
www.allitebooks.com

http://www.allitebooks.org

Scaling Big Data with
Hadoop and Solr

Learn exciting new ways to build efficient, high
performance enterprise search repositories for
Big Data using Hadoop and Solr

Hrishikesh Karambelkar

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Scaling Big Data with Hadoop and Solr

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1190813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-137-4

www.packtpub.com

Cover Image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Hrishikesh Karambelkar

Reviewer
Parvin Gasimzade

Acquisition Editor
Kartikey Pandey

Commisioning Editor
Shaon Basu

Technical Editors
Pratik More

Amit Ramadas

Shali Sasidharan

Project Coordinator
Akash Poojary

Proofreader
Lauren Harkins

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hrishikesh Karambelkar is a software architect with a blend of entrepreneurial
and professional experience. His core expertise involves working with multiple
technologies such as Apache Hadoop and Solr, and architecting new solutions
for the next generation of a product line for his organization. He has published
various research papers in the domains of graph searches in databases at various
international conferences in the past. On a technical note, Hrishikesh has worked
on many challenging problems in the industry involving Apache Hadoop and Solr.

While writing the book, I spend my late nights and weekends
bringing in the value for the readers. There were few who stood
by me during good and bad times, my lovely wife Dhanashree,
my younger brother Rupesh, and my parents. I dedicate this book
to them. I would like to thank the Apache community users who
added a lot of interesting content for this topic, without them,
I would not have got an opportunity to add new interesting
information to this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Parvin Gasimzade is a MSc student in the department of Computer Engineering
at Ozyegin University. He is also a Research Assistant and a member of the Cloud
Computing Research Group (CCRG) at Ozyegin University. He is currently working
on the Social Media Analysis as a Service concept. His research interests include
Cloud Computing, Big Data, Social and Data Mining, information retrieval, and
NoSQL databases. He received his BSc degree in Computer Engineering from
Bogazici University in 2009, where he mainly worked on web technologies and
distributed systems. He is also a professional Software Engineer with more than five
years of working experience. Currently, he works at the Inomera Research Company
as a Software Engineer. He can be contacted at parvin.gasimzade@gmail.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Processing Big Data Using Hadoop MapReduce	 7

Understanding Apache Hadoop and its ecosystem	 9
The ecosystem of Apache Hadoop	 9

Apache HBase	 10
Apache Pig	 11
Apache Hive	 11
Apache ZooKeeper	 11
Apache Mahout	 11
Apache HCatalog	 12
Apache Ambari	 12
Apache Avro	 12
Apache Sqoop	 12
Apache Flume	 13

Storing large data in HDFS	 13
HDFS architecture	 13

NameNode	 14
DataNode	 15
Secondary NameNode	 15

Organizing data	 16
Accessing HDFS	 16

Creating MapReduce to analyze Hadoop data	 18
MapReduce architecture	 18

JobTracker	 19
TaskTracker	 20

Installing and running Hadoop	 20
Prerequisites	 21
Setting up SSH without passphrases	 21
Installing Hadoop on machines	 22
Hadoop configuration	 22

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Running a program on Hadoop	 23
Managing a Hadoop cluster	 24
Summary	 25

Chapter 2: Understanding Solr	 27
Installing Solr	 28
Apache Solr architecture	 29

Storage	 29
Solr engine	 30

The query parser	 30
Interaction	 33
Client APIs and SolrJ client	 33
Other interfaces	 33

Configuring Apache Solr search	 33
Defining a Schema for your instance	 34
Configuring a Solr instance	 35

Configuration files	 36
Request handlers and search components	 38

Facet	 40
MoreLikeThis	 41
Highlight	 41
SpellCheck	 41
Metadata management	 41

Loading your data for search	 42
ExtractingRequestHandler/Solr Cell	 43
SolrJ	 43

Summary	 44
Chapter 3: Making Big Data Work for Hadoop and Solr	 45

The problem	 45
Understanding data-processing workflows	 46

The standalone machine	 47
Distributed setup	 47
The replicated mode	 48
The sharded mode 	 48

Using Solr 1045 patch – map-side indexing	 49
Benefits and drawbacks	 50

Benefits	 50
Drawbacks	 50

Using Solr 1301 patch – reduce-side indexing	 50
Benefits and drawbacks	 52

Benefits	 52
Drawbacks	 52

Using SolrCloud for distributed search	 53

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

SolrCloud architecture	 53
Configuring SolrCloud	 54
Using multicore Solr search on SolrCloud	 56
Benefits and drawbacks	 58

Benefits	 58
Drawbacks	 58

Using Katta for Big Data search (Solr-1395 patch)	 59
Katta architecture	 59
Configuring Katta cluster	 60
Creating Katta indexes	 60
Benefits and drawbacks	 61

Benefits	 61
Drawbacks	 61

Summary	 61
Chapter 4: Using Big Data to Build Your Large Indexing	 63

Understanding the concept of NOSQL	 63
The CAP theorem	 64

What is a NOSQL database?	 64
The key-value store or column store	 65
The document-oriented store	 66
The graph database	 66

Why NOSQL databases for Big Data?	 67
How Solr can be used for Big Data storage?	 67

Understanding the concepts of distributed search	 68
Distributed search architecture	 68
Distributed search scenarios	 69

Lily – running Solr and Hadoop together	 70
The architecture	 70

Write-ahead Logging	 72
The message queue	 72
Querying using Lily	 72
Updating records using Lily	 72

Installing and running Lily	 73
Deep dive – shards and indexing data of Apache Solr	 74

The sharding algorithm	 75
Adding a document to the distributed shard	 77

Configuring SolrCloud to work with large indexes	 77
Setting up the ZooKeeper ensemble	 78
Setting up the Apache Solr instance	 79
Creating shards, collections, and replicas in SolrCloud	 80

Summary	 81

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 5: Improving Performance of Search
while Scaling with Big Data	 83

Understanding the limits	 84
Optimizing the search schema	 85

Specifying the default search field	 85
Configuring search schema fields	 85
Stop words	 86
Stemming	 86

Index optimization	 88
Limiting the indexing buffer size	 89
When to commit changes?	 89
Optimizing the index merge	 91
Optimize an option for index merging	 92
Optimizing the container	 92
Optimizing concurrent clients	 93
Optimizing the Java virtual memory	 93

Optimization the search runtime	 95
Optimizing through search queries	 95

Filter queries	 95
Optimizing the Solr cache	 96

The filter cache	 97
The query result cache	 97
The document cache	 98
The field value cache	 98
Lazy field loading	 99

Optimizing search on Hadoop	 99
Monitoring the Solr instance	 100

Using SolrMeter	 101
Summary	 102

Appendix A: Use Cases for Big Data Search	 103
E-commerce websites	 103
Log management for banking	 104

The problem	 104
How can it be tackled?	 105
High-level design	 107

Table of Contents

[v]

Appendix B: Creating Enterprise Search Using
Apache Solr	 109

schema.xml	 109
solrconfig.xml	 110
spellings.txt	 113
synonyms.txt	 114
protwords.txt	 115
stopwords.txt	 115

Appendix C: Sample MapReduce Programs to
Build the Solr Indexes	 117

The Solr-1045 patch – map program	 118
The Solr-1301 patch – reduce-side indexing	 119
Katta	 120

Index	 123

Preface
This book will provide users with a step-by-step guide to work with Big Data using
Hadoop and Solr. It starts with a basic understanding of Hadoop and Solr, and
gradually gets into building efficient, high performance enterprise search repository
for Big Data.

You will learn various architectures and data workflows for distributed search
system. In the later chapters, this book provides information about optimizing the
Big Data search instance ensuring high availability and reliability.

This book later demonstrates two real world use cases about how Hadoop and Solr
can be used together for distributer enterprise search.

What this book covers
Chapter 1, Processing Big Data Using Hadoop and MapReduce, introduces you with
Apache Hadoop and its ecosystem, HDFS, and MapReduce. You will also learn
how to write MapReduce programs, configure Hadoop cluster, the configuration
files, and the administration of your cluster.

Chapter 2, Understanding Solr, introduces you to Apache Solr. It explains how you
can configure the Solr instance, how to create indexes and load your data in the
Solr repository, and how you can use Solr effectively for searching. It also discusses
interesting features of Apache Solr.

Chapter 3, Making Big Data Work for Hadoop and Solr, brings the two worlds together;
it drives you through different approaches for achieving Big Data work with
architectures and their benefits and applicability.

Preface

[2]

Chapter 4, Using Big Data to Build Your Large Indexing, explains the NoSQL and
concepts of distributed search. It then gets you into using different algorithms
for Big Data search covering shards and indexing. It also talks about SolrCloud
configuration and Lily.

Chapter 5, Improving Performance of Search while Scaling with Big Data, covers different
levels of optimizations that you can perform on your Big Data search instance as the
data keeps growing. It discusses different performance improvement techniques
which can be implemented by the users for their deployment.

Appendix A, Use Cases for Big Data Search, describes some industry use cases and
case studies for Big Data using Solr and Hadoop.

Appendix B, Creating Enterprise Search Using Apache Solr, shares a sample Solr
schema which can be used by the users for experimenting with Apache Solr.

Appendix C, Sample MapReduce Programs to Build the Solr Indexes, provides a sample
MapReduce program to build distributed Solr indexes for different approaches.

What you need for this book
This book discusses different approaches, each approach needs a different set
of software. To run Apache Hadoop/Solr instance, you need:

•	 JDK 6
•	 Apache Hadoop
•	 Apache Solr 4.0 or above
•	 Patch sets, depending upon which setup you intend to run
•	 Katta (only if you are setting Katta)
•	 Lily (only if you are setting Lily)

Who this book is for
This book provides guidance for developers who wish to build high speed enterprise
search platform using Hadoop and Solr. This book is primarily aimed at Java
programmers, who wish to extend Hadoop platform to make it run as an enterprise
search without prior knowledge of Apache Hadoop and Solr.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You will typically find the
hadoop-example jar in /usr/share/hadoop, or in $HADOOP_HOME."

A block of code is set as follows:

public static class IndexReducer {
 protected void setup(Context context) throws IOException,
 InterruptedException {
 super.setup(context);
 SolrRecordWriter.addReducerContext(context);
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

A programming task is divided into multiple identical subtasks, and when it is
distributed among multiple machines for processing, it is called a map task. The
results of these map tasks are combined together into one or many reduce tasks.
Overall, this approach of computing tasks is called the MapReduce approach.

Any command-line input or output is written as follows:

java -Durl=http://node1:8983/solr/clusterCollection/update -jar
 post.jar ipod_video.xml

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"The admin UI will start showing the Cloud tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Processing Big Data Using
Hadoop and MapReduce

Traditionally computation has been processor driven. As the data grew, the industry
was focused towards increasing processor speed and memory for getting better
performances for computation. This gave birth to the distributed systems. In today's
real world, different applications create hundreds and thousands of gigabytes of
data every day. This data comes from disparate sources such as application software,
sensors, social media, mobile devices, logs, and so on. Such huge data is difficult to
operate upon using standard available software for data processing. This is mainly
because the data size grows exponentially with time. Traditional distributed systems
were not sufficient to manage the big data, and there was a need for modern systems
that could handle heavy data load, with scalability and high availability. This is
called Big Data.

Big data is usually associated with high volume and heavily growing data with
unpredictable content. A video gaming industry needs to predict the performance
of over 500 GB of data structure, and analyze over 4 TB of operational logs every
day; many gaming companies use Big Data based technologies to do so. An IT
advisory firm Gartner defines big data using 3Vs (high volume of data, high velocity
of processing speed, and high variety of information). IBM added fourth V (high
veracity) to its definition to make sure the data is accurate, and helps you make your
business decisions.

www.allitebooks.com

http://www.allitebooks.org

Processing Big Data Using Hadoop and MapReduce

[8]

While the potential benefits of big data are real and significant, there remain many
challenges. So, organizations which deal with such high volumes of data face the
following problems:

•	 Data acquisition: There is lot of raw data that gets generated out of various
data sources. The challenge is to filter and compress the data, and extract the
information out of it once it is cleaned.

•	 Information storage and organization: Once the information is captured out
of raw data, the data model will be created and stored in a storage device.
To store a huge dataset effectively, traditional relational system stops being
effective at such a high scale. There has been a new breed of databases called
NOSQL databases, which are mainly used to work with big data. NOSQL
databases are non-relational databases.

•	 Information search and analytics: Storing data is only a part of building a
warehouse. Data is useful only when it is computed. Big data is often noisy,
dynamic, and heterogeneous. This information is searched, mined, and
analyzed for behavioral modeling.

•	 Data security and privacy: While bringing in linked data from multiple
sources, organizations need to worry about data security and privacy at
the most.

Big data offers lot of technology challenges to the current technologies in use today.
It requires large quantities of data processing within the finite timeframe, which
brings in technologies such as massively parallel processing (MPP) technologies and
distributed file systems.

Big data is catching more and more attention from various organizations. Many of
them have already started exploring it. Recently Gartner (http://www.gartner.
com/newsroom/id/2304615) published an executive program survey report, which
reveals that Big Data and analytics are among the top 10 business priorities for CIOs.
Similarly, analytics and BI stand as the top priority for CIO's technical priorities. We
will try to understand Apache Hadoop in this chapter. We will cover the following:

•	 Understanding Apache Hadoop and its ecosystem
•	 Storing large data in HDFS
•	 Creating MapReduce to analyze the Hadoop data
•	 Installing and running Hadoop
•	 Managing and viewing a Hadoop cluster
•	 Administration tools

Chapter 1

[9]

Understanding Apache Hadoop and its
ecosystem
Google faced the problem of storing and processing big data, and they came up
with the MapReduce approach, which is basically a divide-and-conquer strategy for
distributed data processing.

A programming task which is divided into multiple identical subtasks,
and which is distributed among multiple machines for processing, is
called a map task.. The results out of these map tasks are combined
together into one or many reduce tasks. Overall this approach of
computing tasks is called a MapReduce approach.

MapReduce is widely accepted by many organizations to run their Big Data
computations. Apache Hadoop is the most popular open source Apache licensed
implementation of MapReduce. Apache Hadoop is based on the work done by
Google in the early 2000s, more specifically on papers describing the Google file
system published in 2003, and MapReduce published in 2004. Apache Hadoop
enables distributed processing of large datasets across a commodity of clustered
servers. It is designed to scale up from single server to thousands of commodity
hardware machines, each offering partial computational units and data storage.

Apache Hadoop mainly consists of two major components:

•	 The Hadoop Distributed File System (HDFS)
•	 The MapReduce software framework

HDFS is responsible for storing the data in a distributed manner across multiple
Hadoop cluster nodes. The MapReduce framework provides rich computational
APIs for developers to code, which eventually run as map and reduce tasks on the
Hadoop cluster.

The ecosystem of Apache Hadoop
Understanding Apache Hadoop ecosystem enables us to effectively apply the
concepts of the MapReduce paradigm at different requirements. It also provides end-
to-end solutions to various problems that are faced by us every day.

Processing Big Data Using Hadoop and MapReduce

[10]

Apache Hadoop ecosystem is vast in nature. It has grown drastically over the time
due to different organizations contributing to this open source initiative. Due to the
huge ecosystem, it meets the needs of different organizations for high performance
analytics. To understand the ecosystem, let's look at the following diagram:

Apache Hadoop Ecosystem

Flume/
Sqoop Hive

HBase MapReduce HCatlog

Hadoop Distributed File System (HDFS)

Zo
ok

ee
pe

r

Am
ba

ri

Av
ro

Mahout Pig

Apache Hadoop ecosystem consists of the following major components:
•	 Core Hadoop framework: HDFS and MapReduce
•	 Metadata management: HCatalog
•	 Data storage and querying: HBase, Hive, and Pig
•	 Data import/export: Flume, Sqoop
•	 Analytics and machine learning: Mahout
•	 Distributed coordination: Zookeeper
•	 Cluster management: Ambari
•	 Data storage and serialization: Avro

Apache HBase
HDFS is append-only file system; it does not allow data modification. Apache HBase
is a distributed, random-access, and column-oriented database. HBase directly runs
on top of HDFS, and it allows application developers to read/write the HDFS data
directly. HBase does not support SQL; hence, it is also called as NOSQL database.
However, it provides command-line-based interface, as well as a rich set of APIs to
update the data. The data in HBase gets stored as key-value pairs in HDFS.

Chapter 1

[11]

Apache Pig
Apache Pig provides another abstraction layer on top of MapReduce. It provides
something called Pig Latin, which is a programming language that creates
MapReduce programs using Pig. Pig Latin is a high-level language for developers to
write high-level software for analyzing data. Pig code generates parallel execution
tasks, therefore effectively uses the distributed Hadoop cluster. Pig was initially
developed at Yahoo! Research to enable developers create ad-hoc MapReduce jobs
for Hadoop. Since then, many big organizations such as eBay, LinkedIn, and Twitter
have started using Apache Pig.

Apache Hive
Apache Hive provides data warehouse capabilities using Big Data. Hive runs on
top of Apache Hadoop, and uses HDFS for storing its data. The Apache Hadoop
framework is difficult to understand, and it requires a different approach from
traditional programming to write MapReduce-based programs. With Hive,
developers do not write MapReduce at all. Hive provides a SQL like query language
called HiveQL to application developers, enabling them to quickly write ad-hoc
queries similar to RDBMS SQL queries.

Apache ZooKeeper
Apache Hadoop nodes communicate with each other through Apache Zookeeper.
It forms the mandatory part of Apache Hadoop ecosystem. Apache Zookeeper is
responsible for maintaining coordination among various nodes. Besides coordinating
among nodes, it also maintains configuration information, and group services to
the distributed system. Apache ZooKeeper can be used independent of Hadoop,
unlike other components of the ecosystem. Due to its in-memory management of
information, it offers the distributed coordination at a high speed.

Apache Mahout
Apache Mahout is an open source machine learning software library that can
effectively empower Hadoop users with analytical capabilities such as clustering,
data mining, and so on, over distributed Hadoop cluster. Mahout is highly effective
over large datasets, the algorithms provided by Mahout are highly optimized to run
the MapReduce framework over HDFS.

Processing Big Data Using Hadoop and MapReduce

[12]

Apache HCatalog
Apache HCatalog provides metadata management services on top of Apache
Hadoop. It means all the software that runs on Hadoop can effectively use HCatalog
to store their schemas in HDFS. HCatalog helps any third party software to create,
edit, and expose (using rest APIs) the generated metadata or table definitions. So,
any user or script can run Hadoop effectively without actually knowing where
the data is physically stored on HDFS. HCatalog provides DDL (Data Definition
Language) commands with which the requested MapReduce, Pig, and Hive jobs can
be queued for execution, and later monitored for progress as and when required.

Apache Ambari
Apache Ambari provides a set of tools to monitor Apache Hadoop cluster hiding the
complexities of the Hadoop framework. It offers features such as installation wizard,
system alerts and metrics, provisioning and management of Hadoop cluster, job
performances, and so on. Ambari exposes RESTful APIs for administrators to allow
integration with any other software.

Apache Avro
Since Hadoop deals with large datasets, it becomes very important to optimally
process and store the data effectively on the disks. This large data should be
efficiently organized to enable different programming languages to read large
datasets Apache Avro helps you to do that. Avro effectively provides data
compression and storages at various nodes of Apache Hadoop. Avro-based
stores can easily be read using scripting languages as well as Java. Avro provides
dynamic access to data, which in turn allows software to access any arbitrary data
dynamically. Avro can be effectively used in the Apache Hadoop MapReduce
framework for data serialization.

Apache Sqoop
Apache Sqoop is a tool designed to do load large datasets in Hadoop efficiently.
Apache Sqoop allows application developers to import/export easily from specific
data sources such as relational databases, enterprise data warehouses, and custom
applications. Apache Sqoop internally uses a map task to perform data import/
export effectively on Hadoop cluster. Each mapper loads/unloads slice of data
across HDFS and data source. Apache Sqoop establishes connectivity between non-
Hadoop data sources and HDFS.

Chapter 1

[13]

Apache Flume
Apache Flume provides a framework to populate Hadoop with data from
nonconventional data sources. Typical use of Apache Flume could be for log
aggregation. Apache Flume is a distributed data collection service that gets flow
of data from their sources, aggregates them, and puts them in HDFS. Most of the
time, Apache Flume is used as an ETL (Extract-Transform-Load) utility at various
implementation of the Hadoop cluster.

We have gone through the complete ecosystem of Apache Hadoop. These
components together make Hadoop one of the most powerful distributed computing
software available today for use. Many companies offer commercial implementations
and support for Hadoop. Among them is the Cloudera software, a company that
provides Apache Hadoop's open source distribution, also called CDH (Cloudera
distribution including Apache Hadoop), enables organizations to have commercial
Hadoop setup with support. Similarly, companies such as IBM, Microsoft, MapR,
and Talend provide implementation and support for the Hadoop framework.

Storing large data in HDFS
Hadoop distributed file system (HDFS) is a subproject of Apache foundation. It is
designed to maintain large data/files in a distributed manner reliably. HDFS uses
master-slave based architecture and is designed to run on low- cost hardware. It is
a distributed file system which provides high speed data access across distributed
network. It also provides APIs to manage its file system. To handle failures of nodes,
HDFS effectively uses data replication of file blocks across multiple Hadoop cluster
nodes, thereby avoiding any data loss during node failures. HDFS stores its metadata
and application data separately. Let's understand its architecture.

HDFS architecture
HDFS, being a distributed file system, has the following major objectives to satisfy to
be effective:

•	 Handling large chunks of data
•	 High availability, and handling hardware failures seamlessly
•	 Streaming access to its data
•	 Scalability to perform better with addition of hardware
•	 Durability with no loss of data in spite of failures
•	 Portability across different types of hardware/software
•	 Data partitioning across multiple nodes in a cluster

Processing Big Data Using Hadoop and MapReduce

[14]

HDFS satisfies most of these goals effectively. The following diagram depicts the
system architecture of HDFS. Let's understand each of the components in detail.

Image and Journal
- In Memory

File2

7

Client Add Block
CheckPoint/

Backup

NameNode

Disk Based
SecondaryNameNode

HDFS Architecture

DataNode DataNode

Data to Block
Mapping

Node -> Block
Mapping

File1 -> 1,2,3,4
File2 -> 7,8,9

Node1 -> 1,3,7,8
Node2 -> 2,3,4,8,9
Node3 -> 1,4,7,9

.....

1 3

8

2 3 4

8 9

DataNode

1 4 7

9

File1

Block Added HeartbeatBlock Write

replication replication

NameNode
All the metadata related to HDFS is stored on NameNode. Besides storing metadata,
NameNode is the master node which performs coordination activities among data
nodes such as data replication across data nodes, naming system such as filenames,
their disk locations, and so on. NameNode stores the mapping of blocks to the
DataNodes. In a Hadoop cluster, there can only be one single active NameNode.
NameNode regulates access to its file system with the use of HDFS based APIs
to create, open, edit, and delete HDFS files. The data structure for storing file
information is inspired from a UNIX-like filesystem. Each block is indexed, and
its index node (inode) mapping is available in memory (RAM) for faster access.
NameNode is a multithreaded process and can serve multiple clients at a time.

Any transaction first gets recorded in journal, and the journal file, after completion
is flushed and response is sent back to the client. If there is any error while flushing
journal to disk, NameNode simply excludes that storage, and moves on with
another. NameNode shuts itself down in case no storage directory is available.

Chapter 1

[15]

Safe mode: When a cluster is started, NameNode starts its complete
functionality only when configured minimum percentage of block
satisfies the minimum replication. Otherwise, it goes into safe
mode. When NameNode is in safe mode state, it does not allow any
modification to its file systems. This can be turned off manually by
running the following command:
$ hadoop dfsadmin – safemode leave

DataNode
DataNodes are nothing but slaves that are deployed on all the nodes in a Hadoop
cluster. DataNode is responsible for storing the application's data. Each uploaded
data file in HDFS is split into multiple blocks, and these data blocks are stored on
different data nodes. Default file block size in HDFS is 64 MB. Each Hadoop file
block is mapped to two files in data node, one file is the file block data, while the
other one is checksum.

When Hadoop is started, each data node connects to NameNode informing its
availability to serve the requests. When system is started, the namespace ID and
software versions are verified by NameNode, and DataNode sends block report
describing what all data blocks it holds to NameNode on startup. During runtime,
each DataNode periodically sends NameNode a heartbeat signal, confirming its
availability. The default duration between two heartbeats is 3 seconds. NameNode
assumes unavailability of DataNode if it does not receive a heartbeat in 10 minutes
by default; in that case NameNode does replication of data blocks of that DataNode
to other DataNodes. Heartbeat carries information about disk space available, in-use
space, data transfer load, and so on. Heartbeat provides primary handshaking across
NameNode and DataNode; based on heartbeat information, NameNode chooses next
block storage preference, thus balancing the load in the cluster. NameNode effectively
uses heartbeat replies to communicate to DataNode regarding block replication to
other DataNodes, removal of any blocks, requests for block reports, and so on.

Secondary NameNode
Hadoop runs with single NameNode, which in turn causes it to be a single point
of failure for the cluster. To avoid this issue, and to create backup for primary
NameNode, the concept of secondary NameNode was introduced recently in the
Hadoop framework. While NameNode is busy serving request to various clients,
secondary NameNode looks after maintaining a copy of up-to-date memory
snapshot of NameNode. These are also called checkpoints.

Processing Big Data Using Hadoop and MapReduce

[16]

Secondary NameNode usually runs on a different node other than NameNode, this
ensures durability of NameNode. In addition to secondary NameNode, Hadoop also
supports CheckpointNode, which creates period checkpoints instead of running a
sync of memory with NameNode. In case of failure of NameNode, the recovery is
possible up to the last checkpoint snapshot taken by CheckpointNode.

Organizing data
Hadoop distributed file system supports traditional hierarchy based file system
(such as UNIX), where user can create their own home directories, subdirectories,
and store files in these directories. It allows users to create, rename, move, and delete
files as well as directories. There is a root directory denoted with slash (/), and all
subdirectories can be created under this root directory, for example /user/foo.

The default data replication factor on HDFS is three; however
one can change this by modifying HDFS configuration files.

Data is organized in multiple data blocks, each comprising 64 MB size by default.
Any new file created on HDFS first goes through a stage, where this file is cached on
local storage until it reaches the size of one block, and then the client sends a request
to NameNode. NameNode, looking at its load on DataNodes, sends information
about destination block location and node ID to the client, then client flushes the data
to the targeted DataNodes the from local file. In case of unflushed data, if the client
flushes the file, the same is sent to DataNode for storage. The data is replicated at
multiple nodes through a replication pipeline.

Accessing HDFS
HDFS can be accessed in the following different ways:

•	 Java APIs
•	 Hadoop command line APIs (FS shell)
•	 C/C++ language wrapper APIs
•	 WebDAV (work in progress)
•	 DFSAdmin (command set for administration)
•	 RESTful APIs for HDFS

Chapter 1

[17]

Similarly, to expose HDFS APIs to rest of the language stacks, there is a separate
project called HDFS-APIs (http://wiki.apache.org/hadoop/HDFS-APIs), based
on the Thrift framework which allows scalable cross-language service APIs to Perl,
Python, Ruby, and PHP. Let's look at the supported operations with HDFS.

Hadoop operations Syntax Example
Creating a directory hadoop dfs -mkdir URI hadoop dfs -mkdir

/users/abc

Importing file from local
file store

hadoop dfs
-copyFromLocal
<localsrc> URI

hadoop dfs
-copyFromLocal /
home/user1/info.
txt /users/abc

Exporting file to local file
store

hadoop dfs -copyToLocal
[-ignorecrc] [-crc] URI
<localdst>

hadoop dfs
-copyToLocal /
users/abc/info.txt
/home/user1

Opening and reading a file hadoop dfs -cat URI
[URI …]

hadoop dfs -cat /
users/abc/info.txt

Copy files in Hadoop hadoop dfs -cp URI [URI
…] <dest>

hadoop dfs -cp /
users/abc/* /
users/bcd/

Moving or renaming a file
or directory

hadoop dfs -mv URI [URI
…] <dest>

hadoop dfs -cp /
users/abc/output /
users/bcd/

Delete a file or directory,
recursive delete

hadoop dfs -rm
[-skipTrash] URI [URI
…]

hadoop dfs -rm /
users/abc/info.txt

Get status of file or
directory, size, other
information

hadoop dfs -du <args> hadoop dfs -du /
users/abc/info.txt

List a file or directory hadoop dfs -ls <args> hadoop dfs -ls /
users/abc

Get different attributes of
file/directory

hadoop dfs -stat URI hadoop dfs -stat /
users/abc

Change permissions
(single/recursive) of file or
directory

hadoop dfs -chmod [-R]
MODE URI [URI …]

hadoop dfs -chmod
755 /users/abc

www.allitebooks.com

http://www.allitebooks.org

Processing Big Data Using Hadoop and MapReduce

[18]

Hadoop operations Syntax Example
Set owner for file/directory hadoop dfs -chown [-R]

[OWNER][:[GROUP]] URI
hadoop dfs -chown
-R hrishi /users/
hrishi/home

Setting replication factor hadoop dfs -setrep [-R]
<path>

hadoop dfs -setrep
-w 3 -R /user/
hadoop/dir1

Change group permissions
with file

hadoop dfs -chgrp [-R]
GROUP URI [URI …]

hadoop dfs -chgrp
-R abc /users/abc

Getting the count of files
and directories

hadoop dfs -count [-q]
<paths>

hadoop dfs -count
/users/abc

Creating MapReduce to analyze Hadoop
data
The MapReduce framework was originally developed at Google, but it is now being
adapted as the de facto standard for large scale data analysis.

MapReduce architecture
In the MapReduce programming model, the basic unit of information is a key-
value pair. The MapReduce program reads sets of such key-value pairs as input,
and outputs new key-value pairs. The overall operation occurs in three different
stages, Map-Shuffle-Reduce. All the stages of MapReduce are stateless, enabling
them to run independently in a distributed environment. Mapper acts upon one
pair at a time, whereas shuffle and reduce can act on multiple pairs. In many cases,
shuffle is an optional stage of execution. All of the map tasks should finish before
the start of Reduce phase. Overall a program written in MapReduce can undergo
many rounds of MapReduce stages one by one. Please take a look at an example of
MapReduce in Appendix C.

The Hadoop-based MapReduce framework architecture is shown in the following
diagram. It is a master-slave architecture consisting of two major components in
MapReduce architecture of MapReduce: JobTracker and TaskTracker.

Chapter 1

[19]

Map - Reduce Framework

Slave Node

DataNode

TaskTracker

Map Reduce

DataNode

Map

Slave Node

Reduce

TaskTracker

Slave Node

DataNode

Map Reduce

JobTracker

NameNode

TaskTracker

Master Node

JobTracker
JobTracker is responsible for monitoring and coordinating execution of jobs across
different TaskTrackers in Hadoop nodes. Each Hadoop program is submitted to
JobTracker, which then requests location of data being referred by the program. Once
NameNode returns the location of DataNodes, JobTracker assigns the execution of
jobs to respective TaskTrackers on the same machine where data is located. The work
is then transferred to TaskTracker for execution. JobTracker keeps track of progress
on job execution through heartbeat mechanism. This is similar to the heartbeat
mechanism we have seen in HDFS. Based on heartbeat signal, JobTracker keeps
the progress status updated. If TaskTracker fails to respond within stipulated time,
JobTracker schedules this work to another TaskTracker. In case, if a TaskTracker
reports failure of task to JobTracker, JobTracker may assign it to a different
TaskTracker, or it may report it back to the client, or it may even end up marking the
TaskTracker as unreliable.

Processing Big Data Using Hadoop and MapReduce

[20]

TaskTracker
TaskTracker are slaves deployed on Hadoop nodes. They are meant to serve requests
from JobTracker. Each TaskTracker has an upper limit on number of tasks that can be
executed on node, and they are called slots. Each task runs in its own JVM process,
this minimizes impact on the TaskTracker parent process itself due to failure of tasks.
The running tasks are then monitored by TaskTracker, and the status is maintained,
which is later reported to JobTracker through heartbeat mechanism. To help us
understand the concept, we have provided a MapReduce example in Appendix A, Use
Cases for Big Data Search.

Installing and running Hadoop
Installing Hadoop is a straightforward job with a default setup, but as we go on
customizing the cluster, it gets difficult. Apache Hadoop can be installed in three
different setups: namely standalone mode, single node (pseudo-distributed) setup,
and fully distributed setup. Local standalone setup is meant for single machine
installation. Standalone mode is very useful for debugging purpose. The other two
types of setup are shown in the following diagram:

Single Node Setup (Proxy
Hadoop Cluster)

Node 1 (Master and Slave)

Standard Hadoop Cluster

NameNode JobTracker

Apache Zookeeper

DataNode TaskTracker

Single Node Setup

NameNode JobTracker

Apache Zookeeper

DataNode TaskTracker

Node 2 (Slave)

Apache Zookeeper

DataNode TaskTracker

Node N (Slave)

Apache Zookeeper

DataNode TaskTracker

Chapter 1

[21]

In pseudo-distributed setup of Hadoop, Hadoop is installed on a single machine;
this is mainly for development purpose. In this setup, each Hadoop daemon runs as
a separate Java process. A real production based installation would be on multiple
nodes or full cluster. Let's look at installing Hadoop and running a simple program
on it.

Prerequisites
Hadoop runs on the following operating systems:

•	 All Linux flavors: It supports development as well as production
•	 Win32: It has limited support (only for development) through Cygwin

Hadoop requires the following software:

•	 Java 1.6 onwards
•	 ssh (Secure shell) to run start/stop/status and other such scripts across cluster
•	 Cygwin, which is applicable only in case of Windows

This software can be installed directly using apt-get for Ubuntu, dpkg for Debian,
and rpm for Red Hat/Oracle Linux from respective sites. In case of cluster setup, this
software should be installed on all the machines.

Setting up SSH without passphrases
Since Hadoop uses SSH to run its scripts on different nodes, it is important to make
this SSH login happen without any prompt for password. This can simply be tested
by running the ssh command as shown in the following code snippet:

$ssh localhost

 Welcome to Ubuntu (11.0.4)

hduser@node1:~/$

If you get a prompt for password, you should perform the following steps on your
machine:

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

$ ssh localhost

This step will actually create authorization key with SSH, by passing passphrases
check. Once this step is complete, you are good to go.

Processing Big Data Using Hadoop and MapReduce

[22]

Installing Hadoop on machines
Hadoop can be first downloaded from the Apache Hadoop website (http://
hadoop.apache.org). Make sure that you download and choose the correct release
from different releases, which is stable release, latest beta/alpha release, and legacy
stable version. You can choose to download the package or download the source,
compile it on your OS, and then install it. Using operating system package installer,
install the Hadoop package.

To setup a single pseudo node cluster, you can simply run the following script
provided by Apache:

$ hadoop-setup-single-node.sh

Say Yes to all the options. This will setup a single node on your machine, you do not
need to further change any configuration, and it will run by default. You can test it
by running any of the Hadoop command discussed in HDFS section of this chapter.

For a cluster setup, the SSH passphrase should be set on all the nodes, to bypass
prompt for password while starting and stopping TaskTracker/DataNodes on all
the slaves from masters. You need to install Hadoop on all the machines which are
going to participate in the Hadoop cluster. You also need to understand the Hadoop
configuration file structure, and make modifications to it.

Hadoop configuration
Major Hadoop configuration is specified in the following configuration files, kept in
the $HADOOP_HOME/conf folder of the installation:

File name Description
core-site.xml In this file, you can modify the default properties of Hadoop.

This covers setting up different protocols for interaction, working
directories, log management, security, buffer and blocks,
temporary files, and so on.

hdfs-site.xml This file stores the entire configuration related to HDFS. So
properties such as DFS site address, data directory, replication
factors, and so on, are covered in these files.

mapred-site.xml This file is responsible for handling the entire configuration
related to the MapReduce framework. This covers configuration
for JobTracker and TaskTracker, properties for Job.

common-logging.
properties

This file specifies the default logger used by Hadoop; you can
override it to use your logger.

Chapter 1

[23]

File name Description
capacity-
scheduler.xml

This file is mainly used by resource manager in Hadoop for
setting up scheduling parameters of job queues.

fair-scheduler.
xml

This file contains information about user allocations and pooling
information for fair scheduler. It is currently under development.

hadoop-env.sh All the environment variables are defined in this file; you can
change any of the environments, that is, Java location, Hadoop
configuration directory, and so on.

hadoop-policy.xml This file is used to define various access control lists for Hadoop
services. This can control who all can use Hadoop cluster for
execution.

Masters/slaves In this file, you can define the hostname for master and slaves.
Master file lists all the masters, and Slave file lists the slave
nodes. To run Hadoop in cluster mode, you need to modify these
files to point to the respective master and slaves on all nodes.

Log4j.properties You can define various log levels for your instance, helpful while
developing or debugging the Hadoop programs. You can define
levels for logging.

The files marked in bold letters are the files that you will definitely modify to set up
your basic Hadoop cluster.

Running a program on Hadoop
You can start your cluster with the following command; once started, you will see
the output shown as follows:

hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

 Starting namenode, logging to /usr/local/hadoop/bin/../logs/hadoop-
 hduser-namenode-ubuntu.out

 localhost: starting datanode, logging to
 /usr/local/hadoop/bin/../logs/hadoop-hduser-datanode-ubuntu.out

 localhost: starting secondarynamenode, logging to
 /usr/local/hadoop/bin/../logs/hadoop-hduser-secondarynamenode-
 ubuntu.out

starting jobtracker, logging to /usr/local/hadoop/bin/../logs/
 hadoop-hduser-jobtracker-ubuntu.out

 localhost: starting tasktracker, logging to /usr/local/hadoop/bin
 /../logs/hadoop-hduser-tasktracker-ubuntu.out

hduser@ubuntu:/usr/local/hadoop$

Processing Big Data Using Hadoop and MapReduce

[24]

Now we can test the functioning of this cluster by running sample examples shipped
with Hadoop installation. First, copy some files from your local directory on HDFS
and you can run following command:

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop dfs -copyFromLocal
 /home/myuser/data /user/myuser/data

Run hadoop dfs –ls on your Hadoop instance to check whether the files are loaded
in HDFS. Now, you can run the simple word count program to count the number of
words in all these files.

bin/hadoop jar hadoop*examples*.jar wordcount /user/myuser/data
 /user/myuser/data-output

You will typically find hadoop-example jar in /usr/share/hadoop, or in $HADOOP_
HOME. Once it runs, you can run hadoop dfs cat on data-output to list the output.

Managing a Hadoop cluster
Once a cluster is launched, administrators should start monitoring the Hadoop
cluster. Apache Hadoop provides number of software to manage the cluster; in
addition to that there are dedicated open sources as well as third party application
tools to do the management of Hadoop cluster.

By default, Hadoop provides two web-based interfaces to monitor its activities.
A JobTracker web interface and NameNode web interface. A JobTracker web
interface by default runs on a master server (http://localhost:50070) and it
provides information such as heap size, cluster usage, and completed jobs. It also
provides administrators to drill down further into completed as well as failed
jobs. The following screenshot describes the actual instance running in a pseudo
distributed mode:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

[25]

Similarly, the NameNode interface runs on a master server (http://
localhost:50030), and it provides you with information about HDFS.
With it, you can browse the current file system in HDFS through the Web;
you can see disk usage, its availability, and live data node related information.

Summary
In this chapter, we have learned about Apache Hadoop, its ecosystem, how to
set up a cluster, and configure Hadoop for your requirements. We will look at
Apache Solr which provides Big Data search capabilities in the next chapter.

Understanding Solr
The exponential growth of data coming from various applications over the past
decade has created many challenges. Handling such massive data demanded focus
on the development of scalable search engines. It also triggered development of data
analytics. Apache Lucene along with Mahout and Solr were developed to address
these needs. Out of these, Mahout was moved as a separate Apache top-level project,
and Apache Solr was merged into the Lucene project itself.

Apache Solr is an open source enterprise search application which provides user
abilities to search structured as well as unstructured data across the organization. It
is based on the Apache Lucene libraries for information retrieval. Apache Lucene is
an open source information retrieval library used widely by various organizations.
Apache Solr is completely developed on Java stack of technologies. Apache Solr is
a web application, and Apache Lucene is a library consumed by Apache Solr for
performing search. We will try to understand Apache Solr in this chapter, while
covering the following topics:

•	 Installation of an Apache Solr
•	 Understanding the Apache Solr architecture
•	 Configuring a Solr instance
•	 Understanding various components of Solr in detail
•	 Understanding data loading

www.allitebooks.com

http://www.allitebooks.org

Understanding Solr

[28]

Installing Solr
Apache Solr comes by default with a demo server based on Jetty, which can be
downloaded and run. However, you can choose to customize it, and deploy it in
your own environment. Before installation, you need to make sure that you have
JDK 1.5 or above on your machines. You can download the stable installer from
http://lucene.apache.org/solr/ or from its nightly builds running on the
same site. You may also need a utility called curl to run your samples. There are
commercial versions of Apache Solr available from a company called LucidWorks
(http://www.lucidworks.com). Solr being a web-based application can run on
many operating systems such as *nix and Windows.

Some of the older versions of Solr have failed to run properly due to
locale differences on host systems. If your system's default locale, or
character set is non-english (that is, en/en-US), for safety, you can
override your system defaults for Solr by passing -Duser.language
and -Duser.country in your Jetty to ensure smooth running of Solr.

If you are planning to run Solr in your own container, you need to deploy solr.war
from the distribution to your container. You can simply check whether your instance
is running or not by accessing its admin page available at http://localhost:8983/
solr/admin. The following screenshot shows the Solr window:

If you are building Solr from source, then you need Java SE 6 JDK (Java Development
Kit), Apache Ant distribution (1.8.2 or higher), and Apache Ivy (2.2.0 or higher). You
can compile the source by simply navigating to Solr directory and running Ant from
the directory.

Chapter 2

[29]

Apache Solr architecture
Apache Solr is composed of multiple modules, some of them being separate
projects in themselves. Let's understand the different components of Apache Solr
architecture. The following diagram depicts the Apache Solr conceptual architecture:

Client APIs
Other Interfaces:

Javascript, Python, Ruby,
MBeans etc.

SlorJ Client

J2EE Container

Storage

Container

Solr Engine

Interaction

Index Searcher Query Parser Index Writer

Index ReaderAnalyzerTokenizer

Application Layer

Velocity
Templates

Request
Handler

Response Writer
Facet and

Components

Chain of Analyzers

Apache Lucene Core

Index
Replicator

Data Import
Handler

Apache Tika

Index
Handler

Data Upload

Schema and Metadata Configuration Index Storage

Apache Solr can run as a single core or multicore. A Solr core is nothing but the
running instance of a Solr index along with its configuration. Earlier, Apache Solr
had a single core which in turn limited the consumers to run Solr on one application
through a single schema and configuration file. Later support for creating multiple
cores was added. With this support, now, one can run one Solr instance for multiple
schemas and configurations with unified administrations. You can run Solr in
multicore with the following command:

java -Dsolr.solr.home=multicore -jar start.jar

Storage
The storage of Apache Solr is mainly used for storing metadata and the actual index
information. It is typically a file store locally, configured in the configuration of
Apache Solr. The default Solr installation package comes with a Jetty server, the
respective configuration can be found in the solr.home/conf folder of Solr install.

Understanding Solr

[30]

There are two major configuration files in Solr described as follows:

File name Description
solrconfig.xml This is the main configuration file of your Solr install. Using this

you can control each and every thing possible; write from caching,
specifying customer handlers, codes, and commit options.

schema.xml This file is responsible for defining a Solr schema for your
application. For example, Solr implementation for log
management would have schema with log-related attributes such
as log levels, severity, message type, container name, application
name, and so on.

solr.xml Using solr.xml, you can configure Solr cores (single or multiple)
for your setup. It also provides additional parameters such as
zookeeper timeout, transient cache size, and so on.

Apache Solr (underlying Lucene) indexing is a specially designed data structure,
stored in the file system as a set of index files. The index is designed with specific
format in such a way to maximize the query performance.

Solr engine
A Solr engine is nothing but the engine responsible for making Solr what it is today.
A Solr engine with metadata configuration together forms the Solr core. When Solr
runs in a replication mode, the index replicator is responsible for distributing indexes
across multiple slaves. The master server maintains index updates, and slaves are
responsible for talking with master to get them replicated. Apache Lucene core gets
packages as library with Apache Solr application. It provides core functionality for
Solr such as index, query processing, searching data, ranking matched results, and
returning them back.

The query parser
Apache Lucene comes with variety of query implementations. Query parser is
responsible for parsing the queries passed by the end search as a search string.
Lucene provides TermQuery, BooleanQuery, PhraseQuery, PrefixQuery,
RangeQuery, MultiTermQuery, FilteredQuery, SpanQuery, and so on as query
implementations. IndexSearcher is a basic component of Solr searched with a
default base searcher class. This class is responsible for returning ordered matched
results of searched keywords ranked as per the computed score. IndexReader
provides access to indexes stored in the file system. It can be used for searching for
an index. Similar to IndexReader, IndexWriter allows you to create and maintain
indexes in Apache Lucene.

Chapter 2

[31]

Tokenizer breaks field data into lexical units or tokens. Filter examines field of
tokens from Tokenizer and either it keeps them, transforms them, discards them,
or creates new ones. Tokenizer and Filter together form chain or pipeline of
analyzers. There can only be one Tokenizer per Analyzer. The output of one chain
is fed to another. Analyzing process is used for indexing as well as querying by Solr.
They play an important role in speeding up the query as well as index time; they
also reduce the amount of data that gets generated out of these operations. You can
define your own customer analyzers depending upon your use case. The following
diagram shows the example of a filter:

These are the photos of my

home

It’s a nice place to be.

Document

These are the photos of

my home It’s a nice

place to be

These,are,the,phot

os,of,my,home,It’s

,a,nice,place,to,be

HTMLStripCharFilter

WhiteSpaceTokenizer

LowerCase Tokenizer

These,are,the,phot

os,of,my,home,It,s

,a,nice,place,to,be

Application layer represents Apache Solr web application. It consists of different UI
templates, request/response handlers, and different faceting provided by Solr.

Faceted browsing is one of the main features of Apache Solr; it helps users reach the
right set of information they wanted to get. The facets and components deal with
providing the faceted search capabilities on top of Lucene. When a user fires a search
query on Solr, it actually gets passed on to a request handler. By default, Apache Solr
provides DisMaxRequestHandler. This handler is designed to work for simple user
queries. It can only search one field by default. You can visit here to find more details
about this handler. Based on the request, request handler calls query parser.

Understanding Solr

[32]

Query parser is responsible for parsing the queries, and converting it into Lucene
query objects. There are different types of parsers available (Lucene, DisMax,
eDisMax, and so on). Each parser offers different functionalities and it can be used
based on the requirements. Once a query is parsed, it hands it over to index searcher
or reader. The job of index reader is to run the queries on index store, and gather the
results to response writer.

Response Writer is responsible for responding back to the client; it formats the query
response based on search outcomes from the Lucene engine.

The following diagram displays complete process flow when a search is fired from
a client:

Request Handler

Response Writer

Result are
returned to

ResponseWriter
Index Searcher/Index

Reader

User runs a query

Request Handler
assigns job to

appropriate query
parser

Query Parser

Identified the fields,
filters the query

Formats the
output and

responds back

Index Store

Performs Search
on Index Store

Apache Solr ships with an example schema that runs using Apache velocity.
Apache velocity is a fast, open source template engine which quickly generates
an HTML-based frontend. Users can customize these templates as per their
requirements.

Index handler is one type of update handler that handles the task of addition,
updation, and deletion of document for indexing. Apache Solr supports updates
through index handler through JSON, XML, and text format.

Data Import Handler (DIH) provides a mechanism for integrating different
data sources with Apache Solr for indexing. The data sources could be relational
databases or web-based sources (for example, RSS, ATOM feeds, and e-mails).

Chapter 2

[33]

Although DIH is part of Solr development, the default
installation does not include it in the Solr application.

Apache Tika, a project in itself extends capabilities of Apache Solr to run on top
of different types of files. When assigned a document to Tika, it automatically
determines the type of file (that is, Word, Excel, or PDF) and extracts the content.
Tika also extracts document metadata such as author, title, creation date, and so on,
which if provided in schema go as text field in Apache Solr.

Interaction
Apache Solr, although a web-based application, can be integrated with different
technologies. So, if a company has Drupal-based e-commerce site, they can integrate
Apache Solr application and provide its rich faceted search to the user.

Client APIs and SolrJ client
Apache Solr client provides different ways of talking with Apache Solr web
application. This enables Solr to easily get integrated with any application. Using
client APIs, consumers can run search, and perform different operations on indexes.
SolrJ or Solr Java client is an interface of Apache Solr with Java. SolrJ client enables
any Java application to talk directly with Solr through its extensive library of APIs.
Apache SolrJ is part of Apache Solr package.

Other interfaces
Apache Solr can be integrated with other various technologies using its API library
and standards-based interfacing. JavaScript-based clients can straightaway talk with
Solr using JSON-based messaging. Similarly, other technologies can simply connect
to Apache Solr running instance through HTTP, and consume its services either
through JSON, XML, and text formats.

Configuring Apache Solr search
Apache Solr allows extensive configuration to meet the needs of the consumer.
Configuring the instance revolves around the following:

•	 Defining a schema
•	 Configuring Solr parameters

Let's look at all these steps to understand the configuration of Apache Solr.

Understanding Solr

[34]

Defining a Schema for your instance
Apache Solr lets you define the structure of your data to extend support for
searching across the traditional keyword search. You can allow Solr to understand
the structure of your data (coming from various sources) by defining fields in the
schema definition file. These fields once defined, will be made available at the time
of data import or data upload. The schema is stored in the schema.xml file in the etc
folder of Apache Solr.

Apache Solr ships with a default schema.xml file, which you have to change to
fit your needs. In schema configuration, you can define field types, (for example,
String, Integer, Date), and map them to respective Java classes. Apache Solr ships
with default data types for text, integer, date, and so on.

<field name="id" type="string" indexed="true" stored="true"
 required="true"/>

This enables users to define the custom type in case if they wish to. Then you can
define the fields with name and type pointing to one of the defined types. A field in
Solr will have the following major attributes:

Name Description
default Sets default value, if not read while importing a document
indexed True, when it has to be indexed (that is, can be searched,

sorted, and facet creation)
stored When true, a field is stored in the index store, and it will be

accessible while displaying results
compressed When true, the field will be zipped (using gzip). It is

applicable for text-based fields
multiValued If a field contains multiple values in the same import cycle of

the document/row
omitNorms When true, it omits the norms associated with field (such as

length normalization and index boosting)
termVectors When true, it also persists metadata related to document,

and returns that when queried.

Chapter 2

[35]

Each Solr instance should have a unique identifier field (ID) although it's not
mandatory condition. In addition to static fields, you can also use Solr dynamic
fields for getting the flexibility in case if you do not know the schema affront. Use
the <dynamicField> declaration for creating a field rule to allow Solr understands
which data type to be used. In the following sample code, any field imported, and
identified as *_no (for example, id_no, book_no) will in turn be read as integer
by Solr.

<dynamicField name="*_no" type="integer" indexed="true"
 stored="true"/>

You can also index same data into multiple fields by using the <copyField>
directive. This is typically needed when you want to have multi-indexing for same
data type, for example, if you have data for refrigerator with company followed
by model number (WHIRLPOOL-1000LTR, SAMSUNG-980LTR), you can have
these indexed separately by applying your own tokenizers to different field. You
might generate indexes for two different fields, company name and model number.
You can define Tokenizers specific to your field types. Similarly, a Lucene class
responsible for scoring the matched results. Solr allows you to override default
similarity behavior through the <similarity> declaration. Similarity can be
configured at the global level; however with Solr 4.0, it extends similarity to be
configured at the field level.

Configuring a Solr instance
Once a schema is configured, next step would be to configure the instance itself.
To configure the instance, you need to touch upon many files, some of them are
configuration files, and some of them are metadata files. The entire configuration is
part of /conf directory where Solr instance is setup. You can simply run examples
by going to the examples/example-docs directory and running the following code:

java -jar post.jar solr.xml monitor.xml

Understanding Solr

[36]

Now, try accessing your instance by typing http://localhost:8983/solr/
collection1/browse, and you will be able to see the following screenshot when
you search on Advanced:

Configuration files
There are two major configurations that go in the Solr configuration: namely,
solrconfig.xml and solr.xml. Among these, solr.xml is responsible for
maintaining configuration for logging, cloud setup, and Solr core primarily,
whereas solrconfig.xml focuses more on the Solr application front. Let's look at
the solrconfig.xml file, and understand all the important declarations you'd be
using frequently.

Directive Description
luceneMatchVersion It tells which version of Lucene/Solr the solrconfig.

xml configuration file is set to. When upgrading your Solr
instances, you need to modify this attribute.

lib In case if you create any plugins for Solr, you need to put a
library reference here, so that it gets picked up. The libraries
are loaded in the same sequence that of the configuration
order. The paths are relative; you can also specify regular
expressions. For example,
<lib dir=".../../../contrib/velocity/lib"
 regex=".*\.jar" />.

Chapter 2

[37]

Directive Description
dataDir By default Solr uses ./data directory for storing indexes,

however this can be overridden by changing the directory
for data using this directive.

indexConfig This directive is of xsd complexType, and it allows you
to change the settings of some of the internal indexing
configuration of Solr.

filter You can specify different filters to be run at the time of
index creation.

writeLockTimeout This directive denotes maximum time to wait for the write
Lock for IndexWriter.

maxIndexingThreads It denotes maximum number of index threads that can run
in the IndexWriter class; if more threads arrive, they have
to wait. The default value is 8.

ramBufferSizeMB It specifies the maximum RAM you need in the buffer while
index creation, before the files are flushed to filesystem.

maxBufferedDocs It specifies the limited number of documents buffered.
lockType When indexes are generated and stored in the file, this

mechanism decides which file locking mechanism to be
used to manage concurrent read/writes. There are three
types: single (one process at a time), native (native operating
system driven), and simple (based on locking using plain
files).

unlockOnStartup When true, it will release all the write locks held in the past.
Jmx Solr can expose statistics of runtime through MBeans. It can

be enabled or disabled through this directive.

updateHandler This directive is responsible for managing the updates to
Solr. The entire configuration for updateHandler goes as a
part of this directive.

updateLog You can specify the directory and other configuration for
transaction logs during index updates.

autoCommit It enables automatic commit, when updates are done. This
could be based on the documents or time.

Listener Using this directive, you can subscribe to update
events when IndexWriter is updating the index. The
listeners can be run either at the time of postCommit or
postOptimize.

Query This directive is mainly responsible for controlling different
parameters at the query time.

www.allitebooks.com

http://www.allitebooks.org

Understanding Solr

[38]

Directive Description
requestDispatcher By setting parameters in this directive, you can control how

a request will be processed by SolrDispatchFilter.

requestHandler It is described separately in the next section.

searchComponent It is described separately in the next section.
updateRequest
Processor chain

The updateRequestProcessor chain defines how
update requests are processed; you can define your own
updateRequestProcessor to perform things such as
cleaning up data, optimizing text fields, and so on.

queryResponseWriter Each request for query is formatted and written back to
user through queryResponseWriter. You can extend
your Solr instance to have responses for XML, JSON, PHP,
Ruby, Python, and CSVS by enabling respective predefined
writers. If you have a custom requirement for a certain type
of response, it can easily be extended.

queryParser The queryParser directive tells Apache Solr which query
parser to be used for parsing the query and creating the
Lucene query objects. Apache Solr contains predefined
query parsers such as Lucene (default), DisMax (based on
weights of fields), and eDisMax (similar to DisMax, with
some additional features).

Request handlers and search components
Apache Solr gets requests for searching on data or index generation. In such cases,
RequestHandler is the directive through which you can define different ways of
tackling these requests. One request handler is assigned with one relative URL
where it would serve the request. A request handler may or may not provide search
facility. In case if it provides, it is also called searchHandler. RealTimeGetHandler
provides latest stored fields of any document. UpdateRequestHandler is responsible
for updating the process of the index. Similarly, CSVRequestHandler and
JsonUpdateRequestHandler takes the responsibility of updating the indexes with
CSV and JSON formats, respectively. ExtractingRequestHandler uses Apache Tika
to extract the text out of different file formats. By default, there are some important
URLs configured with Apache Solr which are listed as follows:

Chapter 2

[39]

URL Purpose
/select SearchHandler in text
/query SearchHandler for JSON-based requests
/get RealTimeGetHandler in JSON format
/browse SearchHandler faceted web-based search, primary interface
/update/extract ExtractingRequestHandler

/update/csv CSVRequestHandler

/update/json JsonUpdateRequestHandler

/analysis/* For analyzing the field, documents. It makes use of
FieldAnalysisRequestHandler

/admin AdminHandler for providing administration of Solr.
AdminHandler has multiple subhandlers defined; /admin/
ping is used for health checkup

/debug/dump DumpRequestHandler echoes the request content back to
the client

/replication Supports replicating indexes across different Solr servers,
used by masters and slaves for data sharing. It makes use of
ReplicationHandler

A searchComponent is a one of the main feature of Apache Solr. It brings the
capability of enhancing new features to Apache Solr. You can use searchComponent
in your searchHandler. It has to be defined separately from requestHandler. These
components can be defined, and then they can be used in any of the requestHandler
directives. Some components also allow access through either searchComponent,
or directly as a separate request handler. You can alternatively specify your query
parser in the context of your requestHandler. Different parsers can be used for this.
The default parser is the Lucene-based standard parser.

Understanding Solr

[40]

Facet
Facets are one of the primary features of Apache Solr. Your search results can be
organized in different formats through facets. This is an effective way of helping
users to drill down to right set of information. The following screenshot shows one of
a customized instance of Apache Solr with facets on the left-hand side:

Using facets, you can filter down your query. Facets can be created on your schema-
based fields. So, considering the log-based search, you can create facets based on the
log severity. There are different types of facets:

Facet Description
Field-value You can have your schema fields as facet component here. It shows the

count of top fields.
Range Range faceting is mostly used on date/numeric fields, and it supports

range queries. You can specify start and end dates, gap in the range,
and so on.

Date This is a deprecated faceting, and it is now being handled in the range
faceting itself.

Pivot Pivot gives you the ability to perform simple math on your data. With
this facet, you can summarize your results, and then you can get them
sorted, and take average. This gives you hierarchical results (also
sometimes called hierarchical faceting).

Chapter 2

[41]

MoreLikeThis
The Solr-based search results are enhanced with the MoreLikeThis component,
because they provide a better user-browsing experience by allowing the user
to choose similar results. This component can be accessed either through
requestHandler, or through searchcomponent.

Highlight
The matched search string can be highlighted in the search results when a user fires a
query to Apache Solr through the highlight search component.

SpellCheck
Searching in Solr can be extended further with the support for spell checks using
the spellcheck component. You can get support for multiple dictionaries together
per field. This is very useful in case of multilingual data. It also has a Suggestor that
responds to user with Did you mean type of suggestions. Additionally, Suggestor
with autocomplete feature starts providing users options right at the time when user
is typing search query enhancing the overall experience.

Metadata management
We have already seen the solr.xml, solrconfig.xml, and schema.xml
configuration files. Besides these, there are other files where a metadata can be
specified. These files again appear in the conf directory of Apache Solr.

File name Description
protwords.txt In this file, you can specify protected words that you do not

wish to get stemmed. For example, a stemmer might stem
the word catfish to cat or fish.

currency.txt Current stores mapping between exchange rates across
different countries; this file is helpful when you have your
application accessed by people from different country.

elevate.txt With this file, you can influence the search results and
make your own results among the top ranked results. This
overrides Lucene's standard ranking scheme taking into
account the elevations from this file.

spellings.txt In this file, you can provide spelling suggestions to the end
user.

Understanding Solr

[42]

File name Description
synonyms.txt Using this file, you can specify your own synonyms. For

example, Cost => money, Money => dollars.
stopwords.txt Stopwords are those words which will not be indexed and

used by Solr in the applications; this is particularly helpful
when you wish to get rid of certain words, for example, in
the string, Jamie and Joseph, the word and can be marked
as a stopword.

Loading your data for search
Once a Solr instance is configured, next step is to index your data, and then simply
use the instance for querying and analyzing. Apache Solr/Lucene is designed in
such a way that it allows you to plugin any type of data from any data source in
the world. If you have structured data, it makes sense to extract the structured
information, create exhaustive Solr schema ,and feed in the data to Solr, effectively
adding different data dimensions to your search. Data Import Handler (DIH) is used
mainly for indexing structured data. It is mainly associated with data sources such as
relational databases, XML databases, RSS feeds, and ATOM feeds. DIH uses multiple
entity processors to extract the data from various data sources, transform them, and
finally generate indexes out of it. For example, in a relational database, a table or a
view can be viewed as an entity. DIH allows you to write your own custom entity
processors. There are different ways to load the data in Apache Solr as shown in the
following diagram:

Data Sources like
RDBMS, Custom

Applications

Raw Data

Pdf,doc,excel,ppt,
ebook,email etc.

Xml, JSON, csv

APIs for Extractions SolrJ

UpdateRequest
Handler

Extracting
Request

Handler/Solr Cell

simplePostTool

Data Import
Handler

Solr Upload Handlers

Index
Store

Fields(name->value)
and Content

Chapter 2

[43]

ExtractingRequestHandler/Solr Cell
Solr Cell is one of the most powerful handlers for uploading any type of data. If
you wish you can run Solr on a set of files/unstructured data containing different
formats such as MS Office, PDF, e-book, e-mail, text, and so on. In Apache Tika,
text extraction is based purely on how exhaustive any file is. Therefore, if you have
a PDF of scanned images containing text, Apache Tika won't be able to extract any
of the text out of it. In such cases, you need to use Optical Character Recognition
(OCR)-based software to bring in such functionality for Solr. You can simply try
this on your downloaded curl utility, and then running it on your document:

curl 'http://localhost:8983/solr/update/extract?
 literal.id=doc1&commit=true' -F "myfile=@<your document name
 with extension>"

Index handlers such as SimplePostTool, UpdateRequestHandler, and SolrJ
provide addition, updation, and deletion of documents to index them for XML,
JSON, and CSV format. UpdateRequestHandler provide web-based URL for
uploading the document. This can be done through curl utility.

Curl/wget utilities can be used for uploading data to Solr in your
environment. They are command line based; you can also use the
FireCURL plugin to upload data through your Firefox browser.

Simple post tool is a command-line tool for uploading the raw data to Apache Solr.
You can simply run it on any file or type in your input through STDIN to load it in
Apache Solr.

SolrJ
SolrJ or (SolrJava) is a tool that can be used by your Java-based application to connect
to Apache Solr for indexing. It provides a user-friendly interface hiding connection
details from consumer application. Using SolrJ, you can index your documents
and perform your queries. There are two major ways to do so; one is using the
EmbeddedSolrServer interface. If you are using Solr in an embedded application,
this is the recommended interface suited for you. It does not use HTTP-based
connection. The other way is to use the HTTPSolrServer interface, which talks with
Solr server through HTTP protocol. This is suited if you have a remote client-server
based application. You can use ConcurrentUpdateSolrServer for bulk uploads
whereas CloudSolrServer for communicating with Solr running in a cloud setup.

Understanding Solr

[44]

In analyzing and querying your data, we have already seen how Apache Solr
effectively uses different request handlers to provide consumers with extensive
ways of getting search results. Each request handler uses its own query parser,
which extracts the parameters and their values from the query string, and forms the
Lucene query objects. Standard query parser allows greater precision over search
data; DisMaxQueryParser and ExtendedDisMaxQueryParser provide a Google-like
searching syntax while searching. Depending upon which request handler is called,
the query syntax is changed. Let's look at some of the important terms:

Term Meaning
q?<string> Can support wildcard (*:*), for example,

title:Scaling*

fl=id,book-name Field list that a search response will return
sort=author asc Results/facets to be sorted on authors in

ascending order
price[* TO 100]&rows=10&start=5 Limits the result to 10 rows at a time, starting

at fifth matched result
hl=true&hl.fl=name,features Enables highlighting on field list name and

features
&q=*:*&facet=true&facet.
field=year

Enables faceted search on field year

Publish-date:[NOW-1YEAR/DAY TO
NOW/DAY]

Published date between last year (same day)
until today

description:"Java sql"~10 Called proximity search. Searches for the
descriptions containing Java and sql in a
single document with a proximity of 10
words maximum

"open jdk" NOT "Sun JDK" Searches for the open jdk term in the
document

&q=id:938099893&mlt=true Searches for a specific ID, and also searches
for similar results (more like this)

Summary
We have gone through various details of Apache Solr in this chapter. We reviewed
the architecture, the configuration, the data loading, and its features. In the next
chapter, we will look into how you can bring the two worlds of Apache Solr and
Apache Hadoop together to work with Big Data.

Making Big Data Work
for Hadoop and Solr

The Hadoop platform is widely used for processing large data sets due to its
dynamic scaling and reliable data processing. With Hadoop, many organizations
have created a massive cluster of commodity machines to process petabytes of data.
While the Hadoop platform offers many advantages, the modern businesses demand
an enterprise ready search platform together with robust management tools to
assist organizations in analyzing Big Data. We are going to look at the problem and
different approaches for making Big Data work for Hadoop and Solr.

The problem
Apache Solr is an open source, extendible, and enterprise search having effective
community development focused on enhancing it every day. Searching has evolved
over time, from basic web-crawling documents search to more sophisticated
structured/unstructured content search that provides a lot of user interactions. As
the data grows, there is a paradigm shift and more focus is towards the effective use
of MapReduce or similar distributed technology for handling such a high volume of
data. At the same time, the cost of enterprise storage also needs to be controlled.

By design, Apache Lucene and Solr are designed to support large scale
implementation. Apache Solr based distributed environment is useful when:

•	 Speeding up the search: If Apache Solr is taking longer time for creation of
indexes from raw data or for searching on a keyword across the index store,
it is possibly the best candidate to run in a distributed environment.

•	 Index generation time: Incremental generation of indexes at faster speeds is
an important aspect during the lifecycle of enterprise search. Distributed Solr
can add faster performance.

Making Big Data Work for Hadoop and Solr

[46]

•	 Large indexes: In cases when you have large indexes, a distribution of search
index by means of partitioning adds a lot of value in terms of performance.

•	 Increase in index creation complexity

At the same time, having your search distributed can address the following problems:

•	 No single point of failure for your search engine. With effective replication of
indexes, this can be achieved.

•	 High availability of the system in spite of multiple nodes failing due to high
replication factor.

Understanding data-processing
workflows
Based on the data, configuration, and the requirements, data can be processed at
multiple levels while it is getting ready for search. Cascading and LucidWorks Big
Data are few such application platforms with which a complex data processing
workflow can be rapidly developed on the Hadoop framework. In Cascading, the
data is processed in different phases, with each phase containing a pipe responsible
for carrying data units and applying a filter. The following diagram shows how
incoming data can be processed in the pipeline-based workflow:

Data Pipe
Incoming Data

Removes all garbled text
from data unit
Removes all garbled text
from data unit

CleanJunkFilter StopWordFilter

Removes all garbled text
from data unit
Remove Stop Words to
go in Apache Solr

DuplicatesCleanupFilter

Remove duplicates, data
repetitions from data
units

Data Output

Once a data is passed through the workflow, it can be persisted at the end
with repository, and later synced with various nodes running in a distributed
environment. The pipelining technique offers the following advantages:

•	 Apache Solr engine has minimum work to handle while index creation
•	 Incremental indexing can be supported
•	 By introducing intermediate store, you can have regular data backups at

required stages
•	 The data can be transferred to a different type of storage such as HDFS

directly through multiple processing units
•	 The data can be merged, joined, and processed as per the needs for different

data sources

Chapter 3

[47]

LucidWorks Big Data is a more powerful product which helps the user to generate
bulk indexes on Hadoop, allowing them to classify and analyze the data, and
provide distributed searching capabilities.

Sharding is a process of breaking one index into multiple logical units
called shards across multiple records. In case of Solr, the results will be
aggregated and returned.

Big Data based technologies can be used with Apache Solr for various operations.
Index creation itself can be made to run on distributed system in order to speed
up the overall index generation activity. Once that is done, it can be distributed
on different nodes participating in Big Data, and Solr can be made to run in a
distributed manner for searching the data. You can set up your Solr instance in
the following different configurations:

The standalone machine
This configuration uses single high end server containing indexes and Solr search;
it is suitable for development, and in some cases, production.

Distributed setup
A distributed setup is suitable for large scale indexes where the index is difficult
to store on one system. In this case index has to be distributed across multiple
machines. Although distributed configuration of Solr offers ample flexibility in
terms of processing, it has its own limitations. A lot of features of Apache Solr such
as MoreLikeThis and Joins are not supported. The following diagram depicts the
distributed setup:

Single Node Configuration

Apache Solr
Search

Index Storage

Apache Solr
Search

Index Store

Slave2

Apache Solr
Search

Index Store

Slave1

Apache Solr
Search

Index Store

Master

ReplicatedDistributed

Load Balancer

Node1

Apache Solr
Search

Shard1

Node2

Apache Solr
Search

Shard2

www.allitebooks.com

http://www.allitebooks.org

Making Big Data Work for Hadoop and Solr

[48]

The replicated mode
In this mode, more than one Solr instance exists; among them the master instance
provides shared access to its slaves for replicating the indexes across multiple
systems. Master continues to participate in index creation, search, and so on.
Slaves sync up the storage through various replication techniques such as rsync
utility. By default, Solr includes Java-based replication that uses HTTP protocol
for communication. This replication is recommended due to its benefits over other
external replication techniques. This mode is not used anymore with the release of
Solr 4.x versions.

The sharded mode
This mode combines the best of both the worlds and brings in the real value of
distributed system with high availability. In this configuration, the system has
multiple masters, and each master holds multiple slaves where the replication has
gone through. Load balancer is used to handle the load on multiple nodes equally.

The following diagram depicts the distributed and replicated setup:

Master1 - Shard1

Apache
Solr

Search

Slave1

Apache
Solr

Search

Index Store

Distributed and Replicated
Load Balancer

Apache
Solr

Search

Apache
Solr

Search

Slave1

Apache
Solr

Search

Index Store

Slave1

Apache
Solr

Search

Index Store

Replication Replication

Slave2

Apache
Solr

Search

Index Store

Slave2

Apache
Solr

Search

Index Store

Slave2

Apache
Solr

Search

Index Store

Index Store Index Store Index Store

Master2 - Shard2 Master3 - Shard3

Chapter 3

[49]

If Apache Solr is deployed on a Hadoop-like framework, it falls into this category.
Solr also provides SolrCloud for distributed Solr. We are going to look at different
approaches in the next section.

Using Solr 1045 patch – map-side
indexing
The work for Solr-1045 patch started with a goal to achieve index generation/building
using the Apache MapReduce task. Solr-1045 patch converts all the input records
to a set of <key, value> pairs in each map task that runs on Hadoop. Further it goes
on creating SolrInputDocument from the <key, value>, and later creating the Solr
indexes. The following diagram depicts this process:

Map Task

Data Records Solr Documents Solr Indexes

Map Task

Data Records Solr Documents Solr Indexes

Map Task

Map Task

Data Records Solr Documents Solr Indexes

Data Records Solr Documents Solr Indexes

Deduplication/
Merge Index

Reduce Task

Deduplication/
Merge Index

Reduce Task
Index Store

Solr Search
Instance

Apache Hadoop - Map-Reduce

Solr Client for
Index Creation

Reduce tasks can be used to perform deduplication of indexes, and merge them
together if required. Although merge index seems to be an interesting feature,
it is actually a costly affair in terms of processing, and you will not find many
implementations with merge index functionality. Once the indexes are created, you
can load them on your Solr instance and use them for searching.

You can download this particular patch from https://issues.apache.org/jira/
browse/SOLR-1045, and patch your Solr instance. To apply a patch to your Solr
instance, you need to first build your Solr instance using source. You can download
the patch from Apache JIRA. Before running the patch, first do a dry run which does
not actually apply patch. You can do it with following command:

cd <solr-trunk-dir>

svn patch <name-of-patch> --dry-run

Making Big Data Work for Hadoop and Solr

[50]

If it is successful, you can run the patch without the –dry-run option to apply the
patch. Let's look at some of the important classes in the patch.

Important class Description
SolrIndexUpdateMapper This class is a Hadoop mapper responsible for creating

indexes out of <key, value> pairs of input.
SolrXMLDocRecordReader This class is responsible for reading Solr input XML files.
SolrIndexUpdater This class creates a MapReduce job configuration, runs the

job to read the document, and updates the Solr instance.
Right now it is built using the Lucene index updater.

Benefits and drawbacks
The following are the benefits and drawbacks of using the Solr-1045 patch:

Benefits
•	 It achieves complete parallelism by index creation right at the map task.
•	 Merging of indexes is possible in the reduce phase of MapReduce.

Drawbacks
•	 When the indexing is done at map-side, all the <key, value> pairs received

by reducer gain equal weight/importance. So, it is difficult to use this patch
with data that carries ranking/weight information.

Using Solr 1301 patch – reduce-side
indexing
This patch focuses on using the Apache MapReduce framework for index creation.
Keyword search can happen over Apache Solr or Apache SolrCloud. Unlike Solr-1045,
in this patch, the indexes are created in the reduce phase of MapReduce. In this patch,
a map task is responsible for converting input records to a <key, value> pair; later,
they are passed to the reducer, which in turn converts them into SolrInputDocument,
and then creates indexes out of it. This index is then passed as outputs of Hadoop
MapReduce process. The following diagram depicts this process:

Chapter 3

[51]

Map Task

Data Records <key, value>pair

Index Store

Solr Search
Instance

Apache Hadoop - Map-Reduce

Solr Client for
Index Creation

Reduce Task

Solr Documents Solr Indexes<key, value>pair

Reduce Task

Solr Documents Solr Indexes<key, value>pair

Map Task

Data Records <key, value>pair

Map Task

Data Records <key, value>pair

Map Task

Data Records <key, value>pair

To use Solr-1301 patch, you need to set up a Hadoop cluster. Once the index is
created through Hadoop patch, it should then be provisioned to Solr server. The
patch contains default converter for CSV files. Let's look at some of the important
classes which are part of this patch.

Important class Description
CSVDocumentConverter This class is responsible for converting output of the map

task, that is, key-value pair to SolrInputDocument; you
can have multiple document converters.

CSVReducer This is a reducer code implemented for Hadoop reducers.
CSVIndexer This is the main class to be called from your command

line for creating indexes using MapReduce. You need
to provide input path for your data and output path for
storing shards.

SolrDocumentConverter This class is used in your map task for converting your
objects in Solr document.

SolrRecordWriter This class is an extension of mapreduce.RecordWriter;
it breaks the data into multiple (key, value) pairs which are
then converted into collection of SolrInputDocument(s),
and then this data is submitted to SolrEmbeddedServer
in batches. Once completed, it will commit the changes and
run the optimizer on the embedded server.

CSVMapper This class parses CSV file and gets key-value pair out of it.
This is a mapper class.

SolrOutputFormat This class is responsible for converting key-value pairs to
write the data on file/HDFS as zip/raw format.

Making Big Data Work for Hadoop and Solr

[52]

Perform the following steps to run this patch:

1.	 Create a local folder with configuration and library folder, conf containing Solr
configuration (solr-config.xml, schema.xml), and lib containing library.

2.	 Create your own converter class implementing SolrDocumentConverter;
this will be used by SolrOutputFormat to convert output records to Solr
document. You may also override the OutputFormat class provided by Solr.

3.	 Write the Hadoop MapReduce job in the configuration writer:
SolrOutputFormat.setupSolrHomeCache(new
 File(solrConfigDir), conf);
conf.setOutputFormat(SolrOutputFormat.class);
SolrDocumentConverter.setSolrDocumentConverter(<your
 classname>.class, conf);

4.	 Zip your configuration, and load it in HDFS. The ZIP file name should be
solr.zip (unless you change the patch code).

5.	 Now run the patch, each of the jobs will instantiate EmbeddedSolrInstance
which will in turn do the conversion, and finally the SolrOutputDocument(s)
get stored in the output format.

Benefits and drawbacks
The following are the benefits and drawbacks of using Solr-1301 patch:

Benefits
•	 With reduced size index generation, it is possible to preserve the weights of

documents, which can contribute while performing a prioritization during a
search query.

Drawbacks
•	 Merging of indexes is not possible like in Solr-1045, as the indexes are created

in the reduce phase.
•	 Reducer becomes the crucial component of the system due to major tasks

being performed.

Chapter 3

[53]

Using SolrCloud for distributed search
SolrCloud provides fault-tolerant distributed search capabilities using Apache
Solr. SolrCloud supports all types of distributed search configurations. It also has
in-built load balancing capabilities that optimize effective load on all the nodes
participating in SolrCloud. With the simplest configuration of all, the cloud can
be set up.

A collection in Solr is a combination of one or more indexes
spanning one or more cores of Apache Solr.

SolrCloud architecture
SolrCloud lets you create a cluster of Solr nodes, each of them running one or more
collections. A collection holds one or more shards which are hosted on one or more
(in case of replication) nodes.

Any updates to any nodes participating in SolrCloud can in turn sync of rest of
the nodes. It uses Apache Zookeeper to bring in distributed coordination and
configuration among multiple nodes. This in turn enables near real-time searching
on SolrCloud due to active sync of indexes. Apache Zookeeper loads all the
configuration files of Apache Solr in its own repository from filesystem, and allows
nodes to get access to it in a distributed manner. With this, even if the instance goes
away, the configuration will still be accessible to all other nodes. When a new core is
introduced in SolrCloud, it registers with a ZooKeeper server by sharing information
regarding core and how to contact. In production setup, it is recommended to use
external ZooKeeper instead of embedded instance that gets shipped with Apache
Solr to run it independently.

The following diagram depicts the architecture:

Making Big Data Work for Hadoop and Solr

[54]

Apache Zookeeper

Node1

Collection(s)

Shard(s)

Core(s)

Node2

Collection(s)

Shard(s)

Core(s)

A replication of shard can simply be created by copying the master Solr instance, and
then starting the instance. Once replica starts participating in SolrCloud, you will
find the changes in the administration user interface; SolrCloud automatically detects
the replicated shards and shows it in the graphical view. With the newer release
of Solr post 3.x, there are no masters or slaves. Each node with its replica works
in a leader replica mode. One of the nodes containing the shard becomes leader
through election. Once the data/document is sent to any of the nodes, the request is
forwarded to the respective master node, and then it is processed. The slave node is
also requested to process the same. Once a Solr instance runs in a replication mode,
it takes care of replicating all the new uploaded indexes across multiple nodes. Solr
administration UI allows creation of new cores. This can also be done offline through
any HTTP tool such as curl by passing the correct URL.

Configuring SolrCloud
Run the following command from one of the nodes that you wish to make the central
node for coordination. This is for running it on Jetty with Tomcat, and you can set
similar parameters.

java -DzkRun -DnumShards=2 -Dbootstrap_confdir=solr/cloudCore/conf -
 Dcollection.configName=config1 -jar start.jar

For all other servers participating in cloud, run the following command:

java -Djetty.port=7000 -DzkHost=<server-ip>:9983 -jar start.jar

Chapter 3

[55]

Let's look at some of the important parameters that are passed while running Solr in
the cloud mode:

Parameter Description
zkRun Runs an instance of embedded ZooKeeper as a part of

Solr server. Run this on one of the nodes which will
serve as central node for all the coordination

collection.configName Sets the configuration to be used for collection (optional)
bootstrap_
confdir=<dir-name>

The given directory name should contain the complete
configuration for SolrCloud, which will include
all the configuration files such as solrconfig.
xml, schema.xml, and so on. When Solr runs, the
configuration is loaded in ZooKeeper as the name given
in collection.configName

zkHost=<host>:<port> This parameter points to the instance of ZooKeeper
(ZooKeeper ensemble) containing cluster state and
configuration

numShards=<number> SolrCloud can be run on one or multiple indexes, the
number of shards denote the number of partitions to be
carried out on these indexes

The admin UI will start showing the Cloud tab. It also shows the distribution of
shards in the cloud, and the storage of shards in the context of each system in a
graphical view.

Making Big Data Work for Hadoop and Solr

[56]

Using multicore Solr search on SolrCloud
With this approach you can use multiple cores of Apache Solr distributed over one
or more than one machine for searching as well as index storage. With multiple
cores, you can have one single Solr administration, with multiple instances of
Apache Solr running on different configurations on SolrCloud. With Apache Solr
multicore architecture, you can achieve replication as well as distributed indexes.
The following architecture shows an example multicore Solr setup:

Load Balancer and Aggregator

Core A

Machine 1

Core B

Replica 1

Core Y

Machine N

Core Z

Replica N

To enable Apache Solr run in multicore mode, you simply need to open the
solr.xml file, and make the following changes in the file on each of your machine:

<solr persistent="true">
 <cores adminPath="/admin/cores" host="${host:}"
 hostPort="${jetty.port:}">
 <core name="coreA" instanceDir="coreA" />
 <core name="coreB" instanceDir="coreB" />
 </cores>
</solr>

Once you add a core, you need to copy the Solr configuration directories to multiple
instance directories that you have specified in the configuration. Now you can start
the Solr instance, and you will find multiple cores in the admin interface, as shown in
the following screenshot:

Chapter 3

[57]

You can specify the default core to run from user interface (browse). When you run
a query, you can see that it is running on the default core setup in the configuration.
To run a query on a multicore setup, you need to first set up the SolrCloud. Your
indexes are loaded as shards, on different cores of your Solr. You can use your
own client or SolrJ to run your query on multiple systems in a distributed manner.
This can be achieved by passing the shards parameter in your query (that is,
shards=host: port/location, host:port/location…).

With multicore on SolrCloud, there is a possibility of deadline due to
shards requesting each other for running a query. In such cases users
need to make sure that number of HTTP request threads for J2EE
container is greater than those received from clients.

All the components except MoreLikeThis are supported on distributed search. Setting
Apache SolrCloud in multicore mode will enable the query request to perform search
across multiple machines. Please look at some of the following examples:

Functionality URL
Run your search on multiple nodes http://instance1:8983/solr/core1/

select?shards=instance1:8983/
solr/core1,instance2:8983/solr/
core2&q=scaling big data

Get the status of core http://localhost:8983/solr/admin/
cores?action=STATUS&core=core0

www.allitebooks.com

http://www.allitebooks.org

Making Big Data Work for Hadoop and Solr

[58]

Functionality URL
Splitting the indexes into two cores http://localhost:8983/solr/admin/

cores?action=SPLIT&core=core0&targ
etCore=core1&targetCore=core2

Merging the indexes from different
cores

http://localhost:8983/solr/admin/
cores?action=mergeindexes&core=cor
e0&srcCore=core1&srcCore=core2

Solr core offers you an easy way of sharding your indexes across multiple nodes. It is
up to the developer to decide upon how the indexes will be distributed. For example,
a simple formula of uniqueId.hash() % no_of_servers can get uniformed distribution
across multiple machines.

Benefits and drawbacks
Let's look at the benefits and drawbacks of using SolrCloud for distributed search.

Benefits
•	 High availability and fault tolerance for data
•	 Easy to configure and manage through common administration UI
•	 Allows scaling of Solr to multi-server environment
•	 Provides massive horizontal scaling of data

Drawbacks
•	 As the scale increases, it becomes difficult to manage multiple cores
•	 Compared to single core, performance is low; however, it can be tuned
•	 Configuration of load balancer, and sync of data replication to be done

by an external tool

Chapter 3

[59]

Using Katta for Big Data search
(Solr-1395 patch)
Katta is an open source project that enables you to store your data in a distributed
manner without any failures. Although we do not see a lot of active development
happening in the project, a lot of organizations have taken Katta and customized it
to address their needs for distributed search. With Katta together with Hadoop and
Solr, one can achieve distributed and replicated configuration of Apache Solr. There
are two important tasks that can be deployed in the Hadoop framework with the
help of Katta; they are indexing and searching.

Katta architecture
The following diagram depicts the Katta architecture:

Search Client APIs/
REST APIs

Content
Server

Hadoop
RPC

HDFS Store(Shard)

Replication

Content
Server

Hadoop
RPC

HDFS Store(Shard)

Content
Server

Hadoop
RPC

HDFS Store(Shard)

Replication

Apache Zookeeper

Created Index from
File Stroe

Documents/Data

Java Programs

Index Loading on HDFS

Katta Master

Each Katta Hadoop cluster has a master node and the rest of the other nodes
participate actively in the storage of data. A master node is responsible for managing
the nodes as well as determining the assignment of index shards to them. Each node
is responsible for sharing a shard. A content server on each node determines the type
of shard supported by the given node.

Making Big Data Work for Hadoop and Solr

[60]

Katta master communicates with all the nodes by means of Apache ZooKeeper. A
virtual directory base is created among all the nodes including master, where each
node updates their status instead of using heartbeat mechanism of ZooKeeper. The
work distribution among them is done through a blocking queue. Each operation
such as index deployment, shard undeployment is pushed to individual's queue, and
then each node processes the queue for next task sequentially.

When search query is fired, client multicasts the query on Hadoop cluster and
requests results from each node containing shard. It uses the Hadoop RPC-based
mechanism for faster communication. Each node returns matched results with the
scores. Katta supports distributed scoring; so once these results are retrieved, they
are merged together based on scoring and returned back to the client.

Configuring Katta cluster
You can either download the distribution from http://katta.sourceforge.net, or
build the executable by compiling the source using the following command:

ant compile

Once it is compiled, you need to copy the folder to all your nodes including master.
Before starting master, verify the settings in katta.master.properties, and in
the nodes file, add all the nodes. Similarly, for ZooKeeper, if you intend to run
an embedded ZooKeeper, then you will need to modify the zookeeper.servers
attribute in the katta.zk.properties file for all nodes. You need to point to the
master node. Now, start the master using the following command:

bin/katta startMaster

This will start the master at first. You should start the individual nodes on all
machines using the following command:

bin/katta startNode

Once all the nodes are started, you can start adding indexes to Katta.

Creating Katta indexes
Katta defines two types of shards: namely, Hadoop map files and Lucene index. It
also allows you to create your own type of shard. The simplest implementation is
using the Lucene indexes. You can simply transform your Lucene index into Katta
index by combining them into one folder and loading them on Hadoop cluster. The
index creation itself can be run on Hadoop cluster. First, you can start with setting
up Katta for your machine.

Chapter 3

[61]

Now set up a Hadoop cluster and format the NameNode. The next task would be to
load your data in a Hadoop cluster directly, or through a Hadoop sequence file. Katta
provides in-built tool to do that. You can simply create the Lucene indexes, and then
convert them to the Katta indexes. Once the index is created, it has to be deployed on
Hadoop cluster to be searchable. You can deploy it using the following sequence:

bin/katta addIndex <index-name> hdfs://<location-of-index>

You can check the addition of the index by searching for some text which is indexed.

bin/katta search <index-name> <field:search-string>

Katta also provides a web-based interface for monitoring and administration
purposes. It can simply be started by running the following command:

bin/katta startGui

It provides masters and nodes information shards and indexes on administration UI.
This application is developed using the Grails technology.

Benefits and drawbacks
Let's look at the benefits and drawbacks of using Katta for distributed search.

Benefits
•	 Completely customizable framework based on Hadoop/HDFS
•	 Provides failover for master as well as replication of nodes
•	 Can be used as production instance

Drawbacks
•	 Difficult to get real-time updates and requires lot of tweaking
•	 Not actively developed by open source any more
•	 Needs a lot of customization, provides basic vanilla setup

Summary
In this chapter, we have understood different possible approaches of how Big Data
can be made to work with Apache Hadoop and Solr. We also looked at the benefits
and drawbacks of these approaches. In the next chapter, we will get into more details
about how you can effectively use these technologies for building large indexes out
of Big Data.

Using Big Data to Build
Your Large Indexing

This chapter talks about how you can use Big Data technologies to effectively build
your indexes. It starts with explaining the concept of NOSQL; it takes you through
the deep dive of sharding your indexes. It primarily covers the following topics:

•	 Understanding the concept of NOSQL
•	 Understanding the concepts of distributed search
•	 Lily bringing Hadoop, Solr, and Hbase together
•	 Deep dive in sharding and indexing of Big Data
•	 Configuring your cloud for large indexes

Understanding the concept of NOSQL
Traditional relational databases allow users to define a strict data structure and a
SQL-based querying mechanism. NOSQL databases rather than confining users to
define the data structures, allow an open database with which they can store any
kind of data and retrieve it by running queries that are not SQL based.

Using Big Data to Build Your Large Indexing

[64]

The CAP theorem
Before we get into the role of NOSQL, we must first understand the CAP theorem. In
the theory of computer science, the CAP theorem or Brewer's theorem talks about
distributed consistency. It states that it is impossible to achieve all of the following in
a distributed system:

•	 Consistency: Every client sees the most recently updated data state
•	 Availability: The distributed system functions as expected, even if there are

node failures
•	 Partition tolerance: Intermediate network failure among nodes does not

impact system functioning

Although all three are impossible to achieve, any two can be achieved by the
systems. That means in order to get high availability and partition tolerance, you
need to sacrifice consistency. There are three types of systems:

•	 CA: Data is consistent between all nodes, and you can read/write from any
node, while you cannot afford to let your network go down. (For example:
relational databases, columnar relational stores)

•	 CP: Data is consistent and maintains tolerance for partitioning and
preventing data going out of sync. (For example: Berkeley DB (key-value),
MongoDB (document oriented), and HBase (columnar))

•	 AP: Nodes are online always, but they may not get you the latest data;
however, they sync whenever the lines are up. (For example: Dynamo
(key-value), CouchDB (document oriented), and Cassandra (columnar))

High availability can achieved through data replication; consistency is achieved by
updating multiple nodes for changes in data. Relational databases are designed to
achieve CA capabilities. NOSQL databases can either achieve CP or AP.

What is a NOSQL database?
In an enterprise, the data is generated from all the software that is participating
in the day-to-day operation. This data has different formats, and bringing in this
data for Big Data processing requires a need for a storage system that is flexible
enough to accommodate data with varying data models. NOSQL database by
its design is the best suited for this storage. One of the primary objectives of
NOSQL is horizontal scaling, that is, P in the CAP theorem at the cost of sacrificing
Consistency or Availability.

Chapter 4

[65]

NOSQL databases are highly optimized for retrieval, and intended to work with
huge datasets where the nature of the data is not known. Due to the design of these
databases, they are extremely flexible in terms of creating data models. NOSQL
databases are categorized under three major categories described as follows,
although there is an overlap in terms of the data store and functionalities. To get
better understanding, let's look at the simple comparison of data storage for a
relational database schema described in the following screenshot:

Employee
emp_id Name dept_id

1
2
3

John
Vicky
Simon

1
1
2

1
2

Engineering
Accounting

dept_id Name
Department

The key-value store or column store
Typically, the storage of data goes in terms of (key-value) pairs, where each key
uniquely identifies each record, and the value is the record itself. This is one the most
widely used database types while working with Big Data. There are further subtypes
to this store such as hierarchical, tabular, volatile (in-memory), and persistent
(storage). Implementation of key-value stores is Apache HBase, levelDB, Dynamo,
and so on.

BigTable implementation is proprietary column-driven data storage
system based on the Google file system or similar. This type of
database stores data as a sorted map, with three dimensions (row,
column, and timestamp) into a highly compressed storage. This is also
one of the widely used data store for Big Data storage and analysis.

The key-value pair for the store will look like the following diagram:

1
2
3

key

John

Vicky

Simon Accounting

Engineering

Engineering

name department
Value

Using Big Data to Build Your Large Indexing

[66]

The document-oriented store
A term document in document-oriented store represents a data record. However,
a document may not stick to a standard schema; it can have its own structure. Each
document is identified via a unique key (URI or a path). This type of store allows
data to be queried through a API layer. The implementations are Apache Cassandra,
CouchDB, MongoDB, and so on.

The example storage of relational schema is shown in the following screenshot:

1id ->
Document

Name ->
Department ->

John
Engineering

2

3

id ->

id ->

Document

Document

Name ->

Name ->

Department ->

Department ->

Vicky

Simon

Engineering

Accounting

The graph database
This type of database allows users to define and link data records by means of graph
nodes and edges. A node can contain record information, and a link (edge) between
the nodes can also carry its weight or cost, as shown in the following screenshot.
Other flavors of graph database include triple store and network databases. The
implementations are Allegrograph, InfiniteGraph, and Neo4J.

Node:
Employee

Name -> Simon

Node:
Department
Name ->

Engineering

Id=2

Node:
Department
Name ->

Engineering

Id=1

Node:
Employee

Name -> Vicky

Node:
Employee

Name -> John

Id=1

Chapter 4

[67]

Why NOSQL databases for Big Data?
As we have seen, data models for NOSQL differ completely from that of the relational
database. With the flexible data model, it becomes very easy for developers to
quickly integrate with the NOSQL database, and bring in heavy data from different
data sources. This enables NOSQL databases to be ideal for Big Data storage since it
demands different data types to be brought together under one umbrella.

In addition to the flexible schema, NOSQL offers scalability and high performance
which is again one of the most important factors to be considered while
running Big Data. NOSQL was developed to be a distributed type of database.
When traditional relational stores rely on high computing power of CPUs and
high memory focus on centralized system, NOSQL can run on your low cost,
commodity hardware. These servers can be added or removed dynamically from
the cluster running NOSQL, enabling NOSQL database easier to scale. NOSQL
enables most advanced features of database such as data partitioning, index
sharding, distributed query, caching, and so on.

Although NOSQL offers optimized storage for Big Data, it does not replace the
relational database. While relational databases offer transactional ACID properties,
high CRUD, data integrity, structured database design approach, which are required in
many applications, NOSQL does not ensure any one of them. Hence, it is most suited
for Big Data where there is less possibility of need for the data being transactional.

How Solr can be used for Big Data storage?
As NOSQL does not support any kind of SQL way of querying, it provides various
ways of querying user data such as API based or SQL like querying. However, since
the data is unstructured, it becomes difficult for users to query for data with the
given querying capabilities. In such cases, a fast, efficient search on this data becomes
the need for the users.

By design, Solr supports any data to be loaded in the search engine through different
handlers making it a data format agnostic. Solr can be scaled easily on top of the
commodity hardware as we have seen in previous chapter. Thus, Solr becomes one
of the most efficient and eligible NOSQL-based search available today. The data
can be stored in the Solr indexes, and can be queried through Lucene search APIs.
Solr does perform joins, because of its denormalization of data. Additionally, its
rich faceting provides a good drill down for end users to the desired results. Solr
provides interesting features such as ranking results, fault tolerance, dynamic fields,
high availability, atomic updates, specialized queries, and its compliance with the
entire NOSQL definition that makes Apache Solr one of the best suited NOSQL data
store available today. Roughly, Solr ensures CP in the CAP theorem. For availability,
shards are replicated on multiple nodes.

Using Big Data to Build Your Large Indexing

[68]

Many NOSQL databases such as MongoDB offer better performance in terms of
data loading, data updates, transactional environment, and so on; whereas Solr
performs better in terms of unanticipated queries, search on data, and various
filter/sort combinations of data. Apache Solr's commit operation is costly, and its
optimization is also costlier. The frequency of these operations has an impact on the
overall performance of the system. The data is unavailable unless committed to the
Solr repository. Sometimes, organizations use a combination of NOSQL and Solr
together, to achieve the best of both worlds.

Understanding the concepts of
distributed search
Distributed search is considered an option when search with single index store
becomes difficult to operate in terms of speed and sizing. There are two major
operations that take place in any search engine; first is indexing the data, and second
is searching.

Distributed search architecture
When running search on the distributed systems, any or all of the operations can be
run in a distributed manner depending upon why you wish to run your search in a
distributed environment. Let's look at the architecture for distributed search in the
following diagram:

Search Application

Distributed Quering

Shard1 ShardN

...

...

Distributed Search Distributed Indexing

Input Docs

Sharding Alg.

Shard1

...

ShardN

...

ReplicationReplication

Chapter 4

[69]

To utilize the distributed search, the indexing must be split into multiple shards and
should be kept across multiple nodes of a distributed system. In order to generate this
index, a search application may use a distributed system such as Apache Hadoop, and
then based on the generated index, it may push it to the search engine repository.

Similar to the distributed index generation, even search can happen in a distributed
manner. The shard is a complete index, and it can be queried independently;
however, it does not form a complete result set of the search, so the search
application has to be smart to query multiple nodes, combine the results, and
return them to the client. We looked at different approaches in Chapter 3, Making
Big Data Work for Hadoop and Solr; the following table describes their support for the
distributed search:

Particular Distributed indexing Distributed search
Solr-1045: map-side indexing Supported Not applicable since it is

limited to index generation

Solr-1301: reduce-side indexing Supported Not applicable since it is
limited to index generation

Katta Supported Supported

SolrCloud Supported Supported

Distributed search scenarios
We have seen how distributed search architecture functions. Let's look at some of the
scenarios of distributed search in the following table:

Scenario Information
Single machine Index generation and search that goes on one machine
Master-slave Index generation on one machine, and search happens to be on

another machine
Multi-node All nodes are masters and index is divided among them
Sharding-replica Index generation is distributed and there are replicas of master to

ensure high availability
Multi-tenant In this, multiple indexes are run by different users. Multi-tenant

architecture can be used in combination with any of the architectures
listed previously

Using Big Data to Build Your Large Indexing

[70]

Single machine architecture is difficult to scale it starts slowing down as the size
of the index grows. Master-slave architecture provides features such as high
availability, although it does not ensure near real-time search. Master-slave
architecture can further be extended for one master-multiple slaves, one master-one
slave, and so on. In multi-node architecture, index is distributed among multiple
nodes based on some hashing algorithm. Sharding replica-based architecture allows
you to control how wide (distributed) and how deep (replication) you intend to
configure your search architecture.

Lily – running Solr and Hadoop together
Lily is an open source distributed application by NGDATA that brings in together
the capabilities of Apache Hadoop, HBase, ZooKeeper, and Solr together to allow
end user applications (web portals, content management systems, and so on) to
enable enterprise-wide access to its distributed search through standard interfaces.

The architecture
Lily provides scalability and replication through its distributed architecture. Lily
has multiple nodes; each node is responsible for participating in one or more of the
functionalities. Primarily, Lily is designed to work as a content management system.
The storage is Apache HBase which is running on top of the Hadoop framework,
and the query/search mechanism is based on Apache Solr. Lily exposes complete
functionality of Apache Solr on top of its record base. Lily provides functional
layering, scalability, and fault tolerance on top of these. Lily provides basic
record management, with support for open standards such as JCR (Java Content
Repository). It exposes the functionality to its client through RESTful APIs. Let's look
at the components of the Lily application.

Lily Data Repository (Lily DR) provides a distributed scalable storage to
store, query, and retrieve the data records using the Apache Solr indexes.

Lily uses HBase for storing its record data. Since HBase is a NOSQL database, Lily
can allow any type of rich schema to be added to Lily Data Repository. HBase,
although not a transactional database, offers data scalability through its architecture.
HBase runs on top of HDFS effectively using a Hadoop framework for running
the Lily application. Each record in Lily Data Repository must have a unique
identification. Lily allows the record information to be stored in HBase or HDFS.

Chapter 4

[71]

Lily can be contacted by a client for many reasons. The client may use RESTful APIs
to query for data, update the records, and delete the records.

Virtual Lily Setup

Lily Node Solr Node Solr Node Solr Node,,,,,,,,,,,,

Hadoop/
Hbase
Node

Hadoop/
Hbase
Node

Zookeeper Node Zookeeper Node Zookeeper Node
,,,,,,

Hadoop/Hbase ClusterLily Cluster Solr Cluster

Lily Node Lily Node
Hadoop/
Hbase
Node

,,,,,,

Phisical Lily Setup

Node1 Node2 Node2 Node (N-1) Node N

,,

Apache Zookeeper

SolrCloud/Solr
Core

Distributed

Indexer
Lily Data

Repository

Apache Hbase

Apache Hadoop - HDFS

Message Queue

Client (REST/API)

The Architecture

Write Ahead
Log

As the preceding diagram depicts, the physical setup can be completely different
from the virtual node and the Lily architecture. A physical node might be running
one or more Lily system processes.

Apache Avro is a data serialization system supported by Lily.
Lily clients can use Avro-based protocols to connect to Lily.

Using Big Data to Build Your Large Indexing

[72]

Write-ahead Logging
Since HBase is not transactional, ACID is difficult to ensure in Lily. Lily uses a
write-ahead log to improve upon its support for transactions. Whenever Lily
receives a request from the client to insert or update new records, it first updates
Write-Ahead Log (WAL) of Lily with the intentions of what it is planning to do
for the request. Then it goes ahead and makes the change; later, it again requests
WAL to complete the action. This kind of design is useful in case of failures in
between the update/insert record operations. In such cases, Lily first reviews
the write-ahead log, and performs the pending tasks.

The message queue
Operations such as adding new records for indexing and updating the indexes do
not require a synchronous wait for the client. Lily achieves asynchronous work
execution by extensive use of message queue. All the messages are pushed to the
message queue. Lily uses its own message queue for this.

Querying using Lily
While running a user query, the following steps are performed by the Lily server:

1.	 Lily Data Repository and Solr publishes available nodes to ZooKeeper
2.	 The client requests ZooKeeper for available nodes for performing query
3.	 ZooKeeper points to the available node for querying
4.	 The client connects to the requested node performs the query on the Solr node
5.	 Solr node processes and returns the matched indexes

Updating records using Lily
Each operation of updating the record in Lily performs the following steps:

1.	 Client requests ZooKeeper for available nodes
2.	 Client runs insert/update/delete on data by talking with Lily Data Repository
3.	 Lily first notifies the write-ahead log of its intentions
4.	 Lily updates its repository by making a change
5.	 Once done, Lily updates the write-ahead logger about completion
6.	 Lily inserts a message in the queue about requested operation
7.	 Indexer listeners on the queue request SolrCloud/Solr to update the index

accordingly with the changes
8.	 Solr/SolrCloud runs the update on the distributed cluster

Chapter 4

[73]

Lily indexer runs on the listening end of the Lily message queue. Based on the
message, it requests the Solr instance to update the indexes. Indexer also stores
the mapping between Lily records and Solr documents. Lily supports
denormalization of records. With denormalization, records linked with each
other can be brought together.

Installing and running Lily
To install Lily on your cluster, all the nodes participating in Lily should have:

•	 JDK 1.6 and above
•	 Operating system such as Linux, MacOS, and Unix flavors
•	 Apache/Cloudera Hadoop with HBase setup
•	 Apache/Cloudera Solr/SolrCloud/ZooKeeper ensemble

When multiple ZooKeepers are running in high availability and
fault tolerance model, they are called ZooKeeper ensemble.

Now, you can download Lily from its site. It comes in two flavors; namely Lily open
source and Lily enterprise. Lily enterprise is not free; it offers additional features
such as support for Hive, ETL connectors, and support from NGDATA.

First, you need to define the schema. While setting up HBase, you need to copy the
following jars:

•	 lib/org/lilyproject /lily-hbase-ext/lily-hbase-ext-VERSION.jar

•	 lib/org/lilyproject /lily-bytes/lily-bytes-VERSION.jar

•	 lib/org/lilyproject /lily-util/lily-util-VERSION.jar

•	 lib/org/lilyproject /lily-repository-api/lily-repository-api-
VERSION.jar

•	 lib/org/lilyproject /lily-repository-id-impl/ lily-repository-
id-impl-VERSION.jar

•	 lib/org/lilyproject /lily-hbaseindex-base/ lily-hbaseindex-
base-VERSION.jar

•	 lib/com/gotometrics/orderly/orderly/VERSION/ orderly-VERSION.
jar

•	 lib/org/lilyproject/lily-indexer-derefmap-indexfilter/VERSION/
lilyindexer-derefmap-indexfilter-VESION.jar

Using Big Data to Build Your Large Indexing

[74]

Also, remove the Avro jars from the Hadoop folder. Now, update the following
configuration files with point to correct the instances of other subsystems:

•	 conf/general/hbase.xml

•	 conf/general/mapreduce.xml

•	 conf/general/zookeeper.xml

•	 conf/repository/repository.xml

•	 conf/rpc/rpc.xml

Now you can start the Lily server.

bin/lily-server

The next step is to create some fields and record types that you can do by calling
the lily-import script in the bin folder of Lily. Once you do that, you need to add
indexes to Lily so that it can be searched that can be achieved by running the lily-
add-index command. This call takes a parameter, a configuration for the indexer,
and Solr instances. Indexer configuration tells Lily about which data should be
indexed, and it also tells mapping of the fields of this data with the Solr fields. You
can then use Solr to query your databases.

Deep dive – shards and indexing data of
Apache Solr
We have already understood what sharding is in Chapter 3, Making Big Data Work for
Hadoop and Solr. As the data gets populated in Apache Solr, the size of the Solr index
grows, given that each Solr index contains many files/documents/records, and
it becomes large enough to fit on a single machine. Additionally, with the growth
of the indexes, it is possible that the performance of search query can slow down.
Single Solr machine also suffers from concurrency issues and low I/O support. This,
in turn, demands distributing the index across multiple machines. Solr can run a
distributed query across multiple machines aggregating the results into one.

Chapter 4

[75]

With the release of Solr 4.1, lots of these things are automated. SolrCloud does
index distribution to the appropriate shard; it also takes care of distributing search
across multiple shards. Search is possible with near real time, after the document
is committed. ZooKeeper provides load balancing and failover to the Solr cluster
making the overall setup more robust. The index partitioning can be done in
multiple ways in Apache Solr:

•	 Simple partitioning: It makes use of hashing function to a fixed number
of shards

•	 Prefix-based partitioning: It is the partitioning based on the document ID,
that is Red!12345 and White!22321. Red and White are the prefixes used
for partitioning

•	 Custom partitioning: It is based on custom-defined partitioning such as
document creation time

The sharding algorithm
In the new releases of SolrCloud, there are no masters and slaves. ZooKeeper holds
the complete responsibility of choosing the leader as seen in Chapter 3, Making Big
Data Work for Hadoop and Solr. Leaders are automatically elected using first come
first served basis initially, and then later, all the nodes are assigned a sequence
number when they are created. When a leader fails, the nodes in the cluster look
for the next lowest sequence number. In a cluster, there are replicas or leaders for
each of the shards.

When SolrCloud is started, you can start it with numOfShards, controlling how many
shards to run in the cloud; you can choose compositeId while choosing a collection.
When a Solr instance is started, it first registers itself with the ZooKeeper, creating
ephemeral node or znodes. During the lifecycle, when a user sends his documents
for indexing/sharding, he/she can specify a prefix for his/her document ID. This in
turn directs Solr to perform hashing on the document to push it to an appropriate
shard. It helps users in influencing the storage for their document indexes. Users can
choose various strategies for distributing the index across multiple machines.

Using Big Data to Build Your Large Indexing

[76]

The following flow chart describes how sharding is performed on Apache Solr.

Determine the shard to
which this document

should go to

Forward it to the leader

Does document contain
prefix ?

Is the machine receiving
indexing request a replica ?

Is it a leader for the correct
shard ?

Start

Start the cloud with
CountnumOfShard

Load the document to
Solr

Index the document
to the shard

Forward the
generated index to

replica

Stop

Yes

No

Yes

No

Yes

No

When not specified, Solr chooses the appropriate shard for indexing. If a leader goes
down, the associated replica becomes the leader. When new nodes are added to the
cloud, they are synced before they start participating in the cluster.

Chapter 4

[77]

Adding a document to the distributed shard
To add a document in Solr, you can simply choose any node part of your cluster,
and run the following command:

curl http://node1:8983/solr/update/json -H 'Content-
 type:application/json' -d
[
 {"id" : "1", "text" : "This is a test document"},
]'

When node1 in the Solr cluster receives a request for indexing the document, if the
document is a replica, it forwards it to the leader of the shard. Each leader performs
hashing on the document ID, based on its prefix or automatically, and if the leader
does not own the responsibility of that shard, it has to forward it to the leader of the
shard. Once the correct leader receives the document, it updates its transactional
log, and forwards the document to its replica for replication. While a document is
received first, it is assigned a version ID; the leader first tries to see if it has a higher
version. If it does, the leader will simply ignore the uploaded document.

Solr transactional log is an append-only log of the write operations per
node in a cluster. Solr records all the write operations before the write
commits, and marks it post commit. If the indexing process is stopped
for some reason, next time, Solr first reviews the transaction logs and
then completes the pending indexing.

Configuring SolrCloud to work with large
indexes
In order to configure SolrCloud to run with large indexes, it is important to first
design the system based on the requirements. The design has to be based on the
following factors:

•	 Number of nodes participating in the cloud
•	 Distribution of shards and their replicas over nodes
•	 Replication factors and leader
•	 ZooKeeper setup

Prerequisites for this would require Apache Solr, ZooKeeper, J2EE container (optional).

Using Big Data to Build Your Large Indexing

[78]

Setting up the ZooKeeper ensemble
First, we need to set up a ZooKeeper ensemble on all the nodes. Although Apache
Solr ships with embedded ZooKeeper, for large indexes and scalability requirements,
it is recommended to go ahead with a full ZooKeeper set up. You can download the
latest version of Apache ZooKeeper. Now, unzip the download on all the nodes, and
edit the zoo.cfg file in your ZKHOME | conf folder; in that file, you need to specify
the list of ZooKeeper servers as shown in the following screenshot. You must also
specify correct dataDir, clientPort, and dataLogDir.

Here, dataDir is the folder where ZooKeeper will store data about cluster.
clientPort is the port where Apache Solr will access the ZooKeeper instance.

You may also choose to configure logger for ZooKeeper as shown in the following
screenshot. This will in turn help you to find out the issues quickly for the initial start.

Chapter 4

[79]

Now, start ZooKeeper with the following command on all servers:

cd $ZKHOME/bin

./zkServer.sh start

You may also open additional windows to tail the zookeeper.out file.

Setting up the Apache Solr instance
First, start with the downloading of Apache Solr on your machine; you can use the
CURL utility for that, and unzip the solr file. Next, you need to start editing the
solr.xml file and the solrconfig.xml file, as described in Chapter 3, Making Big
Data Work for Hadoop and Solr. Once the configuration is changed, you need to upload
it to the ZooKeeper instance. We are going to use Apache ZooKeeper's command line
interface to achieve that. This can be done by running the following command:

java -classpath .:/var/hrishi/zookeeper/zk-cli-library/*
 org.apache.solr.cloud.ZkCLI -cmd upconfig -zkhost node1:2181,node2:
 2181,node3: 2181,node4: 2181,node5: 2181-
 confdir .:/var/hrishi/node1/solr/collection1/conf/-confname
 clusterconf

Next step is to link the configuration with the collection that you will be using for
your Solr index store. You can again do that using zkCLI.

java -classpath .:/var/hrishi/zookeeper/zk-cli-library/*
 org.apache.solr.cloud.ZkCLI -cmd linkconfig –collection
 clustercollection –confname clusterconf -zkhost node1:2181,node2:
 2181,node3: 2181,node4: 2181,node5: 2181

Once done, this will map your collection with the configuration through ZooKeeper.
Next step is to deploy SolrCloud on the J2EE container, or you can choose to use
in-built J2EE container that ships with Solr, that is Jetty. Now, you should run
your container with Solr in it; while starting the container, you may even optimize
the instance by running JVM in the server mode. Create solr.xml for your Solr
home, and start all the containers. While running Apache Solr, you must point it to
corrected ZooKeeper instance by specifying the zkHost property.

java -Djetty.port=8983 -DzkHost=node1:2181 -jar start.jar

Using Big Data to Build Your Large Indexing

[80]

Creating shards, collections, and replicas in
SolrCloud
You can create shards, collections, and their replicas on SolrCloud through the
web-based handlers provided by Solr by uploading those using the CURL utility.
First, we need to start with the creation of collection (that is, clusterCollection)
assuming the replication of 3, and maximum shards per node of 2.

curl 'http://node1:8983/solr/admin/collections?
 action=CREATE&name=clusterCollection&numShards=3&
 replicationFactor=3&maxShardsPerNode=2'

This will create a collection with the name clusterCollection on Solr. We have
already linked its configuration through ZooKeeper earlier.

Now, let's create replicas of the shards by running the following command; this
command has to run for each replica you intend to create in your Solr instance.

curl 'http://node1:8983/solr/admin/cores?
 action=CREATE&name=shardA-Replica1&collection=clusterCollection
 &shard=shardA'

curl 'http://node2:8983/solr/admin/cores?
 action=CREATE&name=shardB-Replica2
 &collection= clusterCollection &shard=shardA'

The following diagram shows how the admin UI will show the shard distribution of
your indexes:

clusterCollection

node1:8983
node2:8983
node3:8983

node3:8983
node1:8983
node2:8983

node2:8983
node3:8983
node1:8983

shardC

shardB

shardA

Chapter 4

[81]

Now the documents can directly be posted to any of the nodes hosting the Solr
index; the following example shows uploading of default documents shipped with
Solr on this cloud instance:

cd $SOLR_HOME/example/exampledocs/

java -Durl=http://node1:8983/solr/clusterCollection/update -jar
 post.jar ipod_video.xml

java -Durl=http://node2:8983/solr/clusterCollection/update -jar
 post.jar monitor.xml

You can simply verify it by accessing Solr instance with the wildcard query:

http://node1:8983/solr/clusterCollection/select?q=*:*

Summary
In this chapter, we have gone through the deep dive of Apache Solr with the
Hadoop system. We also looked at Lily, which brings these two worlds together.
We looked at the configuration of cloud instances for Big Data. We will now look
at speeding up of your Big Data search by improving the performance of your
setup in the next chapter.

Improving Performance
of Search while Scaling

with Big Data
As the data grows, it impacts your time taken for search, as well as to create new
indexes along with the size of the repository. The simplest way to preserve the
same performance of the search while scaling your data is to keep increasing your
hardware, which includes higher processing power and higher memory size. This
is not a cost-effective alternative. So, we look for optimizing the running of Big Data
search instance. We have also seen different architectures of Solr in Chapter 4, Using
Big Data to Build Your Large Indexing, among which the most suitable architecture can
be chosen based on the requirements and the usage patterns.

Overall optimization of the technology stack which includes Apache Hadoop and
Apache Solr helps you maintain more data with reasonable performance. The
optimization is most important while scaling your instance for Big Data with Hadoop
and Solr. We are going to look at different techniques of improving performances for
your Big Data search. Optimization can be done at the different levels:

•	 Optimizing the search schema
•	 Optimizing the indexes
•	 Optimizing the J2EE container
•	 Optimizing the search runtime
•	 Monitoring your setup for performance and impact

Improving Performance of Search while Scaling with Big Data

[84]

Understanding the limits
Although you can have a completely distributed system for your Big Data search,
there is a limit in terms of how far you can go. As you keep on distributing the
shard, you may end up facing what is called "laggard problem" for indexes for
your instance.

This problem states that the response to your search query, which is an aggregation
of results from all the shards is controlled by the following formulae:

QueryResponse = avg(max(shardResponseTime))

This means, if you have many shards, the odds of having one of them responding
slowly (due to some anomaly) to your queries will impact your query response time,
and it will start increasing.

The distributed search in Apache Solr has many limitations. Each document
uploaded on the distributed Big Data must have a unique key, and that unique
key must be stored in the Solr repository. To do that, Solr schema.xml should have
stored=true against the key attribute. This unique key has to be unique across
all shards. Some of the features, such as More Like This, Join, and Query Elevation
Component do not work in Solr distributed environment.

Running Solr in a distributed manner may lead to the issue of distributed deadlock.
When a query is passed to a shard, it can make subqueries to all other shards.
Now once the work is assigned, and the shards are busy serving their own request
that depends upon completing other's request, it would have indefinite wait time
for search query. Let's say there are two shards, and each of them got a job for
processing; now they create subtasks which are then assigned to each other's threads.
Both the requests are waiting for other shard to complete the task; thus, we have a
distributed deadlock.

Apache Lucene has a cap on the size of index (approximately limiting it to 2 billion
documents). However, theoretically, there is no limit to the number of documents
that can be loaded on Big Data search indexing while running in a distributed mode.

Chapter 5

[85]

Optimizing the search schema
When Solr is used in the context of a specific requirement; for example, a log search for
an enterprise application, it holds a specific schema, which can be defined in schema.
xml and copied over to nodes. The schema plays a vital role in the performance of your
Solr instance, because based on the schema, attributes are indexed.

Specifying the default search field
In schema.xml of Solr configuration, the system allows you to specify the
<defaultSearchField> parameter. This is the parameter that controls when you
search without an explicit field name in your query, which field to pick up for
searching. This is an optional parameter, if this is not specified, for all of the queries
that are not providing the field name, search will run them on all of the available
fields in the schema. This will not only consume more CPU time, but overall slow
down the search performance.

Configuring search schema fields
In custom schema, having more number of fields for indexing brings direct impact on
the index size and the amount of memory needed to create your index and segments.
You can control the amount of indexing of fields to be done on that by specifying
indexed=true or indexed=false appropriately for each schema attribute. Avoid
indexing unnecessary fields which you do not intend to use in search.

Similarly, you can set stored=false for those fields which are not returned as search
results. Setting this function will not stop you querying for these fields, but you
won't be able to retrieve the original value of these fields. For larger fields, there is
significant value in terms of disk space and search speed for lookup.

The fields that are larger are difficult to fit in memory while indexing, so one has to
ensure that all of the fields of the document fit in the memory. Each field can have
maxFieldLength in the schema configuration; this in turn might help you control the
sizing of the fields.

Improving Performance of Search while Scaling with Big Data

[86]

Stop words
We have already seen stop words in Chapter 2, Understanding Solr. Appendix B,
Creating Enterprise Search Using Apache Solr, provides more details about them.
They play a significant role in optimizing your Solr instance for performance.
While performing the inverted index creation, the stop words are not considered
by Solr because they do not add any value to your search. The stop words can
be specified in any file and the file can be pointed out in schema.xml of the Solr
configuration, as shown in the following screenshot:

Having a large set of stop words can significantly save space in terms of index
size creation.

Stemming
Stemming is a process of reducing the derived word into its original form. By
enabling word stemming with Apache Solr, it not only saves you search time, but
also improves your query performance. Stemming also improves the accuracy of
the result. For example, words such as walking, walked, and walks can be stemmed
to walk. Appendix B, Creating Enterprise Search Using Apache Solr provides a detailed
explanation about protwords.txt, which is used for stemming examples. Based on
the requirements, a right stemming algorithm should be chosen for your instance.
Here are some of the available algorithms for stemming:

Algorithm Description
Porter This rule-based algorithm transforms any form of the word into its

stem. For example, the words talking and talked are marked as talk.
KStem Similar to Porter, with less aggressiveness.
Snowball This is all language supported string processing language for running

your words. Using this, you can create new stemming algorithms.
Hunspell Opens Office dictionary-based algorithm. Works with all languages,

the only condition is the health of the dictionary.

Chapter 5

[87]

Overall, the workflow and the mandatory fields mapping is shown in the following
table. The true value indicates the presence of this attribute while defining the field.
In Chapter 2, Understanding Solr, we have already explained the terms multi-valued,
omit-norms, term vector, and so on.

Use case Indexed Stored
Multi-
valued

Omit
norms

Term
vectors

Term
Positions

Term
offsets

search within
field TRUE
retrieve contents TRUE
use as unique
key TRUE FALSE
sort on field TRUE FALSE TRUE
use field boosts FALSE
document boosts
affect searches
within field FALSE
highlighting TRUE TRUE
Faceting TRUE
add multiple
values,
maintaining
order TRUE
field length
affects doc. score FALSE
MoreLikeThis TRUE TRUE
term frequency TRUE
document
frequency TRUE
tf*idf TRUE
term positions TRUE TRUE TRUE
term offsets TRUE TRUE TRUE

Improving Performance of Search while Scaling with Big Data

[88]

Index optimization
The indexes used in Apache Solr are inverted indexes. In the case of inverted
indexing technique, all your text will be parsed and words will be extracted out of
it. These words are then stored as index items, with the location of their appearance.
For example, consider the following statements:

1.	 Mike enjoys playing on a beach
2.	 Playing on ground is a good exercise
3.	 Mike loves to exercise daily

The index with location information for all these sentences will look like the
following (The numbers in brackets denote (sentence no, word no):

Mike (1,1), (3,1)

enjoys (1,2)

playing (1,3), (2,1)

on (1,4), (2,2)

a (1,5), (2,5)

beach (1,6)

ground (2,3)

is (2,4)

good (2,6)

loves (3,2)

to (3,3)

exercise (2,7), (3,4)

daily (3,5)

When you perform delete on your inverted index, it does not delete it, it only marks
the document as deleted. It will get cleaned only when the segment, the index is part
of are merged. When you create index, you should avoid modifying the index.

Chapter 5

[89]

Limiting the indexing buffer size
As the index size grows, Solr instance starts hogging more CPU time and memory to
perform faceted search. When the indexes are first created, the overall operation runs
in a batch mode. All the documents are kept in memory, until it exceed RAM buffer
size specified in solr-config.xml.

<ramBufferSizeMB>100</ramBufferSizeMB>

Once the size is exceeded, Solr creates a new segment or merges the index with the
current segment. The default value of RAM buffer size is 100 megabits (Solr 1.4 and
above). Similarly, there is another parameter that controls the maximum number of
documents in buffer of Solr while indexing.

<maxBufferedDocs>1000</maxBufferedDocs>

If either of them, that is, maximum documents in buffer, and RAM size cross the
predefined limit, then it will flush the changes. You can also control the maximum
number of threads used for indexing the document by tuning the maxIndexingThread,
the default value is 8. By setting these parameters to optimal, as per your usage, you
can speed up your indexing process. By setting this parameter, you can use clients
which can connect concurrently to the search server for uploading the data using
multiple threads. Solr provides the ConcurrentUpdateSolrServer class for the same.

The frequency of commit operation should also be controlled, as high frequency may
end up eating more CPU time, and low frequency may increase the memory size of
your instance.

When to commit changes?
Commit is the operation that ensures all the updates/uploads to Solr are stored on
the disk. With Solr, you can perform commit in following different ways:

•	 Automatic commit
•	 Soft commit

When automatic commit is enabled, any document uploaded to Apache Solr gets
written to the storage automatically by Solr based on certain conditions. In case of a
cluster environment, a hard commit will replicate the indexes across all the nodes.
This condition is maximum time (maxTime) or maximum documents (maxDocs) after
which commit should take place. Choosing the value for these on the lower side
works well for environment where you have continuous index updates; it incurs a
significant performance bottleneck for batch updates in a distributed environment.
At the same time, having the value of maxTime or maxDocs at highest side may pose a
high risk of losing indexed documents in case of failure.

Improving Performance of Search while Scaling with Big Data

[90]

There is also an option called openSearcher; when true, it allows a new searcher
to get an initialized post commit of changes, and enables the committed changes
available for search immediately. Each handler also has an updateLog, which is a
transaction log it enables recovery of updates in case of failure that is durability.

To achieve a maximum durability of Solr instance, it is recommended
to have hard commit size limit based on the log size of update log.

Similar to a hard commit, there is also a soft commit. A soft commit is a faster
alternative, which, unlike hard commit, only makes the index changes visible for
searches. It does not perform any sync of indexes across nodes. In case of power failure
of machine, the changes made using soft commit are lost. With soft commit, Solr can
achieve near real-time search capabilities. You should have soft commit maxTime less
than hard commit time. The configuration file would look like the following:

Solr also allows you to pass the commit request in your update request itself.

Chapter 5

[91]

Optimizing the index merge
While creating index segments, the following algorithm depicts how the Solr functions:

Does the in memory
documents exceed

the limit ?

Is RAM Buffer exceeded ?

Does the count of current
segment match mergeFactor

Start

Update RAM with
index information

Stop

Flush the changes

Create new segment

Update segment to
include the index

document

Merge the segments into bigger
one, choose the policy for merge

Is segment available for
Update ?

No

No

No

Yes

Yes

No

Yes

Yes

Improving Performance of Search while Scaling with Big Data

[92]

Solr keeps the newly updated index in the most recent segment; if the segment is
filled up, it will create a new one. Solr performs the merging of segments as and
when the number of lowest level segments touch mergeFactor specified in Solr
configuration file. If so, it will merge all the segments into one. In the following case:

<mergeFactor>20</mergeFactor>

This is nothing but a scale; the segments are merged when the number of lowest
level segments touches 20. This process keeps continuing. mergeFactor directly
carries impact on your search query time and indexing time. If you have high
mergeFactor, your index creation process is faster, as it does not really need to
perform merging of index; however, for a search; Solr has to look into multiple files
in file store. If you have low mergeFactor, it will slow down your indexing process
due to the need to perform merge over huge indexes. The search will be relatively
faster as it has to look at few files.

Optimize an option for index merging
When this option is called, Solr runs the index merge operation, and it forces the
entire index segments to get merged into a single segment. This is an expensive
operation, which in turn reads and rewrites all the indexes of Solr. It impacts the
functioning of search instance, so it is recommended to run this operation when there
is no/less load on the instance. It provides additional attributes such as waitFlush
(blocks the instance until index changes are flushed to disk), waitSearcher
(blocks until the new searcher with all the changes visible is made available), and
maxSegment (you can choose to optimize your instance to maximum segment listed).
Solr also allows you to call optimize through URL call itself:

curl
 'http://localhost:8983/solr/update?optimize=true&maxSegments=2&wai
 tFlush=false'

While running in a SolrCloud environment, you should be careful while running
optimize (forced merge) on your own; instead, you can rely on Solr to perform an
optimization and partial merge (that it does in the background).

Optimizing the container
Most of the Big Data implementations including Solr and Hadoop run under J2EE
container with some JDK. While scaling your instance for more data and more
indexes, it becomes important to optimize your containers as well to ensure you get
optimal high speed performance out of the system. Choosing the right JVM is one of
the important factors.

Chapter 5

[93]

There are many JVMs available in the market today which can be considered, such as
Oracle Java HotSpot, BEA JRockit, Open Source JVM, and so on. Interestingly, Solr
allows you to run multiple Solr instances on their own JVMs. Zing JVM from the Azul
system is considered to be a high performance JVM for Solr/Lucene implementations.

Optimizing concurrent clients
You can control the amount of concurrent connections that can be made to your
container. This in turn reduces traffic on your instance which may be running in the
standalone/distributed environment.

In Tomcat server, you can simply modify the following entries in server.xml for
changing the number of concurrent connections:

Similarly, in Jetty, you can control number of connections held by modifying jetty.
xml in the following way:

Optimizing the Java virtual memory
One of the key optimization factors is controlling the virtual memory size of your
Big Data Solr instance. This is applicable for instances running in distributed
environment as well as the instances running as standalone search instance. As your
Big Data search instance scales with data size, it requires more and more memory,
and it becomes important to optimize the same. Apache Solr has built-in cache which
is one of the factors considered for optimization. Since both Hadoop and Solr run on
JVMs, one has to look at optimization of Java Virtual Machine (JVM).

Improving Performance of Search while Scaling with Big Data

[94]

All Solr instances run inside J2EE container. As an application, all the common
optimizations for applications are applicable to it. It starts with choosing the right heap
size for your JVM. Heap size for JVM can be controlled by the following parameters:

Parameter Description
-Xms The minimum heap size required with which the container is initialized
-Xmx The maximum heap size up to which the container is allowed to grow

When you choose the minimum heap size to be low, the initialization of the application
itself might take a longer time. Similarly, having a higher minimum heap size may
unnecessarily block the huge memory segment which might be useful for your other
processes. However, it will reduce the calls to resize the heap when heap is full, since
the heap holds more memory at the start time. Similarly, having a low maximum
heap size may fail your application running in between, throwing Out Of Memory
exceptions for large indexes/objects of your search. When providing the memory size
for the JVM, you need to ensure that you keep sufficient memory for your operating
system and other processes to avoid them going into the thrashing mode.

When you are running optimized Solr instances in a container, it is
recommended not to install any other applications on the same container.

When heap is full, JVM tries to grab more memory based on the -Xmx parameter.
Before doing that it performs garbage collection. Garbage collection in JVM is a
process through which JVM reclaims the memory consumed by objects that is
unused/expired/not referred by any of your application processes running in
memory. Today's Java virtual machines trigger the garbage collection process
automatically as and when needed. The process can explicitly be called from the
application code through the System.gc() call, this will explicitly trigger the
garbage collection process cleaning up the garbage. Such explicit calls to garbage
collection should be avoided because:

•	 There is no control over when the garbage collection process is run while
your search/indexing is run.

•	 When garbage collection process is running, it will end up taking your CPU
and memory, which impacts the overall functioning of search.

•	 Heap size influences the time for running the garbage collection process.
Longer heap size will take more time for garbage collector to identify and
clean the VM objects. New releases of Java (1.7 and above) have done some
optimization over the garbage collection.

Chapter 5

[95]

If you are using Solr faceting, or features such as sorting, you will require more
memory. An operating system performs memory swapping based on the need of
processors. This can bring in huge latency in your search with large indexes. Many
of the operating systems allow users to control the swapping of programs.

Optimization the search runtime
The search runtime speed is one of the primary concerns. It should be performed.
You can also perform optimization at various levels at runtime. When Solr fetches
results for the queries passed by the user, you can limit the fetching of results to a
certain number by specifying the rows attribute in your search. The following query
will return 10 rows of results from 10 to 20.

q=Scaling Big Data&rows=10&start=10

This can also be specified in solrconfig.xml as queryResultWindowSize by setting
the size to a limited number of query results.

Let's look at various other optimizations possible in search runtime.

Optimizing through search queries
Whenever a query request is forwarded to a search instance, Solr can respond
in various ways that is XML, JSON. A typical Solr response not only contains
information about matched results, but also information about your facets,
highlighted text, and many other things which are used by client (by default a
velocity template based client provided by Solr). This in turn is a heavy response
and it can be optimized by providing a compression over the result. Compressing
the result, however, incurs more CPU time, and it may impact the response time
and query performance. However, there is significant value in terms of response
size that passes over the network.

Filter queries
A normal query on Solr will perform the search, and then it applies complex scoring
mechanism to determine the relevance of the document with the search results. A
filter query on Solr will perform the search and apply the filter, this does not apply
to any scoring mechanism. A query can easily be converted into a filter query:

Normally: q=name:Scaling Hadoop AND type:books
Filter Query: q=name:Scaling Hadoop&fq=type:books

Improving Performance of Search while Scaling with Big Data

[96]

The processing required for scoring is not required; hence, it is faster compared to
normal query. Since the scoring is no more applicable with filter queries, if the same
query is passed again and again, the results are returned from filter cache directly.

Optimizing the Solr cache
Solr provides caching at various levels as a part of its optimization. For caching
at these levels, there are multiple implementations available in Solr by default.
LRUCache, least recently used (based on the synchronized LinkedHashMap),
FastLRUCache, and LFUCache, least frequently used (based on the
ConcurrentHashMap). Among these FastLRUCache is expected to be faster
than all others. These caches are associated with search (index searchers).

Cache autowarming is a feature by which a cache can pre-populate
itself with objects from old search instances/cache.

These cache objects do not expire; they live till the time, and index searches are alive.
The configuration for different cache can be specified in solrconfig.xml, as shown
in the following screenshot:

Chapter 5

[97]

There are common parameters to the cache:

Parameter Description
class You can specify the type of cache you wish to attach that is

LRUCache, FastLRUCache, or LFUCache
size This is the maximum size a cache can reach to
initialSize The initial size of the cache when it is initialized
autowarmCount The number of entries to seed from old cache
minSize Applicable for FastLRUCache, after cache reaches its peak size,

it tries to reduce the cache size to minSize. The default value is 90
percent of size

acceptableSize If FastLRUCache cannot reduce to minSize when cache reaches its
peak, it will at least touch to acceptableSize

All cache are initialized when a new index searcher instance is opened. Let's look at
different cache in Solr and how you can utilize them for speeding up your search.

The filter cache
This cache is responsible for storing the documents for filter queries that are
passed to Solr. Each filter is cached separately; when queries are filtered, this
cache returns the results and eventually based on the filtering criteria, the system
performs intersection of them. If you have faceting, use of filter cache can improve
performance. This cache stores the document IDs in an unordered state.

The query result cache
This cache will store the top N query results for each query passed by the user.
It stores an ordered set of document IDs. For queries are that are repeated again
and again, this cache is very effective. You can specify the maximum number of
documents that can be cached by this cache in solrconfig.xml.

<queryResultMaxDocsCached>200</queryResultMaxDocsCached>

Improving Performance of Search while Scaling with Big Data

[98]

The document cache
This cache primarily stores the documents that are fetched from the disk. Once a
document loads into a cache; next time, the search does not need to fetch it from the
disk again reducing your overall disk IOs. This cache works on IDs of documents,
so the autowarming feature does not really seem to have any impact, since the
document IDs keep changing as and whenever there is a change in index.

The size of the document cache should be based on your size of results
and the size of max number of queries allowed to run, this will ensure
that there is no refetch of documents by Solr.

The field value cache
This cache is used mainly for faceting. If you have a regular use of faceting, it
makes sense to enable caching for field levels. This cache can also be used for
sorting. It supports multi-valued fields. You can monitor the caching status in
the administration of Solr. It provides information such as current load, hit
rations, hits, and so on. This is shown in the following screenshot:

Chapter 5

[99]

Lazy field loading
By default, Solr reads all stored fields and then filters the ones which are not needed.
This becomes a performance overhead for a large number of fields. When this flag
is set, only fields that are requested will be loaded immediately, the rest of the fields
are loaded lazily. This offers significant improvement over speed of search. This can
be done by setting the following flag in solconfig.xml.

<enableLazyFieldLoading>true</enableLazyFieldLoading>

In addition to these options, you can also define your cache implementation.

Optimizing search on Hadoop
When running Solr with Hadoop for indexing (Solr patches) or for search (Katta/
Lily), the optimization of Hadoop adds performance benefits to Big Data search
instance. The optimization can be done at the storage level that is HDFS as well
as at the MapReduce programs.

While storing the indexes in a distributed environment such as Hadoop, storing in
a compressed format can improve the storage space, as well as memory footprint.
This storage in turn reduces your disk IO and bytes transferred over wires by adding
an overhead for extracting it as and when needed. You can do that by enabling
mapred.compress.map.output=true. Another interesting parameter is controlling
the block size of a file for HDFS. This needs to be defined well, considering the fact
that all indexes are stored in HDFS files, defining the appropriate block size (dfs.
block.size) will help. The number of MapReduce tasks can also be optimized
based on input size (the batch size of Solr documents for indexing/sharding). In case
of Solr-1301, the output of reduce tasks are passed to SolrOutputFormat, which
calls SolrRecordWriter for writing the data. After completing the reduce task,
SolrRecordWriter calls commit() and optimize() for performing index merging.

Improving Performance of Search while Scaling with Big Data

[100]

Monitoring the Solr instance
You can monitor the Solr instance for the purpose of memory and CPU usage. There
are various ways of doing it; a simple administration of Solr provides you with some
statistics for the usage. Using standard tools such as JConsole and JVisualVM, you
can connect to the Solr process for monitoring of memory usage, threads, CPU usage,
and so on, as shown in the following screenshot:

With JConsole, you can also look at different JMX-based MBeans supported by Solr.
On a sample Jetty setup, you can simply connect Solr using the following procedure:

1.	 Open the JDK folder which is being used by Solr.
2.	 Go to the bin directory and run JConsole.
3.	 In JConsole, connect to Solr process; in the case of default Jetty

implementation, connect to start.jar.
4.	 Once connected, switch to the MBean tab.

Chapter 5

[101]

You will find the MBean browser as shown in the following screenshot:

For a clustered search instance, you can connect remotely through JConsole.
However, while starting JVM, you need to pass the following parameters to JVM (to
bypass authentication and SSL):

-Dcom.sun.management.jmxremote.port=<port-no>
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.authenticate=false

Using SolrMeter
SolrMeter is a tool that can be used by administrators to access the Solr instance
running in a distributed environment for performing stress testing and get the search
related statistics out of it. This tool can be downloaded from http://code.google.
com/p/solrmeter and it can simply run by calling:

java -jar solrmeter-<version-no>.jar

Improving Performance of Search while Scaling with Big Data

[102]

This tool is one of the most powerful tools as it includes both loading and monitoring
of your Big Data search instance. There are primarily four consoles, as shown in the
following screenshot:

•	 Query console: This shows query related information such as time taken and
queries ran

•	 Update console: This provides information regarding newly added
documents, errors on updates, and so on

•	 Commit console: This provides commit history of documents, time taken,
documents for pending commits, and so on

•	 Optimize console: This provides history for optimization, the count of
optimize call run, average time taken, errors, and so on

SolrMeter also displays performance measurements in a nice graphical manner,
that is, histogram, pie chart, query time history, operation time line, query statistics,
errors, and cache history. The charts together provide a detailed view on query
performance. It also provides an option to optimize the indexes by providing an
Optimize Now button.

Summary
In this chapter, we have gone through different ways of optimizing your Big Data
instance to perform high speed data search and analysis. We also looked at how you
can consistently keep track of performance of your system through various tools.

Use Cases for
Big Data Search

Many organizations across the globe in different sectors have successfully adapted to
the Apache Hadoop and Solr-based architectures, to provide a unique browsing and
searching experience over their rapidly growing and diversified information. Let's
look at some of the interesting use cases where Big Data search can be used.

E-commerce websites
E-commerce websites are meant to work for different types of users. These users visit
the websites for multiple reasons:

•	 Visitors are looking for something specific, but they can't really describe
what it is

•	 Visitors are looking for a specific product price/features
•	 Visitors come looking for good discounts, what's new, and so on
•	 Visitors wish to compare multiple products on cost/features/reviews

Most e-commerce websites are used to be built on custom developed pages
running on a SQL database. Although a database provides excellent capabilities
to manage your data structurally, it does not provide high speed searching and
faceting like Solr. In addition to that, it becomes difficult to keep up with the
queries for high performance. As the size of data grows, it hampers the overall
speed and user experience.

Use Cases for Big Data Search

[104]

Apache Solr in a distributed scenario provides excellent offerings in terms of browsing
and searching experience. Solr can work easily, integrate with the database, and it
can provide high speed search with real-time indexing. Advanced in-built features of
Solr such as suggestions, a more like this search, and spelling checker can effectively
help customer reach the merchandise he/she was looking for. The instance can easily
be integrated with the current sites; faceting can provide interesting filters based on
highest discount items, price range, type of merchandise, products from different
companies, and so on, enabling a unique shopping experience for the end users. Many
of the e-commerce based companies such as buy.com, dollardays.com, and macys.
com have acquired distributed Solr-based solution over the traditional approach for
providing customers with better browsing experience.

Log management for banking
Today banking software landscape scenario deals with many enterprise applications
that play an important role in automating banking processes. Each of these
applications talk with each other over wire. A typical enterprise architecture
landscape consists of software for core banking application, CMS, credit card
management, B2B portal, treasury management, HRMS, ERP, CRM, business
warehouse, accounting, BI tools, analytics, custom applications, and various other
enterprise applications fused together to ensure smooth business processes. The data
center for such a complex landscape is usually placed across the globe in different
countries with high performance servers having backup and replication. It, in turn,
brings in a completely diversified set of software together in a secured environment.

Most of the banks today offer web-based interactions; they not only automate their
own business processes, but also access various third party software of other banks
and vendors. There is a dedicated team of administrators working 24 x 7 over
monitoring and handling of issues/failures and escalations. A simple application
of transferring money from your savings bank account to a loan account may touch
upon at least twenty different applications. These systems generate terabytes of data
everyday, which include transactional data, change logs, and so on.

The problem
The problem arises when any business workflow/transaction fails. With such a
complex system, it becomes a big task for system administrators/managers to:

•	 Identify the error(s)/issue(s)
•	 Look for errors at different log files, and find out the real problem

Appendix A

[105]

•	 Find out the cause of failure
•	 Find correlation among the failures
•	 Monitor the workflow for occurrence of same issue

Product-based software provides nice user interface for administration,
monitoring, and log management. However, most of the software including
custom built applications and packaged software do not provide any such
way. Eventually, the administrators have to get down to operating system
file level and start looking for logs.

How can it be tackled?
This is the classic case where Big Data search (Apache Hadoop with Apache
Solr) over a distributed environment can be used for effectively monitoring these
applications. A sample user interface satisfying some of the expectations is shown
in the following screenshot:

Use Cases for Big Data Search

[106]

The following reasons enable us to qualify Apache Solr-based Big Data search as
the solution:

•	 Apache Hadoop provides an environment for distributed storage and
computing for banking global landscape. It also makes your log management
scalable in terms of organization growth. This means even if the logs are
lost due to rotational log management system from applications or cleaned
automatically by your application server, they remain available in a
distributed environment of Hadoop.

•	 Apache Solr supports storage of any type of schema making it work
with different types of applications having different model layer, that is,
application specific log files with their own proprietary schema for each
application.

•	 Apache Solr provides efficient searching capabilities with highlighted text
and snippets of matched results; this can be suitable while looking for the
right set of issues and their occurrences in the past.

•	 Apache Solr provides rich browsing experience in terms of faceted search
to drill down to the correct set of results one is looking for. In this case,
administrators will be blessed with different types of facets such as
timeline-based, application-scoped, based on error types, and severity.

•	 Apache Solr's near real-time search capabilities add value in terms of
monitoring and hunt for new logs. One can develop custom utilities that
can alert the administrator in case he/she receives a log with high severity.
Overall the system gets proactive instead of being reactive.

•	 The overall cost of building this system is less, as none of these technologies
require high-end servers, and they are open source.

Appendix A

[107]

High-level design
The overall design, as shown in the following diagram, can have a schema containing
common attributes across all the log files such as date and time of log, severity,
application name, user name, type of log, and so on. Other attributes can be added
as dynamic text fields.

Localized Distributed Log Uploads

Big Data based Log Management System

Solr /
Hadoop
Node

Solr /
Hadoop
Node

Solr /
Hadoop
Node

Solr /
Hadoop
Node

.............................

CBS
Custom

Applications ERP

HRMS B2B PortalCredit Card

Distributed Banking Applications

CRM

Treasury
Management

Log Upload Utilities

Since each system has different log schema, these logs have to be parsed periodically,
and then uploaded to the distributed search. For that, we can either write down
the utilities which will understand the schema, and extract the field data from logs.
These utilities can feed the outcome to distributed search nodes which are nothing
but the Solr instances running on a distributed system like Hadoop. To achieve near
real-time search, the Solr configuration requires a change accordingly.

Creating Enterprise Search
Using Apache Solr

Let's look at some of the real configuration files. We are only going to look at the
additions or changes to these files.

schema.xml
Broadly schema.xml contains following information:

•	 Different types of field names of schema and data types (<fields>…<field>)
•	 Definition of user/seeded defined data types (<types>…<fieldTypes>)
•	 Dynamic fields (<fields>….<dynamicField>)
•	 Information about uniqueKey to define each document uniquely

(<uniqueKey>)
•	 Information regarding QueryParser for Solr (<solrQueryParser>)
•	 Default search field is used when the user does not pass the field name

(<defaultSearchField>)
•	 Information about copying a field from one to another (<copyField>)

Creating Enterprise Search Using Apache Solr

[110]

In Chapter 2, Understanding Solr, we have already explained important attributes of
the schema.xml file. Here is a sample schema.xml file in which the fields will look
like the following screenshot:

Remove all the copy fields, if not needed. The uniqueKey field is used to determine
each document uniquely and will be required unless it is marked as required=false.
The default search field provides a field name that Solr will use for searching when the
user does not specify any field. Specify unique key and default search as shown in the
following screenshot:

solrconfig.xml
Chapter 2, Understanding Solr, of this book explains the solrconfig.xml file in detail.
We will look at the sample configuration in this section for log management. In the Solr
configuration, interesting part will be the introduction of facets. For log management,
you may consider the following facets to make overall browsing interesting:

Facet Description
Timeline based With this facet, users will be able to effectively filter their search

based on the time. For example, options such as past 1 hour, past 1
week, and so on.

Levels of log Levels of log provide you with the severity: for example, SEVERE,
ERROR, INFO, and so on.

Appendix B

[111]

Facet Description
Host Since this system provides a common search for multiple machines,

this facet can provide filtering criteria if an administrator is looking
for something specific

User If an administrator knows about the user, extracting user
information from log can add better filtering through the user facet

Application Similar to host, administrators can filter the logs based on an
application using this facet

Severity Severity can be another filtering criteria; most severe errors can be
filtered with this facet

In addition to this, you will also use features of highlighting logs, spelling correction,
suggestions (MoreLikeThis), and so on. The following screenshot shows a sample
facet sidebar of Apache Solr to give us a better understanding over how it may look:

Creating Enterprise Search Using Apache Solr

[112]

The following sample configuration for Solr shows different facets and other
information when you access/browse:

Similarly, the following configuration shows a timeline-based facet, and features
such as highlighting and spell check:

Appendix B

[113]

spellings.txt
The spellings.txt file provides file-based spellcheck and it can be enabled by
specifying the following code in solrconfig.xml:

<searchComponent name="spellcheck"
 class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="classname">solr.FileBasedSpellChecker</str>
 <str name="name">file</str>
 <str name="sourceLocation">spellings.txt</str>
 <str name="characterEncoding">UTF-8</str>
 <str name="spellcheckIndexDir">./spellcheckerFile</str>
 </lst>
</searchComponent>

Creating Enterprise Search Using Apache Solr

[114]

In this file, you can write a list of correct words. This file is used to define a
dictionary for the users. You need to enter each word in a new line shown as follows:

•	 solr

•	 solar

Once the dictionary is created, it needs to be built by calling spellcheck.build
through the URL:

http://<solr-url>/select?q=*:*&spellcheck=true&spellcheck.build=true

Now, you can simply check the spellchecker by calling the following URL:

http://<solr-url>/select?q=solar&spellcheck=true

synonyms.txt
The synonyms.txt file is used by synonym filter to replace the tokens with their
synonyms. For example, a search for DVD may expand to DVD, DVDs, and Digital
Versatile Disk depending on your mapping in this file. Here is how you can specify
synonyms:

•	 GB, gib, gigabyte, gigabytes
•	 MB, mib, megabyte, megabytes
•	 Television, Televisions, TV, TVs
•	 Incident_error => error

In this file, you can also do spelling corrections; the following example shows how it
can be done:

•	 assasination => assassination

Appendix B

[115]

protwords.txt
You can protect the words that you do not want to be stemmed. For example,
a stemming will cut a word "manager" to manage. If you do not wish to protect
them, you can specify those words in this file line-by-line:

•	 manager

•	 Exception

•	 Accounting

stopwords.txt
Using the stopwords.txt file, you can avoid the common words of your language,
which do not add a significant value to your search. For example, a, an, the, you, I,
am, and so on. You can specify them in this file line-by-line.

•	 a

•	 an

•	 …

Sample MapReduce Programs
to Build the Solr Indexes

In this appendix, we are going to look at sample MapReduce programs to build Solr
indexes. We will start with an example of a MapReduce program.

Let's say we have three files containing the following text, and we have to get a word
count of each word:

•	 [I enjoy walking on the beach sand. The Maya beach is what I enjoy most.]
•	 [John loves to play volleyball on the beach.]
•	 [We enjoy watching television.]

The results are then split into blocks and replicated on multiple data nodes. The map
function then extracts a count of words from each file. The following <key, value>
pairs are outcomes of the map function of Hadoop:

•	 <I ,2> <enjoy, 2> <walking,1> <on,1> <the,2> <beach,2> <sand,1> <maya,1>
<is,1> <what,1> <most,1>

•	 <John,1> <loves,1> <to,1> <play,1> <volleyball,1> <on,1> <the,1> <beach,1>
•	 <we,1> <enjoy,1> <watching,1> <television,1>

Now, reduce task merges all these together and reduces the input to a single set of
<key, value> pairs, getting us the count of words:

<I ,2> <enjoy, 3> <walking,1> <on,2> <the,3> <beach,3> <sand,1> <maya,1> <is,1>
<what,1> <most,1> <John,1> <loves,1> <to,1> <play,1> <volleyball,1> <we,1>
<watching,1> <television,1>

Now, we will look at some samples for different implementations.

Sample MapReduce Programs to Build the Solr Indexes

[118]

The Solr-1045 patch – map program
The following sample program will work with the Hadoop Version 0.20:

SolrConfig solrConfig = new SolrConfig();
 Configuration conf = getJobConfiguration();
 FileSystem fs = FileSystem.get(conf);

 if (fs.exists(outputPath))
 fs.delete(outputPath, true);
 if (fs.exists(indexPath))
 fs.delete(indexPath, true);

 for (int noShards = 0; noShards < noOfServer; noShards++)
 {
 //Set initial parameters
 IndexUpdateConfiguration iconf = new
 IndexUpdateConfiguration(conf);
 iconf.setIndexInputFormatClass(SolrXMLDocInputFormat.class);
 iconf.setLocalAnalysisClass(SolrLocalAnalysis.class);
 //configure the indexing for SOlr
 SolrIndexConfig solrIndexConf = solrConfig.mainIndexConfig;
 if (solrIndexConf.maxFieldLength != -1)
 iconf.setIndexMaxFieldLength(solrIndexConf.maxFieldLength);
 iconf.setIndexUseCompoundFile(solrIndexConf.useCompoundFile);
 iconf.setIndexMaxNumSegments(maxSegments);
 //initialize array
 Shard[] shards = new Shard[numShards];
 for (int j = 0; j < shards.length; j++)
 {
 Path path = new Path(indexPath, NUMBER_FORMAT.format(j));
 shards[j] = new Shard(versionNumber, path.toString(),
 generation);
 }
 //An implementation of an index updater interface which
 creates a Map/Reduce job configuration and run the
 //Map/Reduce job to analyze documents and update Lucene
 instances in parallel.
 IIndexUpdater updater = new SolrIndexUpdater();
 updater.run(conf, new Path[]
 { inputPath }, outputPath, numMapTasks, shards);

Appendix C

[119]

The Solr-1301 patch – reduce-side
indexing
The patch provides RecordWriter to generate Solr index. It also provides
OutputFormat for outputting your indexes. With Solr-1301 patch, we only
need to implement the reducer since this patch is based on reducer.

You can follow the given steps to achieve reduce-side indexing using Solr-1301:

1.	 Get solrconfig.xml, schema.xml and other configurations in the conf
folder, and also get all the Solr libraries in the lib folder.

2.	 Implement SolrDocumentConverter that takes the <key, value> pair
and returns SolrInputDocument. This converts output records to Solr
documents.
public class HadoopDocumentConverter extends
 SolrDocumentConverter<Text, Text> {
 @Override
 public Collection<SolrInputDocument> convert(Text key,
 Text value) {
 ArrayList<SolrInputDocument> list = new
 ArrayList<SolrInputDocument>();
 SolrInputDocument document = new SolrInputDocument();
 document.addField("key", key);
 document.addField("value", value);
 list.add(document);
 return list;
 }
}

3.	 Create a simple reducer as follows:
public static class IndexReducer {
 protected void setup(Context context) throws IOException,
 InterruptedException {
 super.setup(context);
 SolrRecordWriter.addReducerContext(context);
 }
}

Sample MapReduce Programs to Build the Solr Indexes

[120]

4.	 Now configure the Hadoop reducer and configure the job. Depending upon
the batch configuration (that is, solr.record.writer.batch.size), the
documents are buffered before updating the index.
SolrDocumentConverter.setSolrDocumentConverter(
 HadoopDocumentConverter.class, job.getConfiguration());
job.setReducerClass(SolrBatchIndexerReducer.class);
job.setOutputFormatClass(SolrOutputFormat.class);
File solrHome = new File("/user/hrishikes/solr");
SolrOutputFormat.setupSolrHomeCache(solrHome,
 job.getConfiguration());

The solrHome is the patch where solr.zip is stored. Each task initiates the
EmbeddedServer instance for performing the task.

Katta
Let's look at the sample indexer code that creates indexes for Katta:

 public class KattaIndexer implements MapRunnable<LongWritable,
 Text, Text, Text> {
 private JobConf _conf;
 public void configure(JobConf conf) {
 _conf = conf;
 }

 public void run(RecordReader<LongWritable, Text> reader,
 OutputCollector<Text, Text> output, final Reporter report)
 throws IOException {
 LongWritable key = reader.createKey();
 Text value = reader.createValue();
 String tmp = _conf.get("hadoop.tmp.dir");
 long millis = System.currentTimeMillis();
 String shardName = "" + millis + "-" + new
 Random().nextInt();
 File file = new File(tmp, shardName);
 report.progress();
 Analyzer analyzer = IndexConfiguration.getAnalyzer(_conf);
 IndexWriter indexWriter = new IndexWriter(file, analyzer);
 indexWriter.setMergeFactor(100000);
 report.setStatus("Adding documents...");
 while (reader.next(key, value)) {
 report.progress();
 Document doc = new Document();
 String text = "" + value.toString();

Appendix C

[121]

 Field contentField = new Field("content", text,
 Store.YES, Index.TOKENIZED);
 doc.add(contentField);
 indexWriter.addDocument(doc);
 }
 report.setStatus("Done adding documents.");
 Thread t = new Thread() {
 public boolean stop = false;
 @Override
 public void run() {
 while (!stop) {
 // Makes sure hadoop is not killing the task in case
 the
 // optimization
 // takes longer than the task timeout.
 report.progress();
 try {
 sleep(10000);
 } catch (InterruptedException e) {
 // don't need to do anything.
 stop = true;
 }
 }
 }
 };
 t.start();
 report.setStatus("Optimizing index...");
 indexWriter.optimize();
 report.setStatus("Done optimizing!");
 report.setStatus("Closing index...");
 indexWriter.close();
 report.setStatus("Closing done!");
 FileSystem fileSystem = FileSystem.get(_conf);

 report.setStatus("Starting copy to final destination...");
 Path destination = new Path
 (_conf.get("finalDestination"));
 fileSystem.copyFromLocalFile(new
 Path(file.getAbsolutePath()), destination);
 report.setStatus("Copy to final destination done!");
 report.setStatus("Deleting tmp files...");
 FileUtil.fullyDelete(file);
 report.setStatus("Delteing tmp files done!");
 t.interrupt();
 }
 }

Sample MapReduce Programs to Build the Solr Indexes

[122]

Here is a sample Hadoop job that creates the Katta instance:

 KattaIndexer kattaIndexer = new KattaIndexer();
 String input = <input>;
 String output = <output>;
 int numOfShards = Integer.parseInt(args[2]);
 kattaIndexer.startIndexer(input, output, numOfShards);

You can use the following search client to search on the Katta instance:

Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_CURRENT);
 Query query = new QueryParser(Version.LUCENE_CURRENT, args[1],
 analyzer).parse(args[2]);

 ZkConfiguration conf = new ZkConfiguration();
 LuceneClient luceneClient = new LuceneClient(conf);
 Hits hits = luceneClient.search(query,
 Arrays.asList(args[0]).toArray(new String[1]), 99);

 int num = 0;
 for (Hit hit : hits.getHits()) {
 MapWritable mw = luceneClient.getDetails(hit);
 for (Map.Entry<Writable, Writable> entry : mw.entrySet()) {
 System.out.println("[" + (num++) + "] key -> " +
 entry.getKey() + ", value -> " + entry.getValue());
 }
 }

Index
A
Apache Ambari 12
Apache Avro 12, 71
Apache Flume 13
Apache Hadoop. See also Hadoop

about 9, 69
components 9
ecosystem 9

Apache HBase 10
Apache HCatalog 12
Apache Hive 11
Apache Lucene 84
Apache Mahout 11
Apache Pig 11
Apache Solr. See also Solr

about 45
benefits 45, 46
instance, setting up 79
issues 46

Apache Solr search
configuring 33
facets 40
highlight search component 41
metadata management 41
MoreLikeThis component 41
request handlers 38
schema, defining for instance 34, 35
search components 38
Solr instance, configuring 35
SpellCheck component 41

Apache Sqoop 12
Apache Tika 33
Apache Zookeeper 11
AP system 64
architecture, distributed search 68, 69

architecture, HDFS 13
DataNode 15
NameNode 14
Secondary NameNode 16

architecture, Katta 59, 60
architecture, Lily 70

message queue 72
querying 72
records, updating 72
Write-Ahead Log (WAL) 72

architecture, Map-Reduce
about 18
JobTracker 18, 19
TaskTracker 18, 20

architecture, Solr
about 29
storage 29, 30

architecture, SolrCloud 53
autoCommit directive 37

B
Big Data approach

about 7, 8
challenges 8
use cases 103

Big Data storage
Solr, using for 67, 68

Brewer's theorem 64

C
Cache Autowarming 96
capacity-scheduler.xml 23
CAP theorem

about 64
NOSQL database 64

[124]

CA system 64
CDH 13
checkpoints 15
client APIs, Solr engine 33
Cloudera 13
Cloudera distribution including Apache

Hadoop. See CDH
collection

about 53
creating, in SolrCloud 80

column store, NOSQL database 65
commit console, SolrMeter 102
commit operation

about 89
performing 89, 90

common-logging.properties 22
components, Apache Hadoop

Apache Ambari 12
Apache Avro 12
Apache Flume 13
Apache HBase 10
Apache HCatalog 12
Apache Hive 11
Apache Mahout 11
Apache Pig 11
Apache Sqoop 12
Apache Zookeeper 11
HDFS 9
MapReduce framework 9

concurrent clients
optimizing 93

configuration, Apache Solr search 33
configuration files, Solr

about 36
schema.xml 30
solrconfig.xml 30
solr.xml 30

configuration, Katta cluster 60
configuration, search schema fields 85
configuration, SolrCloud 54
configuration, Solr instance 35
container

optimizing 92
core-site.xml 22
CP system 64

CSVDocumentConverter class 51
CSVIndexer class 51
CSVMapper class 51
CSVReducer class 51
curl utility 28
currency.txt 41
custom partitioning 75

D
data

loading, for search 42
organizing 16

data acquisition 8
dataDir directive 37
Data Import Handler (DIH) 32, 42
DataNode 15
data processing workflows

about 46, 47
distributed setup 47
replicated mode 48
sharded mode 48
standalone machine 47

DDL (Data Definition Language) 12
default search field

specifying 85
DisMaxQueryParser 44
DisMaxRequestHandler 31
distributed deadlock 84
distributed search

about 68
architecture 68, 69
limitations 84
scenarios 69
SolrCloud, using for 53

distributed setup, data processing
workflows 47

distributed shard
document, adding to 77

document
about 66
adding, to distributed shard 77

document cache, Solr cache optimization 98
document-oriented store, NOSQL

database 66

[125]

E
e-commerce websites

about 103
benefits 103

elevate.txt 41
Ephemeral node 75
ETL (Extract-Transform-Load) 13
ExtendedDisMaxQueryParser 44

F
faceted browsing 31
facets, Apache Solr search 40
Fair-scheduler.xml 23
field value cache, Solr cache optimization

98
filter cache, Solr cache optimization 97
filter directive 37
filter queries

search runtime, optimizing 95

G
Gartner

about 7
URL 8

graph database, NOSQL database 66

H
Hadoop

installing 20
installing, on machines 22
operations 17
prerequisites 21
program, running 23, 24
running 20
search, optimizing 99
URL 22

Hadoop cluster
managing 24

Hadoop configuration
about 22
capacity-scheduler.xml 23
common-logging.properties 22
core-site.xml 22
Fair-scheduler.xml 23

Hadoop-env.sh 23
Hadoop-policy.xml 23
hdfs-site.xml 22
Log4j.properties 23
mapred-site.xml 22
Masters/slaves 23

Hadoop data analysis
MapReduce, creating for 18

Hadoop distributed file system. See HDFS
Hadoop-env.sh 23
Hadoop-policy.xml 23
HBase 70
HDFS

accessing 16
architecture 13
large data, storing 13
objectives 13

HDFS-APIs 17
hdfs-site.xml 22
highlight search component, Apache Solr

search 41
Hunspell algorithm 86

I
indexConfig directive 37
indexes

creating, for Katta 120, 122
index handler 32
indexing 30
indexing buffer size

limiting 89
index merge

optimizing 91, 92
index optimization

about 88
commit operation, performing 89, 90
concurrent clients, optimizing 93
container, optimizing 92
indexing buffer size, limiting 89
index merge, optimizing 91, 92
Java Virtual Machine (JVM),

optimizing 93-95
optimize option, for index merging 92

index partitioning, Apache Solr
custom partitioning 75
prefix-based partitioning 75

[126]

simple partitioning 75
index reader 32
installation
 Hadoop 20
 Lily 73
 Solr 28
interaction, Solr engine 33
interfaces, Solr engine 33

J
Java Virtual Machine (JVM)

optimizing 93-95
JConsole 100
JCR (Java Content Repository) 70
Jmx directive 37
JobTracker 19
JVisualVM 100

K
Katta

about 59, 120
architecture 59, 60
benefits 61
cluster, configuring 60, 61
drawbacks 61
indexes, creating 60, 61, 120, 122

key-value store, NOSQL database 65
KStem algorithm 86

L
laggard problem 84
large data

storing, in HDFS 13
lazy field loading, Solr cache optimization

99
lib directive 36
Lily

about 70
architecture 70
installing 73
running 73, 74
used, for running user query 72
used, for updating records 72

Lily Data Repository (Lily DR) 70
Listener directive 37

lockType directive 37
Log4j.properties 23
log management, for banking

about 104
high-level design 107
issues 104
issues, tackling 105, 106

luceneMatchVersion directive 36
LucidWorks

URL 28

M
mapred-site.xml 22
MapReduce

about 9
architecture 18
creating, for Hadoop data analysis 18

MapReduce program
example 117
Solr-1045 patch 118
Solr-1301 119

map-side indexing 49
Map Task 9
massively parallel processing (MPP) 8
Masters/slaves 23
maxBufferedDocs directive 37
maxIndexingThreads directive 37
message queue 72
metadata management, Apache Solr search

41
MongoDB 68
MoreLikeThis component, Apache Solr

search 41
multicore Solr search

using, on SolrCloud 56, 57

N
NameNode 14
NOSQL database

column store 65
document-oriented store 66
graph database 66
key-value store 65

NOSQL databases 8
about 63, 65
need for 67

[127]

O
Optical Character Recognition (OCR) 43
optimize console, SolrMeter 102
optimize option

for index merging 92

P
Pig Latin 11
pipeline-based workflow

about 46
advantages 46

Porter algorithm 86
prefix-based partitioning 75
program

running, on Hadoop 23, 24
protwords.txt 41, 115

Q
query console, SolrMeter 102
Query directive 37
queryParser directive 38
query parser, Solr engine 30-33
queryResponseWriter directive 38
query result cache, Solr cache optimization

97

R
ramBufferSizeMB directive 37
records

updating, Lily used 72
RecordWriter 119
Reduce Tasks 9
replicas

creating, in SolrCloud 80
replicated mode, data processing workflows

48
requestDispatcher directive 38
requestHandler directive 38
request handlers, Apache Solr search 38, 39
Response Writer 32

S
schema.xml 30, 109, 110

search
data, loading for 42
optimizing, on Hadoop 99

searchComponent directive 38
search components, Apache Solr 38, 39
search query

search runtime, optimizing 95
search runtime

optimizing 95
optimizing, through filter queries 95
optimizing, through search query 95

search schema
optimizing 85

search schema fields
configuring 85

search schema optimization
default search field, specifying 85
search schema fields, configuring 85
stemming 86
stop words 86

Secondary NameNode 15
sharded mode, data processing workflows

48
sharding 47, 74
sharding algorithm 75
shards

about 47
creating, in SolrCloud 80, 81

simple partitioning 75
Snowball algorithm 86
Solr

about 27
architecture 29
installing 28
using, for Big Data storage 67, 68

Solr-1045 patch
about 49, 118
benefits 50
drawbacks 50
URL, for downloading 49
using 49

Solr 1301 patch
about 119
benefits 52
drawbacks 52
running 52
used, for reduce-side indexing 119, 120

[128]

using 50-52
Solr cache optimization

about 96, 97
document cache 98
field value cache 98
filter cache 97
lazy field loading 99
query result cache 97

Solr Cell 43
SolrCloud

about 53
architecture 53
benefits 58
collections, creating 80
configuring 54
configuring, for large indexes 77
drawbacks 58
multicore Solr search, using on 56, 57
replicas, creating 80
shards, creating 80
using, for distributed search 53

solrconfig.xml file 30, 36, 110-112
SolrDocumentConverter class 51
Solr engine

about 30
client APIs 33
interaction 33
interfaces 33
query parser 30-33
SolrJ client 33

SolrIndexUpdateMapper class 50
SolrIndexUpdater class 50
Solr instance

configuring 35
monitoring 100, 101

SolrJava (SolrJ) 43
SolrJ client, Solr engine 33
SolrMeter

about 101
commit console 102
optimize console 102
query console 102
update console 102
using 102

SolrOutputFormat class 51
SolrRecordWriter class 51
solr.war 28

solr.xml 30
SolrXMLDocRecordReader class 50
solr.xml file 36
spellcheck component, Apache Solr search

41
spellings.txt 41, 113
ssh

setting up, without passphrase 21
standalone machine, data processing work-

flows 47
stemming 86
stemming algorithms

Hunspell 86
KStem 86
Porter 86
Snowball 86

stop words 86
stopwords.txt 42, 115
storage, Apache Solr 29, 30
synonyms.txt 42, 114

T
TaskTracker 20

U
unlockOnStartup directive 37
update console, SolrMeter 102
updateHandler directive 37
updateLog directive 37
updateRequestProcessor chain 38
user query

running, Lily used 72

W
Write-Ahead Log (WAL) 72
writeLockTimeout directive 37

Z
znodes 75
ZooKeeper ensemble

setting up 78

Thank you for buying
Scaling Big Data with Hadoop and Solr

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Solr 4 Cookbook
ISBN: 978-1-78216-132-5 Paperback: 328 pages

Over 100 recipes to make Apache Solr faster, more
reliable, and return better results

1.	 Learn how to make Apache Solr search faster,
more complete, and comprehensively scalable

2.	 Solve performance, setup, configuration,
analysis, and query problems in no time

3.	 Get to grips with, and master, the new exciting
features of Apache Solr 4

Instant Apache Solr for Indexing
Data How-to
ISBN: 978-1-78216-484-5 Paperback: 90 pages

Learn how to index your data correctly and create
better search experiences with Apache Solr

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Take the most basic schema and extend it to
support multi-lingual, multi-field searches

3.	 Make Solr pull data from a variety of existing
sources

4.	 Discover different pathways to acquire and
normalize data and content

Please check www.PacktPub.com for information on our titles

Hadoop MapReduce Cookbook
ISBN: 978-1-84951-728-7 Paperback: 300 pages

Recipes foe analyzing large and complex datasets
with Hadoop MapReduce

1.	 Learn to process large and complex data sets,
starting simply, then diving in deep

2.	 Solve complex big data problems such as
classifications, finding relationships, online
marketing and recommendations

3.	 More than 50 Hadoop MapReduce recipes,
presented in a simple and straightforward
manner, with step-by-step instructions and real
world examples

Instant MapReduce Patterns –
Hadoop Essentials How-to
ISBN: 978-1-78216-770-9 Paperback: 60 pages

Practical recipes to write your own MapReduce
solution patterns for Hadoop programs

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Learn how to install, configure, and run
Hadoop jobs

3.	 Seven recipes, each describing a particular
style of the MapReduce program to give you a
good understanding of how to program with
MapReduce

4.	 A concise introduction to Hadoop and common
MapReduce patterns

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Processing Big Data Using Hadoop and MapReduce
	Understanding Apache Hadoop and its ecosystem
	The ecosystem of Apache Hadoop
	Apache HBase
	Apache Pig
	Apache Hive
	Apache ZooKeeper
	Apache Mahout
	Apache HCatalog
	Apache Ambari
	Apache Avro
	Apache Sqoop
	Apache Flume

	Storing large data in HDFS
	HDFS architecture
	NameNode
	DataNode
	Secondary NameNode

	Organizing data
	Accessing HDFS

	Creating MapReduce to analyze Hadoop data
	MapReduce architecture
	JobTracker
	TaskTracker

	Installing and running Hadoop
	Prerequisites
	Setting up SSH without passphrases
	Installing Hadoop on machines
	Hadoop configuration
	Running a program on Hadoop

	Managing a Hadoop cluster
	Summary

	Chapter 2: Understanding Solr
	Installing Solr
	Apache Solr architecture
	Storage
	Solr engine
	The query parser
	Interaction
	Client APIs and SolrJ client
	Other interfaces

	Configuring Apache Solr search
	Defining a Schema for your instance
	Configuring a Solr instance
	Configuration files

	Request handlers and search components
	Facet
	MoreLikeThis
	Highlight
	SpellCheck
	Metadata management

	Loading your data for search
	ExtractingRequestHandler/Solr Cell
	SolrJ

	Summary

	Chapter 3: Making Big Data Work
for Hadoop and Solr
	The problem
	Understanding data-processing workflows
	The standalone machine
	Distributed setup
	The replicated mode
	The sharded mode

	Using Solr 1045 patch – map-side indexing
	Benefits and drawbacks
	Benefits
	Drawbacks

	Using Solr 1301 patch – reduce-side indexing
	Benefits and drawbacks
	Benefits
	Drawbacks

	Using SolrCloud for distributed search
	SolrCloud architecture
	Configuring SolrCloud
	Using multicore Solr search on SolrCloud
	Benefits and drawbacks
	Benefits
	Drawbacks

	Using Katta for Big Data search
(Solr-1395 patch)
	Katta architecture
	Configuring Katta cluster
	Creating Katta indexes
	Benefits and drawbacks
	Benefits
	Drawbacks

	Summary

	Chapter 4: Using Big Data to Build
Your Large Indexing
	Understanding the concept of NOSQL
	The CAP theorem
	What is a NOSQL database?
	The key-value store or column store
	The document-oriented store
	The graph database

	Why NOSQL databases for Big Data?
	How Solr can be used for Big Data storage?

	Understanding the concepts of distributed search
	Distributed search architecture
	Distributed search scenarios

	Lily – running Solr and Hadoop together
	The architecture
	Write-ahead Logging
	The message queue
	Querying using Lily
	Updating records using Lily

	Installing and running Lily

	Deep dive – shards and indexing data of Apache Solr
	The sharding algorithm
	Adding a document to the distributed shard

	Configuring SolrCloud to work with large indexes
	Setting up the ZooKeeper ensemble
	Setting up the Apache Solr instance
	Creating shards, collections, and replicas in SolrCloud

	Summary

	Chapter 5: Improving Performance
of Search while Scaling
with Big Data
	Understanding the limits
	Optimizing the search schema
	Specifying the default search field
	Configuring search schema fields
	Stop words
	Stemming

	Index optimization
	Limiting the indexing buffer size
	When to commit changes?
	Optimizing the index merge
	Optimize an option for index merging
	Optimizing the container
	Optimizing concurrent clients
	Optimizing the Java virtual memory

	Optimization the search runtime
	Optimizing through search queries
	Filter queries

	Optimizing the Solr cache
	The filter cache
	The query result cache
	The document cache
	The field value cache
	Lazy field loading

	Optimizing search on Hadoop

	Monitoring the Solr instance
	Using SolrMeter

	Summary

	Appendix A: Use Cases for
Big Data Search
	E-commerce websites
	Log management for banking
	The problem
	How can it be tackled?
	High-level design

	Appendix B: Creating Enterprise Search Using Apache Solr
	schema.xml
	solrconfig.xml
	spellings.txt
	synonyms.txt
	protwords.txt
	stopwords.txt

	Appendix C: Sample MapReduce Programs to Build the Solr Indexes
	The Solr-1045 patch – map program
	The Solr-1301 patch – reduce-side indexing
	Katta

	Index

