DSL in Puppet 2.6. Using the Ruby
language allowed the developer to declare an arbitrary number of account resources in Puppet. Without
the ability to iterate in Ruby, the developer would have had a difficult time managing a growing number
of accounts with Puppet. Puppet version 2.6 allows both Ruby and Puppet manifests to be intermixed in
the same catalog run, and even within the same module.

Finally, you learned about a unique and novel approach to testing Puppet catalogs with the
cucumber-puppet tool. Inspired by Cucumber, the framework encourages a natural language
specification of requirements. In addition, cucumber-puppet provides a very helpful and intuitive
interface. Once a specification is written, helpful boilerplate code is given back if cucumber-puppet does
not yet understand how to validate the specification. Using this boilerplate allows tests to be quickly
implemented and written without a deep understanding of Ruby.

Puppet is a fast-moving project with a very active community. Tools designed to work with Puppet
will continue to be written as time moves on.

Resources
The following resources are a great place to keep track of the tools and work being done by members of
the Puppet Community.

• https://github.com/search?q=puppet

• Puppet Users Mailing List - mailto:puppet-users+subscribe@googlegroups.com

• Puppet Developer Mailing List - mailto:puppet-dev+subscribe@googlegroups.com

• http://blog.puppetlabs.com/

For more information about the Ruby DSL, please see the following resources:

• https://github.com/bobsh/puppet-rubydsl-examples

• http://www.puppetlabs.com/blog/ruby-dsl/

• http://projects.puppetlabs.com/projects/1/wiki/Ruby_Dsl

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

https://github.com/search?q=puppet
mailto:puppet-users+subscribe@googlegroups.com
mailto:puppet-dev+subscribe@googlegroups.com
http://blog.puppetlabs.com/
https://github.com/bobsh/puppet-rubydsl-examples
http://www.puppetlabs.com/blog/ruby-dsl/
http://projects.puppetlabs.com/projects/1/wiki/Ruby_Dsl
http://www.it-ebooks.info/

CHAPTER 8 TOOLS AND INTEGRATION

230

Further information about cucumber-puppet and Cucumber is available online at:

• http://www.slideshare.net/nistude/cucumberpuppet

• http://projects.puppetlabs.com/projects/cucumber-puppet/wiki/

• https://github.com/nistude/cucumber-puppet

• https://github.com/aslakhellesoy/cucumber/wiki

www.it-ebooks.info

http://www.slideshare.net/nistude/cucumberpuppet
http://projects.puppetlabs.com/projects/cucumber-puppet/wiki/
https://github.com/nistude/cucumber-puppet
https://github.com/aslakhellesoy/cucumber/wiki
http://www.it-ebooks.info/

C H A P T E R 9

231

Reporting with Puppet

One of the most important aspects of any configuration management system is reporting. Reporting is
critical for providing information on accuracy, performance, and compliance to policy and standards,
and it can provide graphical representations of the overall state of your configuration. Indeed, we’ve
already seen some examples of how to display Puppet reports (i.e., via a management console) in
Chapter 7, when we looked at Puppet Dashboard and Foreman.

Puppet’s reporting engine has undergone a lot of development in recent releases, especially with the
new and more detailed reporting format first introduced in version 2.6.0. In this chapter, we explain
what command-line and data-based reports are available, how to configure reporting and reports, and
how to work with them, then we look at graphing our reporting data and discuss how to build custom
reports.

Getting Started
Puppet agents can be configured to return data at the end of each configuration run. Puppet calls this
data a “transaction report.” The transaction reports are sent to the master server where a number of
report processors exist that can utilize this data and present it in a variety of forms. You can also develop
your own report processors to customize the reporting output.

The default transaction report comes in the form of a YAML file. As mentioned in earlier chapters,
YAML is a recursive acronym for “YAML Ain’t Markup Language.” YAML is a human-readable data
serialization format that draws heavily from concepts in XML and the Python and C programming
languages.

The transaction reports contain all events and log messages generated by the transaction and some
additional metrics. The metrics fall into three general types: time, resource and change metrics. Within
each of these metrics there are one or more values. They include the time taken for the transaction, the
number of resources and changes in the transaction and the success or failure of those resources.

In Listing 9-1 you can see an example of a portion of a YAML Puppet transaction report.

Listing 9-1. A partial Puppet transaction report

--- !ruby/object:Puppet::Transaction::Report
 external_times:
 !ruby/sym config_retrieval: 0.280263900756836
 host: mail.example.com
 logs:
 - !ruby/object:Puppet::Util::Log
 level: !ruby/sym info
 message: Caching catalog for mail.example.com
 source: //mail.example.com/Puppet
 tags:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 REPORTING WITH PUPPET

232

 - info
 time: 2010-12-18 08:41:19.252599 -08:00
 version: &id001 2.6.4
 - !ruby/object:Puppet::Util::Log
 level: !ruby/sym info
 message: Applying configuration version '1292690479'
 source: //mail.example.com/Puppet
 tags:
 - info
 time: 2010-12-18 08:41:19.330582 -08:00
 version: *id001
 - !ruby/object:Puppet::Util::Log
 level: !ruby/sym info
 message: "FileBucket adding /etc/sudoers as {md5}49085c571a7ec7ff54270c7a53a79146"
 source: //mail.example.com/Puppet
 tags:
 - info
 time: 2010-12-18 08:41:19.429069 -08:00
 version: *id001
…
 resources: !ruby/object:Puppet::Util::Metric
 label: Resources
 name: resources
 values:
 - - !ruby/sym out_of_sync
 - Out of sync
 - 1
 - - !ruby/sym changed
 - Changed
 - 1
 - - !ruby/sym total
 - Total
 - 8
 changes: !ruby/object:Puppet::Util::Metric
 label: Changes
 name: changes
 values:
 - - !ruby/sym total
 - Total
 - 2
 events: !ruby/object:Puppet::Util::Metric
 label: Events
 name: events
 values:
 - - success
 - Success
 - 2
 - - !ruby/sym total
 - Total
 - 2
 time: 2010-12-18 08:41:15.515624 -08:00

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 REPORTING WITH PUPPET

233

Here you can see that the YAML file is divided into sections. The first section contains any log
messages. The log messages are any events generated during the Puppet run, for example, the messages
that would typically go to standard out or syslog. The second section contains events related to
resources, and it tracks each resource managed by Puppet and the changes made to that resource during
the Puppet run. The remaining sections detail the value of each metric that Puppet collects. Each metric
has a label, a name and values that make it easy to parse the data, if you wish to use it for reporting or
manipulation. Metrics include the number of changes Puppet made, the number of resources managed,
and the number and type of events during the run.

The YAML format of the reporting output is very well supported by Ruby, and can be easily
consumed in Ruby and other languages to make use of Puppet reporting data.

Configuring Reporting
In order to get Puppet to output the reports we want, we need to configure it correctly. As of version
2.6.0, each agent is configured by default to not report back to the master; reporting needs to be enabled.
The first step to doing this is to ensure that the Puppet agent on the host is started with the --report
option, like so:

$ sudo puppet agent --report

This will cause the Puppet agent to start creating and sending reports to the master. You could also set
the report option in the puppet.conf configuration file:

[agent]
report = true

 Tip By default, once enabled, the agent will send the reports back to the Puppet master configuring it. You can
set up a separate Puppet master for reports only, if you like. Direct all reports to this server by using the
report_server option on the agent (see
http://docs.puppetlabs.com/references/latest/configuration.html#reportserver).

By default, the reports generated by the agent will be sent to the master and stored as YAML-
formatted files in the report directory. These files are the output of the default report processor, store.
Reports are written into sub-directories under the report directory and a directory created for each agent
that is reporting. Report file names are the date stamp when the report was generated and are suffixed
with .yaml, for example: 201010130604.yaml.

The report directory is $vardir/reports (usually /var/lib/puppet/reports on most distributions),
but you can override this by configuring the reportdir option on the Puppet master puppet.conf
configuration file, like so:

[master]
reportdir = /etc/puppet/reports

Here, we've set the new report directory to /etc/puppet/reports. You can specify whichever
directory suits your environment.

www.it-ebooks.info

http://docs.puppetlabs.com/references/latest/configuration.html#reportserver
http://www.it-ebooks.info/

CHAPTER 9 REPORTING WITH PUPPET

234

 Tip In future releases, from 2.7.0 onwards, reporting will be enabled by default and you won’t need to
configure the report option on the agent or the master.

Report Processors
There are a number of different report processors available. Report processors are stored on the Puppet
master. We’ve already seen one in Chapter 7 when we used the http report processor to send reports
from the master to the Puppet Dashboard.

The default report, store, simply stores the report file on the disk. There is also the log processor
that sends logs to the local log destination, to syslog for example. Also available is the tagmail report
processor that sends email messages based on particular tags in transaction reports. Next, the rrdgraph
report processor that converts transaction reports into RRD-based graphs. Lastly, we’ve already seen the
http report processor in Chapter 8.

Selecting which report processors will run is done using the reports configuration option in the
puppet.conf configuration file.

[master]
reports = store,log,tagmail,rrdgraph

Each report processor you want to enable should be listed in the reports option with multiple
processors separated by commas. By default, only store is enabled. You can also enable report
processors on the command line.

$ sudo puppet master --reports log,tagmail

Now let’s look at each individual report processor, starting with the log processor.

log
The log report processor sends the log entries from transaction reports to syslog. It is the simplest of the
report processors. The syslog destination facility is controlled by the syslogfacility configuration
option, which defaults to the daemon facility.

[master]
syslogfacility = user

On the previous line, we’ve directed all syslog output to the user facility.

 Note The log report processor only logs entries if the Puppet master is running in daemon-mode. If you keep it
running in the foreground, then no syslog messages will be generated.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 REPORTING WITH PUPPET

235

tagmail
The tagmail report sends log messages via email based on the tags that are present in each log message.
Tags allow you to set context for your resources, for example you can tag all resources that belong to a
particular operating system, location or any other characteristic. Tags can also be specified in your
puppet.conf configuration file to tell your agents to only apply configuration tagged with the specified
tags.

 Tip You can learn more about tags and tagging at
http://projects.puppetlabs.com/projects/puppet/wiki/Using_Tags.

The tagmail report uses these same tags to generate email reports. The tags assigned to your
resources are added to the log results and then Puppet generates emails based on matching particular
tags with particular email addresses. This matching occurs in a configuration file called tagmail.conf. By
default, the tagmail.conf file is located in $confdir directory, usually /etc/puppet. This is controlled by
the tagmap configuration option in the puppet.conf file.

[master]
tagmap = $confdir/tagmail.conf

The tagmail.conf file contains a list of tags and email addresses separated by colons. Multiple tags
and email addresses can be specified by separating them with commas. You can see an example of this
file in Listing 9-2.

Listing 9-2. A sample tagmail.conf file

all: configuration@example.com
mail, www: operations@example.com
db, !mail: dba@example.com,apps@example.com

The first tag in Listing 10-2, all, is a special tag that tells Puppet to send all reports to the specified
email address.

 Tip There is a special tag called err. Specifying this tag will make the report return all error messages
generated during a configuration run.

The second set of tags specifies that Puppet should send all reports tagged with the tags mail and
www to the email address operations@example.com. The last tags tell Puppet to send reports for all log
entries with the db tag but not the mail tag to both the dba@example.com and apps@example.com email
addresses. You can see that the mail tag has been negated using the ! symbol.

www.it-ebooks.info

http://projects.puppetlabs.com/projects/puppet/wiki/Using_Tags
mailto:configuration@example.com
mailto:operations@example.com
mailto:dba@example.com
mailto:apps@example.com
mailto:operations@example.com
mailto:dba@example.com
mailto:apps@example.com
http://www.it-ebooks.info/

CHAPTER 9 REPORTING WITH PUPPET

236

rrdgraph
One of the more useful built-in report processors is the rrdgraph type, which takes advantage of Tobias
Oetiker’s RRD graphing libraries. The rrdgraph report processor generates RRD files, graphs and some
HTML files to display those graphs. It is a very quick and easy way of implementing graphs of your
Puppet configuration activities.

In order to make use of this report processor we’ll first need to install the RRDTools and the Ruby
bindings for RRD. We can install RRDTools via package on most platforms and distributions. The Ruby
bindings, unfortunately, are less well-supported on a lot of platforms. They can be installed from source,
or some distributions do have packages available. There are also suitable rrdtool-ruby RPMs that should
work on most RPM-based distributions like Red Hat, CentOS, and Mandriva versions available at Dag
Wieer’s repository at http://dag.wieers.com/rpm/packages/rrdtool/. There is also a development
package for Gentoo called ruby-rrd that provides the required bindings that you should be able to install
via emerge.

You can see a list of the required package for Debian/Ubuntu, Fedora, and Red Hat platforms in
Table 9-1.

Table 9-1. Package names for rrdtools

OS Packages

Debian/Ubuntu rrdtool librrd2 librrd2-dev

Fedora rrdtool rrdtool-ruby

Red Hat rrdtool rrdtool-ruby

 Note Your package manager may prompt you to install additional packages when installing RRDTool.

You can also install the RRD Ruby bindings via one of two gems, RubyRRDtool or librrd:

$ sudo gem install RubyRRDtool

$ sudo gem install librrd

Both gems should work to produce the appropriate RRD graphs.
Lastly, if there is no Ruby bindings package for your platform, you can install the bindings via

source. Download the latest bindings package from Rubyforge, unpack it and change into the resulting
directory. At the time of writing, the latest version was 0.6.0:

$ wget http://rubyforge.org/frs/download.php/13992/RubyRRDtool-0.6.0.tgz
$ tar -zxf RubyRRDtool-0.6.0.tgz
$ cd RubyRRDtool-0.6.0
$ ruby extconf.rb
$ make
$ sudo make install

www.it-ebooks.info

http://dag.wieers.com/rpm/packages/rrdtool/
http://rubyforge.org/frs/download.php/13992/RubyRRDtool-0.6.0.tgz
http://www.it-ebooks.info/

 CHAPTER 9 REPORTING WITH PUPPET

237

To customize RRD support, you can also change some configuration options in the puppet.conf
configuration file:

[master]
rrddir = $vardir/rrd
rrdinternval = $runinterval

The rrddir directory specifies the default location for the generated RRD files. It defaults to
$vardir/rrd, which is usually /var/lib/puppet/rrd. The rrdinterval specifies how often RRD should
expect to receive data. This defaults to $runinterval, so as to match how often agents report back to the
master.

Underneath the $vardir/rrd directory, Puppet will create a directory for each agent that reports to
the master. Graphs (and the associated HTML files to display them) will be generated in that directory. A
graph will be generated for each metric that Puppet collects. You can then serve this directory out using
your web server and display the graphs.

http
The http report processor sends Puppet reports to a HTTP URL and port. The Puppet reports are sent as
a YAML dump in the form of a HTTP Post. You can control the destination with the reporturl
configuration option in the puppet.conf configuration file on the master:

[master]
reporturl = http://localhost:3000/reports

Here the report destination is set to its default, which assumes that you are sending reports to
Puppet Dashboard.

Custom Reporting
You are not limited to the provided report processors. Puppet also allows you to create your own report
processors. There are two methods for doing this. The first method is to use the existing store reports,
which are YAML files, and write an external report processor to make use of this information, for
example graphing it or storing it in an external database. This is also how the report importation process
works within Puppet Dashboard. These external report processors can easily be written in Ruby to take
advantage of Ruby's ability to de-serialize the YAML files and make use of the resulting objects. You can
use any tool that supports the importation of third-party YAML data.

The second method involves writing your own report processor and adding it to Puppet. Unlike
plug-ins for facts, functions, types and providers, Puppet doesn’t have an automatic way to distribute
custom reports.

 Note We show how to distribute other forms of custom code, like facts, in Chapter 10.

Instead the report processors are stored in the lib/puppet/reports directory. For example, on an
Ubuntu Puppet master we’d add our custom report processor to the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 REPORTING WITH PUPPET

238

/usr/local/lib/site_ruby/1.8/puppet/reports directory with the existing report processors. We would
then specify the new report in the reports configuration option.

The existing report processors make excellent templates for new processors. In Listing 10-3 you can
see the Ruby code for the http report processor.

Listing 9-3. The http report processor

require 'puppet'
require 'net/http'
require 'uri'

Puppet::Reports.register_report(:http) do

 desc <<-DESC
 Send report information via HTTP to the `reporturl`. Each host sends
 its report as a YAML dump and this sends this YAML to a client via HTTP POST.
 The YAML is the `report` parameter of the request."
 DESC

 def process
 url = URI.parse(Puppet[:reporturl])
 req = Net::HTTP::Post.new(url.path)
 req.body = self.to_yaml
 req.content_type = "application/x-yaml"
 Net::HTTP.new(url.host, url.port).start {|http|
 http.request(req)
 }
 end
end

As you can see from this example, it is very easy to create your own report processor.

 Tip Other ideas for Puppet report processors include RSS feeds for new reports, IRC, XMPP or instant
messaging, or SMS notifications of new reports. You could also parse particular events in reports or collate metrics
for use in other kinds of performance management systems.

First, you need to require Puppet itself: require ‘puppet’. Then you simply specify the
Puppet::Reports.register_report method and the name of the new report processor you are creating.
You can see a simple example of a report processor in Listing 9-4.

Listing 9-4. A custom summary report

require 'puppet'

Puppet::Reports.register_report(:summary) do

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 9 REPORTING WITH PUPPET

239

 desc <<-DESC
 Send summary report information to the report directory."
 DESC

 def process
 client = self.host
 summary = self.summary
 dir = File.join(Puppet[:reportdir], client)
 client = self.host
 file = "summary.txt"
 destination = File.join(dir, file)
 File.open(destination,"w") do |f|
 f.write(summary)
 end
 end
end

In this report processor, we’ve defined a method called process to hold our report’s core logic.
We’ve extracted some information from our report: the host, using the self.host method, and a
summary of the changes, using the summary method. You also have access to the report’s logs and
metrics using the self.logs and self.metrics methods.

We also wrote our summary report out to a directory named after the Puppet agent host located
underneath the reports directory, which we specified using the value of the reportdir configuration
option.

We would then add our report name to Puppet in the puppet.conf configuration file:

reports=store,log,summary

After we restarted the Puppet master and performed a Puppet run, the new report would be
generated. In our case, the final report is contained in a file called summary.txt and looks something like
this:

Changes:
 Total: 1
Events:
 Success: 1
 Total: 1
Resources:
 Changed: 1
 Out of sync: 1
 Total: 8
Time:
 Config retrieval: 0.19
 File: 0.05
 Filebucket: 0.00
 Schedule: 0.00

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 REPORTING WITH PUPPET

240

 Tip You can see other examples of how to use and extract reporting data from the code of the existing reports,
at https://github.com/puppetlabs/puppet/tree/master/lib/puppet/reports.

Summary
In this chapter, we’ve demonstrated the basics of Puppet reporting, including how to configure
reporting and some details on each report type and its configuration.

We’ve also shown you how to create custom reports of your own, making use of the report data in its
YAML form or via processing with a custom report processor.

Resources
• Report Reference: http://docs.puppetlabs.com/references/latest/report.html

• Reports and Reporting:
http://projects.puppetlabs.com/projects/puppet/wiki/Reports_And_Reporting

• Existing reports:
https://github.com/puppetlabs/puppet/tree/master/lib/puppet/reports

www.it-ebooks.info

https://github.com/puppetlabs/puppet/tree/master/lib/puppet/reports
http://docs.puppetlabs.com/references/latest/report.html
http://projects.puppetlabs.com/projects/puppet/wiki/Reports_And_Reporting
https://github.com/puppetlabs/puppet/tree/master/lib/puppet/reports
http://www.it-ebooks.info/

C H A P T E R 10

241

Extending Facter and Puppet

Among the most powerful features of Puppet are its flexibility and extensibility. In addition to the
existing facts, resource types, providers, and functions, you can quickly and easily add custom code
specific to your environment or to meet a particular need.

In the first part of this chapter we’re going to examine how to add your own custom facts. Adding
custom facts is highly useful for gathering and making use of information specific to your environment.
Indeed, we’ve used Facter extensively in this book to provide information about our hosts, applications
and services, and you’ve seen the array of facts available across many platforms. You may have noted,
though, that Facter isn’t comprehensive; many facts about your hosts and environments are not
available as Facter facts.

In the second part of the chapter, we’re going to examine how to add your own custom types,
providers and functions to Puppet and how to have Puppet distribute these, and we’ll discuss how to
make use of them. These are among Puppet’s most powerful features, and are at the heart of its
flexibility and extensibility. Being able to add your own enhancements in addition to the existing
resources types, providers and functions, you can quickly and easily add custom code specific to your
environment or to meet a particular need.

Writing and Distributing Custom Facts
Creating your own custom facts to Puppet is a very simple process. Indeed, it only requires a basic
understanding of Ruby. Luckily for you, Ruby is incredibly easy to pick up and there are lots of resources
available to help (refer to the “Resources” section at the end of the chapter for some helpful links).

In the following sections, you’ll see how to successfully extend Facter. We first configure Puppet so
we can write custom facts, then we test our new facts to confirm they are working properly.

 Note If the idea of learning any Ruby is at all daunting, a fast alternative way to add a fact without writing any
Ruby code is via Facter’s support of environmental variables. Any environmental variables set by the user Facter is
running as (usually the root user) that are prefixed with FACTER_ will be added to Facter as facts. So, if you were
to set an environmental variable of FACTER_datacenter with a value of Chicago, then this would become a fact
called datacenter with the value of Chicago.

Configuring Puppet for Custom Facts
The best way to distribute custom facts is to include them in modules, using a Puppet concept called
“plug-ins in modules.” This concept allows you to place your custom code inside an existing or new

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

242

Puppet module and then use that module in your Puppet environment. Custom facts, custom types,
providers, and functions are then distributed to any host that includes a particular module.

Modules that distribute facts are no different from other modules, and there are two popular
approaches to doing so. Some people distribute facts related to a particular function in the module that
they use to configure that function. For example, a fact with some Bind data in it might be distributed
with the module you use to configure Bind. This clusters facts specific to a function together and allows
a greater portability. Other sites include all custom facts (and other items) in a single, central module,
such as a module called facts or plugins. This centralizes facts in one location for ease of management
and maintenance.

Each approach has pros and cons and you should select one that suits your organization and its
workflow. We personally prefer the former approach because it limits custom facts and other items to
only those clients that require them, rather than all hosts. For some environments, this may be a neater
approach. We’re going to use this approach in this section when demonstrating managing custom facts.

So where in our modules do facts go? Let’s create a simple module called bind as an example:

bind/
bind/manifests
bind/manifests/init.pp
bind/files
bind/templates
bind/lib/facter

Here we’ve created our standard module directory structure, but we’ve added another directory, lib.
The lib directory contains any “plug-ins” or additional facts, types or functions we want to add to
Puppet. We’re going to focus on adding facts; these are stored in the lib/facter directory.

In addition to adding the lib/facter directory to modules that will distribute facts, you need to
enable “plug-ins in modules” in your Puppet configuration. To do this, enable options in the [main]
section of the Puppet master’s puppet.conf configuration file, as you can see on the next line:

 [main]
pluginsync = true

When set to true, the pluginsync setting turns on the “plug-ins in modules” capability. Now, when
clients connect to the master, each client will check its modules for facts and other custom items. Puppet
will take these facts and other custom items and sync them to the relevant clients, so they can then be
used on these clients.

 Caution The sync of facts and other items occurs during the Puppet run. In some cases, the custom items
synchronized may not be available in that initial Puppet run. For example, if you sync a fact during a Puppet run
and rely on the value of that fact in configuration you are using in the SAME run, then that configuration may fail.
This is because Puppet has yet to re-run Facter and assign a value for the new custom fact you’ve provided. On
subsequent runs, the new fact’s value will be populated and available to Puppet.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

243

Writing Custom Facts
After configuring Puppet to deliver our custom facts, you should actually create some new facts! Each
fact is a snippet of Ruby code wrapped in a Facter method to add the result of our Ruby code as a fact.
Let’s look at a simple example in Listing 10-1.

Listing 10-1. Our first custom fact

Facter.add("home") do
 setcode do
 ENV['HOME']
 end
end

In this example, our custom fact returns the value of the HOME environmental value as a fact called
home, which in turn would be available in our manifests as the variable $home.

The Facter.add method allows us to specify the name of our new fact. We then use the setcode
block to specify the contents of our new fact, in our case using Ruby’s built-in ENV variable to access an
environmental variable. Facter will set the value of our new fact using the result of the code executed
inside this block.

In Listing 10-2, you can see a custom fact that reads a file to return the value of the fact.

Listing 10-2. Another custom fact

Facter.add("timezone") do
 confine :operatingsystem => :debian
 setcode do
 File.readlines("/etc/timezone").to_a.last
 end
end

Here, we’re returning the timezone of a Debian host. We’ve also done two interesting things. First,
we’ve specified a confine statement. This statement restricts the execution of the fact if a particular
criteria is not met. This restriction is commonly implemented by taking advantage of the values of other
facts. In this case, we’ve specified that the value of the operatingsystem fact should be Debian for the fact
to be executed. We can also use the values of other facts, for example:

confine :kernel => :linux

The previous confine is commonly used to limit the use of a particular fact to nodes with Linux-based
kernels.

Second, we’ve used the readlines File method to read in the contents of the /etc/timezone file. The
contents are returned as the fact timezone, which in turn would be available as the variable $timezone.

timezone => Australia/Melbourne

We’ve established how to confine the execution of a fact but we can also use other fact values to
influence our fact determination, for example:

Facter.add("timezone") do

 setcode do
 if Facter.value(:operatingsystem) =~ /Debian|Ubuntu/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

244

 File.readlines("/etc/timezone").to_a.last
 else
 tz = Time.new.zone
 end
 end
end

Here, if the operating system is Debian or Ubuntu, it will return a time zone value by returning the
value from the /etc/timezone file. Otherwise, the fact will use Ruby’s in-built time handling to return a
time zone.

You could also use a case statement to select different fact values, for example as used in the
operatingsystemrelease fact shown in Listing 10-3.

Listing 10-3. Using a case statement to select fact values

Facter.add(:operatingsystemrelease) do
 confine :operatingsystem => %w{CentOS Fedora oel ovs RedHat MeeGo}
 setcode do
 case Facter.value(:operatingsystem)
 when "CentOS", "RedHat"
 releasefile = "/etc/redhat-release"
 when "Fedora"
 releasefile = "/etc/fedora-release"
 when "MeeGo"
 releasefile = "/etc/meego-release"
 when "OEL", "oel"
 releasefile = "/etc/enterprise-release"
 when "OVS", "ovs"
 releasefile = "/etc/ovs-release"
 end
 File::open(releasefile, "r") do |f|
 line = f.readline.chomp
 if line =~ /\(Rawhide\)$/
 "Rawhide"
 elsif line =~ /release (\d[\d.]*)/
 $1
 end
 end
 end
end

You can use other fact values for any purpose you like, not just for determining how to retrieve a
fact. Some facts return another fact value if they cannot find a way to determine the correct value. For
example, the operatingsystem fact returns the current kernel, Facter.value(:kernel), as the value of
operatingsystem if Facter cannot determine the operating system it is being run on.

You can create more complex facts and even return more than one fact in your Ruby snippets, as
you can see in Listing 10-4.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

245

Listing 10-4. A more complex fact

 netname = nil
 netaddr = nil
 test = {}
 File.open("/etc/networks").each do |line|
 netname = $1 and netaddr = $2 if line
=~ /^(\w+.?\w+)\s+([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)/
 if netname != nil && netaddr != nil
 test["network_" + netname] = netaddr
 netname = nil
 netaddr = nil
 end
 end
 test.each{|name,fact|
 Facter.add(name) do
 setcode do
 fact
 end
 end
 }

This fact actually creates a series of facts, each fact taken from information collected from the
/etc/networks file. This file associates network names with networks. Our snippet parses this file and
adds a series of facts, one per each network in the file. So, if our file looked like:

default 0.0.0.0
loopback 127.0.0.0
link-local 169.254.0.0

Then three facts would be returned:

network_default => 0.0.0.0
network_loopback => 127.0.0.0
network_link-local => 169.254.0.0

You can take a similar approach to commands, or files, or a variety of other sources.

Testing the Facts
There is a simple process for testing your facts: Import them into Facter and use it to test them before
using them in Puppet. To do this, you need to set up a testing environment. Create a directory structure
to hold our test facts—we’ll call ours lib/ruby/facter. Situate this structure beneath the root user’s
home directory. Then create an environmental variable, $RUBYLIB, that references this directory and will
allow Facter to find our test facts:

mkdir -p ~/lib/ruby/facter
export RUBYLIB=~/lib/ruby

Then copy your fact snippets into this new directory:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

246

cp /var/puppet/facts/home.rb $RUBYLIB/facter

After this, you can call Facter with the name of the fact you’ve just created. If the required output
appears, your fact is working correctly. On the following lines, we’ve tested our home fact and discovered
it has returned the correct value:

facter home
/root

If your fact is not working correctly, an error message you can debug will be generated.
Facts just scratch the surface of Puppet’s extensibility, and adding to types, providers, and functions

adds even more capability. We’re going to demonstrate that in the next section.

Developing Custom Types, Providers and Functions
When developing custom types, providers and functions it is important to remember that Puppet and
Facter are open-source tools developed by both Puppet Labs and a wide community of contributors.
Sharing custom facts and resource types helps everyone in the community, and it means you can also
get input from the community on your work. Extending Puppet or Facter is also an excellent way to give
back to that community. You can share your custom code via the Puppet mailing list or on the Puppet
Wiki, by logging a Redmine ticket, or by setting up your own source repository for Puppet code on the
Puppet forge (http://forge.puppetlabs.com).

Lastly, don’t underestimate the usefulness of code people before you have already developed that
you can use and adapt for your environment. Explore existing Puppet modules, plug-ins, facts and other
code via Google and on resources like GitHub. Like all systems administrators, we know that imitation is
the ultimate form of flattery.

In the following sections, we demonstrate how to configure Puppet to distribute your own custom
code. You’ll also see how to write a variety of custom types and providers, and finally how to write your
own Puppet functions.

Configuring Puppet for Types, Providers and Functions
The best way to distribute custom types, providers and functions is to include them in modules, using
“plug-ins in modules,” the same concept we introduced earlier this chapter to distribute custom facts.
Just like custom facts, you again place your custom code into a Puppet module and use that module in
your configuration. Puppet will take care of distributing your code to your Puppet masters and agents.

 Again, just like custom facts, you can take two approaches to managing custom code: placing it in
function-specific modules or centralizing it into a single module. We’re going to demonstrate adding
custom code in a single, function-specific module.

So, where in our modules does custom code go? Let’s create a simple module called apache as an
example:

apache/
apache/manifests
apache/manifests/init.pp
apache/files
apache/templates
apache/lib/facter

www.it-ebooks.info

http://forge.puppetlabs.com
http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

247

apache/lib/puppet/type
apache/lib/puppet/provider
apache/lib/puppet/parser/functions

Here we’ve created our standard module directory structure, but we’ve added another directory,

lib. We saw the lib directory earlier in the chapter when we placed custom facts into its Facter
subdirectory. The lib directory also contains other “plug-ins” like types, providers and functions, which
we want to add to Puppet. The lib/puppet/type and lib/puppet/provider directories hold custom types
and providers respectively. The last directory, lib/puppet/parser/functions, holds custom functions.

Like we did when we configured Puppet for custom facts, you need to enable “plug-ins in modules”
in your Puppet configuration. To do this, enable the pluginsync option in the [main] section of the
Puppet master’s puppet.conf configuration file, as follows:

[main]
pluginsync = true

The pluginsync setting, when set to true, turns on the “plug-ins in modules” capability. Now, when

agents connect to the master, each agent will check its modules for custom code. Puppet will take this
custom code and sync it to the relevant agents. It can then be used on these agents. The only exception
to this is custom functions. Functions run on the Puppet master rather than the Puppet agents, so they
won’t be synched down to an agent. They will only be synched if the Puppet agent is run on the Puppet
master, i.e., if you are managing Puppet with Puppet.

 Note In earlier releases of Puppet, “plug-ins in modules” required some additional configuration. You can read
about that configuration on the Puppet Labs Documentation site at
http://docs.puppetlabs.com/guides/plugins_in_modules.html.

Writing a Puppet Type and Provider
Puppet types are used to manage individual configuration items. Puppet has a package type, a service
type, a user type, and all the other types available. Each type has one or more providers. Each provider
handles the management of that configuration on a different platform or tool: for example, the package
type has aptitude, yum, RPM, and DMG providers (among 22 others).

We’re going to show you a simple example of how to create an additional type and provider, one
that manages version control systems (VCS), which we’re going to call repo. In this case we’re going to
create the type and two providers, one for Git and one for SVN. Our type is going to allow you to create,
manage and delete VCS repositories.

A Puppet type contains the characteristics of the configuration item we’re describing, for example in
the case of VCS management type:

• The name of the repository being managed

• The source of the repository

Correspondingly, the Puppet providers specify the actions required to manage the state of the
configuration item. Obviously, each provider has a set of similar actions that tell it how to:

www.it-ebooks.info

http://docs.puppetlabs.com/guides/plugins_in_modules.html
http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

248

• Create the resource

• Delete the resource

• Check for the resource’s existence or state

• Make changes to the resource’s content

Creating Our Type
Let’s start by creating our type. We’re going to create a module called custom to store it in:

custom/
custom/manifests/init.pp
custom/lib/puppet/type
custom/lib/puppet/provider

Inside the lib/puppet/type directory, we’re going to create a file called repo.rb to store our type

definition:

custom/lib/puppet/type/repo.rb

You can see that file in Listing 10-5.

Listing 10-5. The repo type

Puppet::Type.newtype(:repo) do
 @doc = "Manage repos"
 ensurable

 newparam(:source) do
 desc "The repo source"

 validate do |value|
 if value =~ /^git/
 resource[:provider] = :git
 else
 resource[:provider] = :svn
 end
 end

 isnamevar
 end

 newparam(:path) do
 desc "Destination path"

 validate do |value|
 unless value =~ /^\/[a-z0-9]+/
 raise ArgumentError , "%s is not a valid file path" % value
 end

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

249

 end
 end
end

In this example, we start our type with the Puppet::Type.newtype block and specify the name of type
to be created, repo. We can also see a @doc string which is where we specify the documentation for your
type. We recommend you provide clear documentation including examples of how to use the type, for a
good example have a look at the documentation provided for the Cron type at
https://github.com/puppetlabs/puppet/blob/master/lib/puppet/type/cron.rb.

The next statement is ensurable. The ensurable statement is a useful shortcut that tells Puppet to
create an ensure property for this type. The ensure property determines the state of the configuration
item, for example:

service { “sshd”:
 ensure => present,
}

The ensurable statement tells Puppet to expect three methods: create, destroy and exists? in our
provider (You’ll see the code for this in Listing 10-6). These methods are, respectively:

• A command to create the resource

• A command to delete the resource

• A command to check for the existence of the resource

All we then need to do is specify these methods and their contents and Puppet creates the supporting
infrastructure around them. Types have two kinds of values - properties and parameters. Properties "do
things." They tell us how the provider works. We've only defined one property, ensure, by using
the ensurable statement. Puppet expects that properties will generally have corresponding methods in
the provider that we’ll see later in this chapter. Parameters are variables and contain information
relevant to configuring the resource the type manages, rather than "doing things."

Next, we've defined a parameter, called source:

newparam(:source) do
 desc "The repo source"

 validate do |value|
 if value =~ /^git/
 resource[:provider] = :git
 else
 resource[:provider] = :svn
 end
 end
 isnamevar
end

The source parameter will tell the repo type where to go to retrieve, clone, or check out our source
repository.

In the source parameter we're also using a hook called validate. It’s normally used to check the
parameter value for appropriateness; here, we're using it to take a guess at what provider to use.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

https://github.com/puppetlabs/puppet/blob/master/lib/puppet/type/cron.rb
http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

250

 Note In addition to the validate hook, Puppet also has the munge hook. You can use the munge hook to adjust
the value of the parameter rather than validating it before passing it to the provider.

Our validate code specifies that if the source parameter starts with git, then use the Git provider; if

not, then default to the Subversion provider. This is fairly crude as a default, and you can override this by
defining the provider attribute in your resource, like so:

repo { “puppet”:
 source => “git://github.com/puppetlabs/puppet.git”,
 path => “/home/puppet”,
 provider => git,
 ensure => present,
}

We've also used another piece of Puppet auto-magic, the isnamevar method, to make this parameter

the "name" variable for this type so that the value of this parameter is used as the name of the resource.
Finally, we've defined another parameter, path:

newparam(:path) do
 desc "Destination path"

 validate do |value|
 unless value =~ /^\/[a-z0-9]+/
 raise ArgumentError, "%s is not a valid file path" % value
 end
 end
end

This is a parameter value that specifies where the repo type should put the cloned/checked-out

repository. In this parameter we've again used the validate hook to create a block that checks the value
for appropriateness. In this case we're just checking, very crudely, to make sure it looks like the
destination path is a valid, fully-qualified file path. We could also use this validation for the source
parameter to confirm that a valid source URL/location is being provided.

Creating the Subversion Provider
Next, we need to create a Subversion provider for our type. We create the provider and put it into:

custom/lib/puppet/provider/repo/svn.rb

You can see the Subversion provider in Listing 10-6.

Listing 10-6. The Subversion provider

require 'fileutils'

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

251

Puppet::Type.type(:repo).provide(:svn) do
 desc "Provides Subversion support for the repo type"

 commands :svncmd => "svn"
 commands :svnadmin => "svnadmin"

 def create
 svncmd "checkout", resource[:name], resource[:path]
 end

 def destroy
 FileUtils.rm_rf resource[:path]
 end

 def exists?
 File.directory? resource[:path]
 end
end

In the provider code, we first required the fileutils library, which we're going to use some methods

from. Next, we defined the provider block itself:

Puppet::Type.type(:repo).provide(:svn) do

We specified that the provider is called svn and is a provider for the type called repo.
Then we used the desc method, which allows us to add some documentation to our provider.
Next, we defined the commands that this provider will use, the svn and svnadmin binaries, to

manipulate our resource's configuration:

commands :svncmd => "svn"
commands :svnadmin => "svnadmin"

Puppet uses these commands to determine if the provider is appropriate to use on an agent. If

Puppet can't find these commands in the local path, then it will disable the provider. Any resources that
use this provider will fail and Puppet will report an error.

Next, we defined three methods - create, destroy and exists?. These are the methods that the
ensurable statement expects to find in the provider.

The create method ensures our resource is created. It uses the svn command to check out a
repository specified by resource[:name]. This references the value of the name parameter of the type. In
our case, the source parameter in our type is also the name variable of the type, so we could also specify
resource[:source]. We also specified the destination for the checkout using the resource[:path] hash.

The delete method ensures the deletion of the resource. In this case, it deletes the directory and
files specified by the resource[:path] parameter.

Lastly, the exists? method checks to see if the resource exists. Its operation is pretty simple and
closely linked with the value of the ensure attribute in the resource:

• If exists? is false and ensure is set to present, then the create method will be
called.

• If exists? is true and ensure is set to absent, then the destroy method will be
called.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

252

In the case of our method, the exists? method works by checking if there is already a directory at
the location specified in the resource[:path] parameter.

We can also add another provider, this one for Git, in:

custom/lib/puppet/provider/repo/git.rb

We can see this provider in Listing 10-7.

Listing 10-7. The Git provider

require 'fileutils'
Puppet::Type.type(:repo).provide(:git) do

 desc "Provides Git support for the repo provider"

 commands :gitcmd => "git"

 def create
 gitcmd "clone", resource[:name], resource[:path]
 end

 def destroy
 FileUtils.rm_rf resource[:path]
 end

 def exists?
 File.directory? resource[:path]
 end

end

You can see that this provider is nearly identical to the Subversion provider we saw in Listing 10-3.

We used the git command and its clone function rather than the Subversion equivalents, but you can
see that the destroy and exists? methods are identical.

Using Your New Type
Once you’ve got your type and providers in place, you can run Puppet and distribute them to the agents
you wish to use the repo type in and create resources that use this type, for example:

repo { "wordpress":
 source => "http://core.svn.wordpress.org/trunk/",
 path => "/var/www/wp",
 provider => svn,
 ensure => present,
}

www.it-ebooks.info

http://core.svn.wordpress.org/trunk/
http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

253

 Note You can find a far more sophisticated version of the repo type, and with additional providers, at
https://github.com/puppetlabs/puppet-vcsrepo.

Writing a Parsed File Type and Provider
You’ve just seen a very simple type and provider that uses commands to create, delete and check for the
status of a resource. In addition to these kinds of types and providers, Puppet also comes with a helper
that allows you to parse and edit simple configuration files. This helper is called ParsedFile.

Unfortunately, you can only manage simple files with ParsedFile, generally files with single lines of
configuration like the /etc/hosts file or the example we’re going to examine. This is a type that manages
the /etc/shells file rather than multi-line configuration files.

To use a ParsedFile type and provider, we need to include its capabilities. Let’s start with our
/etc/shells management type which we’re going to call shells. This file will be located in:

custom/lib/puppet/type/shells.rb.

The Shells Type
Let's start with our type in Listing 10-8.

Listing 10-8. The shells type

Puppet::Type.newtype(:shells) do
 @doc = "Manage the contents of /etc/shells
 shells { "/bin/newshell":
 ensure => present,
 }"

ensurable

newparam(:shell) do
 desc "The shell to manage"
 isnamevar
end

newproperty(:target) do
 desc "Location of the shells file"
 defaultto {
 if @resource.class.defaultprovider.ancestors.include? (Puppet::Provider::ParsedFile)
 @resource.class.defaultprovider.default_target
 else
 nil
 end
 }
 end
end

www.it-ebooks.info

https://github.com/puppetlabs/puppet-vcsrepo
http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

254

In our type, we’ve created a block, Puppet::Type.newtype(:shells), that creates a new type, which
we've called shells. Inside the block we've got a @doc string. As we’ve already seen, this should contain
the documentation for the type; in this case, we’ve included an example of the shells resource in action.

We've also used the ensurable statement to create the basic create, delete and exists ensure
structure we saw in our previous type.

We then defined a new parameter, called shell, that will contain the name of the shell we want to
manage:

newparam(:shell) do
 desc "The shell to manage"
 isnamevar
end

We also used another piece of Puppet automagic that we saw earlier, isnamevar, to make this

parameter the name variable for this type.
Lastly, in our type we specified an optional parameter, target, that allows us to override the default

location of the shells file, usually /etc/shells.
The target parameter is optional and would only be specified if the shells file wasn't located in

the /etc/ directory. It uses the defaultto structure to specify that the default value for the parameter is
the value of default_target variable, which we will set in the provider.

The Shells Provider
Let’s look at the shells provider now, in Listing 10-9.

Listing 10-9. The shells provider

require 'puppet/provider/parsedfile'

shells = "/etc/shells"

Puppet::Type.type(:shells).provide(:parsed, :parent => Puppet::Provider::ParsedFile,
:default_target => shells, :filetype => :flat) do

 desc "The shells provider that uses the ParsedFile class"

 text_line :comment, :match => /^#/;
 text_line :blank, :match => /^\s*$/;

 record_line :parsed, :fields => %w{name}
end

Unlike other providers, ParsedFile providers are stored in a file called parsed.rb located in the

provider’s directory, here:

custom/lib/puppet/provider/shells/parsed.rb

The file needs to be named parsed.rb to allow Puppet to load the appropriate ParsedFile support
(unlike other providers, which need to be named for the provider itself).

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

255

In our provider, we first need to include the ParsedFile provider code at the top of our provider
using a Ruby require statement:

require 'puppet/provider/parsedfile'

We then set a variable called shells to the location of the /etc/shells file. We're going to use this
variable shortly.

Then we tell Puppet that this is a provider called shells. We specify a :parent value that tells Puppet
that this provider should inherit the ParsedFile provider and make its functions available. We then
specify the :default_target variable to the shells variable we just created. This tells the provider, that
unless it is overridden by the target attribute in a resource, that the file to act upon is /etc/shells.

We then use a desc method that allows us to add some documentation to our provider.
The next lines in the provider are the core of a ParsedFile provider. They tell the Puppet how to

manipulate the target file to add or remove the required shell. The first two lines, both called text_line,
tell Puppet how to match comments and blank lines, respectively, in the configuration file. You should
specify these for any file that might have blank lines or comments:

 text_line :comment, :match => /^#/;
 text_line :blank, :match => /^\s*$/;

We specify these to let Puppet know to ignore these lines as unimportant. The text_line lines are

constructed by specifying the type of line to match, a comment or a blank, then specifying a regular
expression that specifies the actual content to be matched.

The next line performs the actual parsing of the relevant line of configuration in the /etc/shells file:

 record_line :parsed, :fields => %w{name}

The record_line parses each line and divides it into fields. In our case, we only have one field, name.
The name in this case is the shell we want to manage. So if we specify:

shells { "/bin/anothershell":
 ensure => present,
}

Puppet would then use the provider to add the /bin/anothershell by parsing each line of

the /etc/shells file and checking if the /bin/anothershell shell is present. If it is, then Puppet will do
nothing. If not, then Puppet will add anothershell to the file.

If we changed the ensure attribute to absent, then Puppet would go through the file and remove the
anothershell shell if it is present.

This is quite a simple example of a ParsedFile provider. There are a number of others that ship with
Puppet, for example the cron type, that can demonstrate the sophisticated things you can do with the
ParsedFile provider helper.

A More Complex Type and Provider
In this section we’re going to show you a slightly more complex type and provider used to manage HTTP
authentication password files. It’s a similarly ensureable type and provider, but with some more
sophisticated components.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

256

The httpauth Type
Let’s start by looking at the httpauth type shown in Listing 10-10.

Listing 10-10. The httpauth type

Puppet::Type.newtype(:httpauth) do
 @doc = "Manage HTTP Basic or Digest password files." +
 " httpauth { 'user': " +
 " file => '/path/to/password/file', " +
 " password => 'password', " +
 " mechanism => basic, " +
 " ensure => present, " +
 " } "

 ensurable do
 newvalue(:present) do
 provider.create
 end

 newvalue(:absent) do
 provider.destroy
 end

 defaultto :present
 end

 newparam(:name) do
 desc "The name of the user to be managed."

 isnamevar
 end

 newparam(:file) do
 desc "The HTTP password file to be managed. If it doesn't exist it is created."
 end

 newparam(:password) do
 desc "The password in plaintext."

 end

 newparam(:realm) do
 desc "The realm - defaults to nil and mainly used for Digest authentication."

 defaultto "nil"
 end

 newparam(:mechanism) do
 desc "The authentication mechanism to use - either basic or digest. Default to basic."

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

257

 newvalues(:basic, :digest)

 defaultto :basic
 end

 # Ensure a password is always specified
 validate do
 raise Puppet::Error, "You must specify a password for the user." unless
@parameters.include?(:password)
 end

end

In the httpauth type we’re managing a number of attributes, principally the user, password and

password file. We also provide some associated information, like the realm (A HTTP Digest
Authentication value) and the mechanism we’re going to use, Basic or Digest Authentication.

First, notice that we’ve added some code to our ensurable method. In this case, we’re telling Puppet
some specifics about the operation of our ensure attribute. We’re specifying that for each state, present
and absent, exactly which method in the provider should be called, here create and destroy,
respectively. We’re also specifying the default behavior of the ensure attribute. This means that if we
omit the ensure attribute that the httpauth resource will assume present as the value. The resource will
then check for the presence of the user we want to manage, and if it doesn’t exist, then it will create that
user.

We’ve also used some other useful methods. The first is the defaultto method that specifies a
default value for a parameter or property. If the resource does not specify this attribute, then Puppet will
use to this default value to populate it. The other is the newvalues method that allows you to specify the
values that the parameter or property will accept. In Listing 10-10, you can see the mechanism parameter
that the newvalues method specifies will take the values of basic or digest.

Lastly, you can see that we used the validate method to return an error if the httpauth resource is
specified without the password attribute.

The httpauth Provider
Now let’s look at the provider for the httpauth type, shown in Listing 10-11.

Listing 10-11. The httpauth provider

begin
 require 'webrick'
rescue
 Puppet.warning "You need WEBrick installed to manage HTTP Authentication files."
end

Puppet::Type.type(:httpauth).provide(:httpauth) do
 desc "Manage HTTP Basic and Digest authentication files"

 def create
 # Create a user in the file we opened in the mech method
 @htauth.set_passwd(resource[:realm], resource[:name], resource[:password])
 @htauth.flush

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

258

 end

 def destroy
 # Delete a user in the file we opened in the mech method
 @htauth.delete_passwd(resource[:realm], resource[:name])
 @htauth.flush
 end

 def exists?
 # Check if the file exists at all
 if File.exists?(resource[:file])
 # If it does exist open the file
 mech(resource[:file])

 # Check if the user exists in the file
 cp = @htauth.get_passwd(resource[:realm], resource[:name], false)

 # Check if the current password matches the proposed password
 return check_passwd(resource[:realm], resource[:name], resource[:password], cp)
 else
 # If the file doesn't exist then create it
 File.new(resource[:file], "w")
 mech(resource[:file])
 return false
 end
 end

 # Open the password file
 def mech(file)
 if resource[:mechanism] == :digest
 @htauth = WEBrick::HTTPAuth::Htdigest.new(file)
 elsif resource[:mechanism] == :basic
 @htauth = WEBrick::HTTPAuth::Htpasswd.new(file)
 end
 end

 # Check password matches
 def check_passwd(realm, user, password, cp)
 if resource[:mechanism] == :digest
 WEBrick::HTTPAuth::DigestAuth.make_passwd(realm, user, password) == cp
 elsif resource[:mechanism] == :basic
 # Can't ask webbrick as it uses a random seed
 password.crypt(cp[0,2]) == cp
 end
 end
end

This provider is more complex than what we’ve seen before. We’ve still got the methods that handle

Puppet’s ensurable capabilities: create, destroy and exists?. In addition, though, we’ve got additional
methods that manipulate our password files.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

259

Our provider first checks for the existence of the Webrick library, which it needs in order to
manipulate HTTP password files. The provider will fail to run if this library is not present. Fortunately,
Webrick is commonly present in most Ruby distributions (and indeed, is used by Puppet as its basic
server framework, as we learned in 2).

 Tip As an alternative to requiring the Webrick library, we could use Puppet’s feature capability. You can see
some examples of this in
https://github.com/puppetlabs/puppet/blob/master/lib/puppet/feature/base.rb. This capability allows
you to enabled or disable features based on whether certain capabilities are present or not. The obvious limitation
is that this approach requires adding a new feature to Puppet’s core, rather than simply adding a new type or
provider.

Our provider then has the three ensurable methods. The create and destroy methods are relatively
simple. They use methods from the Webrick library to either set or delete a password specified in the
HTTP password file managed by the resource. The file being referred to here using the resource[:file]
value which is controlled by setting the file attribute in the httpauth resource, for example:

httpauth { “bob”:
 file => “/etc/apache2/htpasswd.basic”,
 password => “password”,
 mechanism => basic,
}

Lastly, you’ll also see in the create and destroy methods that we call the flush method. This flushes
the buffer and writes out our changes.

The exists? method is more complex and calls several helper methods to check whether the user
and password already exist, and if they do, whether the current and proposed passwords match.

Testing Types and Providers
Like facts, you can test your types and providers. The best way to do this is add them to a module in your
development or testing environment and enable pluginsync to test them there before using them in your
production environment, for example let’s add our HTTPAuth type to a module called httpauth, first
adding the required directories:

$ mkdir –p /etc/puppet/modules/httpauth/(manifests,files,templates,lib}
$ mkdir –p /etc/puppet/modules/httpauth/lib/{type,provider}
$ mkdir –p /etc/puppet/modules/httpauth/lib/provider/httpauth

Then copying in the type and provider to the requisite directories.

cp type/httpauth.rb /etc/puppet/modules/lib/type/httpauth.rb
cp provider/httpauth.rb /etc/puppet/modules/lib/provider/httpauth/httpauth.rb

When Puppet is run (and pluginsync enabled) it will find your types and providers in these
directories, deploy them and make them available to be used in your Puppet manifests.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

https://github.com/puppetlabs/puppet/blob/master/lib/puppet/feature/base.rb
http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

260

Writing Custom Functions
The last type of custom Puppet code we’re going to look at is the function. You’ve seen a number of
functions in this book already, for example: include, notice and template are all functions we’ve used.
But you can extend the scope of the available functions by writing your own.

There are two types of functions: statements and rvalues. Statements perform some action, for
example the fail function, and rvalues return a value, for example if you pass in a value, the function
will process it and return a value. The split function is an example of an rvalue function.

 Note Remember that functions are executed on the Puppet master. They only have access to resources and
data that are contained on the master.

We’re going to write a simple function and distribute it to our agents. Like plug-ins, we can use plug-
in sync to distribute functions to agents; they are stored in:

custom/lib/puppet/parser/functions

The file containing the function must be named after the function it contains; for example, the
template function should be contained in the template.rb file.

Let’s take a look at a simple function in Listing 10-12.

Listing 10-12. The SHA512 function

Puppet::Parser::Functions::newfunction(:sha512, :type => :rvalue, :doc => "Returns a SHA1
hash value from a provided string.") do |args|

 require 'sha1'

 Digest::SHA512.hexdigest(args[0])

end

Puppet contains an existing function called sha1 that generates a SHA1 hash value from a provided

string. In Listing 10-12, we’ve updated that function to support SHA512 instead. Let’s break that function
down. To create the function we call the Puppet::Parser::Functions::newfunction method and pass it
some values. First, we name the function, in our case sha512. We then specify the type of function it is,
here rvalue, for a function that returns a value. If we don’t specify the type at all then Puppet assumes
the function is a statement. Lastly, we specify a :doc string to document the function.

The newfunction block takes the incoming argument and we process it, first adding in support for
working with SHA hashes by requiring the sha1 library, and then passing the argument to the hexdigest
method. As this is an rvalue function, it will return the created hash as the result of the function.

 Note The last value returned by the newfunction block will be returned to Puppet as the rvalue.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

261

We mentioned earlier that functions run on the Puppet master. This means we only have access to
the resources and data available on the master, but this does include some quite useful information,
most importantly fact data. You can look up and use the value of facts in your functions using the
lookupvar function, like so:

lookupvar(‘fqdn’)

Replace fqdn with the name of the fact whose value you wish to look up.
You can see how easy it is to create some very powerful functions in only a few lines of code. We

recommend having a look at the existing functions (most of which are very succinct) as a way to get
started on your first functions. Some of the common functions include tools to manipulate paths,
regular expressions and substitutions, and functions to retrieve data from external sources. There are
numerous examples (many on Github or searchable via Google) of functions that you can copy or adapt
for your environment.
After you’ve created your function you should test that it works correctly. There are a couple of ways you
can do this. Some basic testing of the function can be performed by executing the function file with
Ruby, like so:

$ ruby –rpuppet sha512.rb

This loads the Puppet library (Puppet must be installed on the host) and then runs the file
containing the function we created in Listing 10-12. This will allow us to determine whether the file
parses without error. It does not tell us if the function performed correctly.

 Tip You can raise an error in your function using raise Puppet::ParseError, "raise this error".
Replace “raise this error” with the error text you’d like to raise.

We can also use the Ruby IRB (Interactive Ruby Shell) to confirm our function is properly defined,

like so:

$ irb
irb> require 'puppet'
=> true
irb> require '/tmp/sha512.rb'
=> true
irb> Puppet::Parser::Functions.function(:sha512)
=> "function_sha512"

Here we’ve launched irb and then required Puppet and our new function. We then confirm that

Puppet can see the new function and that it parses as a correct function.
The best way to test a function is to use it in a manifest, and the easiest way to do that is to add your

functions to Puppet’s libdir and run a stand-alone manifest. Assuming Puppet is installed, first find
your libdir:

$ sudo puppet –configprint | grep ‘libdir’
/var/lib/puppet/lib

Then create a directory to hold our functions:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 EXTENDING FACTER AND PUPPET

262

$ sudo mkdir -p /var/lib/puppet/lib/puppet/parser/functions

Then copy in our function:

$ sudo cp sha512.rb /var/lib/puppet/lib/puppet/parser/functions

Then a manifest to execute our new function:

$ cat /tmp/sha.pp
$hash = sha512(“test”)
notify { $hash: }

And finally run the function:

$ puppet /tmp/sha.pp
notice:
ee26b0dd4af7e749aa1a8ee3c10ae9923f618980772e473f8819a5d4940e0db27ac185f8a0e1d5f84f88bc887fd67b
143732c304cc5fa9ad8e6f57f50028a8ff
notice:
/Stage[main]//Notify[ee26b0dd4af7e749aa1a8ee3c10ae9923f618980772e473f8819a5d4940e0db27ac185f
8a0e1d5f84f88bc887fd67b143732c304cc5fa9ad8e6f57f50028a8ff]/message: defined 'message' as
'ee26b0dd4af7e749aa1a8ee3c10ae9923f618980772e473f8819a5d4940e0db27ac185f8a0e1d5f84f88bc887fd
67b143732c304cc5fa9ad8e6f57f50028a8ff'

We can see that our notify resource returned a 512-bit hash generated by our sha512 function.

 Note You can call a function from another function by prefixing the function to be called with function_, for
example function_notice.

Summary
In this chapter, you learned how to extend Puppet and Facter with your own custom types, providers,
functions and facts. We demonstrated how to:

• Configure Puppet to distribute your custom facts in your modules

• Write your own custom facts

• Test your new custom facts

• Utilize two ensure-style types and providers

• Use a ParsedFile type and provider to edit simple configuration files

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 10 EXTENDING FACTER AND PUPPET

263

• Write Puppet functions

• Test Puppet functions

There are also a lot of examples of extensions and additions to Puppet that are available for you to

add to your Puppet installation, or which can serve as examples of how to develop particular extensions.
A good place to start looking for these is on GitHub (http://www.github.com).

Resources
• Adding custom facts http://puppetlabs.com/trac/puppet/wiki/AddingFacts

• Try Ruby (http://tryruby.org/) online tutorial

• Learn to Program tutorial (http://pine.fm/LearnToProgram/)

• Programming Ruby (http://ruby-doc.org/docs/ProgrammingRuby/)

• Beginning Ruby (http://beginningruby.org/).

• Documentation on how to create custom types:
http://docs.puppetlabs.com/guides/custom_types.html

• A complete example of resource type creation:
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Complete_R
esource_Example

• Documentation on detailed provider development:
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Provider_D
evelopment

• Practical set of documentation covering type development:
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Practical_T
ypes

• Writing your own functions:
http://projects.puppetlabs.com/projects/1/wiki/Writing_Your_Own_Functions

• Writing tests for Puppet:
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Writing_Te
sts

• Try Ruby (http://tryruby.org/) online tutorial

• Learn to Program tutorial (http://pine.fm/LearnToProgram/)

• Programming Ruby (http://ruby-doc.org/docs/ProgrammingRuby/)

• Beginning Ruby (http://beginningruby.org/).

www.it-ebooks.info

http://www.github.com
http://puppetlabs.com/trac/puppet/wiki/AddingFacts
http://tryruby.org/
http://pine.fm/LearnToProgram/
http://ruby-doc.org/docs/ProgrammingRuby/
http://beginningruby.org/
http://docs.puppetlabs.com/guides/custom_types.html
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Complete_R
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Provider_D
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Practical_T
http://projects.puppetlabs.com/projects/1/wiki/Writing_Your_Own_Functions
http://projects.puppetlabs.com/projects/puppet/wiki/Development_Writing_Te
http://tryruby.org/
http://pine.fm/LearnToProgram/
http://ruby-doc.org/docs/ProgrammingRuby/
http://beginningruby.org/
http://www.it-ebooks.info/

C H A P T E R 11

265

Marionette Collective

In Chapter 10, you learned about the puppet-module and cucumber-puppet tools. Both of these tools
help automate the process of developing and testing Puppet modules. Similarly, Marionette Collective
(MCollective) is an orchestration framework closely related to Puppet. Puppet excels at managing the
state of your systems; however, the default 30-minute run interval of the Puppet agent makes it
unsuitable for real-time command and control. MCollective addresses the need to execute commands in
real-time on a large number of systems in a novel and unique manner. With MCollective, nodes are
easily divided into collections based on information about the node itself rather than hostnames. The
use of metadata means you don’t need to maintain long lists of hostnames or IP addresses. All systems in
the collection can report information about themselves in real-time on demand. Armed with this
information, the overall population of machines can be divided into collectives. Procedures are carried
out remotely against a collective rather than against a single machine.

MCollective was created to provide an API for the orchestration tasks that systems engineers and
developers frequently need to perform. Command and control tools are numerous and effectively
provide the same functionality of the Unix shell. Though powerful, the shell interface is not an ideal
application-programming interface. In addition, commands dispatched to systems in this manner are
difficult to manage using the same tools and processes that you manage code with. With a robust API,
orchestration actions may be implemented as small agent plugins and treated like other pieces of code
in a software development lifecycle. MCollective agents are testable, version-controlled, and
consistently repeatable.

There are a number of problems and use cases that MCollective is particularly well-suited to
address. Through the use of real-time messaging and metadata addressing, a number of tasks previously
carried out with SSH or other deployment tools are more efficiently solved with MCollective. In
particular, the following actions and questions are addressed extremely well with MCollective:

• How many systems have 32 GB of memory?

• What systems are online right now?

• Deploy version 1.2.3 of my application to all systems.

• Deploy version 1.2.4 of my application to the quality assurance systems.

• Deploy version 1.2.5rc2 of my application to the development systems.

• Run Puppet on all systems, ensuring that at most 10 runs are happening at once.

• Restart the Apache service on all systems in North America.

In addition to the actions MCollective already handles, it is quite straightforward to write custom
agents in Ruby to carry out your own actions on all of your systems. The MCollective RPC framework
alleviates much of the effort you would otherwise have to spend writing code to connect to your
machines, issue commands to them, and handle logging and exceptions. If you need to take action on all

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

266

of your systems, MCollective agents distributed through Puppet are an excellent way to quickly tackle
the problem.

MCollective takes advantage of modern technologies to handle communication between the nodes
in a collective. In this chapter, you’ll learn how to install the RabbitMQ message bus and connect
MCollective servers to a message queue. Once that’s installed, you’ll also learn how integrate
MCollective with Facter to provide a large amount of metadata that’s useful to divide the population into
collectives and then command them. In addition, you’ll learn how Puppet works well with MCollective
to orchestrate and reconfigure your nodes on demand and in a controlled manner. Plugins for
MCollective provide these integrations with Puppet, specifically the Puppet Agent plugin and Puppet
Commander plugin. Let’s get started with the installation of the RabbitMQ messaging bus.

Installing and Configuring RabbitMQ
MCollective makes use of publish and subscription messaging techniques. These publications and
subscriptions are often implemented using asynchronous messaging software such as ActiveMQ and
RabbitMQ. The broad category of messaging software is often referred to as messaging middleware.
MCollective is developed and tested with the Apache ActiveMQ middleware, however the requirement
of Java and XML configuration files have driven increased attention and interest in the RabbitMQ
middleware service.

MCollective sends and receives messages using the Stomp protocol. Any messaging middleware
implementing a robust Stomp listener should work with MCollective. However, ActiveMQ and
RabbitMQ are the two most widely deployed and tested middleware services used with MCollective. It is
important to keep in mind that only one messaging service on one system is required to get started with
MCollective. A single RabbitMQ server will easily support hundreds of connected MCollective server
processes. Advanced configurations with multiple security zones and tens of thousands of nodes may
consider deploying multiple, federated messaging services to scale with demand. In a multi-datacenter
configuration, ActiveMQ is an excellent choice. ActiveMQ and MCollective have been deployed together
across multiple data centers and geographic continents in redundant and reliable configurations.

It is worth noting that MCollective and RabbitMQ are not bundled with the distribution of
Enterprise Linux or Debian and Ubuntu systems as of the writing of this book. However, both RabbitMQ
and MCollective will be included in the Natty Narwhal release of Ubuntu, scheduled to be version 11.04
of the operating system. If you are running a Natty or a more recent version of Ubuntu, the easiest
installation route will be to simply install the packages from the distribution repositories using aptitude.

MCOLLECTIVE MESSAGING ARCHITECTURE

MCollective employs asynchronous messaging middleware services to broadcast messages and collect
responses from nodes. An overview of this messaging architecture is available online at:
http://docs.puppetlabs.com/mcollective/reference/basic/messageflow.html

If you have multiple security zones or data centers, you may be interested in running multiple middleware
servers to federate and distribute messaging requests. Information on this configuration with ActiveMQ is
available online at:
http://docs.puppetlabs.com/mcollective/reference/integration/activemq_clusters.html

In addition, general information about publish/subscribe middleware is available online at:
http://en.wikipedia.org/wiki/Publish/subscribe

www.it-ebooks.info

http://docs.puppetlabs.com/mcollective/reference/basic/messageflow.html
http://docs.puppetlabs.com/mcollective/reference/integration/activemq_clusters.html
http://en.wikipedia.org/wiki/Publish/subscribe
http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

267

RabbitMQ is a message queue service implementing the Advanced Message Queuing Protocol, or
AMQP. RabbitMQ is built using the OTP (Open Telecom Platform) and implemented in the Erlang
language and runtime environment. To get started with RabbitMQ, first see how the Example.com
operator installs and configures the Erlang runtime on each platform, then install and configure
RabbitMQ and plugins required for MCollective. The information in this chapter is specific to RabbitMQ
for ease of configuration and installation on both Debian and Enterprise Linux systems. While ActiveMQ
is equally suitable to the task, many people find the XML configuration file more complex than the direct
command line interface of RabbitMQ.

 Note Puppet modules to deploy and manage RabbitMQ are available online at
http://forge.puppetlabs.com/ and http://github.com/puppetlabs/puppetlabs-rabbitmq. This Puppet
module will help you bring a RabbitMQ server online quickly and easily using Puppet.

Installing RabbitMQ on Debian
Debian and Ubuntu systems provide the Erlang runtime as precompiled binary packages. The operator
installs Erlang before RabbitMQ using the aptitude install command as shown in Listing 11-1.

Listing 11-1. Installing Erlang on Debian

$ sudo aptitude install erlang
Setting up openjdk-6-jre-lib (6b18-1.8.3-2+squeeze1) ...
Setting up odbcinst1debian2 (2.2.14p2-1) ...
Setting up unixodbc (2.2.14p2-1) ...
Setting up erlang-odbc (1:14.a-dfsg-3) ...
Setting up erlang (1:14.a-dfsg-3) ...
Setting up erlang-jinterface (1:14.a-dfsg-3) ...
Setting up erlang-ic-java (1:14.a-dfsg-3) ...
Setting up icedtea-6-jre-cacao (6b18-1.8.3-2+squeeze1) ...
Setting up default-jre-headless (1:1.6-40) ...
Setting up ca-certificates-java (20100412) ...
creating /etc/ssl/certs/java/cacerts...
done.

On Debian-based systems, installation of the Erlang runtime is straightforward. The operator simply
uses aptitude to install the erlang package. Next, in Listing 11-2, the operator installs the RabbitMQ
server package. This package is not available in the main Debian repositories, so the best way to install
RabbitMQ is by adding the RabbitMQ repositories to the apt packaging system.

Listing 11-2. Adding the RabbitMQ apt repository to Debian

$ sudo puppet resource file /etc/apt/sources.list.d/rabbitmq.list \
 content="deb http://www.rabbitmq.com/debian/ testing main"
$ cd /tmp
$ wget http://www.rabbitmq.com/rabbitmq-signing-key-public.asc
$ sudo apt-key add rabbitmq-signing-key-public.asc
OK

www.it-ebooks.info

http://forge.puppetlabs.com/
http://github.com/puppetlabs/puppetlabs-rabbitmq
http://www.rabbitmq.com/debian/
http://www.rabbitmq.com/rabbitmq-signing-key-public.asc
http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

268

$ sudo apt-get update
Get:1 http://www.rabbitmq.com testing Release.gpg [197 B]
Ign http://www.rabbitmq.com/debian/ testing/main Translation-en
Ign http://www.rabbitmq.com/debian/ testing/main Translation-en_US
Get:2 http://www.rabbitmq.com testing Release [8,033 B]
Hit http://debian.osuosl.org squeeze Release.gpg
Ign http://www.rabbitmq.com testing/main i386 Packages
Ign http://debian.osuosl.org/debian/ squeeze/main Translation-en
Hit http://www.rabbitmq.com testing/main i386 Packages
Ign http://debian.osuosl.org/debian/ squeeze/main Translation-en_US
Hit http://security.debian.org squeeze/updates Release.gpg
Hit http://debian.osuosl.org squeeze-updates Release.gpg
Ign http://debian.osuosl.org/debian/ squeeze-updates/main Translation-en
Ign http://security.debian.org/ squeeze/updates/main Translation-en
Ign http://debian.osuosl.org/debian/ squeeze-updates/main Translation-en_US
Ign http://security.debian.org/ squeeze/updates/main Translation-en_US
Hit http://debian.osuosl.org squeeze Release
Hit http://debian.osuosl.org squeeze-updates Release
Hit http://security.debian.org squeeze/updates Release
Hit http://debian.osuosl.org squeeze/main Sources
Hit http://debian.osuosl.org squeeze/main i386 Packages
Hit http://security.debian.org squeeze/updates/main Sources
Hit http://debian.osuosl.org squeeze-updates/main Sources
Hit http://security.debian.org squeeze/updates/main i386 Packages
Hit http://debian.osuosl.org squeeze-updates/main i386 Packages
Fetched 198 B in 0s (238 B/s)
Reading package lists... Done

In order to enable the RabbitMQ repository, the operator uses the puppet resource command to set
the contents of the rabbitmq apt source file. If the version of Debian you are running does not have an
/etc/apt/sources.list.d directory, you’ll need to append the line listed in the content attribute to the
/etc/apt.sources.list file instead of creating a new file.

Next, the operator downloads the RabbitMQ public key to verify the package signatures and adds
this key to the apt package management system. Finally, the apt-get update command should not return
any errors about verifying the authenticity of the package repository. If you receive any such errors,
please make sure the RabbitMQ public key has been added successfully.

With the apt repository configured and updated, the RabbitMQ server software may be installed, as
shown in Listing 11-3 using a straightforward aptitude install command.

Listing 11-3. Installing RabbitMQ on Debian

$ sudo aptitude install rabbitmq-server
The following NEW packages will be installed:
 rabbitmq-server
0 packages upgraded, 1 newly installed, 0 to remove and 3 not upgraded.
Need to get 0 B/949 kB of archives. After unpacking 1,749 kB will be used.
Selecting previously deselected package rabbitmq-server.
(Reading database ... 40745 files and directories currently installed.)
Unpacking rabbitmq-server (from .../rabbitmq-server_2.3.1-1_all.deb) ...
Processing triggers for man-db ...
Setting up rabbitmq-server (2.3.1-1) ...

www.it-ebooks.info

http://www.rabbitmq.com
http://www.rabbitmq.com/debian/
http://www.rabbitmq.com/debian/
http://www.rabbitmq.com
http://debian.osuosl.org
http://www.rabbitmq.com
http://debian.osuosl.org/debian/
http://www.rabbitmq.com
http://debian.osuosl.org/debian/
http://security.debian.org
http://debian.osuosl.org
http://debian.osuosl.org/debian/
http://security.debian.org/
http://debian.osuosl.org/debian/
http://security.debian.org/
http://debian.osuosl.org
http://debian.osuosl.org
http://security.debian.org
http://debian.osuosl.org
http://debian.osuosl.org
http://security.debian.org
http://debian.osuosl.org
http://security.debian.org
http://debian.osuosl.org
http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

269

Starting rabbitmq-server: SUCCESS
rabbitmq-server.

The RabbitMQ server software alone is not sufficient to provide messaging services for MCollective.
Two additional plugins for RabbitMQ need to be installed to provide Stomp protocol support and AMQP
protocol support. These plugins are specific to the version of RabbitMQ installed and are available
online at: http://www.rabbitmq.com/plugins.html. Listing 11-4 references RabbitMQ version 2.3.1. If
there is a new version of RabbitMQ available at the time of writing, please update the environment
variable to reflect your version.

Listing 11-4. Installing the RabbitMQ AMQP and Stomp plugins on Debian

$ rabbitmq_version=2.3.1
$ cd /usr/lib/rabbitmq/lib/rabbitmq_server-${rabbitmq_version}/plugins/
$ sudo wget -q http://www.rabbitmq.com/releases/plugins/v${rabbitmq_version}
/amqp_client-${rabbitmq_version}.ez
$ sudo wget -q http://www.rabbitmq.com/releases/plugins/v${rabbitmq_version}
/rabbit_stomp-${rabbitmq_version}.ez
$ sudo /sbin/service rabbitmq-server restart
Restarting rabbitmq-server: SUCCESS
rabbitmq-server.

The operator changes directories to the plugin directory for RabbitMQ. This directory is specific to
the version of RabbitMQ installed and may need to be adjusted slightly if you have not installed version
2.3.1 of RabbitMQ on your system. Once in the plugin directory, the operator downloads the amqp_client
and rabbit_stomp Erlang modules. Finally, to activate the plugins, the operator restarts the rabbitmq-
server service. Once the RabbitMQ software and plugins have been installed, please proceed to the
RabbitMQ Configuration section.

Installing RabbitMQ on RHEL / CentOS
Similar to installation on Debian-based systems, RabbitMQ on Enterprise Linux systems requires the
Erlang runtime to be installed first. RabbitMQ packages are also available for Enterprise Linux, and the
operator uses these packages to install the RabbitMQ software. Finally, the plugins to enable Stomp in
RabbitMQ need to be installed. Listing 11-5 illustrates how the operator performs these tasks on an
Enterprise Linux system. Please remember only one system needs to run the RabbitMQ service, and all
MCollective clients and servers will connect to this system to exchange messages.

Listing 11-5. Install RabbitMQ on Enterprise Linux

$ sudo yum -y install erlang
…
$ sudo rpm -Uvh http://www.rabbitmq.com/releases/rabbitmq-server/v2.3.1
/rabbitmq-server-2.3.1-1.noarch.rpm
Retrieving http://www.rabbitmq.com/releases/rabbitmq-server/v2.3.1
/rabbitmq-server-2.3.1-1.noarch.rpm
Preparing... ### [100%]
 1:rabbitmq-server ### [100%]

The operator first installs the Erlang runtime from the Enterprise Linux package repository. Erlang is
included in the Enterprise Linux distribution, so no third party packages are required. Unfortunately,

www.it-ebooks.info

http://www.rabbitmq.com/plugins.html
http://www.rabbitmq.com/releases/plugins/v
http://www.rabbitmq.com/releases/plugins/v
http://www.rabbitmq.com/releases/rabbitmq-server/v2.3.1%EF%83%89
http://www.rabbitmq.com/releases/rabbitmq-server/v2.3.1%EF%83%89
http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

270

RabbitMQ is not included in the distribution. The operator uses the rpm command to directly install the
RabbitMQ server software from the upstream vendor. Please check http://www.rabbitmq.com to find out
if more recent releases are available for Enterprise Linux systems.

Once the server software is installed, the Stomp connector plugins need to be installed. These
plugins should be placed into /usr/lib/rabbitmq/lib/rabbitmq_server-2.3.1/plugins on Enterprise
Linux systems. The installation of the plugins is shown in Listing 11-6.

Listing 11-6. Installing RabbitMQ Stomp plugins

$ cd /usr/lib/rabbitmq/lib/rabbitmq_server-2.3.1/plugins
$ sudo wget -q http://www.rabbitmq.com/releases/plugins/v2.3.1/amqp_client-2.3.1.ez
$ sudo wget -q http://www.rabbitmq.com/releases/plugins/v2.3.1/rabbit_stomp-2.3.1.ez
$ sudo chmod 644 *.ez
$ sudo /sbin/rabbitmq-server restart
Restarting rabbitmq-server: No nodes running
SUCCESS
rabbitmq-server.

Similar to the Debian installation, the operator downloads the AMQP and Stomp connector libraries
into the RabbitMQ plugins directory and then restarts the rabbitmq-server service. Once the service has
been restarted, the operator proceeds to configure RabbitMQ to enable the Stomp protocol and listen on
TCP port 6163.

RabbitMQ Configuration
Once the RabbitMQ packages and plugins have been installed, some configuration is required. The
configuration of RabbitMQ for use with MCollective is identical for both Debian-based and Enterprise
Linux-based systems. As mentioned in the installation sections, MCollective communicates using the
Stomp protocol. The use of the Stop protocol required the installation of the AMQP and Stop plugins for
RabbitMQ in the previous section.

The Example.com operator reconfigures RabbitMQ to enable the Stomp listener on TCP Port 6163.
The configuration file for RabbitMQ is located at /etc/rabbitmq/rabbitmq.config and needs to contain
only a single line to change the Stomp port. In Listing 11-7, see how the operator uses Puppet to make
sure this line is present in the configuration file.

Listing 11-7. Configuring the the RabbitMQ Stomp listener

$ sudo puppet resource file /etc/rabbitmq/rabbitmq.config \
 content='[{rabbit_stomp, [{tcp_listeners, [6163]}]}].'
file { '/etc/rabbitmq/rabbitmq.config':
 ensure => 'file', content => '{md5}8e195d71567368ea5446930bce473952
}

Using the puppet resource command, the operator manages the contents of the rabbitmq.config
configuration file. Finally, the RabbitMQ server should be restarted to configure the Stomp listener (see
Listing 11-8).

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.rabbitmq.com
http://www.rabbitmq.com/releases/plugins/v2.3.1/amqp_client-2.3.1.ez
http://www.rabbitmq.com/releases/plugins/v2.3.1/rabbit_stomp-2.3.1.ez
http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

271

Listing 11-8. Restarting RabbitMQ and verifying Stomp TCP port

$ sudo /sbin/service rabbitmq-server restart
Restarting rabbitmq-server: SUCCESS
rabbitmq-server.

$ sudo netstat -nlp | grep 6163
tcp6 0 0 :::6163 :::* LISTEN 3424/beam

The operator first restarts the rabbitmq-server service, then uses the netstat command to verify
that Port 6163 is bound and listening. The beam process is the main RabbitMQ process and is correctly
bound to port 6163 in Listing 11-8. If you do not see the beam process bound to port 6163, please verify
the rabbimq.conf configuration file syntax.

Listing 11-9 shows the last step of configuring RabbitMQ for use with MCollective. This step creates
a user account in RabbitMQ for MCollective to use. The MCollective client and server processes will use
this information to make Stomp connections to RabbitMQ.

Listing 11-9. Configuring the RabbitMQ MCollective account

$ sudo rabbitmqctl add_user mcollective iwillchangethispassword
Creating user "mcollective" ...
...done.

$ sudo rabbitmqctl set_permissions -p / mcollective "^amq.gen-.*" ".*" ".*"
Setting permissions for user "mcollective" in vhost "/" ...
...done.

The operator uses the rabbitmqctl command to add the mcollective account with a password.
Once added, permissions are granted to allow MCollective client and server processes to exchange
messages. More information about RabbitMQ accounts and permissions is available online at
http://www.rabbitmq.com/admin-guide.html.

Finally, RabbitMQ configures a default guest account with full access to the message queues. For
security purposes the guest account should be deleted using the delete_user action shown in Listing
11-10.

Listing 11-10. Removing the RabbitMQ guest account

$ sudo rabbitmqctl delete_user guest
Deleting user "guest" ...
...done.

Once the guest account has been deleted, RabbitMQ is ready for use with MCollective. Let’s move
on to installing the MCollective software and configuring the client and server to communicate through
the new RabbitMQ message service.

Installing MCollective on Debian and Ubuntu
In the previous sections, the RabbitMQ middleware service had been installed and configured on a
central server system. The operator will now install and configure the MCollective software to connect
with the messaging middleware. Each managed node will run the MCollective server process to receive

www.it-ebooks.info

http://www.rabbitmq.com/admin-guide.html
http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

272

messages and act upon them. The MCollective client program provides the command line interface to
communicate with the MCollective servers.

On Debian-based systems, installation of MCollective is straight–forward, using the packages
provided at http://puppetlabs.com/downloads/. On a node being managed, the operator downloads two
packages: the common package and the server package. See how he does this in Listing 11-11.

Listing 11-11. Installing MCollective packages on Debian-based systems

$ mkdir /var/tmp/mcollective
$ cd /var/tmp/mcollective
$ wget http://www.puppetlabs.com/downloads/mcollective/mcollective-common_1.0.1-1_all.deb
$ wget http://www.puppetlabs.com/downloads/mcollective/mcollective_1.0.1-1_all.deb
$ sudo dpkg -i mcollective*.deb
Selecting previously deselected package mcollective.
(Reading database ... 40800 files and directories currently installed.)
Unpacking mcollective (from mcollective_1.0.1-1_all.deb) ...
Selecting previously deselected package mcollective-common.
Unpacking mcollective-common (from mcollective-common_1.0.1-1_all.deb) ...
Setting up mcollective-common (1.0.1-1) ...
Setting up mcollective (1.0.1-1) ...

Only these two packages need to be installed on nodes MCollective is going to be managing. On
nodes where MCollective commands will be executed, the MCollective client package also needs to be
installed, as shown in Listing 11-12. The MCollective servers will execute actions through the use of
agent plugins. These agents will be invoked using a remote procedure call command, mc-rpc, contained
in the mcollective-client package.

Listing 11-12. Installing the MCollective client on Debian-based systems

$ mkdir /var/tmp/mcollective-client
$ cd /var/tmp/mcollective-client
$ wget http://www.puppetlabs.com/downloads/mcollective/mcollective-common_1.0.1-1_all.deb
$ wget http://www.puppetlabs.com/downloads/mcollective/mcollective-client_1.0.1-1_all.deb
$ sudo dpkg -i mcollective*.deb
Selecting previously deselected package mcollective-client.
(Reading database ... 40794 files and directories currently installed.)
Unpacking mcollective-client (from mcollective-client_1.0.1-1_all.deb) ...
Selecting previously deselected package mcollective-common.
Unpacking mcollective-common (from mcollective-common_1.0.1-1_all.deb) ...
Setting up mcollective-common (1.0.1-1) ...
Setting up mcollective-client (1.0.1-1) ...

In addition to the MCollective packages, the STOMP protocol Ruby library needs to be installed.
This Ruby library is available in the standard package repositories. If your platform does not have the
libstomp-ruby package, please install the library using the gem install stomp command. The packages
provided by Ubuntu are shown in Listing 11-13.

Listing 11-13. Installing the Ruby Stomp library on Debian

$ sudo aptitude install libstomp-ruby
The following NEW packages will be installed:

www.it-ebooks.info

http://puppetlabs.com/downloads/
http://www.puppetlabs.com/downloads/mcollective/mcollective-common_1.0.1-1_all.deb
http://www.puppetlabs.com/downloads/mcollective/mcollective_1.0.1-1_all.deb
http://www.puppetlabs.com/downloads/mcollective/mcollective-common_1.0.1-1_all.deb
http://www.puppetlabs.com/downloads/mcollective/mcollective-client_1.0.1-1_all.deb
http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

273

 libstomp-ruby libstomp-ruby1.8{a}
0 packages upgraded, 2 newly installed, 0 to remove and 82 not upgraded.
Need to get 7,204B of archives. After unpacking 94.2kB will be used.
Do you want to continue? [Y/n/?] Y
Get:1 http://us.archive.ubuntu.com/ubuntu/ maverick/universe libstomp-ruby1.8 all
 1.0.4-2 [5,548B]
Get:2 http://us.archive.ubuntu.com/ubuntu/ maverick/universe libstomp-ruby all
 1.0.4-2 [1,656B]
Fetched 7,204B in 0s (9,951B/s)
Selecting previously deselected package libstomp-ruby1.8.
(Reading database ... 48472 files and directories currently installed.)
Unpacking libstomp-ruby1.8 (from .../libstomp-ruby1.8_1.0.4-2_all.deb) ...
Selecting previously deselected package libstomp-ruby.
Unpacking libstomp-ruby (from .../libstomp-ruby_1.0.4-2_all.deb) ...
Setting up libstomp-ruby1.8 (1.0.4-2) ...
Setting up libstomp-ruby (1.0.4-2) ...

Once the MCollective server and client software packages are installed, the operator proceeds to
configure both packages to communicate with each other. Remember that the client and server do not
need to be on the same system; often the client will be installed on an administrative terminal in the data
center. Each managed node only needs the MCollective server software installed.

Installing MCollective on Enterprise Linux
MCollective is also distributed via packages on Enterprise Linux-based systems. The packages are split
into a common package, and a client and server package. On nodes to be managed by MCollective, the
mcollective-server and mcollective-common packages need to be installed, as shown in Listing 11-14.

Listing 11-14. Installing MCollective server on Enterprise Linux

$ mkdir /var/tmp/mcollective
$ cd /var/tmp/mcollective
$ wget http://www.puppetlabs.com/downloads/mcollective/mcollective-common
-1.0.1-1.el5.noarch.rpm
$ wget http://www.puppetlabs.com/downloads/mcollective/mcollective-1.0.1-1.el5.noarch.rpm
$ sudo rpm -Uvh mcollective*.rpm
Preparing... ### [100%]
 1:mcollective-common ### [50%]
 2:mcollective ### [100%]

Here, the operator downloads and installs the RPM packages for the MCollective server software.
These packages should be installed on all systems where actions will be carried out. In addition, the
MCollective client packages need to be installed on at least one system. The operator installs these
packages as shown in Listing 11-15. RPC commands will be sent from the client system to the collection
of MCollective servers.

Listing 11-15. Installing the MCollective client on Enterprise Linux

$ mkdir /var/tmp/mcollective-client
$ cd /var/tmp/mcollective-client
$ wget http://www.puppetlabs.com/downloads/mcollective/mcollective-common

www.it-ebooks.info

http://us.archive.ubuntu.com/ubuntu/
http://us.archive.ubuntu.com/ubuntu/
http://www.puppetlabs.com/downloads/mcollective/mcollective-common%EF%83%89
http://www.puppetlabs.com/downloads/mcollective/mcollective-1.0.1-1.el5.noarch.rpm
http://www.puppetlabs.com/downloads/mcollective/mcollective-common%EF%83%89
http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

274

-1.0.1-1.el5.noarch.rpm
$ wget http://www.puppetlabs.com/downloads/mcollective/mcollective-client
-1.0.1-1.el5.noarch.rpm
$ sudo rpm -Uvh *.rpm
Preparing... ### [100%]
 1:mcollective-common ### [50%]
 2:mcollective-client ### [100%]

Once the MCollective client and server packages are installed, the Ruby STOMP protocol library also
needs to be installed. MCollective communicates with the messaging middleware using the STOMP
protocol. The Stomp gem provides the API to this protocol. On Enterprise Linux systems, the most
effective way to install the Stomp gem is to use the gem command, as shown in Listing 11-16.

Listing 11-16. Installing the Stomp gem on Enterprise Linux systems

$ sudo gem install stomp
Successfully installed stomp-1.1.8
1 gem installed
Installing ri documentation for stomp-1.1.8...
Installing RDoc documentation for stomp-1.1.8...

Similar to the MCollective server software, only the client and common packages need to be
installed on an administrative console. Once the software has been installed, the operator must
configure the MCollective client and server systems to connect to the RabbitMQ service. In the next
section, you’ll see how MCollective is configured on all platforms.

MCollective Server Configuration
The MCollective server needs to be configured to connect to the RabbitMQ server. The MCollective
process connects to the service using a standard TCP connection to port 6313. Let’s see how the operator
configures the MCollective server in Listing 11-17.

Listing 11-17. Configuring the MCollective server

$ cat /etc/mcollective/server.cfg
topicprefix = /topic/mcollective
libdir = /usr/share/mcollective/plugins
logfile = /var/log/mcollective.log
loglevel = info
daemonize = 1
Plugins
securityprovider = psk
plugin.psk = klot2oj2ked2tayn3hu5on7l
connector = stomp
plugin.stomp.host = stomp.example.com
plugin.stomp.port = 6163
plugin.stomp.user = mcollective
plugin.stomp.password = iwillchangethispassword
Facts
factsource = yaml
plugin.yaml = /etc/mcollective/facts.yaml

www.it-ebooks.info

http://www.puppetlabs.com/downloads/mcollective/mcollective-client%EF%83%89
http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

275

There are three key settings to change when installing and configuring MCollective. These settings
are:

• plugin.psk: The pre-shared key MCollective uses to verify message authenticity

• plugin.stomp.host: The hostname or IP address of a Stomp message queue service

• plugin.stop.password: The password MCollective uses to authenticate the
connection to the Stomp server. This password should match the password used
in Listing 11-9, “Configuring the RabbitMQ MCollective account.”

The operator first configures the hostname of the Stomp protocol server. The Stomp server is
provided by the RabbitMQ service. Next, the operator configures MCollective to log in to the Stomp
service using the username mcollective and a password. These credentials correspond to the rabbitctl
add_user commands he used to create these accounts in Listing 11-9. Finally, the operator configures a
pre-shared key to sign messages as they travel across the message bus. This pre-shared key should be a
long, randomly generated string. The same string should be used on all MCollective systems, both client
and server. Other MCollective processes will also be configured with this key to authenticate messages
among each other.

Once the MCollective server is configured, in Listing 11-18 the operator restarts the service to
connect MCollective to the message bus.

Listing 11-18. Restarting the MCollective server after configuration

$ sudo /sbin/service mcollective restart
service mcollective restart
Shutting down mcollective: [OK]
Starting mcollective: [OK]

At this point, the MCollective server will initiate a connection to the RabbitMQ server and begin
listening for messages. This process is commonly referred to as subscribing to a message queue. The
operator then configures the MCollective client to send the first message to the collective. The
MCollective client is often installed on a different system from all of the MCollective servers. The
configuration the operator is using for the MCollective client is shown in Listing 11-19. Notice that the
plugin.psk (Pre Shared Key) setting identically matches the setting in the server configuration.

Listing 11-19. Configuring the MCollective client

$ sudo cat /etc/mcollective/client.cfg
topicprefix = /topic/mcollective
libdir = /usr/share/mcollective/plugins
logfile = /dev/null
loglevel = info
Plugins
securityprovider = psk
plugin.psk = klot2oj2ked2tayn3hu5on7l
connector = stomp
plugin.stomp.host = stomp.example.com
plugin.stomp.port = 6163
plugin.stomp.user = mcollective
plugin.stomp.password = iwillchangethispassword
Facts

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

276

factsource = yaml
plugin.yaml = /etc/mcollective/facts.yaml

Similar to the server configuration file, the operator configures the pre-shared key that MCollective
uses to authenticate messages. In addition, the Stomp server the client will connect to is configured as
stomp.example.com, with the username mcollective and the password iwillchangethispassword.

With the client configured, the operator uses the mc-ping command, as shown in Listing 11-20, to
test communication with the MCollective server processes. The operator has also configured the
MCollective server on the example.com web and mail servers.

Listing 11-20. Using the mc-ping command

$ mc-ping
webserver time=43.11 ms
mailserver time=46.81 ms
---- ping statistics ----
2 replies max: 46.81 min: 43.11 avg: 44.96 Agents

The mc-ping command informs the operator that the MCollective server is running and responding
to messages on both the web server and the mail server. This command verifies that the configuration
settings in the RabbitMQ middleware and the MCollective server and client configuration files are
working.

TROUBLESHOOTING MCOLLECTIVE

If the mc-ping command does not return results for the MCollective servers running on your network, the
following things may be the source of the problem:

Debugging information for RabbitMQ is located in /var/log/rabbitmq, and may contain information about
invalid logins if the Stomp username and password are not correct. In addition, the MCollective log file is
located at /var/log/mcollective.log and may contain useful troubleshooting information.

With the MCollective server and client processes configured, the operator is in a position to execute

Puppet runs on an ad-hoc basis using MCollective. Let’s see how he accomplishes this now.

MCollective Plugins
MCollective is extensible in a number of ways. The most common way to extend MCollective is to re-use
already written agent plugins. These small Ruby libraries enable MCollective to execute custom
commands on the entire collective.

 The pre-shared key in the client and server configuration files does not match.

 The Stomp user name or password are not correct in the client or server
configuration.

 RabbitMQ is not listening on TCP port 6163.

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

277

An agent plugin usually contains a Ruby library that must be distributed to all of the nodes running
the MCollective agent. In addition, a data definition file provides a description of the input parameters
the plugin accepts. This DDL file should be installed on the MCollective client systems. Finally, a script
to execute MCollective using the specified agent plugin should also be installed on all of the MCollective
client systems.

In this section, you’ll learn about a number of MCollective agent plugins. Additional plugins are also
available at https://github.com/puppetlabs/mcollective-plugins. These plugins provide a good
example of how to write your own agent plugins for MCollective to execute additional commands
specific to the tasks you need to manage.

Puppet Agent MCollective Plugins
MCollective does not contain an agent for Puppet out of the box. An agent plugin is provided, however,
in the plugin repository located at http://projects.puppetlabs.com/projects/mcollective-
plugins/wiki.

In this section, you’ll learn how the Example.com operator downloads and installs the MCollective
Puppet agent plugin (puppetd.rb). This plugin allows the operator to execute Puppet agent runs on-
demand. He does not need to wait for the run interval of the Puppet agent, or kick off jobs using other
tools.

Downloading the Plugins
First, the mcollective-plugins repository should be downloaded to gain access to the Puppet agent
plugins. This download is easily accomplished with the git clone command, as shown in Listing 11-21.

Listing 11-21. Cloning the mcollective-plugins repository

$ git clone git://github.com/puppetlabs/mcollective-plugins.git
Initialized empty Git repository in /Users/jeff/plabs/mcollective/mcollective-plugins/.git/
remote: Counting objects: 1233, done.
remote: Compressing objects: 100% (817/817), done.
remote: Total 1233 (delta 463), reused 864 (delta 287)
Receiving objects: 100% (1233/1233), 162.19 KiB, done.
Resolving deltas: 100% (463/463), done.

Alternatively, if Git is not available, the GitHub site provides a downloadable tar archive of the
repository. Simply download the tar archive and unpack into the current working directory to obtain the
Puppet agent MCollective plugin.

Installing an MCollective Agent Plugin
Next, the operator distributes the Puppet agent Ruby library and data definition, puppetd.rb and
puppetd.ddl, to all of the MCollective agent systems. MCollective plugins should be placed in the
directory specified by the libdir setting in the server.cfg configuration file. Puppet is an excellent way
to distribute these plugins. On the Debian test system, the operator puts the plugin into place using the
commands shown in Listing 11-22.

www.it-ebooks.info

https://github.com/puppetlabs/mcollective-plugins
http://projects.puppetlabs.com/projects/mcollective-plugins/wiki
http://projects.puppetlabs.com/projects/mcollective-plugins/wiki
http://projects.puppetlabs.com/projects/mcollective-plugins/wiki
http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

278

Listing 11-22. Determining the plugin directory

$ sudo grep libdir /etc/mcollective/server.cfg
libdir = /usr/share/mcollective/plugins

Once the plugin directory has been located, the operator copies into place the puppetd agent files
from the mcollective-plugins repository (see Listing 11-23). The operator has cloned the mcollective-
plugins repository into his home directory.

Listing 11-23. Installing the Puppet agent plugin on an MCollective agent

$ cd /usr/share/mcollective/plugins/mcollective
$ cp ~/mcollective-plugins/agent/puppetd/puppetd.rb ./agent/
$ cp ~/mcollective-plugins/agent/puppetd/puppetd.ddl ./agent/
$ ls /usr/share/mcollective/plugins/agent/
discovery.rb
puppetd.ddl
puppetd.rb
rpcutil.ddl
rpcutil.rb

We see the operator has copied the puppet.rb plugin library and the data definition into the agent
subdirectory. This directory is a subdirectory of the library path specified in the MCollective server.cfg
configuration file.

Loading the Agent Plugin
With the plugin installed, the MCollective daemon needs to reload all of the agent configuration files.
The operator uses the mc-controller command in Listing 11-24 on a MCollective client to tell all servers
to reload their agent plugins.

Listing 11-24. Commanding MCollective daemons to reload agents

$ mc-controller reload_agents
Determining the amount of hosts matching filter for 2 seconds 1

 www> reloaded all agents

---- mcollectived controller summary ----
 Nodes: 1 / 1
 Start Time: Sun Mar 13 20:43:43 -0400 2011
 Discovery Time: 2002.84ms
 Agent Time: 46.47ms
 Total Time: 2049.32ms

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

279

Verifying the Agent Plugin is Loaded
Once the MCollective servers finish reloading their agent plugins, the next step is to verify that the new
plugin is available. In order to verify the list of available agent plugins, the operator uses the mc-rpc
command as shown in Listing 11-25 to obtain an inventory of available agents. In this example, the
operator calls the agent_inventory action on the rpcutil agent.

Listing 11-25. Using the mc-rpc rpcutil agent_inventory command

$ mc-rpc rpcutil agent_inventory

www
 Agents:
 [{:license=>"Apache License, Version 2",
 :agent=>"discovery",
 :author=>"R.I.Pienaar <rip@devco.net>"},
 {:license=>"Apache License 2.0",
 :timeout=>20,
 :description=>"Agent to manage the puppet daemon",
 :agent=>"puppetd",
 :version=>"1.3",
 :author=>"R.I.Pienaar",
 :name=>"SimpleRPC Puppet Agent",
 :url=>"http://mcollective-plugins.googlecode.com/"},
 {:license=>"Apache License, Version 2.0",
 :timeout=>10,
 :description=>
 "General helpful actions that expose stats and internals to SimpleRPC clients",
 :agent=>"rpcutil",
 :version=>"1.0",
 :author=>"R.I.Pienaar <rip@devco.net>",
 :name=>"Utilities and Helpers for SimpleRPC Agents",
 :url=>"http://marionette-collective.org/"}]

Finished processing hosts in 44.89 ms

Notice the :agent => "puppet" line in the output report of the available agents on the system named
Debian. The output of the agent inventory RPC command indicates that the MCollective server running
on the Debian system has properly loaded the newly-installed Puppet agent plugin.

Running Puppet from MCollective
With the Puppet agent installed on a MCollective server, the operator decides to kick off a Puppet agent
run using MCollective. To do so, he executes the mc-puppetd script on a MCollective client system. The
mc-puppetd script is a convenience wrapper around the remote procedure call agent and associated
actions. The mc-puppetd command may be copied from the plugin directory into the /usr/sbin/
directory on the MCollective client systems. Alternatively, the mc-rpc command that comes with the
MCollective packages may be used to call agent actions, as shown in Listing 11-26.

www.it-ebooks.info

mailto:rip@devco.net
http://mcollective-plugins.googlecode.com/
mailto:rip@devco.net
http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

280

Listing 11-26. Executing mc-puppetd to start Puppet agent runs

$ mc-puppetd -v runonce
Determining the amount of hosts matching filter for 2 seconds 1
www : OK
 {:output=>""}

---- rpc stats ----
 Nodes: 1 / 1
 Pass / Fail: 1 / 0
 Start Time: Sun Mar 13 20:55:53 -0400 2011
 Discovery Time: 2002.94ms
 Agent Time: 1926.36ms
 Total Time: 3929.30ms

Here the operator used the mc-puppetd command, turned on verbose output using the -v flag, and
commanded all of the MCollective servers to run the Puppet agent once. This is equivalent to executing
puppetd --runonce on all of the systems in the collection.

MULTIPLE INSTANCES OF PUPPET AGENT

When running Puppet from MCollective, the Puppet agent daemon on all managed nodes may be disabled.
MCollective will spawn a new Puppet process each time the puppetd agent is invoked using the mc-
puppetd command. This process will be in addition to any already running Puppet agent daemon,
duplicating functionality.

If the Puppet agent daemon is disabled, periodic catalog runs will no longer take place, so please make
sure to trigger periodic runs using mc-puppetd or configure the agent to run periodically through cron. In
any case, if multiple Puppet processes run simultaneously, only one will perform a catalog run at once.
Multiple simultaneous catalog runs are prevented by the use of a lock file at
/var/lib/puppet/state/puppetdlock. This file may be in a different location on your system and may be found
using the command: puppet agent --configprint puppetdlockfile.

When Puppet is run with the --runonce option, the agent will fork to the background. The actual
Puppet agent run may not have succeeded, even though MCollective successfully launches Puppet. The
Puppet reports should be inspected for the overall status results of each Puppet agent run. The OK result
from MCollective indicates only that the MCollective server was able to successfully start the puppetd
process and did not receive any output.

Listing All Loaded Agent Plugins
The mc-puppetd command is useful to work with the Puppet agent directly. However, as additional
agents are installed, it may become cumbersome to keep track of a large number of different commands
on the MCollective client systems. As an alternative to the mc-puppetd command, most agents are
callable through the mc-rpc command. The mc-rpc command has the added benefit of reading the DDL
file for each agent when the client is invoked. Let’s see how mc-rpc is able to provide information about

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

281

the input and output parameters of an MCollective agent by reading the DDL file for the agent, shown in
Listing 11-27.

Listing 11-27. Using mc-rpc to obtain actions from an agent

mc-rpc --agent-help puppetd
SimpleRPC Puppet Agent
======================

Agent to manage the puppet daemon

 Author: R.I.Pienaar
 Version: 1.3
 License: Apache License 2.0
 Timeout: 20
 Home Page: http://mcollective-plugins.googlecode.com/

ACTIONS:
========
 disable, enable, runonce, status

 disable action:

 Disables the Puppetd

 INPUT:

 OUTPUT:
 output:
 Description: String indicating status
 Display As: Status

 enable action:

 Enables the Puppetd

 INPUT:

 OUTPUT:
 output:
 Description: String indicating status
 Display As: Status

 runonce action:

 Initiates a single Puppet run

 INPUT:

 OUTPUT:
 output:
 Description: Output from puppetd

www.it-ebooks.info

http://mcollective-plugins.googlecode.com/
http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

282

 Display As: Output

 status action:

 Status of the Puppet daemon

 INPUT:

 OUTPUT:
 enabled:
 Description: Is the agent enabled
 Display As: Enabled

 lastrun:
 Description: When last did the agent run
 Display As: Last Run

 output:
 Description: String displaying agent status
 Display As: Status

 running:
 Description: Is the agent running
 Display As: Running

The output shown in Listing 11-27 comes from information stored in the DDL file accompanying
each MCollective agent. When installing agent plugins, the DDL file should b installed on the system
where the mc-rpc command is invoked to provide documentation on the command line.

So far we’ve seen how MCollective is useful for starting Puppet agent runs on demand on all hosts in
the collective. What if the operator wants to perform actions on only a subset of the collection?
MCollective allows systems to be addressed by any value returned from Facter. Let’s see how the
operator configures MCollective to work with Facter to obtain this information.

The Facter Plugin for MCollective
MCollective allows systems to be addressed by metadata about the each system in addition to the
system host name. This provides much more flexibility because any relevant information about each
node can be used to group systems into collectives. MCollective integrates with the Facter library to
collect this metadata on each server and on demand. By default, the metadata MCollective uses is
statically defined in the file /etc/mcollective/facts.yaml. In most situations, a library like Facter should
be used to dynamically generate metadata for each system.

Let’s see how the Example.com operator reconfigures MCollective in Listing 11-28 to obtain
metadata about each system from Facter.

Listing 11-28. Installing the MCollecitve Facter plugin on Debian

$ sudo cp ~/mcollective-plugins/facts/facter/facter.rb \
 /usr/share/mcollective/plugins/mcollective/facts/

www.it-ebooks.info

http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

283

On Enterprise Linux-based systems, the MCollective plugin directory is located in
/usr/libexec/mcollective rather than /usr/share/mcollective/plugins on Debian. The operator
installs the Facter plugin on Enterprise Linux using the command shown in Listing 11-29.

Listing 11-29. Installing the MCollective Facter plugin on Enterprise Linux

$ sudo cp ~/mcollective-plugins/facts/facter/facter.rb \
 /usr/libexec/mcollective/mcollective/facts

Once the Facter plugin is installed, configuration is simply a matter of adding a few lines to the
server.cfg file and restarting the MCollective servers on all of the nodes. The output shown in Listing
11-30 are the lines the operator uses to configure MCollective for use with Facter in
/etc/mcollective/server.cfg.

Listing 11-30. Configuring the MCollective Facter plugin in server.cfg

$ grep facter /etc/mcollective/server.cfg
factsource = facter

We can see the operator has changed the default configuration of factsource = yaml to use Facter
instead. Finally, the operator restarts the MCollective server daemon in Listing 11-31 to activate the
change.

Listing 11-31. Restarting the MCollective server daemon to activate Facter

sudo /sbin/service mcollective restart
Shutting down mcollective: [OK]
Starting mcollective: [OK]

The operator is ready to test if MCollective is properly obtaining information about each system
from Facter. This is easily accomplished with the mc-facts command. This command accepts a Facter
variable and returns a count of the number of systems with each value set. Let’s see what this looks like
in Listing 11-32.

Listing 11-32. Counting operatingsystem types with mc-facts

$ mc-facts operatingsystem
Report for fact: operatingsystem

 CentOS found 1 times
 Debian found 1 times

Finished processing 2 hosts in 45.32 ms

We can see from the output of the mc-facts command that two systems are in the collection, one of
them a CentOS system and one of them a Debian-based system. In the next section we’ll show how to
make more advanced use of the rich metadata Facter provides. Specifically, this information about each
node may be used to divide the nodes into collections and only execute commands on systems matching
specific criteria.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

284

Additional Plugins
The mcollective-plugins project mentioned in this chapter contains a number of useful agent plugins for
MCollective. However, you may find the need to write your own agents and actions to carry out
deployment or administrative tasks on your systems. Please visit the latest MCollective documentation
at http://docs.puppetlabs.com/ to learn more about writing agents for MCollective.

We also recommend you fork the mcollective-plugins project on GitHub and use some of the small
agent plugins as a reference to writing your own. The filemgr.rb plugin is a great starting point to get
started with MCollective. If you do write a new agent, please don’t hesitate to submit a pull request to
share your work with the rest of the MCollective community.

Addressing Hosts with Metadata
In the previous section, you learned how the Example.com operator uses MCollective with Facter to
obtain metadata about each system. This dynamic information provides a unique way to execute
commands on a large number of systems. Specific systems matching exact criteria may also be selected
to execute MCollective commands on. The operator no longer needs to maintain cumbersome
spreadsheets with all of the hostnames for his systems. If a command needs to be executed, MCollective
provides a simple and straightforward way to do so rather than connecting to each machine in
succession over SSH.

When working with Puppet and MCollective, hosts may be addressed by any Facter value or any
class the host has been assigned from Puppet. These classes are read from
/var/lib/puppet/state/classes.txt. This file may be in a different location on your system and can be
found using the command puppet agent --configprint classfile.

To address all systems that are Debian or CentOS, the operator uses the --with-fact option of
MCollective client commands. Let’s see how the operator finds the amount of free memory without
knowing the hostname of the systems (Listing 11-33).

Listing 11-33. The MCollecive client --with-fact option

mc-facts -v --with-fact operatingsystem='/CentOS|Debian/' memoryfree
Determining the amount of hosts matching filter for 2 seconds 2
Report for fact: memoryfree
 342.03 MB found 1 times
 www.example.com
 438.38 MB found 1 times
 mail.example.com

---- rpc stats ----
 Nodes: 2 / 2
 Pass / Fail: 0 / 0
 Start Time: Sat Mar 26 09:36:25 -0700 2011
 Discovery Time: 2003.41ms
 Agent Time: 52.65ms
 Total Time: 2056.06ms

The operator uses a regular expression to execute the facts agent on systems where Facter reports
the operatingsystem to be CentOS or Debian. By using this regular expression, the operator is easily able
to exclude systems and obtain information only from the systems he’s interested in.

www.it-ebooks.info

http://docs.puppetlabs.com/
http://www.example.com
http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

285

Host filters work nearly everywhere in MCollective. The pervasiveness of filters is a key differentiator
between MCollective and other command and control tools. Notice in Listing 11-34 how the mc-rpc
command is able to execute agent plugins using host filtering.

Listing 11-34. Using host filters with mc-rpc

mc-rpc --with-fact operatingsystem=/Debian/ puppetd status

www.example.com
 Status: Enabled, not running, last run 2116078 seconds ago
 Enabled: 1
 Running: 0
 Last Run: 1299043683

Finished processing 1/1 hosts in 45.93 ms

The operator uses the --with-fact option to send the status action to the puppetd agent to the
collection of Debian systems. In addition to specifying one filter, the operator is able to narrow down the
selection of nodes for the collective using multiple filters. Let’s see how this works in Listing 11-35.

Listing 11-35. Using multiple host filters with mc-rpc

mc-rpc --np -F operatingsystem=/CentOS/ -F fqdn=/mail/ puppetd status
Determining the amount of hosts matching filter for 2 seconds 1

mail.example.com
 Status: Enabled, not running, last run 1697383 seconds ago
 Enabled: 1
 Running: 0
 Last Run: 1299465342

Finished processing 1 / 1 hosts in 45.96 ms

The Example.com operator uses the short version of the --with-fact option to filter against both the
operatingsystem and fqdn facts. With this command, any CentOS system with the word “mail” in the
fully qualified hostname will match the filter. This regular expression matching, in real-time, allows the
operator to write scripts that will take into account additional systems. Perhaps mail01 and mail02 will
come online in the future in addition to the single mail system. With the ability to filter on any Facter
value and combine multiple filters, actions may be carried out that take into account the number of
systems automatically. Scripts no longer need to be updated as hosts are added to the network.

Summary
In this chapter, you learned how MCollective provides real-time, metadata-driven command and
control of Puppet-managed systems. MCollective takes an innovative and unique approach to the
problem of orchestrating a large number of systems. Instead of using hostnames to uniquely identify
and access systems, MCollective integrates with Facter, allowing the operator to filter out machines he
does not want to carry out actions on.

In addition to the unique approach of addressing machines through metadata, MCollective uses the
STOMP messaging protocol to communicate. The MCollective client (most commonly accessed through

www.it-ebooks.info

http://www.example.com
http://www.it-ebooks.info/

CHAPTER 11 MARIONETTE COLLECTIVE

286

the mc-rpc command) and the MCollective server take advantage of the proven scalability and
performance of asynchronous messaging services.

You also learned how to configure the RabbitMQ messaging service for use with MCollective as well.
While RabbitMQ is relatively easy to configure and get running, there may be performance and
scalability considerations that make ActiveMQ a better choice for your deployment. In addition,
MCollective is most heavily developed and tested with ActiveMQ. RabbitMQ support was recently added
and the STOMP connector for RabbitMQ works well with MCollective as of version 2.3.

MCollective gives you the ability to obtain information from your systems in real-time, without the
tedium of scripting SSH connections to each and every hostname on the network. Systems may be
added and removed from the network quickly without the need to update scripts or other programs
communicating with these systems. In addition, MCollective works extremely well with Facter and
Puppet, enabling control of the Puppet agent and filtering of hosts through Facter with ease.

Resources
• http://devco.net/

The blog of R.I. Pienaar, the author of MCollective.

• http://docs.puppetlabs.com/

MCollective Documentation is located on the Puppet Labs curated
documentation site.

• http://docs.puppetlabs.com/mcollective/reference/basic/messageflow.html

An architectural overview of how messages travel from client to server processes
in MCollective.

• http://docs.puppetlabs.com/mcollective/reference/integration/activemq_clus
ters.html

Information about setting up multiple ActiveMQ middleware services for use with
MCollective. This information may be useful for deployments among multiple
data centers or geographic locations.

• http://en.wikipedia.org/wiki/Publish/subscribe

Overview of the publish and subscribe methodology used by MCollective.

• http://forge.puppetlabs.com/

The RabbitMQ Puppet module is available for installation using the puppet-
module tool from the Puppet Forge.

• http://github.com/puppetlabs/puppetlabs-rabbitmq

The source code for the RabbitMQ Puppet module is published on GitHub.

• http://www.rabbitmq.com/plugins.html

RabbitMQ Stomp protocol plugins are available as a separate download from the
main RabbitMQ website. Please download the version of the AMQP and Stomp
plugins from this location.

www.it-ebooks.info

http://devco.net/
http://docs.puppetlabs.com/
http://docs.puppetlabs.com/mcollective/reference/basic/messageflow.html
http://docs.puppetlabs.com/mcollective/reference/integration/activemq_clus
http://en.wikipedia.org/wiki/Publish/subscribe
http://forge.puppetlabs.com/
http://github.com/puppetlabs/puppetlabs-rabbitmq
http://www.rabbitmq.com/plugins.html
http://www.it-ebooks.info/

 CHAPTER 11 MARIONETTE COLLECTIVE

287

• http://www.rabbitmq.com

The main website for the RabbitMQ messaging middleware service.

• http://www.rabbitmq.com/admin-guide.html

Additional information about user accounts and access control in RabbitMQ is
located in the administrative guide.

• http://puppetlabs.com/downloads/

MCollective packages and source may be downloaded from the Puppet Labs
website.

• https://github.com/puppetlabs/mcollective-plugins

Many agent plugins for MCollective are located in the mcollective-plugins Git
repository on GitHub.

www.it-ebooks.info

http://www.rabbitmq.com
http://www.rabbitmq.com/admin-guide.html
http://puppetlabs.com/downloads/
https://github.com/puppetlabs/mcollective-plugins
http://www.it-ebooks.info/

A P P E N D I X A

289

Working with Puppet

It is very important to remember that Puppet is an ever-developing tool with an ever-widening
community. Not only is the Puppet community growing quickly but many new ideas, developments,
patches, and recipes appear every day. This is important for two major reasons:

• More often than not, someone has already solved the issue, problem or challenge
you are trying to address

• New features, functions, and fixes are available in every release

It is a good idea to check out the various resources we talk about in the Resources section below,
such as the mailing list archives and the Wiki, when you have an issue. These forums are also where
announcements are made about new releases of Puppet and related tools.

Getting Support and Training
Puppet is an open-source tool and there are a lot of sources of information and support available for it
(including this book!). In addition, Puppet’s parent company, Puppet Labs, offers the Puppet Enterprise
product (the pre-packaged commercial edition of Puppet), support contracts, and custom development,
consulting and training programs worldwide. You can find details of these offerings at
http://www.puppetlabs.com/.

 Note Full disclosure: Both authors work for Puppet Labs and have a financial stake in its success.

There are also a number of members of the Puppet community who offer services, implementation
support and consulting services. Many local systems implementers and consultants also have Puppet,
skills should you require assistance. Posting a message on the Puppet mailing list, or your Linux User
Group or Open Source Business Association forums seeking help will usually result in offers of
assistance.

Resources
There are a number of useful resources available to get you started with Puppet. We’ll refer to these and
other references throughout this book. We also strongly recommend subscribing to the Puppet mailing
lists (see below) as a lot of useful information, tips and tricks, and trouble-shooting assistance is
presented there. Currently the mailing list has over 3000 subscribers and is an active and helpful
community.

www.it-ebooks.info

http://www.puppetlabs.com/
http://www.it-ebooks.info/

APPENDIX A WORKING WITH PUPPET

290

The Puppet IRC channel, #puppet on the Freenode network, is also a useful place to visit and ask for
help. There are 500 people regularly on the channel and while they are all generally busy system
administrators, they can usually spare some time to help people new to Puppet.

 Note Many of the Puppet developers also hang out in #puppet-dev on the Freenode network. If you have
development-related questions, this is a good place to start.

Like all requests for help, when asking on email or IRC, you should try to ask a good question.
Include your Puppet version, your platform and the exact error you are receiving. The more information
you provide, the easier it is for people to help you.

Another good resource for information on asking good questions on the Internet is
http://catb.org/esr/faqs/smart-questions.html.

You can also find a searchable log of IRC conversations available at
http://pelin.lovedthanlost.net/puppet/.

Web
• Puppet Bug Tracker:

• http://projects.puppetlabs.com

• Puppet Source Code:

• https://github.com/puppetlabs/puppet

• Facter Source Code:

• https://github.com/puppetlabs/facter

• MCollective Source Code:

• https://github.com/puppetlabs/marionette-collective

• Puppet Documentation:

• http://docs.puppetlabs.com/

• http://docs.puppetlabs.com/learning/

• http://docs.puppetlabs.com/references/

• Puppet Documentation in PDF:

• http://www.puppetlabs.com/resources/downloads/

• Puppet Wiki:

• http://projects.puppetlabs.com/projects/puppet/wiki

• Puppet FAQ:

www.it-ebooks.info

http://catb.org/esr/faqs/smart-questions.html
http://pelin.lovedthanlost.net/puppet/
http://projects.puppetlabs.com
https://github.com/puppetlabs/puppet
https://github.com/puppetlabs/facter
https://github.com/puppetlabs/marionette-collective
http://docs.puppetlabs.com/
http://docs.puppetlabs.com/learning/
http://docs.puppetlabs.com/references/
http://www.puppetlabs.com/resources/downloads/
http://projects.puppetlabs.com/projects/puppet/wiki
http://www.it-ebooks.info/

 APPENDIX A WORKING WITH PUPPET

291

• http://docs.puppetlabs.com/guides/faq.html

• Puppet Style Guide:

• http://docs.puppetlabs.com/guides/style_guide.html

• Puppet Labs:

• http://www.puppetlabs.com

Mailing Lists
• Puppet User Group:

• http://groups.google.com/group/puppet-users/

• Puppet Developer Group:

• http://groups.google.com/group/puppet-dev/

Puppet Module Forge
• http://forge.puppetlabs.com

Puppet Enterprise
• http://www.puppetlabs.com/puppet/puppet-enterprise/

Support (commercial)
• http://puppetlabs.com/services/

Training
• http://puppetlabs.com/training/

IRC
• Puppet IRC Channel:

• irc://irc.freenode.net/puppet

• Puppet Developers IRC Channel:

• irc://irc.freenode.net/puppet-dev

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://docs.puppetlabs.com/guides/faq.html
http://docs.puppetlabs.com/guides/style_guide.html
http://www.puppetlabs.com
http://groups.google.com/group/puppet-users/
http://groups.google.com/group/puppet-dev/
http://forge.puppetlabs.com
http://www.puppetlabs.com/puppet/puppet-enterprise/
http://puppetlabs.com/services/
http://puppetlabs.com/training/
http://www.it-ebooks.info/

293

Index

 Symbols
@ character

declaring virtual resources, 134, 143
@@ syntax

declaring virtual resources, 143

 A
absent value, ensure attribute, 4
access logs

performance, 117
Puppet CA hot standby, 114
Puppet CA worker configuration, 112
testing Puppet master in Apache, 96

account information from ENC, 208–211
accounts Ruby DSL module, 211–216
accounts_ruby module class, 211–212
actions

Puppet master functions, 43
Active Record see Ruby Active Record library
active standby see Puppet CA hot standby
ActiveMQ service, 152

installing, 152
on Debian systems, 154–156
on Enterprise Linux systems, 152–154

Puppet master queue configuration, 156
queue support for stored configurations, 152
requirement of Java and XML config files, 266
stomp protocol, 152

activerecord/activesupport versions
installing Ruby on Rails using gem, 140

Add Class page, Dashboard, 174
add command, Git tool, 37, 38
Add Group page, Dashboard, 174
add method, Facter, 243
Add Node page, Dashboard, 173
Advanced Message Queuing Protocol see AMQP
agent command

testing load balancer configuration, 103

Agent Forwarding
developing change using branch, 75

agent plugins, MCollective, 276–282
agent section, puppet.conf file, 12

runinterval option, 26
agents, 2

adding definition to nodes.pp file, 20
applying configuration, 24–26
authenticating, 17
catalog of resources, 5
configuring environments, 66–70
configuring master for stored configuration,

141
configuring reporting, 233
connecting agent, 16–18
connecting master and, 17
creating configuration, 18–21
default 30-minute run interval, 265
default checking period, 2
environments, 65
extending site.pp file, 19
Facter tool, 4–5
facts, 5
HTTPS load balancing, 108
importance of accurate time, 18
installing

for Example.com Pty Ltd, 30
from source, 10
on Debian and Ubuntu, 9
on OpenSolaris, 9
on Red Hat, 8
on Windows, 11

listing all loaded plugins, 280–282
making changes to development

environment, 68, 69
master installations, 8
MCollective see MCollective agents
MCollective plugins, 277–282
mixing releases of Puppet, 7
no configuration available for node, 18
puppet binary starting, 15

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

294

agents (cont.)
reloading configuration files, 278
resource abstraction layer, 4
splaying time for, 117
testing against Postfix configuration file, 82
testing against sshd configuration file, 77
testing against testing environment, 86
testing environments with, 70–72
transaction reports from, 231–233
verifying authenticity of certificate, 95
verifying authenticity of server, 93

alias metaparameter, 42
AMQP (Advanced Message Queuing Protocol)

RabbitMQ, 267
installing on Debian, 269
installing on Enterprise Linux, 270

Apache
access logs, 96
ActiveMQ service, 152
building host for, 30
exporting load balancer worker resources,

145, 146, 147
installing Passenger module

on Debian-based systems, 91–92
on Enterprise Linux, 90–91
using Ruby Gems, 92

load balancing multiple masters, 97–116
managing, 56
Passenger module, 90

configuring Apache and, 93–95
running Dashboard with, 165, 166–167
running Foreman with, 180

reverse proxy load balancer, 100
running master with Passenger and, 90–97
testing master in, 96–97

apache class, 58
apache::install class, 56
apache::service class, 57

Apache definition, 57–60
content attribute, 58
define syntax, 57
priority parameter, 58
serveraliases parameter, 59
variables, 58
vhost.pp file, 60
VirtualHost template, 58, 59

Apache front-end load balancer see front-end
Apache load balancer

Apache virtual host
configuring Apache and Passenger, 93
configuring for Dashboard, 166

load balancing multiple masters, 97
testing load balancer configuration, 103
testing master in Apache, 96
VirtualHost template, 58, 59

APT repository
adding RabbitMQ apt repository to Debian,

267
installing Dashboard from DEB, 162

apt-get command
installing Puppet on Ubuntu, 9
installing RabbitMQ, 268

ArchLinux
installing Puppet on, 11

arrays
creating, 46
iterating over, 205

arrow operators
list of syntax arrows, 137
relationship-chaining syntax, 136
tilde arrows, 137

attributes, 3, 4
absent value, 4
ensure attribute, 4
metaparameters, 23
overriding, 52
present value, 4
recurse attribute, 55
require attribute, 23
undef value, 53

audit capabilities, Dashboard, 159
audit mode, 55
authentication

authenticating agent, 17
Dashboard, 168
Foreman, 186
HTTP Basic authentication, 168
LDAP authentication, 186
load balancing multiple masters, 98, 100, 101,

102
SSL authentication, 90, 94, 95, 97, 101

authorization
Dashboard, 168
load balancing multiple masters, 102

autoloading, 60
autosign mode, certificates, 17

 B
back-end master worker virtual hosts, 90

configuring unique Rack DocumentRoot, 106

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

295

load balancer configuration, 100
testing, 103, 104, 105, 106

load balancing multiple masters, 98–100
backing up files, 26
balancer_access.log file, 103
balancer_error.log file, 104
BalancerMember keyword, 101
balancermember resources, 146, 147
base node

node inheritance, 32, 33
Basic authentication, HTTP

Dashboard security, 168
batch option

mysql command line utility, 142
binaries

full list of, 17
single binary, 15

bind service
defining proxy class containing, 53
disabling bind on some nodes, 52
specifying running for all nodes, 52

bind::server class
class inheritance, 52

Blastwave packages
installing Puppet on OpenSolaris, 9

branches, 73
developing change using branch, 75–82

branching see environment branching
bugs

Ruby SSL code, 12
build command, Puppet Module, 194, 198

releasing NTP module to Forge, 204

 C
ca_server option, 116, 118
cadir configuration setting, 113, 114
case statement, 22, 43

writing custom facts, 244
catalog, 5, 25

measuring compilation time, 116
catalog compilation errors

validating resources, 224
catalog policy, cucumber-puppet

adding check step to, 224–225
adding policy to Git index, 220
adding www and mail to, 221
catching changes in ENC data, 227–228
committing to Git repository, 221
generating template catalog policy file, 219

implementing cucumber check, 226
testing failure reporting, 222–223
testing policy, 222–223
validating resources, 224–228
writing story describing behavior, 218–221

catalog requests
curl command, 117
measuring performance, 116, 117

CentOS
addressing hosts with metadata, 284
installing RabbitMQ on, 269–270

central repository, 74
cert command

cadir configuration option, 114
configuring Apache and Passenger, 95

certificate requests
consolidation of, 118
Puppet CA hot standby, 112, 113
Puppet CA load balancing, 108
Puppet CA worker, 110, 111, 112, 116

certificates
autosign mode, 17
cert command, 17
connecting master and agent, 17
displaying outstanding, 17
load balancing multiple masters, 102
Puppet CA hot standby, 114
Puppet CA load balancing configuration, 107–

116
re-activating primary Puppet CA worker, 115
signing, 17, 18
starting master, 14
waitforcert option, 17

certname option, puppet.conf file, 12
chaining, 45
checkout command, Git, 86, 87
class inheritance, 52

scope, 53
classes, 18, 20

adding, Dashboard, 174
establishing relationships within, 45
managing in init.pp file, 40
namespace syntax, 39
naming, 21
nesting, 40
referring to variables in another class, 44

classes, list of
apache, 58
apache::install, 56
apache::service, 57
module::params, 42

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

296

classes, list of (cont.)
mysql, 55
mysql::config, 54
mysql::install, 54
mysql::service, 55
postfix, 52
postfix::config, 49–51
postfix::install, 48
postfix::service, 51
puppet, 62
puppet::config, 61
puppet::install, 61
puppet::master, 62
puppet::params, 61
puppet::service, 62
ssh, 40
ssh::config, 39, 40, 44–46
ssh::hostkeys, 143
ssh::install, 39, 40, 41–44
ssh::knownhosts, 144
ssh::params, 42, 43, 44
ssh::service, 39, 40, 46–48

classifiers
ENC (External Node Classification), 120–

127
client request

load balancing multiple masters, 100, 101
client software see agents
client-server mode, 1, 11, 89
client-server model, 2, 7

connecting agent, 16–18
clone command, Git, 277
cloning

Git repository, 67–68
CNAME

creating DNS CNAME for host, 13
for master, 16

code review process, 67
collections (of resources), 18

including multiple collections, 20
node definition, 20

commands
functions, 43

commit command, Git, 38, 70
conditional checks, 42
conditional statements

module::params class, 42
conditional syntax, 22

case statement, 43
if/else statement, 43
selectors, 42

conf.d.members directory
exporting load balancer worker resources, 146

config class
mysql, 54
postfix, 49–51
puppet, 61
ssh, 39, 40, 44–46

config command, Git, 37
config.ru Rack configuration file, 93, 95, 96
configuration, 1, 2

adding to version-control system, 24
applying, 24–26
connecting agent, 16–18
creating, 18–21
creating sudo module, 21–24
enabling thin stored configurations, 151
environments, 66–70
externalizing, 119–131
for custom facts, 241–242
for types/providers/functions, 246–247
import directive, 19
LDAP in Puppet, 128–131
making changes to Postfix configuration file,

78–81
making changes to sshd configuration file, 75–

77
nodes

Example.com, 31–35
external sources, 31
node inheritance, 32–33
specifying default node, 32
variable scoping, 33–35
working with similar hosts, 31

production environment releases, 86
Puppet CA load balancing, 107–116
Puppet master, 11–15

firewall, 14
for stored configuration, 140–142
starting master, 14–15

reporting, 233–234
scaling stored configurations, 151–157
site.pp file, 13, 19
statements starting with $, 19
stored configurations, 157
transactional layer, 5

configuration items, 3, 18
see also resources
Facter tool and facts, 5
items managed, 7
site.pp file, 13

configuration language, 3–4

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

297

configuration resources see resources
configuration run, 2
configuration tools, 189

Cucumber Puppet, 216–228
declarative nature of Puppet, 3
not duplicating effort, 189
Ruby DSL, 205–216
shell or Perl script, 3

configuring Dashboard, 163–164
database.yml configuration file, 164
Ruby rake command, 164
YAML configuration file, 164

configuring Foreman, 178–180
on Debian, 178
on Red Hat, 178
on Ubuntu, 178

connecting agent, 16–18
consoles

Dashboard, 159
Foreman, 159

content attribute, file resources, 50
Apache definition, 58

create method
creating Subversion provider, 251

CSR
signing CSR on standby Puppet CA, 114

Cucumber Puppet tool, 189, 216–228, 229
adding check step to policy, 224–225
adding cucumber-puppet steps to Git, 219
catching changes in ENC data, 227–228
changes to hooks.rb file to configure, 219
committing node information and catalog

policy to Git repository, 221
copying YAML files from master into, 220
cucumber-puppet-gen command, 218, 219
implementing cucumber check, 226
installing, 217–218
installing with RubyGems, 217
locating executable directory, 217
policy.feature file, 219, 220
stories, 218
template cucumber-puppet policy, 220
testing catalog failure reporting, 222–223
testing catalog policy, 222–223
testing if cucumber-puppet executable in

PATH variable, 217
updating cucumber-puppet node cache, 228
validating resources, 224–228
writing story describing catalog behavior, 218–

221
cucumber-puppet see Cucumber Puppet tool

curl command
catalog request, 117
measuring performance, 117
Puppet CA hot standby, 113, 114

custom facts
adding facts, 242
configuring Puppet for, 241–242
plug-ins in modules, 241
testing facts, 245
writing and distributing, 241–246

custom functions
writing, 260–262

CustomLog configuration option, 102
CVS, 37

 D
D option

mysql command line utility, 142
daemons

puppet master daemon, 14
options, 15

Dashboard, 159–176
adding classes, 174
adding groups, 174
adding nodes, 173
authentication, 168
authorization, 168
configuring, 163–164
creating dump of database, 175
database back up, 175
database optimization, 175
Destroy button, 175
documentation, 186
encryption, 168
external node classification, 173–175
external node classifiers, 119
Group summary screen, 174
home page, 168
importing existing reports, 169–170
installing, 160–163

DEB packages via APT, 162
from source code, 163
Red Hat prerequisites, 160–161
RPM packages via Yum, 161
Ubuntu prerequisites, 161

integrating, 169–172
logging, 175
performance, 175
populating database, 164

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

298

Dashboard (cont.)
pruning log files, 175
purging older reports, 176
restoring database, 176
running, 165–168
running with Passenger, 165–167

Apache, 165, 166–167
Debian packages, 166
Nginx, 165, 168
Red Hat packages, 166
Ubuntu packages, 166

running with Thin, 168
running with Unicorn, 168
running with Webrick, 165
security, 168
sending live reports to, 170–171
viewing reports, 171

data center management
Foreman, 159, 176

database servers
building hosts with Puppet, 29
stored configurations, 137–140

database.yml file
configuring Dashboard, 164
configuring Foreman, 179

databases
back-ending node classification script, 125,

126
databases, Dashboard

back up, 175
configuring, 163
creating dump of, 175
optimization, 175
populating, 164
restoring, 176

databases, Foreman
configuring Foreman, 178
importing data from Puppet, 179
managing, 179

db.example.com host
managing MySQL with mysql module, 53–56
operating system, 29
role-specific application for, 30

DEB-based distributions
installing Dashboard, 161

DEB packages via APT, 162
installing Foreman, 177

Debian
adding RabbitMQ apt repository, 267
addressing hosts with metadata, 284
configuring Foreman, 178

extending NTP class, 201
final test of NTP module, 204
installing ActiveMQ service, 154–156
installing Apache and Passenger, 91–92
installing Cucumber Puppet, 217
installing Erlang, 267
installing Foreman, 177
installing MCollective, 271–273
installing MySQL server, 139
installing Puppet, 9
installing RabbitMQ, 267–269
managing NTP service, 195–205
MCollective plugin directory, 283
running Dashboard with Passenger, 166

Debian backports, 91
installing Apache and Passenger, 92

debug option
agent command, 17
master command, 15

declarative language, 3
Puppet, 189
variable scoping, 33

default node
configuring nodes, 32

default report, 233, 234
defaults

global defaults, 49
metaparameters, 50
resource default syntax, 49

defaultto method/structure
httpauth type, 257
writing parsed file type, 254

define syntax
Apache definition, 57

definitions of resources
Apache, 57–60
Puppet, 18

delete method
creating Subversion provider, 251

deployment
MCollective, 265
Puppet, 2

Destroy button, Dashboard, 175
development environment

creating clone of modules Git repository, 67
ensuring identical copy of production

environment, 67
making changes to, 68–70
making changes to Postfix configuration file,

78, 80

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

299

merging changes into development branch,
83–84

puppet.conf file, 66
testing agent against Postfix configuration file,

82
DHCP

managing environment, Foreman, 181
diff command, 105
Directory option, Apache

running Dashboard with Passenger, 167
DNS

managing environment, Foreman, 181
DNS CNAME

creating for host, 13
DNS round robin

load balancing, 116
DocumentRoot, Apache, 167
DocumentRoot, Rack, 99

 E
e option

mysql command line utility, 142
enable attribute

overriding, 52
specifying status of resource, 47

ENC (External Node Classification), 31, 119, 120–
127
see also external node classifiers
account information from, 208–211
back-ending node classification script, 125–

127
catching changes in data, 227–228
configuring nodes, 121
Dashboard, 159, 160, 173–175
declaring resources and variables in top

scope, 205
declaring resources from data, Ruby DSL, 206
dynamic data set accessed through, 205
LDAP, 119, 127–131
Perl external node classifier, 124–125
removing administrator account from, 227
Ruby DSL, 205

accounts module, 211, 212, 214, 215, 216
Ruby external node classifier, 122–124
script for Ruby DSL, 206
script output for Ruby DSL, 206
start of YAML document, 120
using Foreman as, 181–183
YAML (Yet Another Markup Language), 120

encryption
Dashboard, 168
Foreman, 186

ensurable method, httpauth, 257, 259
ensurable statement

creating Subversion provider, 251
writing parsed file type, 254
writing type and provider, 249

ensure attribute, 4
creating sudo module, 22
overriding, 52
specifying state of resource, 47

Enterprise Linux
see also Red Hat
adding support to NTP module, 200–203
extending NTP class to support, 201
final test of NTP module on, 204
installing ActiveMQ on, 152–154
installing Apache and Passenger on, 90–91
installing MCollective on, 273–274
installing RabbitMQ on, 269–270
MCollective plugin directory, 283
obtaining NTP service name and

configuration for, 201
systems in, 90

Enterprise product, 289
ENV variable, Ruby

writing custom facts, 243
environment attribute

configuring LDAP in Puppet, 130
environment branching, 73

creating testing branch, 83
developing change using branch, 75–82
merging changes into development branch,

83–84
merging changes into testing branch, 84
merging changes into testing environment,

83–86
performing checkout on testing branch, 85
Subversion, 68

environment command line option
production environment releases, 88

environment merging, 73
developing change using branch, 75
merging changes into development branch,

83–84
merging changes into testing environment,

83–86
Subversion, 68

environmental variables, Facter
adding facts, 241

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

300

environments, 65–88
activating configuration changes, 66
agents, 65
branches, 73
configuring, 66–70
configuring Dashboard, 164
keeping environments synchronized, 67
mailtest.example.com host, 65
making changes

to development environment, 68–70
to Postfix configuration file, 78–81
to sshd configuration file, 75–77

managing environment
Foreman, 181
from master, 71

per-contributor environments, 77
populating environments, 67–68
production environment releases, 86–88
Ruby external node classifier, 123
setting up central repository, 73–74
switching between production and testing, 71
testing agent

against Postfix configuration file, 82
against sshd configuration file, 77

testing with agent, 70–72
EPEL (Extra Packages for Enterprise Linux)

installing Red Hat prerequisites for
Dashboard, 160

EPEL repository, 8
installing Foreman via RPM, 177
installing Puppet on Red Hat, 8

ERB templates
checking syntax of, 51
testing environments with agent, 72

Erlang language
installing Erlang on Debian, 267
RabbitMQ, 267

installing on Enterprise Linux, 269
err tag, 235
error log

balancer_error.log file, 104
front end load balancer, 105
load balancer, 104
Puppet CA hot standby, 114

ErrorLog configuration option
testing load balancer configuration, 102

errors
duplicate resource declaration errors, 133
writing custom functions, 261

/etc/puppet directory, 11
configuring environments, 66

events
transaction reports, 231, 233

Example.com Pty Ltd
configuring nodes, 31–35
installing master and agent, 30
network, 29
operating systems, 29

exists method
creating Subversion provider, 251
httpauth provider, 259

exported resources, 137–151
adding MySQL table index, 142
automating Nagios service checks, 147–151
common use cases for, 143
configuring master for stored configuration,

140–142
load balancer worker resources, 145–147
public SSH host key, 143–145
stored configurations, 137–140
virtual resources, 133–137

External Node Classification see ENC
external node classifiers

configuring nodes using, 121
in shell script, 121–122
Perl, 124–125
Ruby, 122–124

external_node.rb script
using Foreman as ENC, 183

external_nodes option, 121
externalizing configuration, 119–131
extlookup function, 205

 F
Facter method

writing custom facts, 243
Facter tool, 4–5

add method, 243
adding facts, environmental variables, 241
finding latest release, 10
installing correctly-named packages, 41
installing Facter

from source, 10
on Debian and Ubuntu, 9
on OpenSolaris, 9
on Red Hat, 8
on Windows, 11
via Ruby Gems, 9

MCollective plugin, 282–283
setcode block, 243

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

301

testing facts, 245
writing custom facts, 243

facts, 5
adding, 242
checking value of, 22
configuring Puppet for custom facts, 241–242
displaying nodes information in Foreman, 184
fact name starting with $, 22
importing data to Foreman, 180
plug-ins in modules, 241
sync of facts, 242
testing, 245
testing MCollective collecting facts, 283
writing and distributing, 241–246
writing custom facts, 243–245

fail back, Puppet CA, 115–116
fail function

Puppet DSL, 212
testing failure reporting, Cucumber Puppet,

223
failure reporting

testing, Cucumber Puppet, 222–223
Fedora

installing Puppet on, 8
fetch command, Git, 87
fetch origin command, Git, 84
file bucketing, 25
File resource type

configuring Postfix server, 49
file resources, 23

Apache definition, 58
attributes/metaparameters, 22, 23
content attribute, 50

filebucket type
backing up files, 26
global defaults, 49

filemgr.rb plugin
writing agents for MCollective, 284

files, 18
specifying templates, 50

files directory
creating sudo module, 21

fileutils library
creating Subversion provider, 251

filters
using host filters with mc-rpc, 285

firewall class
adding resources to, 193
using iptables module by loading, 194

firewalls
configuring master, 14

Dashboard security, 168
iptables host-based firewall, 191

flush method, httpauth, 259
Foreman see The Foreman
FreeBSD

installing Puppet on, 11
front-end Apache load balancer

configuration file, 100
load balancing configuration, 100
load balancing multiple masters, 97, 98, 100–

102
Puppet CA hot standby, 108
Puppet CA worker configuration, 110
testing load balancer configuration, 103, 104,

105
front-end HTTP request handler, 90, 100–102
functions, 43, 50

calling from another function, 262
configuring Puppet for, 246–247
developing, 246
execution on master, 260
full list of, 43
generate function, 43
include function, 43, 50
notice function, 43
require function, 50
running functions, 43, 247
rvalues function type, 260
statements function type, 260
template function, 50
writing, 43, 260–262

 G
gem command, Ruby

adding executable directory to PATH, 218
installing Puppet and Fedora, 9
installing Puppet on OpenSolaris, 9
installing Puppet on Windows, 11
installing rake gem, 161
installing RRD Ruby bindings, 236
installing Ruby on Rails using, 139
locating executable directory, 217

gen command, cucumber-puppet, 218, 219
generate command, Puppet Module, 192, 195
generate function, 43
Gentoo

installing Puppet on, 11
gid attribute

managing MySQL, 54

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

302

git add command, 37, 195, 196
git checkout command, 86, 87
git clone command, 277
git commit command, 70, 196
git fetch command, 87
git fetch origin command, 84
git init command, 196
git log command, 78, 80, 84
git merge origin command, 84
git push command, 77, 85
git rebase command, 80
Git repository, 37–38

adding catalog policy to Git index, 220
cloning, 67–68
committing node information and catalog

policy to, 221
creating bare repository for modules, 73
developing change using branch, 75–82
making changes to sshd configuration file, 76
making individual changes, 74
modules directory, 67
releasing NTP module to Forge, 204
setting up central repository, 73–74
status changed, 69
storing central version control repository, 74
writing stories, Cucumber Puppet, 218, 219

git tag action, 204
Git tool

add command, 37, 38
adding cucumber-puppet steps, 219
adding Git provider, 252
commit command, 38
config command, 37
distributed version control, 37–38
ensuring identical copy of production

environment, 67
ignoring files with gitignore, 37
init command, 37
installing, 37
log command, 38
making changes to development

environment, 69
managing modules, 195–196
rm command, 37
status command, 37
tagging, 86
tracking revisions, 38
writing Puppet type and provider, 247, 250

GitHub
downloading MCollective plugins, 277
existing code, 246

extensions and additions to Puppet, 263
installing Dashboard, 161

from source code, 163
managing modules with Git, 196
Puppet Module project page and source code,

190
gitignore, 37
global defaults, 49
glossary of Puppet terminology, 25
Google

external node classification, 119
graphs

rrdgraph report processor, 234, 236–237
groups, Dashboard, 174
guest account

removing, RabbitMQ, 271

 H
Hash data type

account information from ENC, 208
hash syntax, 46
hashes

iterating over, 205
hasrestart attribute

managing service frameworks, 47
hasstatus attribute

managing service frameworks, 47
hook scripts

version control, 80
hooks

writing type and provider, 249
hooks.rb file

changes to configure cucumber-puppet, 219
writing stories, Cucumber Puppet, 218, 219

host filters
using with mc-rpc, 285

host_aliases parameter
public SSH host key, 144

hostkeys class, ssh, 143
hosts

see also nodes
addressing with metadata, 284–285
building with Puppet, 29
configuration with similar hosts, 31
creating DNS CNAME for, 13
db.example.com host, 29
importing data to Foreman, 179
mail.example.com host, 29
public SSH host key, 143–145

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

303

puppet.example.com host, 29
using Foreman as ENC, 181
web.example.com host, 29

hot standby see Puppet CA hot standby
HTTP access logs

measuring performance, 117
HTTP authentication password files

writing type and provider, 255
HTTP Basic authentication

Dashboard security, 168
HTTP load balancing, 97–107

front end load balancer configuration, 100–
102

master worker configuration, 98–100
testing load balancer configuration, 102–107

http report processor, 237
templates for new processors, 238

HTTP request handler, 90
HTTP worker nodes

exporting load balancer worker resources, 145
httpauth provider, 257–259
httpauth type, 256–257

testing types and providers, 259
HTTPS load balancing, 108

 I
idempotent, 5
if/else syntax, 43

creating sudo module, 22
import directive, 19

files with .pp suffix, 19
include directive/function, 43, 50

applying module to node, 36
creating module to manage SSH, 40
including classes in ssh class, 43
including multiple collections, 20
node definition, 20

Include statement, Apache
exporting load balancer worker resources,

146, 147
inheritance, 21

class inheritance, 52
node inheritance, 32–33

variable scoping, 33–35, 48
init command, Git, 37
init script

starting master, 14
init.pp file

creating module to manage SSH, 39, 40

creating sudo module, 21, 22–24
managing classes, 40
module structure, 36

install class
apache, 56
mysql, 54
postfix, 48
puppet, 61
ssh, 39, 40, 41–44

install command, Puppet Module, 192
install.rb script

cloning copy of source, 190
installing Dashboard, 160–163

DEB packages via APT, 162
from source code, 163
Red Hat prerequisites, 160–161
RPM packages via Yum, 161
Ubuntu prerequisites, 161

installing Foreman, 177–178
from source, 177
via DEB, 177
via RPM, 177

installing packages, 41
installing Puppet, 7–11

from source tarballs, 10
on Debian, 9
on Fedora, 8
on OpenSolaris, 9
on other platforms, 11
on Red Hat, 8
on Ubuntu, 9
on Windows, 10
Puppet Module tool, 190
via Ruby Gems, 9

installing RabbitMQ, 266–270
on Debian and Ubuntu, 267–269

integration interfaces, 159
inventory capabilities, 159
iptables command

Puppet CA hot standby, 113
re-activating primary Puppet CA worker, 115

iptables command, 194
iptables host-based firewall, 191, 193
iptables module, 192

using by loading firewall class, 194
IRC channel

resources for system administrators, 290, 291
isnamevar method

writing parsed file type, 254
writing type and provider, 250

iterators, 205, 209

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

304

 J
Java

installing for ActiveMQ, 152
on Debian, 154
on Enterprise Linux, 152

JSON
REST API, Foreman, 185

 K
Kanies, Luke, 1
keys

public SSH host key, 143–145
kick command

using Foreman to trigger Puppet, 185
kind_of method

accounts Ruby DSL module, 212
known_hosts files

public SSH host key, 143, 144
knownhosts class, ssh, 144

 L
LDAP (Lightweight Directory Access Protocol),

119, 127–131
adding Puppet schema, 128
authentication, Foreman, 186
configuring LDAP in Puppet, 128–131
installing Ruby LDAP libraries, 127
nodes, 129
options, 129
setting up LDAP server, 127

ldapbase option, 129
ldappassword option, 129
ldapport option, 129
ldapserver option, 129
ldapuser option, 129
LDIF nodes, 130
Levy, Ohad, 159, 178
lib directory, 242, 247
Lightweight Directory Access Protocol see LDAP
Linux

installing Puppet on, 8
list option, cert command, 17
Listen configuration item, 98
load balancer error log, 104
load balancer request log, 104
load balancing, 97

agent HTTPS load balancing, 108

DNS round robin, 116
exporting worker resources, 145–147
front end configuration, 100–102
HTTP, 97–107
master worker configuration, 98–100
multiple masters, 97–116
Puppet CA configuration, 107–116
Puppet CA hot standby, 112–115
Puppet CA worker configuration, 108–112
re-activating primary Puppet CA worker, 115–

116
testing configuration, 102–107

log command, Git, 38
making changes to Postfix configuration file,

78, 80
merging changes into development branch, 84

log files
testing load balancer configuration, 103

log messages
transaction reports, 231, 233

log report processor, 234
logging

configuring worker logging, 103
Dashboard, 175

login accounts
management of, 189

lookupvar function
writing custom functions, 261

loopback interface, 97, 98
loops, 205, 209

 M
MacOS X

installing Puppet on, 11
mail

adding to cucumber-puppet catalog policy,
221

mail servers
building hosts with Puppet, 29
on different platforms, 48

mail.example.com host
creating module to manage Postfix, 48–53
operating system, 29
role-specific application for, 30

mailing lists
resources for system administrators, 289, 291

mailtest.example.com host, 65
making changes to development

environment, 70

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

305

main environment
ensuring identical copy of production

environment, 67
production environment releases, 86–88
puppet.conf file, 66
rolling back changes, 86, 88
switching between production/testing, 71

main section, puppet.conf file, 12
CNAME for master, 16
modulepath option, 21

main.cf template, Postfix, 51
main.cf.erb file

developing change using branch, 75
making changes to development

environment, 69
making individual changes to repository, 74

Mandrake/Mandriva
installing Puppet on, 11

manifest configuration option, 13
manifest files, suffix for, 13, 19
manifest option, puppet.conf file, 66, 70
manifestdir configuration option, 13
manifests, 13, 18

defining agents, 20
fact name starting with $, 22
strings with single/double quotes, 19
testing with cucumber-puppet, 222

manifests directory
creating sudo module, 21
managing classes, 40
overriding name and location of, 13
site.pp file, 13

Marionette Collective see MCollective
master see Puppet master
master class, 62
master section, puppet.conf file, 12
master server see Puppet master
masterport option, master command, 141
mc-facts command, 283
MCollective (Marionette Collective), 265

ActiveMQ service, 266
addressing hosts with metadata, 284–285
configuring server, 274–276
configuring RabbitMQ, 270–271
installing on Debian and Ubuntu, 271–273
installing on Enterprise Linux, 273–274
installing RabbitMQ, 266–270
messaging architecture, 266
plugins, 276–284
RPC framework, 265
running Puppet from, 279–280

sending and receiving messages, 266
testing fact collection, 283
troubleshooting, 276

MCollective agents, 265
writing agents for MCollective, 284

MCollective client
with-fact option, 284, 285

MCollective plugin directory, 283
MCollective plugins, 276–284

downloading, 277
Facter plugin, 282–283
installing, 277–278
listing all loaded agent plugins, 280–282
Puppet agent, 277–282

multiple instances of, 280
reloading agent configuration files, 278
running Puppet from MCollective, 279–

280
verifying agent plugin is loaded, 279

mcollective-plugins repository, 284
downloading MCollective plugins, 277
installing MCollective agent plugins, 278

mc-ping command, 276
mc-puppetd command, 279, 280
mc-rpc command

listing all loaded agent plugins, 280, 282
running Puppet from MCollective, 279
using host filters with mc-rpc, 285
verifying agent plugin is loaded, 279

merge origin command, Git, 84
merging see environment merging
message queues

configuring MCollective server, 275
configuring RabbitMQ, 271

metadata
addressing hosts with, 284–285
Facter plugin, MCollective, 282

metaparameters, 23
alias, 42
chaining, 45
defaults, 50
list of, 23
notify, 45
relationships, 45, 50
require, 23, 45, 46

metrics
transaction reports, 231, 233

mod_passenger module, 90, 93, 167
mod_proxy module, 102, 118
mod_rails module, 90, 166
mode attribute, file resource, 23

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

306

modes
audit mode, 55
autosign mode, 17
client-server mode, 89
noop mode, 25, 78
stand-alone mode, 3

module path
creating sudo module, 21

Module tool see Puppet Module tool
module::params class, 42
Modulefile file, 198, 203
modulepath option, puppet.conf file, 21, 36, 66,

70
modules, 19, 20, 21, 36–38

see also Puppet Module tool
accounts Ruby DSL module, 211–216
adding Enterprise Linux support to NTP

module, 200–203
applying configuration, 24–26
benefits of publishing, 195
building and testing, 198–200
configuring for types/providers/functions,

246
creating modules

bare repository for module, 73
managing Postfix, 48–53
managing SSH, 38–40
not duplicating effort whilst, 189
sudo module, 21–24
with Puppet Module tool, 195–205

deploying and managing RabbitMQ, 267
distributing facts, 242
downloading and installing, 191
errors when finding, 199
managing Apache and websites, 56
managing MySQL, 53–56
managing platform-specific resources, 196
managing Puppet with puppet module, 60–63
managing with Git, 195–196
moving into puppet-module search path, 194
namespace syntax, 39
naming, 21, 199
plug-ins in, 241
pre-existing, 36
releasing NTP module to Forge, 204–205
searching for and installing from Forge, 191–

192
structure, 36
using, 192–194
using Ruby DSL, 207–208
version control, 36–38

modules directory
creating clones of Git repository, 67
creating module to manage SSH, 38

monitor class, Nagios, 148, 150, 151
monitoring system

automating Nagios service checks, 147, 148,
151

motd_location Ruby DSL module, 206, 207–208
munge hook

writing type and provider, 250
mv command, 105

moving built module into puppet-module
search path, 194

MySQL
adding table index, 142
configuring Foreman, 178, 179
configuring master for stored configuration,

140, 141
installing MySQL server on Red Hat, 138
stored configuration database server, 137

MySQL application
building host for, 30
configuring Dashboard, 164
managing with mysql module, 53–56

mysql class, 55
mysql::config class, 54
mysql::install class, 54
mysql::service class, 55

mysql command line utility
batch option, 142
configuring master for stored configuration,

141
D option, 142
e option, 142
p option, 142
u option, 142

MySQL database
back-ending node classification script, 126
installing Dashboard, 160

mysql module
managing MySQL with, 53–56

 N
Nagios monitoring system

automating Nagios service checks, 147–151
nagios::monitor class, 148, 150, 151
nagios::target class, 148, 149, 150, 151
namespace syntax, 39

referring to namespaced resources, 44

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

307

nesting classes, 40
NetBSD

installing Puppet on, 11
netstat command

configuring RabbitMQ, 271
network sockets

starting master, 14
New Host link

using Foreman as ENC, 182
newfunction method, 260
newvalues method, httpauth, 257
Nginx

running Dashboard with Passenger, 165,
168

no-daemonize option
agent command, 16
master command, 15

node definition, 20
applying configuration, 24
collections (of resources), 20
external node classifier in shell script, 122
include directive, 20

node detail screen
viewing reports, 172

node.pp file
configuring nodes for Example.com, 31

node_terminus option
configuring LDAP in Puppet, 129
configuring nodes using external node

classifier, 121
nodes, 2, 18

see also hosts
adding, Dashboard, 173
applying module to, 36
class inheritance, 52
committing information to Git repository, 221
configuring LDAP in Puppet, 130
configuring nodes

Example.com, 31–35
external sources, 31
node inheritance, 32–33
specifying default node, 32
using external node classifier, 121
variable scoping, 33–35
working with similar hosts, 31

copying YAML files, 220
displaying information in Foreman, 184
external node classification, 119, 120–127
inheritance model, 21
LDAP, 119, 127–131
regular expressions, 20

specifying individual resources t, 20
storing information externally, 119–131

nodes.pp file
adding agent definition, 20
import directive, 19

noop command line option, 71
noop mode, 25, 78
notice function, 43
notify metaparameter, 45
NTP (Network Time Protocol)

importance of accurate time, 18
managing NTP service on Debian and Redhat,

195–205
NTP class, 198, 201
NTP module

adding Enterprise Linux support to, 200–
203

building and installing version 0.0.2 of, 203
building and testing Puppet modules, 199
Debian-specific functionality in, 196
installing on Enterprise Linux, 200
managing modules with Git, 196
managing platform-specific resources, 196
obtaining NTP service name and

configuration for Enterprise Linux, 201
releasing to Forge, 204–205
testing on Enterprise Linux, 200
testing to ensure NTP service can be stopped,

200

 O
object relational mappers, 137, 138
One-Click installer

installing Puppet on Windows, 10
onetime option, agent command, 25
OpenBSD

installing Puppet on, 11
OpenLDAP

adding schema to LDAP directory, 128
setting up LDAP server, 127, 128

OpenSolaris
installing Puppet on, 9

OpenSSH package
ssh::install class, 41

OpenSuSE
installing Puppet on, 11

operating systems
see also platforms
Facter tool, 4

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

308

operating systems (cont.)
hosts, 29
Puppet versions, 6

operatingsystem variable
installing correctly-named packages, 41

operatingsystem fact
checking value of, 22
writing custom facts, 243, 244

operator/ssh branch
testing agent, 78, 82

orchestration frameworks
MCollective, 265

ORM (object relational mapper)
Ruby Active Record library, 137, 138

owner attribute, file resource, 23

 P
p option

mysql command line utility, 142
packages

configuring agent, 16
installing correctly-named packages, 41
installing Puppet, 8
installing/uninstalling, 4
managing, 4

parameterized class feature
managing platform-specific resources, 196

params class
moving conditional checks to separate class,

42
puppet, 61
ssh, 42, 43, 44

parentnode attribute
configuring LDAP in Puppet, 130

parsed file type
writing parsed file type and provider, 253–

255
parseonly option, puppet command, 80
Passenger, 90

configuring Apache and, 93–95
installing on Debian-based systems, 91–92
installing on Enterprise Linux, 91
installing using Ruby Gems, 92
running Dashboard with, 165–167
running Foreman with, 180
running master with Apache and, 90–97
tuning, 93
versions known to work with Puppet, 92

passenger-status command, 106

path parameter
writing type and provider, 250

PATH variable
adding gem executable directory to, 218
testing if cucumber-puppet executable in, 217

per-contributor environments, 77
performance

Dashboard, 175
Puppet masters, 116
scaling Puppet, 116–118

Perl
external node classifier, 124–125

Phusion Passenger see Passenger
ping command

automating Nagios service checks, 150
configuring MCollective server, 276

pkg command, Solaris
installing Puppet on OpenSolaris, 9

platforms
see also operating systems
installing correctly-named packages, 41
installing Puppet, 7–11
managing platform-specific resources, 196
Puppet versions, 6

plugin.psk setting, MCollective, 275
plugin.stomp.host setting, MCollective, 275
plugin.stop.password setting, MCollective, 275
plugins

listing all loaded agent plugins, 280–282
MCollective, 276–284

determining plugin directory, 278
verifying agent plugin is loaded, 279

plugins in modules
configuring Puppet

for custom facts, 241
for types/providers/functions, 247

earlier releases of Puppet, 247
pluginsync setting, 242

configuring Puppet for
types/providers/functions, 247

testing types and providers, 259
policy.feature file, cucumber-puppet, 219, 220

adding check step to, 224–225
testing catalog policy, 222–223

Postfix
building host for, 30
configuring server, 49
creating module to manage, 48–53
installing packages, 48
main.cf template, 51
making changes to configuration file, 78–81

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

309

managing service, 51
testing Puppet agent

against Postfix configuration file, 82
against testing environment, 86

postfix class, 52
postfix::config class, 49–51
postfix::install class, 48
postfix::service class, 51

postfix module
making changes to development

environment, 70
.pp file suffix

import directive, 19
managing classes, 40
manifest files, 13, 19

present value, ensure attribute, 4
creating sudo module, 22

priority parameter
Apache definition, 58

production environment see main environment
provider attribute

writing type and provider, 250
providers, 4

configuring Puppet for, 246–247
creating Subversion provider, 250
developing, 246
httpauth provider, 257–259
testing types and providers, 259
writing, 247–253
writing parsed file type and, 253–255

provisioning tools, 1
Foreman, 159, 176
installing Puppet, 30

proxy class
bind service, 53

Proxy stanza
BalancerMember keyword, 101
load balancing multiple masters, 100, 101
Puppet CA worker configuration, 110

ProxyPass directive, 102
ProxyPassMatch directive, 110
ProxyPassReverse directive, 102
ProxyPreserveHost directive, 102
public keys

public SSH host key, 143–145
publishing modules, benefits of, 195
Puppet, 1

client software see agents
client-server model, 2
collections (of resources), 18, 20
connecting agent, 16–18

Cucumber Puppet tool, 189, 216–228
Dashboard, 159–176
database servers, 137
declarative language, 3, 189
definitions of resources, 18
deployment, 2
Facter tool, 4–5
file bucketing, 25
files, 18
finding latest release, 10
full list of binaries, 17
generate function, 43
glossary of terminology, 25
hash syntax, 46
installing, 7–11
managing with puppet module, 60–63
managing service frameworks, 47
mixing releases, 7
relationships, 23, 45
reporting, 231–240
rules for quotation marks, 19
server, 2
single binary, 15
stand-alone mode, 3
support, 289
transactional layer, 5
verifying iptables rules managed by, 194
version selection, 6
writing and distributing custom facts, 241–

246
writing custom functions, 260–262
writing parsed file type and provider, 253–

255
writing story describing catalog behavior,

218–221
writing type and provider, 247–253

Puppet agent see agents
Puppet agent certificate, 93, 95
puppet agent command, 16

debug option, 17
no-daemonize option, 16
onetime option, 25
server option, 16
testing load balancer configuration, 103
verbose option, 17
waitforcert option, 17

Puppet agent MCollective plugins, 277–282
downloading, 277
installing, 277–278
listing all loaded agent plugins, 280–282
multiple instances of agent, 280

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

310

Puppet agent MCollective plugins (cont.)
reloading agent configuration files, 278
running Puppet from MCollective, 279–280
verifying agent plugin is loaded, 279

puppet apply command
building and testing modules, 199

puppet binary, 15
Puppet CA

configuring Apache and Passenger, 93
master worker configuration, 98
re-activating primary worker, 115–116
synchronizing hot standby, 112–113

Puppet CA fail back, 115–116
Puppet CA hot standby, 107, 113–115

signing CSR on standby Puppet CA, 114
synchronizing, 112–113

Puppet CA load balancing configuration, 107–116
Puppet CA hot standby, 113–115
re-activating primary worker, 115–116
synchronizing hot standby, 112–113
worker configuration, 108–112

Puppet CA worker configuration, 108–112
Puppet CA hot standby, 112–115
re-activating primary worker, 115–116

puppet cert command, 17
configuring Apache and Passenger, 95
list option, 17
sign option, 17

puppet class, 62
puppet::config class, 61
puppet::install class, 61
puppet::master class, 62
puppet::params class, 61
puppet::service class, 62

puppet command
parseonly option, 80

Puppet Dashboard see Dashboard
Puppet development community

code review process, 67
Puppet DSL

fail function, 212
Ruby DSL as subset of, 205

Puppet Enterprise
resources for system administrators, 291

Puppet Enterprise product, 289
Puppet environments see environments
Puppet file server protocol, 23
Puppet Forge, 189

creating modules, 195–205
not duplicating effort creating modules, 189
pre-existing modules, 36

Puppet interface to, 190
Puppet Module working with, 189
releasing NTP module to, 204–205
resources for system administrators, 291
searching for and installing module from,

191–192
puppet kick command

using Foreman to trigger Puppet, 185
Puppet Labs, 1

installing Dashboard, 161
Puppet manifests, 18
Puppet master, 2

agent installations, 8
back-end worker process, 90
building host for, 30
client connection to, 16
CNAME for, 16
configuring, 11–15

environments, 66–70
for stored configuration, 140–142
nodes using ENC, 121
reporting, 233

connecting master and agent, 17
copying YAML files into cucumber-puppet,

220
creating module to manage SSH, 38–40
displaying reports in Foreman, 183
facts about agents, 5
firewall rule, 14
functions, 43, 50
importance of accurate time, 18
installing

for Example.com Pty Ltd, 30
on Debian and Ubuntu, 9
on Red Hat, 8

load balancing
multiple masters, 97–116
Puppet CA configuration, 107
testing configuration, 102–107
with DNS round robin, 116

making changes to development
environment, 70

managing environment from, 71
managing Puppet with puppet module, 62
mixing releases of Puppet, 7
performance, 116
queue configuration, 156–157
Rack configuration file, 95
report processors, 234
running functions, 43
running with Apache and Passenger, 90–97

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

311

single binary, 15
specifying name of, 12
splay time, 118
starting, 14–15
TCP port, 14
testing in Apache, 96–97
worker request log, 104
workers, 98

puppet master command, 15
debug option, 15
masterport option, 141
no-daemonize option, 15
verbose option, 15

Puppet master virtual host
load balancing configuration, 98

Puppet master worker configuration
HTTP load balancing, 98–100

Puppet model, 2
puppet module

managing Puppet with, 60–63
Puppet Module tool

build command, 194, 198
releasing NTP module to Forge, 204

creating modules with, 195–205
downloading/installing modules, 191
generate command, 192, 195
install command, 192, 198
installing, 190
managing modules with Git, 195–196
managing platform-specific resources, 196
project page and source code, 190
puppet-module command, 189, 190, 229

generating skeleton module with, 192
installing module using, 191

search command, 191
working with Forge, 189

Puppet modules see modules
Puppet reports see reports
puppet resource command

configuring RabbitMQ, 270
enabling RabbitMQ repository, 268
installing Apache on Enterprise Linux, 90
testing master in Apache, 96

Puppet Ruby DSL see Ruby DSL
Puppet schema

adding to LDAP directory, 128
puppet.conf file, 11, 12

adding facts, 242
agent section, 12
certname option, 12
configuring LDAP in Puppet, 128

configuring nodes using ENC, 121
configuring environments, 66
configuring master for stored configuration,

140, 141
configuring reporting, 233
customizing RRD support, 237
displaying reports in Foreman, 183
enabling thin stored configurations, 151
ENC (External Node Classification), 173
main section, 12, 16
making changes to development

environment, 70
managing environment from master, 71
master queue configuration, 156
master section, 12
modulepath option, 21
reporturl option, 237
runinterval option, 26
selecting report processors, 234
sending live reports to Dashboard, 170
specifying tags, 235
tagmap option, 235

puppet.example.com host, 29, 30
puppet.rb plugin library, 278
puppetca command, 17
puppetclass attribute

configuring LDAP in Puppet, 130
puppetClient class

configuring LDAP in Puppet, 130
puppetd command, 12, 15, 16
puppetmaster_worker_access_18140.log file, 104
puppetmasterd command, 12, 14, 15
puppet-module command see under Puppet

Module tool
puppetqd process

queue support for stored configurations, 152
puppetrun command

using Foreman to trigger Puppet, 185
puppetserver variable, 19, 23

external node classifier in shell script, 122
Ruby external node classifier, 123

puppetvar attribute
configuring LDAP in Puppet, 130

push command, Git, 77, 85

 Q
queue configuration, 156–157
queue support

stored configurations, 152

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

312

quotation marks, rules for, 19

 R
RabbitMQ, 267

adding apt repository to Debian, 267
configuring MCollective server, 274–276
configuring, 270–271
enabling repository, 268
installing, 266–270

on Debian and Ubuntu, 267–269
on Enterprise Linux, 269–270

Puppet modules to deploy and manage, 267
removing guest account, 271

rabbitmq.config file, 270
Rack configuration file

config.ru, 93, 95
configuring Apache and Passenger, 93, 95
creating identical copy, 105
Puppet CA worker configuration, 109

Rack DocumentRoot
load balancing configuration, 99

Rack stanza, 95
RAILS_ENV variable

configuring Dashboard, 164
incorporating reports into Dashboard, 169

rake command, Ruby
configuring Dashboard, 163, 164
creating database, 164
creating dump of database, Dashboard, 175
importing data to Foreman, 179
incorporating reports into Dashboard, 169
installing rake gem, 161
list of available tasks, 176
managing Foreman databases, 179
populating database, 164
pruning log files, 175
purging older reports, 176
RAILS_ENV variable, 164
removing reports in Foreman, 184
restoring database, Dashboard, 176
using Foreman as ENC, 182

realize function
realizing virtual resources, 135

rebase command, Git, 80
recurse attribute

managing MySQL, 55
Red Hat

see also Enterprise Linux
building hosts with Puppet, 29

configuring Foreman on, 178
displaying reports in Foreman, 183
installing Dashboard, 160–161
installing Foreman, 177
installing MySQL server on, 138
installing Puppet on, 8
managing NTP service on, 195–205

running Dashboard with Passenger, 166
regular expressions

configuration with similar hosts, 31
nodes, 20
selectors, 42
specifying multiple values, 42

relational data
object relational mappers, 138

relationship metaparameters, 136
relationship-chaining syntax, 136–137
relationships, 23, 45
releases see versions
report processors, 234–237

custom report processors, 237–239
default report, 233
http, 237
rrdgraph, 234, 236–237
selecting, 234
tagmail, 234, 235
templates for new processors, 238

reportdir option, 233, 239
reporting tools, Dashboard, 159
reports, 231–240

configuring, 233–234
custom reporting, 237–240
custom summary report, 238
Dashboard, 169–170
default report, 234
directory for, 233
file names for, 233
Foreman, 183–184
log report processor, 234
purging older reports, 176
removing in Foreman, 184
report processors, 234–237
reporting engine, 231
sending to Dashboard, 170–171
store report, 233, 234
transaction reports from agents, 231–233
viewing, 171

reporturl option, puppet.conf file, 237
repository see Git repository
request handler, 90
request log, load balancer, 104

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

313

RequestHeader statements, 94, 101
require attribute/metaparameter, 23, 45, 46

adding additional package to, 53
managing MySQL, 54
metaparameter defaults, 50

require function, 50
custom report processors, 238

resource abstraction layer, 4
resource command

configuring RabbitMQ, 270
enabling RabbitMQ repository, 268
installing Apache on Enterprise Linux, 90
testing master in Apache, 96

resource default syntax, 49
resources, 3, 18

see also configuration items
attributes, 3, 4, 23
automating Nagios service checks, 147–151
catalog, 5
collections of, 18
composite collections of, 18
declaring from data, Ruby DSL, 206–216
duplicate declaration errors, 133
establishing relationships within class, 45
expiring stale resources, 157–158
exported resources, 137–151
exporting load balancer worker resources,

145–147
file resource, 23
managing classes in init.pp file, 40
managing platform-specific resources, 196
metaparameters, 23
referring to namespaced resources, 44
resource abstraction layer, 4
specifying individual resources to node, 20
specifying state of, 47
specifying status of, 47
title, 3, 4
transaction reports, 233
types, 3, 4
validating, Cucumber Puppet, 224–228
virtual resources, 133–137

declaring using @ character, 134, 143
declaring using @@ syntax, 143

resources for system administrators, 289–291
IRC channel, 290, 291
mailing lists, 289, 291
Puppet Enterprise, 291
Puppet Forge, 291
support, 291
training, 291

Web resources, 290
resources table

adding MySQL index, 142
REST API, Foreman, 185
restart command

hasrestart attribute, 47
reverse proxy load balancer, 100, 109
RHEL see Enterprise Linux
rm command, Git tool, 37
rolling back changes

production environment releases, 86, 88
RPM package manager

installing Red Hat prerequisites for
Dashboard, 160

RPM-based distributions
installing Dashboard, 161
installing Foreman, 177

RRD files
specifying default location for, 237

RRD Ruby bindings
customizing RRD support, 237
installing, 236

rrddir directory, 237
rrdgraph report processor, 234, 236–237
rrdinterval, 237
RRDTools

installing, 236
package names for, 236

rsync command
creating identical copy, 105
load balancing configuration, 99
Puppet CA worker configuration, 109
re-activating primary Puppet CA worker, 115
synchronizing hot standby Puppet CA, 113

Ruby
declaring classes and resources using, 189
embedding Ruby applications, 90
ENV variable, 243
external node classifier, 122–124
installing Puppet, 8

on Debian and Ubuntu, 9
on OpenSolaris, 9
on Red Hat, 8
on Windows, 10

installing Ruby bindings for RRD, 236
installing Ruby LDAP libraries, 127
SSL code bug, 12
writing and distributing custom facts, 241
writing custom facts, 243

Ruby Active Record library, 137, 138
installing Rails using Gems, 139

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

314

Ruby DSL, 189, 205–216
account information from ENC, 208–211
accounts module, 211–216

testing, 213–216
as subset of Puppet DSL, 205
declaring resources and variables in top

scope, 205
declaring resources from data, 206–216
ENC script for, 206
motd_location module, 206, 207–208
Puppet module using, 207–208
Run Stages feature, Puppet, 205
scope.lookupvar method, 208
testing, 208

Ruby IRB
writing custom functions, 261

Ruby on Rails
Dashboard, 159

installing, 160
running with Passenger, 167

environments, 164
Foreman, 176
installing Rails using gem, 139

Ruby rake command see rake command
RubyGems

installing cucumber-puppet, 217
installing Passenger using, 92
installing Puppet and Facter via, 9
installing Puppet Module using, 190
installing Ruby on Rails using, 139

RubyGems package manager
installing Red Hat prerequisites for

Dashboard, 160
installing Ubuntu prerequisites for

Dashboard, 161
runinterval option, puppet.conf file, 26
rvalues function type, 260

 S
scaling Puppet, 89–118

hot standby, 112–115
HTTP load balancing, 97–107
load balancing multiple masters, 97–116
measuring performance, 116–118
Puppet CA load balancing configuration, 107–

116
Puppet CA worker configuration, 108–112
re-activating primary Puppet CA worker, 115–

116

running master with Apache and Passenger,
90–97

scaling stored configurations, 151–157
scope, 34

accounts Ruby DSL module, 212
class inheritance, 53
declaring resources and variables in top

scope, 205
variable scoping, 33–35, 48

scope.lookupvar method, Ruby DSL, 208, 212
scripts see shell scripts
search command, Puppet Module, 191
security

configuring RabbitMQ, 271
Dashboard, 168
multiple security zones or data centers, 266

sed command, 105
selector matching

case-sensitivity of, 42
selector statement, 22
selectors

conditional syntax, 42
server see Puppet master
server option, agent command, 16
serveraliases parameter

Apache definition, 59
servers

building hosts with Puppet, 29
service class

apache, 57
mysql, 55
postfix, 51
puppet, 62
ssh, 39, 40, 46–48

setcode block, Facter
writing custom facts, 243

SetEnvIf statements, 102
sha1 function, 260
SHA512 function, 260
shell scripts

back-ending node classification script, 125–
127

external node classifier in, 121–122
shells type

writing parsed file type and provider, 253–255
sign option, cert command, 17
site.pp file, 13

configuring environments, 66
configuring master, 13
declaring resources and variables in top

scope, 205

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

315

extending, 19
manifests directory, 13
overriding name and location of, 13

slapd.conf configuration file, 128
sleep command

splay time, Puppet agents, 118
SLES (SUSE Linux Enterprise Server)

installing Puppet on, 11
Solaris

building hosts with Puppet, 29
installing Puppet on, 11
installing Puppet on OpenSolaris, 9

source attribute, file resource, 23, 50
source code

installing Dashboard from, 163
installing Foreman from, 177
installing Puppet from, 10

sources, using external, 31
spaceship operator, 134, 135
SQL statement

back-ending node classification script, 126
SSH

configuring, 44
creating module to manage, 38–40
installing OpenSSH package, 41
managing service, 46
testing agent, 86

ssh class, 40
ssh::config class, 39, 40, 44–46
ssh::hostkeys class, 143
ssh::install class, 39, 40, 41–44
ssh::knownhosts class, 144
ssh::params class, 42, 43, 44
ssh::service class, 39, 40, 46–48

ssh module
creating module to manage SSH, 39
including in nodes, 47
managing classes, 40

SSH public keys
developing change using branch, 75
public SSH host key, 143–145

ssh_service_config variable, 45
sshd_config files, 39

location in operating systems, 44
making changes to, 75–77
testing agent against, 77

sshd_config template, 76
sshkey resources

public SSH host key, 143, 144
SSL

authentication, 90, 94, 95, 97, 101

configuring puppet, 11, 12
load balancing configuration, 98
starting master, 14
verification, 90, 93, 95, 102

SSL certificates
configuring Apache and Passenger, 93
connecting master and agent, 17
scaling SSL, 89

SSL connections
Foreman, 186
importance of accurate time, 18
load balancing multiple masters, 98, 100

SSL files
overriding location of, 15
starting master, 14

SSLCARevocationFile parameter, 95
SSLCipherSuite parameter, 94
ssldir option, 15
SSLEngine parameter, 94
stale resources, expiring, 157–158
stand-alone mode, 3
statements function type, 260
status command, Git tool, 37
stomp gem, Ruby, 156

installing for Puppet queue, 156
installing MCollective on Enterprise Linux,

274
queue support for stored configurations,

152
Stomp protocol

ActiveMQ configuration, 152
configuring MCollective server, 275
configuring RabbitMQ, 270
installing ActiveMQ

on Debian, 155
on Enterprise Linux, 153

installing MCollective
on Debian and Ubuntu, 272
on Enterprise Linux, 274

installing RabbitMQ
on Debian, 269
on Enterprise Linux, 269, 270

MCollective using, 266
store reports, 233, 234

custom reporting, 237
stored configuration database server, 137–140

automating Nagios service checks, 148
installing MySQL server on Debian and

Ubuntu, 139
installing MySQL server on Red Hat, 138
installing Ruby on Rails using gem, 139

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

316

stored configuration database server (cont.)
MySQL, 137
public SSH host key, 143–145

stored configurations, 157
adding MySQL table index, 142
configuring master for, 140–142
declaring resources and exporting to all other

nodes, 143
enabling thin stored configurations, 151
expiring stale resources, 157
exported resources, 137–140, 143
installing ActiveMQ

on Debian systems, 154–156
on Enterprise Linux systems, 152–154

master queue configuration, 156–157
queue support for, 152
scaling, 151–157

stories, Cucumber Puppet tool, 218
describing catalog behavior, 218–221
writing, 218–221

storing node information externally, 119–131
External Node Classification, 119, 120–127
LDAP, 119, 127–131

Subversion (SVN), 24, 37
creating Subversion provider, 250
tracking revisions, 38
writing Puppet type and provider, 247, 250

sudo module
applying configuration, 25
creating, 21–24
init.pp file, 22–24

summary report
custom summary report, 238

support, 289
resources for system administrators, 291

syslogfacility option, 234
system administrators

resources for, 289–291
system inventory tool

installing correctly-named packages, 41

 T
tables

adding MySQL table index, 142
tagging, Git tool, 86, 87
tagmail report processor, 234, 235
tagmail.conf file, 235

target class, Nagios
automating Nagios service checks, 148, 149,

150, 151
target parameter

writing parsed file type, 254
TCP connection

request handler, 90
TCP port, 14
template files, 18

writing custom functions, 260
template function, 50
templates

checking syntax of ERB templates, 51
cucumber-puppet policy, 220
learning more about, 51
specifying for files, 50

templates directory
creating sudo module, 21

testing
Cucumber Puppet tool, 216–228
environments with agent, 70–72
mailtest.example.com host, 65

testing environment
creating clone of modules Git repository, 67
creating testing branch, 83
ensuring identical copy of production

environment, 67
merging changes into, 83–86
performing checkout on testing branch, 85
puppet.conf file, 66
switching between production and, 71
testing agent against, 86

The Foreman, 159, 176–186
authentication, 186
configuring, 178–180

on Debian, 178
on Red Hat, 178
on Ubuntu, 178

displaying nodes information in, 184
displaying reports in, 183–184
documentation, 186
encryption, 186
external node classifiers, 119

using Foreman as ENC, 181–183
home page, 180
importing data from Puppet, 179
installing, 177–178

from source, 177
via DEB, 177
via RPM, 177

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

317

managing databases, 179
removing reports in, 184
REST API, 185
SSL connections, 186
starting, 180
triggering Puppet, 185

Thin
running Dashboard with, 168

thin stored configurations
enabling, 151

tilde arrow operators, 137
title, Puppet resources, 3, 4
training

resources for system administrators, 291
transaction reports

from agents, 231–233
log report processor, 234

transactional layer, 5
transport layer, 6

scaling transport, 89
triggering relationships, 23
types, 3, 4

configuring Puppet for, 246–247
creating type, 248
developing custom types, 246
httpauth type, 256–257
providers, 4
testing types and providers, 259
writing, 247–253
writing parsed file type and provider, 253–255

 U
u option

mysql command line utility, 142
Ubuntu

building hosts with Puppet, 29
configuring Foreman on, 178
installing Dashboard, 161
installing Foreman, 177
installing MCollective on, 271–273
installing MySQL server on, 139
installing Puppet on, 9
installing RabbitMQ on, 267–269
running Dashboard with Passenger, 166

undef value, attributes, 53
Unicorn

running Dashboard with, 168

 V
validate hook

writing type and provider, 249, 250
validating resources, Cucumber Puppet, 224–228

adding check step to policy, 224–225
catching changes in ENC data, 227–228
implementing cucumber check, 226

variable scoping
node inheritance structure, 33–35, 48

variables
Apache definition, 58
referring to variables in another class, 44

VCS repository
making changes to development

environment, 70
verbose option

agent command, 17
master command, 15

verification
SSL verification, 90, 93, 95, 102

version control
Git tool, 37–38
hook scripts, 80
keeping environments synchronized, 67
making changes to Postfix configuration file,

78
production environment releases, 86–88
setting up central repository, 73
storing central version control repository, 74

version control
adding configuration to, 24
benefits of, 73
distributed version control, 37
modules, 36–38
writing type and provider for, 247

versions
finding latest release, 10
mixing releases, 7
numbering change, 6
older releases of Puppet, 6
selection of, 6

vhost.pp file
Apache definition, 60

virtual hosts
configuring Apache and Passenger, 93, 94
load balancing configuration, 98, 99
load balancing multiple masters, 98, 100, 101,

102

www.it-ebooks.info

http://www.it-ebooks.info/

 INDEX

318

virtual hosts (cont.)
Puppet CA worker configuration, 108,

109
RequestHeader statements, 101
testing load balancer configuration, 102

virtual resources, 133–137
declaring, 134

using @ character, 143
using @@ syntax, 143

making virtual resources real, 135
realizing, 134

realize function, 135
spaceship operator, 135

relationship-chaining syntax, 136–137
VirtualHost configuration item, 98
VirtualHost stanza

configuring Apache and Passenger, 94
testing load balancer configuration, 93, 103

VirtualHost template
Apache definition, 58, 59

 W
waitforcert option, agent command, 17
Web resources

resources for system administrators, 290
web servers

Apache, 89
building hosts with Puppet, 29
Nginx, 89
running Dashboard

with Passenger, 165–167
with Webrick, 165

running master with Apache and Passenger,
90–97

WEBRick, 89
web services

HTTP load balancing, 97–107
scaling, 89

web.example.com host
node inheritance, 35
operating system, 29
role-specific application for, 30

Webrick, 89
running Foreman with, 180
scaling Puppet, 89

Webrick library
httpauth provider, 259

Webrick web server
running Dashboard with, 165

websites
managing Apache and, 56

Windows
installing Puppet on, 10

with-fact option
MCollective client, 284, 285

worker configuration
Puppet CA, 108–112

worker request log, 104
workflow

making changes to Postfix configuration file,
80

www
adding to cucumber-puppet catalog policy,

221

 X
X-Client-DN header, 102
X-Client-Verify header, 102
XML-RPC transport layer, 6

mixing releases of Puppet, 7
X-SSL-Subject header, 102

 Y
YAML (Yet Another Markup Language), 120

assigning value to item, 120
back-ending node classification script, 126
configuring Dashboard, 163, 164
expressing grouped collections of items, 120
indentation and syntax, 120
Perl external node classifier, 124
Ruby external node classifier, 123
start of YAML document, 120
using Foreman as ENC, 183

YAML files
copying from master into cucumber-puppet,

220
transaction reports, 231–233

yum command, Red Hat
installing Puppet on Red Hat, 8

Yum repository
installing Dashboard from RPM, 161
installing Foreman via RPM, 177

 Z
Zynga

external node classification, 119

www.it-ebooks.info

http://www.it-ebooks.info/

Pro Puppet

James Turnbull
Jeffrey McCune

www.it-ebooks.info

http://www.it-ebooks.info/

Pro Puppet

Copyright © 2011 by James Turnbull and Jeffrey McCune

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3057-1

ISBN-13 (electronic): 978-1-4302-3058-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Frank Pohlmann
Technical Reviewer: Jessica Fraser
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Seth Kline
Compositor: Bytheway Publishing Services
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.it-ebooks.info/

Dedicated to my partner and best friend, Ruth Brown, who continues to be wonderful.

 James Turnbull

Dedicated to my parents, Pete and Gloria, who year after year accommodate my inability to shut the
laptop while on vacation with them, and to Dave Alden for teaching me about configuration management,

being a great mentor, and encouraging me to learn.

 Jeff McCune

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

v

Contents

 About the Authors. ...xiii
 About the Technical Reviewer xiv
 Acknowledgments . .. xv
 Introduction xvi
 Chapter 1: Getting Started with Puppet ..1

What Is Puppet?. ..1
Deployment . .. 2
Configuration Language and Resource Abstraction Layer. .. 3
Transactional Layer . .. 5

Selecting the Right Version of Puppet . ..6
Can I mix releases of Puppet? . ..7
Installing Puppet7

Installing on Red Hat Enterprise Linux and Fedora. ... 8
Installing on Debian and Ubuntu. ... 9
Installing on OpenSolaris. .. 9
Installing from Source . .. 10
Installing on Microsoft Windows . .. 10
Installing on other Platforms . .. 11

Configuring Puppet11
The site.pp file . .. 13
Firewall Configuration . .. 14
Starting the Puppet Master . .. 14

Connecting Our First Agent. ...16

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

vi

Completing the Connection .. 17
Creating Our First Configuration ..18

Extending the site.pp file .. 19
Agent Configuration.. 20

Creating our first module...21
Module Structure.. 21
The init.pp file... 22

Applying Our First Configuration..24

Summary ...26
Resources..27

 Chapter 2: Building Hosts with Puppet ...29

Getting Started...30
Installing Puppet... 30
Configuring Nodes .. 31

Making (More) Magic With Modules ..36
Version Controlling Your Modules... 36

Creating a module to Manage SSH..38
Managing Our Classes.. 40

Creating a Module to Manage Postfix..48
The postfix::install class ... 48
The postfix::config class... 49
The postfix::service class ... 51

Managing MySQL with the mysql Module ...53
The mysql::install class .. 54
The mysql::config class .. 54
The mysql::service class .. 55

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

vii

Managing Apache and Websites ...56
The apache::install class .. 56
The apache::service class .. 57
The Apache definition... 57

Managing Puppet with the Puppet Module..60
Summary ...63

Resources..64

 Chapter 3: Working with Environments ..65

Configuring Puppet Environments ...66
Populating the New Environments ... 67
Making Changes to the Development Environment.. 68

Testing the New Environments with the Puppet Agent ...70
Environment Branching and Merging ..72

Setting Up a Central Repository.. 73
Developing a Change Using a Branch... 75
Merging Changes into a Testing Environment.. 83

Production Environment Releases...86
Summary ...88

Resources..88

 Chapter 4: Puppet Scalability ...89

Identifying the Challenges ...89
Running the Puppet Master with Apache and Passenger..90

Installing Apache and Passenger on Enterprise Linux.. 90

Installing Apache and Passenger on Debian-Based Systems .. 91

Installing Passenger Using Ruby Gems .. 92

Configuring Apache and Passenger.. 93

Testing the Puppet Master in Apache... 96

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

viii

Load-Balancing Multiple Puppet Masters..97
HTTP Load Balancing.. 97
Puppet CA Load Balancing Configuration ... 107

Measuring Performance ..116
Splay Time.. 117

Summary ...118

Resources..118

 Chapter 5: Externalizing Puppet Configuration...119

External Node Classification ..120
Configuring Nodes Using An External Node Classifier.. 121
An External Node Classifier in a Shell Script .. 121
A Ruby External Node Classifier ... 122
A Perl External Node Classifier ... 124
Back-Ending a Node Classification... 125

Storing Node Configuration in LDAP ..127
Installing Ruby LDAP Libraries.. 127
Setting Up the LDAP Server .. 127
Adding the Puppet Schema .. 128
Configuring LDAP in Puppet.. 128

Summary ...131

Resources..131

 Chapter 6: Exporting and Storing Configuration...133

Virtual Resources...133
Declaring and Realizing a Virtual Resource.. 134
Applying the Realize Function .. 135
Making Virtual Resources Real... 135
Relationship-Chaining Syntax... 136

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

ix

Getting Started with Exported and Stored Configurations...137
The Stored Configuration Database Server .. 137
Configuring Puppet Master for Stored Configuration ... 140
Adding a MySQL Table Index .. 142

Using Exported Resources...143
Automated SSH Public Host Key Management... 143
Exporting Load Balancer Worker Resources .. 145
Automating Nagios Service Checks.. 147

Scaling Stored Configurations ...151
Thin Stored Configurations ... 151
Queue Support for Stored Configurations... 152
Installing ActiveMQ on Enterprise Linux-Based Systems... 152
Installing ActiveMQ on Debian-Based Systems.. 154
Puppet Master Queue Configuration... 156

Expiring Stale Resources...157
Summary ...158
Resources..158

 Chapter 7: Puppet Consoles: Puppet Dashboard and The Foreman....................159

Puppet Dashboard ...159
Installing Puppet Dashboard... 160
Configuring the Dashboard... 163
Running Puppet Dashboard.. 165
Integrating Puppet Dashboard.. 169
External Node Classification... 173
Logging, Database Backup and Performance .. 175

The Foreman..176
Installing Foreman.. 177
Configuring Foreman.. 178

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

x

Starting Foreman.. 180
Integrating Foreman’s Capabilities... 181
Displaying Reports in Foreman... 183
Displaying Nodes Information in Foreman.. 184
Using Foreman to trigger Puppet.. 185

Summary ...186

Resources..186

 Chapter 8: Tools and Integration ..189

Puppet Forge and Module Tool ..189
Installing the Puppet Module Tool .. 190
Searching and Installing a Module from the Forge .. 191
Using a Module... 192
Creating a Module with the Puppet-Module Tool ... 195

Puppet Ruby DSL ...205
The Problem: Resources from Data.. 205
Declaring Resources from Data.. 206

Cucumber Puppet ..216
Installing Cucumber Puppet ... 217
Writing a Story.. 218
Testing the Basic Catalog Policy .. 222
Validating Specific Resources .. 224

Summary ...229

Resources..229

 Chapter 9: Reporting with Puppet ..231

Getting Started...231

Configuring Reporting..233
Report Processors ...234

log... 234

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

xi

tagmail.. 235
rrdgraph.. 236
http ... 237

Custom Reporting ..237

Summary ...240
Resources..240

 Chapter 10: Extending Facter and Puppet ..241

Writing and Distributing Custom Facts ..241
Configuring Puppet for Custom Facts... 241
Writing Custom Facts ... 243
Testing the Facts .. 245

Developing Custom Types, Providers and Functions...246
Configuring Puppet for Types, Providers and Functions... 246
Writing a Puppet Type and Provider ... 247
Writing a Parsed File Type and Provider... 253
A More Complex Type and Provider.. 255
Testing Types and Providers .. 259
Writing Custom Functions .. 260

Summary ...262
Resources..263

 Chapter 11: Marionette Collective ..265

Installing and Configuring RabbitMQ ...266
Installing RabbitMQ on Debian ... 267
Installing RabbitMQ on RHEL / CentOS ... 269
RabbitMQ Configuration ... 270
Installing MCollective on Debian and Ubuntu ... 271
Installing MCollective on Enterprise Linux.. 273
MCollective Server Configuration ... 274

www.it-ebooks.info

http://www.it-ebooks.info/

 CONTENTS

xii

MCollective Plugins ...276
Puppet Agent MCollective Plugins.. 277
The Facter Plugin for MCollective... 282
Additional Plugins... 284

Addressing Hosts with Metadata...284
Summary ...285

Resources..286

 Appendix A: Working with Puppet ..289

Getting Support and Training...289

Resources..289
Web .. 290
Mailing Lists ... 291
Puppet Module Forge ... 291
Puppet Enterprise ... 291
Support (commercial) ... 291
Training .. 291
IRC .. 291

 Index ...293

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

About the Authors

 James is the author of five technical books about open source software and a long-time member of the
open source community. James authored the first (and this second!) book about Puppet and works for
Puppet Labs running Client Services.

James speaks regularly at conferences including OSCON, Linux.conf.au, FOSDEM, OpenSourceBridge,
DevOpsDays and a number of others. He is a past president of Linux Australia and has run
Linux.conf.au and serves on the program committee of Linux.conf.au and OSCON.

James is Australian but currently lives in Portland, Oregon. His interests include cooking, wine,

political theory, photojournalism, philosophy, and most recently the Portland Timbers association
football team.

James Turnbull

Jeff is a long-time Puppet community member and open source software advocate. He started off with
computers and Unix at a young age thanks to his parents’ company, Summit Computer Services. Before
graduating with his BS CSE degree, Jeff managed Mac OS X and Linux systems at the Mathematics
Department at Ohio State University where he got started with configuration management and Puppet.

Jeff works for Puppet Labs, hacking on code and working with customers to improve their Puppet
deployments. Jeff also speaks regularly at conferences including Apple’s World Wide Developer
Conference, Macworld, Open Source Bridge, Velocity, and others. He travels the world teaching and
consulting on Puppet.

Jeff grew up in Ohio and currently lives in Portland, Oregon. His interests include hacking on
microcontrollers, anime, photography, music, hiking, and long walks on the beach.

Jeff McCune

www.it-ebooks.info

http://www.it-ebooks.info/

 INTRODUCTION

xiv

About the Technical Reviewer

 Jes Fraser is a solutions consultant from New Zealand specializing in
Linux and Puppet in the Enterprise. She enjoys singing, playing the piano,
and of course, writing.

www.it-ebooks.info

http://www.it-ebooks.info/

 IN

xv

Acknowledgments

Thanks are owed to the following people for input and insight into the project:

Dan Bode

Luke Kanies

Nigel Kersten

Dennis Matotek

Hal Newton

R.I. Pienaar

Trevor Vaughan

All of the team at Puppet Labs who continue to make Puppet cool

James Turnbull

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction

	Getting Started with Puppet
	What Is Puppet?
	Deployment
	Configuration Language and Resource Abstraction Layer
	Transactional Layer

	Selecting the Right Version of Puppet
	Can I mix releases of Puppet?
	Installing Puppet
	Installing on Red Hat Enterprise Linux and Fedora
	Installing on Debian and Ubuntu
	Installing on OpenSolaris
	Installing from Source
	Installing on Microsoft Windows
	Installing on other Platforms

	Configuring Puppet
	The site.pp file
	Firewall Configuration
	Starting the Puppet Master

	Connecting Our First Agent
	Completing the Connection

	Creating Our First Configuration
	Extending the site.pp file
	Agent Configuration

	Creating our first module
	Module Structure
	The init.pp file

	Applying Our First Configuration
	Summary
	Resources

	Building Hosts with Puppet
	Getting Started
	Installing Puppet
	Configuring Nodes

	Making (More) Magic With Modules
	Version Controlling Your Modules

	Creating a module to Manage SSH
	Managing Our Classes

	Creating a Module to Manage Postfix
	The postfix::install class
	The postfix::config class
	The postfix::service class

	Managing MySQL with the mysql Module
	The mysql::install class
	The mysql::config class
	The mysql::service class

	Managing Apache and Websites
	The apache::install class
	The apache::service class
	The Apache definition

	Managing Puppet with the Puppet Module
	Summary
	Resources

	Working with Environments
	Configuring Puppet Environments
	Populating the New Environments
	Making Changes to the Development Environment

	Testing the New Environments with the Puppet Agent
	Environment Branching and Merging
	Setting Up a Central Repository
	Developing a Change Using a Branch
	Merging Changes into a Testing Environment

	Production Environment Releases
	Summary
	Resources

	Puppet Scalability
	Identifying the Challenges
	Running the Puppet Master with Apache and Passenger
	Installing Apache and Passenger on Enterprise Linux
	Installing Apache and Passenger on Debian-Based Systems
	Installing Passenger Using Ruby Gems
	Configuring Apache and Passenger
	Testing the Puppet Master in Apache

	Load-Balancing Multiple Puppet Masters
	HTTP Load Balancing
	Puppet CA Load Balancing Configuration

	Measuring Performance
	Splay Time

	Summary
	Resources

	Externalizing Puppet Configuration
	External Node Classification
	Configuring Nodes Using An External Node Classifier
	An External Node Classifier in a Shell Script
	A Ruby External Node Classifier
	A Perl External Node Classifier
	Back-Ending a Node Classification

	Storing Node Configuration in LDAP
	Installing Ruby LDAP Libraries
	Setting Up the LDAP Server
	Adding the Puppet Schema
	Configuring LDAP in Puppet

	Summary
	Resources

	Exporting and Storing Configuration
	Virtual Resources
	Declaring and Realizing a Virtual Resource
	Applying the Realize Function
	Making Virtual Resources Real
	Relationship-Chaining Syntax

	Getting Started with Exported and Stored Configurations
	The Stored Configuration Database Server
	Configuring Puppet Master for Stored Configuration
	Adding a MySQL Table Index

	Using Exported Resources
	Automated SSH Public Host Key Management
	Exporting Load Balancer Worker Resources
	Automating Nagios Service Checks

	Scaling Stored Configurations
	Thin Stored Configurations
	Queue Support for Stored Configurations
	Installing ActiveMQ on Enterprise Linux-Based Systems
	Installing ActiveMQ on Debian-Based Systems
	Puppet Master Queue Configuration

	Expiring Stale Resources
	Summary
	Resources

	Puppet Consoles: Puppet Dashboard and The Foreman
	Puppet Dashboard
	Installing Puppet Dashboard
	Configuring the Dashboard
	Running Puppet Dashboard
	Integrating Puppet Dashboard
	External Node Classification
	Logging, Database Backup and Performance

	The Foreman
	Installing Foreman
	Configuring Foreman
	Starting Foreman
	Integrating Foreman’s Capabilities
	Displaying Reports in Foreman
	Displaying Nodes Information in Foreman
	Using Foreman to trigger Puppet

	Summary
	Resources

	Tools and Integration
	Puppet Forge and Module Tool
	Installing the Puppet Module Tool
	Searching and Installing a Module from the Forge
	Using a Module
	Creating a Module with the Puppet-Module Tool

	Puppet Ruby DSL
	The Problem: Resources from Data
	Declaring Resources from Data

	Cucumber Puppet
	Installing Cucumber Puppet
	Writing a Story
	Testing the Basic Catalog Policy
	Validating Specific Resources

	Summary
	Resources

	Reporting with Puppet
	Getting Started
	Configuring Reporting
	Report Processors
	log
	tagmail
	rrdgraph
	http

	Custom Reporting
	Summary
	Resources

	Extending Facter and Puppet
	Writing and Distributing Custom Facts
	Configuring Puppet for Custom Facts
	Writing Custom Facts
	Testing the Facts

	Developing Custom Types, Providers and Functions
	Configuring Puppet for Types, Providers and Functions
	Writing a Puppet Type and Provider
	Writing a Parsed File Type and Provider
	A More Complex Type and Provider
	Testing Types and Providers
	Writing Custom Functions

	Summary
	Resources

	Marionette Collective
	Installing and Configuring RabbitMQ
	Installing RabbitMQ on Debian
	Installing RabbitMQ on RHEL / CentOS
	RabbitMQ Configuration
	Installing MCollective on Debian and Ubuntu
	Installing MCollective on Enterprise Linux
	MCollective Server Configuration

	MCollective Plugins
	Puppet Agent MCollective Plugins
	The Facter Plugin for MCollective
	Additional Plugins

	Addressing Hosts with Metadata
	Summary
	Resources

	Working with Puppet
	Getting Support and Training
	Resources
	Web
	Mailing Lists
	Puppet Module Forge
	Puppet Enterprise
	Support (commercial)
	Training
	IRC

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

