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Preface
Scalding is a relatively new Scala DSL that builds on top of the Cascading pipeline 
framework, offering a powerful and expressive architecture for MapReduce 
applications. Scalding provides a highly abstracted layer for design and 
implementation in a componentized fashion, allowing code reuse and development 
with the Test Driven Methodology.

Similar to other popular MapReduce technologies such as Pig and Hive, Cascading 
uses a tuple-based data model, and it is a mature and proven framework that many 
dynamic languages have built technologies upon. Instead of forcing developers to 
write raw map and reduce functions while mentally keeping track of key-value pairs 
throughout the data transformation pipeline, Scalding provides a more natural way 
to express code.

In simpler terms, programming raw MapReduce is like developing in a low-level 
programming language such as assembly. On the other hand, Scalding provides 
an easier way to build complex MapReduce applications and integrates with other 
distributed applications of the Hadoop ecosystem.

This book aims to present MapReduce, Hadoop, and Scalding, it suggests design 
patterns and idioms, and it provides ample examples of real implementations for 
common use cases.

What this book covers
Chapter 1, Introduction to MapReduce, serves as an introduction to the Hadoop 
platform, MapReduce and to the concept of the pipeline abstraction that many Big 
Data technologies use. The first chapter outlines Cascading, which is a sophisticated 
framework that empowers developers to write efficient MapReduce applications.
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Chapter 2, Get Ready for Scalding, lays the foundation for working with Scala, using 
build tools and an IDE, and setting up a local-development Hadoop system. It is  
a hands-on chapter that completes packaging and executing a Scalding application  
in local mode and submitting it in our Hadoop mini-cluster.

Chapter 3, Scalding by Example, teaches us how to perform map-like operations, joins, 
grouping, pipe, and composite operations by providing examples of the Scalding API.

Chapter 4, Intermediate Examples, illustrates how to use the Scalding API for 
building real use cases, one for log analysis and another for ad targeting. The 
complete process, beginning with data exploration and followed by complete 
implementations, is expressed in a few lines of code.

Chapter 5, Scalding Design Patterns, presents how to structure code in a reusable, 
structured, and testable way following basic principles in software engineering.

Chapter 6, Testing and TDD, focuses on a test-driven methodology of structuring 
projects in a modular way for maximum testability of the components participating 
in the computation. Following this process, the number of bugs is reduced, 
maintainability is enhanced, and productivity is increased by testing every layer  
of the application.

Chapter 7, Running Scalding in Production, discusses how to run our jobs on a 
production cluster and how to schedule, configure, monitor, and optimize them.

Chapter 8, Using External Data Stores, goes into the details of accessing external 
NoSQL- or SQL-based data stores as part of a data processing workflow.

Chapter 9, Matrix Calculations and Machine Learning, guides you through the process 
of applying machine learning algorithms, matrix calculations, and integrating with 
Mahout algorithms. Concrete examples demonstrate similarity calculations on 
documents, items, and sets.

What you need for this book
Prior knowledge about Hadoop or Scala is not required to follow the topics and 
techniques, but it is certainly beneficial. You will need to set up your environment  
with the JDK, an IDE, and Maven as a build tool. As this is a practical guide you  
will need to set up a mini Hadoop cluster for development purposes.
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Who this book is for
This book is structured in such a way as to introduce Hadoop and MapReduce to 
a developer who has a basic understanding of these technologies and to leverage 
existing and well-known tools in order to become highly productive. A more 
experienced Scala developer will benefit from the Scalding design patterns, and an 
experienced Hadoop developer will be enlightened by this alternative methodology 
of developing MapReduce applications with Scalding.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, and user input are shown as follows: "A Map class to 
map lines into <key,value> pairs; for example, <"INFO",1>."

A block of code is set as follows:

LogLine    = load 'file.logs' as (level, message);
LevelGroup = group LogLine by level;
Result     = foreach LevelGroup generate group, COUNT(LogLine);
store Result into 'Results.txt';

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

import com.twitter.scalding._
 
class CalculateDailyAdPoints (args: Args) extends Job(args) {

  val logSchema = List ('datetime, 'user, 'activity, 'data,
   'session, 'location, 'response, 'device, 'error, 'server)

  val logs = Tsv("/log-files/2014/07/01", logSchema )
   .read
   .project('user,'datetime,'activity,'data)
   .groupBy('user) { group => group.sortBy('datetime) }
   .write(Tsv("/analysis/log-files-2014-07-01"))
}
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Any command-line input or output is written as follows:

$ echo "This is a happy day. A day to remember" > input.txt

$ hadoop fs -mkdir -p hdfs:///data/input hdfs:///data/output

$ hadoop fs -put input.txt hdfs:///data/input/

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things  
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

Also you can access the latest code from GitHub at https://github.com/
scalding-io/ProgrammingWithScalding or http://scalding.io.
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Errata
Although we have taken every care to ensure the accuracy of our content,  
mistakes do happen. If you find a mistake in one of our books—maybe a mistake  
in the text or the code—we would be grateful if you would report this to us.  
By doing so, you can save other readers from frustration and help us improve 
subsequent versions of this book. If you find any errata, please report them by 
visiting http://www.packtpub.com/submit-errata, selecting your book,  
clicking on the errata submission form link, and entering the details of your  
errata. Once your errata are verified, your submission will be accepted and the  
errata will be uploaded on our website, or added to any list of existing errata,  
under the Errata section of that title. Any existing errata can be viewed by  
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we  
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Introduction to MapReduce
In this first chapter, we will take a look at the core technologies used in the 
distributed model of Hadoop; more specifically, we cover the following:

•	 The Hadoop platform and the framework it provides
•	 The MapReduce programming model
•	 Technologies built on top of MapReduce that provide an abstraction layer 

and an API that is easier to understand and work with

In the following diagram, Hadoop stands at the base, and MapReduce as a design 
pattern enables the execution of distributed jobs. MapReduce is a low-level 
programming model. Thus, a number of libraries such as Cascading, Pig, and Hive 
provide alternative APIs and are compiled into MapReduce. Cascading, which is a 
Java application framework, has a number of extensions in functional programming 
languages, with Scalding being the one presented in this book.

Cascading Pig HIVE

MapReduce

Hadoop Ecosytem

Level
of

abstraction

Scalding Cascalog PyCascading
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The Hadoop platform
Hadoop can be used for a lot of things. However, when you break it down to its core 
parts, the primary features of Hadoop are Hadoop Distributed File System (HDFS) 
and MapReduce.

HDFS stores read-only files by splitting them into large blocks and distributing 
and replicating them across a Hadoop cluster. Two services are involved with the 
filesystem. The first service, the NameNode acts as a master and keeps the directory 
tree of all file blocks that exist in the filesystem and tracks where the file data is kept 
across the cluster. The actual data of the files is stored in multiple DataNode nodes, 
the second service.

MapReduce is a programming model for processing large datasets with a parallel, 
distributed algorithm in a cluster. The most prominent trait of Hadoop is that it 
brings processing to the data; so, MapReduce executes tasks closest to the data as 
opposed to the data travelling to where the processing is performed. Two services 
are involved in a job execution. A job is submitted to the service JobTracker, which 
first discovers the location of the data. It then orchestrates the execution of the map 
and reduce tasks. The actual tasks are executed in multiple TaskTracker nodes.

Hadoop handles infrastructure failures such as network issues, node, or disk failures 
automatically. Overall, it provides a framework for distributed storage within its 
distributed file system and execution of jobs. Moreover, it provides the service 
ZooKeeper to maintain configuration and distributed synchronization.

Many projects surround Hadoop and complete the ecosystem of available Big Data 
processing tools such as utilities to import and export data, NoSQL databases, and 
event/real-time processing systems. The technologies that move Hadoop beyond 
batch processing focus on in-memory execution models. Overall multiple projects, 
from batch to hybrid and real-time execution exist.

MapReduce
Massive parallel processing of large datasets is a complex process. MapReduce 
simplifies this by providing a design pattern that instructs algorithms to be expressed 
in map and reduce phases. Map can be used to perform simple transformations on 
data, and reduce is used to group data together and perform aggregations.

By chaining together a number of map and reduce phases, sophisticated algorithms 
can be achieved. The shared nothing architecture of MapReduce prohibits 
communication between map tasks of the same phase or reduces tasks of the same 
phase. Communication that's required happens at the end of each phase.
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The simplicity of this model allows Hadoop to translate each phase, depending on 
the amount of data that needs to be processed into tens or even hundreds of tasks 
being executed in parallel, thus achieving scalable performance.

Internally, the map and reduce tasks follow a simplistic data representation. 
Everything is a key or a value. A map task receives key-value pairs and applies  
basic transformations emitting new key-value pairs. Data is then partitioned 
and different partitions are transmitted to different reduce tasks. A reduce task 
also receives key-value pairs, groups them based on the key, and applies basic 
transformation to those groups.

A MapReduce example
To illustrate how MapReduce works, let's look at an example of a log file of total  
size 1 GB with the following format:

INFO      MyApp  - Entering application. 
WARNING   com.foo.Bar - Timeout accessing DB - Retrying 
ERROR     com.foo.Bar  - Did it again! 
INFO      MyApp  - Exiting application

Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.com. 
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed 
directly to you.

Once this file is stored in HDFS, it is split into eight 128 MB blocks and distributed in 
multiple Hadoop nodes. In order to build a MapReduce job to count the amount of 
INFO, WARNING, and ERROR log lines in the file, we need to think in terms of map 
and reduce phases.

In one map phase, we can read local blocks of the file and map each line to a key and 
a value. We can use the log level as the key and the number 1 as the value. After it is 
completed, data is partitioned based on the key and transmitted to the reduce tasks.

MapReduce guarantees that the input to every reducer is sorted by key. Shuffle is the 
process of sorting and copying the output of the map tasks to the reducers to be used 
as input. By setting the value to 1 on the map phase, we can easily calculate the total 
in the reduce phase. Reducers receive input sorted by key, aggregate counters, and 
store results.

http://www. packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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In the following diagram, every green block represents an INFO message, every 
yellow block a WARNING message, and every red block an ERROR message:

128MB

128MB

128MB

128MB

128MB

128MB

128MB
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1 GB
logs

1
1
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ReduceShuffleMAP

INFO
WARNING
ERROR

x
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z

Implementing the preceding MapReduce algorithm in Java requires the following 
three classes:

•	 A Map class to map lines into <key,value> pairs; for example, <"INFO",1>
•	 A Reduce class to aggregate counters
•	 A Job configuration class to define input and output types for all 

<key,value> pairs and the input and output files

MapReduce abstractions
This simple MapReduce example requires more than 50 lines of Java code (mostly 
because of infrastructure and boilerplate code). In SQL, a similar implementation 
would just require the following:

SELECT level, count(*) FROM table GROUP BY level

Hive is a technology originating from Facebook that translates SQL commands,  
such as the preceding one, into sets of map and reduce phases. SQL offers convenient 
ubiquity, and it is known by almost everyone.
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However, SQL is declarative and expresses the logic of a computation without 
describing its control flow. So, there are use cases that will be unusual to implement 
in SQL, and some problems are too complex to be expressed in relational algebra.  
For example, SQL handles joins naturally, but it has no built-in mechanism for 
splitting data into streams and applying different operations to each substream.

Pig is a technology originating from Yahoo that offers a relational data-flow 
language. It is procedural, supports splits, and provides useful operators for joining 
and grouping data. Code can be inserted anywhere in the data flow and is appealing 
because it is easy to read and learn.

However, Pig is a purpose-built language; it excels at simple data flows, but it is 
inefficient for implementing non-trivial algorithms.

In Pig, the same example can be implemented as follows:

LogLine    = load 'file.logs' as (level, message);
LevelGroup = group LogLine by level;
Result     = foreach LevelGroup generate group, COUNT(LogLine);
store Result into 'Results.txt';

Both Pig and Hive support extra functionality through loadable user-defined 
functions (UDF) implemented in Java classes.

Cascading is implemented in Java and designed to be expressive and extensible.  
It is based on the design pattern of pipelines that many other technologies follow.  
The pipeline is inspired from the original chain of responsibility design pattern  
and allows ordered lists of actions to be executed. It provides a Java-based API  
for data-processing flows.

Developers with functional programming backgrounds quickly introduced 
new domain specific languages that leverage its capabilities. Scalding, Cascalog, 
and PyCascading are popular implementations on top of Cascading, which are 
implemented in programming languages such as Scala, Clojure, and Python.

Introducing Cascading
Cascading is an abstraction that empowers us to write efficient MapReduce 
applications. The API provides a framework for developers who want to think in 
higher levels and follow Behavior Driven Development (BDD) and Test Driven 
Development (TDD) to provide more value and quality to the business.

Cascading is a mature library that was released as an open source project in early 
2008. It is a paradigm shift and introduces new notions that are easier to understand 
and work with.
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In Cascading, we define reusable pipes where operations on data are performed. 
Pipes connect with other pipes to create a pipeline. At each end of a pipeline, a tap  
is used. Two types of taps exist: source, where input data comes from and sink,  
where the data gets stored.

Source 2
Customer Data

Source 1
Log files

Sink
Results

In the preceding image, three pipes are connected to a pipeline, and two input 
sources and one output sink complete the flow. A complete pipeline is called a flow, 
and multiple flows bind together to form a cascade. In the following diagram, three 
flows form a cascade:

Source 1
Log files

Source 2
Customer Data

Source 3
Log files

Sink 2
Results

Sink
Results

Final
Results

The Cascading framework translates the pipes, flows, and cascades into sets of map 
and reduce phases. The flow and cascade planner ensure that no flow or cascade is 
executed until all its dependencies are satisfied.

The preceding abstraction makes it easy to use a whiteboard to design and discuss 
data processing logic. We can now work on a productive higher level abstraction and 
build complex applications for ad targeting, logfile analysis, bioinformatics, machine 
learning, predictive analytics, web content mining, and for extract, transform and 
load (ETL) jobs.

By abstracting from the complexity of key-value pairs and map and reduce phases  
of MapReduce, Cascading provides an API that so many other technologies are  
built on.
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What happens inside a pipe
Inside a pipe, data flows in small containers called tuples. A tuple is like a fixed size 
ordered list of elements and is a base element in Cascading. Unlike an array or list,  
a tuple can hold objects with different types.

Tuples stream within pipes. Each specific stream is associated with a schema. The 
schema evolves over time, as at one point in a pipe, a tuple of size one can receive  
an operation and transform into a tuple of size three.

To illustrate this concept, we will use a JSON transformation job. Each line is 
originally stored in tuples of size one with a schema: 'jsonLine. An operation 
transforms these tuples into new tuples of size three: 'time, 'user, and 'action. 
Finally, we extract the epoch, and then the pipe contains tuples of size four: 'epoch, 
'time, 'user, and 'action.

Schema

'jsonLine

'time, 'user, 'action

'epoch, 'time, 'user, 'action

{ "time": "2014/01/02 11:00", "user": "usernameA","action":"/getMessages" }

File with JSON

"2014/01/01 11:00" "usernameA"

1388574000 "/getMessages""2014/01/01 11:00" "usernameA"

"/getMessages"

Pipe assemblies
Transformation of tuple streams occurs by applying one of the five types of 
operations, also called pipe assemblies:

•	 Each: To apply a function or a filter to each tuple
•	 GroupBy: To create a group of tuples by defining which element to  

use and to merge pipes that contain tuples with similar schemas
•	 Every: To perform aggregations (count, sum) and buffer operations  

to every group of tuples
•	 CoGroup: To apply SQL type joins, for example, Inner, Outer, Left,  

or Right joins
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•	 SubAssembly: To chain multiple pipe assemblies into a pipe

Pipe

Each GroupBy CoGroup Every Sub
Assembly

To implement the pipe for the logfile example with the INFO, WARNING, and 
ERROR levels, three assemblies are required: The Each assembly generates a tuple 
with two elements (level/message), the GroupBy assembly is used in the level, and 
then the Every assembly is applied to perform the count aggregation.

We also need a source tap to read from a file and a sink tap to store the results in 
another file. Implementing this in Cascading requires 20 lines of code; in Scala/
Scalding, the boilerplate is reduced to just the following:

  TextLine(inputFile)
  .mapTo('line->'level,'message) { line:String => tokenize(line) } 
  .groupBy('level)  { _.size }
  .write(Tsv(outputFile))

Cascading is the framework that provides the notions and abstractions of tuple 
streams and pipe assemblies. Scalding is a domain-specific language (DSL) that 
specializes in the particular domain of pipeline execution and further minimizes  
the amount of code that needs to be typed.

Cascading extensions
Cascading offers multiple extensions that can be used as taps to either read from  
or write data to, such as SQL, NoSQL, and several other distributed technologies  
that fit nicely with the MapReduce paradigm.
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A data processing application, for example, can use taps to collect data from a SQL 
database and some more from the Hadoop file system. Then, process the data, use a 
NoSQL database, and complete a machine learning stage. Finally, it can store some 
resulting data into another SQL database and update a mem-cache application.

Cascading

Local
Filesystem

Hadoop
Filesystem

SQL
Databases

NoSQL
Databases

Memcached

Summary
The pipelining abstraction works really well with the Hadoop ecosystem and  
other state-of-the-art messaging technologies. Cascading provides the blueprints  
to pipeline for MapReduce. As a framework, it offers a frame to build applications.  
It comes with several decisions that are already made, and it provides a foundation, 
including support structures that allow us to get started and deliver results quickly.

Unlike Hive and Pig, where user-defined functionality is separated from the query 
language, Cascading integrates everything into a single language. Functional and 
scalable languages follow lightweight, modular, high performance, and testable 
principles. Scalding combines functional programming with Cascading and  
brings the best of both worlds by providing an unmatchable way of developing 
distributed applications.

In the next chapter, we will introduce Scala, set up our environment,  
and demonstrate the power and expressiveness of Scalding when building 
MapReduce applications.





Get Ready for Scalding
Scalding is a domain-specific language built on top of the capabilities provided by 
Cascading. It was developed and open-sourced in Twitter and offers a higher level of 
abstraction by leveraging the power of Scala. In this chapter, we will:

•	 Get familiar with Scala
•	 Set up Hadoop and our development environment
•	 Execute our first Scalding application

Why Scala?
Development has evolved a lot since Java was originally invented 20 years ago. Java, 
as an imperative language, was designed for the Von-Neumann architecture, where 
a computer consists of a processor, a memory, and a bus that reads both instructions 
and data from the memory into the processor. In that architecture, it is safe to store 
values in variables, and then mutate them by assigning new values. Loop controls 
are thus normal to use, as shown in the following code:

  for ( int i=0; i < 1000000;  i++) {
    a=a+1;
  }

However, over the past decade, hardware engineers have been stressing that the  
Von-Neumann model is no longer sustainable. Since processors hit physical limitations 
at high frequencies, engineers look for evolution beyond the single-processor model. 
Nowadays, manufacturers integrate multiple cores onto a single integrated circuit 
die—a multiprocessor chip. Similarly, the emergence of cloud computing and Hadoop 
clusters bring into play another dimension in computing, where resources are 
distributed across different nodes.

www.allitebooks.com
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The imperative programming style dictates thinking in terms of time. In distributed 
programming, we need to think in terms of space: build one block, then another, 
and then build another block—like building in Lego. When building in space, it is 
easier to build each block on a different process and parallelize the execution of the 
required blocks.

Unfortunately, the imperative logic is not compatible with modern distributed 
systems, cloud applications, and scalable systems. In practice, in parallelized 
systems, it is unsafe to assign a new value to a variable as this happens in a single 
node and other nodes are not aware of the local change. For this reason, the simple 
for loop cannot be parallelized into 10 or 100 nodes.

Effective software development techniques and language design evolved over 
the past decade, and as such, Scala is an advanced scalable language that restricts 
imperative features and promotes the development of functional and parallelized 
code blocks. Scala keeps the object-oriented model and provides functional 
capabilities and other cool features.

Moreover, Scala significantly reduces boilerplate code. Consider a simple Java class, 
as shown in the following code:

public class Person { 
  public final String name;
  public final int age;
  Person(String name, int age) { 
    this.name=name;
    this.age=age;
  }
}

The preceding code can be expressed in Scala with just a single line, as shown:

case class Person(val name: String, val age: Int)

For distributed computations and parallelism, Scala offers collections. Splitting 
an array of objects into two separate arrays can be achieved using distributed 
collections, as shown in the following code:

val people: Array[Person]
val (minors,adults) = people partition (_.age < 18)

For concurrency, the Actor model provides actors that are similar to objects but 
inherently concurrent, uses message-passing for communication, and is designed 
to create an infinite number of new actors. In effect, an actor under stress from a 
number of asynchronous requests can generate more actors that live in different 
computers and JVMs and have the network topology updated to achieve dynamic 
autoscaling through load balancing.
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Scala basics
Scala modernizes Java's object-oriented approach while adding in the mix functional 
programming. It compiles into byte-code, and it can be executed on any Java virtual 
machine; thus, libraries and classes of Java and Scala communicate seamlessly.

Scala, similar to Java, is a statically typed programming language but can infer type 
information. It can infer that t is a String type in the following example:

val t = "Text"

Semicolons are not required when terminating commands. Variables are declared, 
with var and constants with val, and Scala favors immutability, which means that 
we should try to minimize the usage of variables.

Scala is fully object-oriented and functional. There are no primitives, like float or int 
only objects such as Int, Long, Double, String, Boolean, Float. Also there is no null.

The Scala equivalent of Java interfaces is called trait. Scala allows traits to be partially 
implemented, that is, it is possible to define default implementations for some 
methods. A Scala class can extend another class and implement multiple traits using 
the with keyword.

Lists are the most valuable data type in any functional language. Lists are immutable 
and homogeneous, which means that all elements of a list are of the same type. Lists 
provide methods and higher-order functions. Some notable ones are as follows:

•	 list1 ::: list2: This is used to append the two lists
•	 list.reverse: This is used to return a list in reverse order
•	 list.mkString(string): This is used to concatenate the list elements using 

a string in between them
•	 list.map(function): This is used to return a new list with a function 

applied to each element
•	 list.filter(predicate): This is used to return a list with elements for 

which the predicate is true
•	 list.sortWith(comparisonFunction): This is used to return a sorted list 

using a two parameter comparison function

Understanding the higher order functions of Scala Lists is very beneficial for 
developing in Scalding. In the next chapter, we will see that Scalding provides 
implementations of the same functions with similar functionality which work on 
pipes that contain tuples.
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For example, the Scala function flatMap removes one level of nesting by applying a 
function to each element of each sublist. The same function in Scalding, also removes 
one level of nesting by iterating through a collection to generate new rows.

Another interesting Scala function is groupBy, which returns a Map of key  values, 
where the keys are the results of applying a function to each element of the list,  
and the values are a List of values so that applying the function to each value  
yields that key:

List("one", "two", "three").groupBy(x => x.length) gives 
Map(5 -> List(three), 3 -> List(one, two))

Tuples are containers that, unlike an array or a list, can hold objects with different 
types. A Scala tuple consists of 2 to 22 comma-separated objects enclosed in 
parentheses and is immutable. To access the nth value in a tuple t, we can use the 
notation t._n, where n is a literal integer in the range 1 (not 0!) to 22.

To avoid the primitive null that causes many issues, Scala provides the Option. 
Options are parameterized types. For example, one may have an Option[String] 
type with possible values Some(value) (where the value is of correct type) or None 
(when no value has been found).

Methods in Scala are public by default and can have private or protected access 
similar to Java. The syntax is:

def methodName(arg1: type, argN:type) { body } // returns Unit
def methodName(arg1: type, .. , argN:type) : returnType = { body }

Another aspect of Scala is function literals. A function literal (also called anonymous 
function) is an alternate syntax for defining a function. It is useful to define one-liners 
and pass a function as an argument to a method. The syntax is (arg1: Type1, ..., 
argN:TypeN) => expression. Thus, when implementing the function in string.
map(function), we can avoid defining an external function by using the following:

"aBcDeF".map(x => x toLower) // or for a single parameter, just _
"aBcDeF".map(_.toLower)

Scala build tools
There are many build tools we can use to compile and build Scala or Scalding 
applications. They provide support for mixed Java/Scala projects, dependency 
management and useful plugins.
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We can use Simple Build Tool (sbt) that allows incremental compilation and is  
itself implemented in Scala, or Maven, which is popular among developers, is 
mature, and provides a large range of plugins.

There are other build tools, such as Gradle and buildr, that support Scala, but in 
this book, we will use Maven and a number of plugins for project dependencies 
and assembly descriptors due to its high compatibility with continuous integration 
systems and most developers being familiar with this tool.

Hello World in Scala
To execute a Hello World application in Scala, we will use the latest version of  
Scala 2.10, the recommended JDK for Hadoop (Oracle JDK 1.6) and Maven. All  
we need is to add in our build tool a Scala library as a dependency and a plugin  
that compiles Scala:

<dependency>
  <groupId>org.scala-lang</groupId>
  <artifactId>scala-library</artifactId>
  <version>2.10.3</version>
</dependency>
...
<plugin>
  <groupId>net.alchim31.maven</groupId>
  <artifactId>scala-maven-plugin</artifactId>
  <version>3.1.6</version>
</plugin>

And the Scala source code:

object HelloWorld {
  def main(args: Array[String]) {
    println("Hello, world!")
  }
}

The preceding code can be executed with the following:

$ mvn package exec:java -Dexec.mainClass=HelloWorld
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Development editors
Popular IDEs support Scala development through plugins. We should use them to 
enjoy autocompletion, error highlighting, code refactoring, navigation capabilities, 
integrated debugger, and much more.

The Scala IDE provides Eclipse prebundled with required plugins and is available  
at http://scala-ide.org. In a project, we need to add the Scala nature or facet  
in order to be able to execute Scala and Scalding applications.

Installing Hadoop in five minutes
A Linux operating system is the preferred environment for Hadoop. The major 
Hadoop distributors, MapR, Cloudera, and HortonWorks provide VMs to get  
started easily with Hadoop and related frameworks.

On Linux, we can also either manually install the required services or install a 
preconfigured bundle. BentoBox is a zero-configuration bundle that provides 
a suitable environment for testing and prototyping projects that use HDFS, 
MapReduce, and HBase with minimal setup time. The installation process requires:

$ cd /opt/

$ wget http://archive.kiji.org/tarballs/kiji-bento-dashi-1.4.3-release.
tar.gz

$ tar -zxvf kiji-bento-dashi-1.4.3-release.tar.gz

$ cd kiji-bento-dashi/

$ export KIJI_HOME=/opt/kiji-bento-dashi

$ source $KIJI_HOME/bin/kiji-env.sh

$ export JAVA_HOME=/usr/lib/jvm/j2sdk1.6-oracle/

$ bento start

Within a few minutes, we can have all the Hadoop daemons and our HDFS 
filesystem initiated.

Cluster webapps can be visited at these web addresses: 
 HDFS NameNode:        http://localhost:50070 
 MapReduce JobTracker: http://localhost:50030 
 HBase Master:         http://localhost:60010

http://scala-ide.org


Chapter 2

[ 23 ]

We can now access the web pages of the Hadoop services and run our first Hadoop 
command in the console to see the contents of the HDFS system using the following 
command line:

$ hadoop fs -ls /

After completing Hadoop development, the cluster can be shut down to free up 
resources with the following:

$ bento stop

Running our first Scalding job
After adding Scalding as a project dependency, we can now create our first Scalding 
job as src/main/scala/WordCountJob.scala:

import com.twitter.scalding._
class WordCountJob(args : Args) extends Job(args) {
  TextLine( args("input") )
  .flatMap('line -> 'word) { line : String => 
    line.toLowerCase.split("\\s+") }
  .groupBy('word) { _.size }
  .write( Tsv( args("output") ) )
}

The Scalding code above implements a cascading flow using an input file as source 
and stores results into another file that is used as an output tap. The pipeline 
tokenizes lines into words and calculates the number of times each word appears  
in the input text.

Find complete project files in the code accompanying this book at 
http://github.com/scalding-io/ProgrammingWithScalding.

We can create a dummy file to use as input with the following command:

$ echo "This is a happy day. A day to remember" > input.txt

Scalding supports two types of execution modes: local mode and HDFS mode. The 
local mode uses the local filesystem and executes the algorithm in-memory, helping 
us build and debug an application. The HDFS mode is to be used when accessing the 
HDFS file-system.

http://github.com/scalding-io/ProgrammingWithScalding
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To execute a Scalding application, com.twitter.scalding.Tool has to be specified 
as the Main Class field followed by the job's fully qualified classpath WordCountJob, 
the --local or --hdfs mode of execution, job arguments like --input input.txt 
--output output.txt, and possible VM Arguments such as -Xmx1024m.

In effect, this translates to the following run-configuration in IntelliJ:

Execute the job WordCountJob, and see the results in file output.txt.

Submitting a Scalding job in Hadoop
Hadoop MapReduce works by submitting a fat jar (a JAR file that contains all the 
dependencies and the application code) to the JobTracker. We can generate this jar 
using the sources accompanying this book with the following command:

$ mvn clean package

We can test that file by executing it in the Cascading local mode (without using 
anything from Hadoop) with the following command:

$ java -cp target/chapter2-0-jar-with-dependencies.jar com.twitter.
scalding.Tool WordCountJob --local --input input.txt ––output output.txt 
-Xmx1024m

Then, we can start leveraging Hadoop using the command hadoop jar to execute 
the job:

$ hadoop jar target/chapter2-0-jar-with-dependencies.jar com.twitter.
scalding.Tool WordCountJob --local --input input.txt ––output output.txt

Now, we are ready to submit this job into a Hadoop cluster and use the Hadoop 
Distributed File System. First, we have to create an HDFS folder and push the input 
data with the help of the following commands:

$ echo "This is a happy day. A day to remember" > input.txt

$ hadoop fs -mkdir -p hdfs:///data/input hdfs:///data/output

$ hadoop fs -put input.txt hdfs:///data/input/
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We can now submit our first Scalding job in the Hadoop cluster using the parameters 
––hdfs, and use the HDFS filesystem for reading input and storing output with  
the following:

$ hadoop jar target/chapter2-0-jar-with-dependencies.jar com.twitter.
scalding.Tool WordCountJob --hdfs --input hdfs:///data/input --output 
hdfs:///data/output

Note that the parameters for --input and --output are HDFS folders. The 
application will read and process all files from the input directory and store all 
output in the output directory. Hadoop, by default, spawns two map tasks per job, 
unless the number of files/blocks is more, and in that case, it spawns one map task 
per file/block.

A map phase reads data and is followed by a reduce phase, where the output is 
written to disk. Results are stored into part files in the output directory. We can  
see the contents of the output directory with the following:

$ hadoop fs -ls /data/output

Found 3 items

-rw-r--r-- 3 user group  0 2013-10-21 17:15 /data/output/_SUCCESS

drwxr-xr-x - user group  0 2013-10-21 17:15 /data/output/_logs

-rw-r--r-- 3 user group 46 2013-10-21 17:15 /data/output/part-00000

We can see the actual results of the word count job with the following:

$ hadoop fs -cat /data/output/part-*

  a         2 
  day       2 
  happy     1 
  is        1 
  remember  1 
  this      1 
  to        1

Execution on the job in a Hadoop cluster will most likely require 20-30 
seconds. This is because of the extra overhead of spawning new JVMs 
to execute the map and reduce phases of the job.
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The JobTracker reveals detailed information about the submitted job, and it is 
useful for monitoring and debugging. Note that in the following screenshot the job 
submitted has been successfully completed. We can also see the number of map  
tasks and the number of reduce tasks that were executed:

At this stage, getting familiar with the JobTracker web interface is strongly 
encouraged. It provides information about the general job statistics of the Hadoop 
cluster, running/completed/failed jobs, and the job history. From the web interface, 
we can follow the job ID link to discover detailed information and logs for each 
phase of the job.

Another useful application is the NameNode web interface that listens at port  
50070 by default. It shows the cluster summary, including information about  
total/remaining capacity and live and dead nodes; in addition, it allows us to  
browse HDFS and view the contents of its files in the web browser:

Note that in the preceding screenshot the block size is 64 MB and data is replicated 
across three different nodes of the cluster. The owner, group, and permissions of 
folders and files are also visible. We can also use this web interface to access the files 
of a particular job.
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Summary
This chapter introduced Scala, the reasons for its recent popularity, and how Scala 
and Scalding are associated. Build tools and IDEs were briefly presented, and then 
we executed our first Scala application.

A Hadoop environment for development was set up, and we moved to running 
a Scalding application in many modes while discussing in detail the commands 
involved. After executing a distributed MapReduce application in Scalding for  
the first time, we reviewed the web interfaces of the Hadoop applications.

In the next chapter, we will present an overview of Scalding and its capabilities, 
using trivial examples.

www.allitebooks.com
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Scalding by Example
This chapter presents how to read and write local and Hadoop Distributed File 
System (HDFS) files with Scalding. It introduces the complete Scalding core 
capabilities through the Fields API and serves as a reference to look up how  
the Scalding commands can be used. In this chapter, we will cover:

•	 Map-like operations
•	 Join operations
•	 Pipe operations
•	 Grouping and reducing operations
•	 Composite operations

Reading and writing files
Data lives mostly in files stored in the filesystem in semi-structured text files, 
structured delimited files, or more sophisticated formats such as Avro and  
Parquet. Logfiles, SQL exports, JSON, XML, and any type of file can be  
processed with Scalding.

Text Files

Delimited Files

Advanced serialization
files

Logs, JSON, XML

CSV - Comma Separated Values

TSC - Tab Separated Values

OSV - One Separated Values

AVRO - Data serialization

Parquet - Columnar storage format
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Scalding is capable of reading and writing many file formats, which are:

•	 The TextLine format is used to read and write raw text files, and it returns 
tuples with two fields named by default: offset and line. These values are 
inherited from Hadoop. After reading a text file, we usually parse with 
regular expressions to apply a schema to the data.

•	 Delimited files such as Tab Separated Values (TSV), Comma Separated 
Values (CSV), and One Separated Values (OSV), with the latter commonly 
used in Pig and Hive, are already structured text files, and thus, easier to 
work with.

•	 Advanced serialization files such as Avro, Parquet, Thrift, and protocol 
buffers offer their own capabilities. Avro, for example, is a data-serialization 
format that stores both schema and data in files. Parquet is a columnar 
storage format highly efficient for large-scale queries such as scanning 
particular columns within a table or performing aggregation operations on 
values of specific columns.

Examples, including reading and writing advanced serialization files, 
can be found in the code accompanying the book and at http://
github.com/scalding-io/ProgrammingWithScalding.

The Scalding Fields API follows the concept that data lives in named columns (fields) 
that can be accessed using symbols, like 'quantity.

So, in Scalding, reading delimited files from TSV, CSV, or OSV requires a single line 
and associates each column of data to a field, according to the provided schema:

Tsv("data.tsv",('productID,'price,'quantity)).read
Csv("data.csv", "," , ('productID,'price,'quantity)).read
Osv("data.osv", ('productID,'price,'quantity)).read

Reading semi-structured text files requires a single line:

val pipe = TextLine("data.log").read

When we use TextLine to read a file, the pipe returned by the .read operation 
contains the fields 'offset and 'line. The offset contains the line number and  
the line contains the contents of the line.
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Writing data in delimited files also requires line of code, as shown below:

pipe.write( Tsv("results.tsv") )
pipe.write( Csv("results.csv") )
pipe.write( Osv("results.osv") )

Writing to TextLine will concatenate all the tuples with a Tab delimiter before 
writing out each line:

pipe.write(TextLine("result.out"))

Best practices to read and write files
A flexible approach to reading files is:

val inputSchema = List('productID, 'price, 'quantity)
val data = Csv( args("input") , "," , inputSchema ).read

In the preceding code, a number of best practices are presented, such as:

•	 We define the schema as a list of fields to have more readable code,  
less code duplication, and overcome the Scala tuple limitation to a  
maximum of 22 elements

•	 We define that the location of the input data is provided at runtime  
using the argument --input

•	 We store the pipe returned by the operation .read in data, which is a fixed 
unmodifiable value, in order to be able reuse it in an example as follows:

val inputSchema = List('productID, 'price, 'quantity)
val data = Csv( args("input") , "," , inputSchema ).read
data.write(Tsv(args("output.tsv"))
data.write(Osv(args("output.osv"))

Using these techniques, the input and output can be specified at execution time  
as follows:

$ hadoop jar target/chapter3-0-jar-with-dependencies.jar

 com.twitter.scalding.Tool FirstScaldingJob --hdfs --input 

 hdfs:///input --output.tsv hdfs:///tsvoutput --output.osv

 hdfs:///osvoutput
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TextLine parsing
It is very common for data to exist in custom semi-structured formats such as:

[product15] 10.0 11
[product16] 2.5 29

When reading such text files, our first task is to transform semi-structured data  
into structured data and associate a schema, as shown in the following code:

import com.twitter.scalding._
import scala.util.matching.Regex

class TextParsingExample (args: Args) extends Job(args) {

  val pipe = TextLine ( args("input") ).read
  .mapTo ('line -> ('productID, 'price, 'quantity))
    {  x: String => parseLine(x)  }
  .write ( Tsv ( args("output") ) )

  val pattern = new Regex("(?<=\\[)[^]]+(?=\\])")
  def parseLine(s : String) = {
    ( pattern findFirstIn s get ,   // 1st tuple element
      s.split(" ").toList.get(1),   // 2nd tuple element
      s.split(" ").toList.get(2)  ) // 3rd tuple element
  }
}

In the preceding code, we ignore the 'offset and parse the 'line with a regular 
expression to yield tuples with the three elements 'productID, 'price, and 
'quantity, and store results in tab-delimited files.

Executing in the local and Hadoop modes
When implementing a Scalding application, the local execution mode provides  
better debugging and quick feedback by reading and writing files in the local 
filesystem. To use HDFS to read or write data, we use the HDFS mode. To execute 
the application on a distributed Hadoop cluster, we need to use the hadoop jar 
command and the HDFS mode.
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The execution mode is defined at execution time with parameters --local or 
--hdfs. For the local mode, paths to local files have to be used. For the HDFS mode, 
input has to be an HDFS file or folder, and output is always an HDFS folder.

When using the HDFS mode, remember the following:

•	 Output is stored in an HDFS folder, which is created if it does not exist or 
truncated if it exists. Note that any existing data in the output folder will  
be lost.

•	 Input can be either a set of files or an entire folder.
•	 Input can use pattern-matching to load data from multiple HDFS files  

or folders.

So, for example, when an HDFS directory structure /dataset/YYYY/mm/dd/ 
is used, data can be read from hdfs:///datasets/2014/01/0*/ or hdfs:///
datasets/*/01/01/.

Understanding the core capabilities  
of Scalding
Scalding provides a rich set of core operations to perform data transformations.  
Map-like operations apply a function to each tuple in the pipe. Join operations can 
join data from multiple pipes. Pipe operations allow us to concatenate or debug 
pipes. Grouping/Reducing operations group related data together. Also, for data 
that has been grouped, there is a rich set of group operations.

Map-like operations
These operations are internally translated into map phases of MapReduce and apply 
a function to every row of data. The syntax of the map operation is:

pipe.map(existingFields -> additionalFields) { function }
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The map operation uses some of the existing fields of a pipe as input and creates  
a pipe with additional fields by applying a function to the elements of the input.  
In the following example, a new field 'priceWithVAT is introduced:

pipe.map('price -> 'priceWithVAT) { price: Double => price*1.20 }

Operations can be executed to multiple fields at a time, as shown in the following code:

pipe.map(('price,'quantity)->'total)
  { x:(Float,Float)=>x._1 * x._2 }

The input tuple x: (Float, Float) receives the values of 'price and 'quantity 
for every row of the input, and it maps the result of the multiplication x._1 * x._2 
into an additional field 'total.

Access to each element of the tuple is achieved using ._1 and ._2. The ._ is a 
method that returns the value at a specific index of the tuple.

Another variation of the map operation is mapTo, as shown:

pipe.mapTo(existingFields -> resultingFields) { function }

This operation is similar to the map operation, but it generates a pipe holding only  
the resulting fields. This means that all existing fields are discarded from the pipe. 
The following example creates a pipe with a single column of data:

pipe.mapTo(('productId, 'price, 'quantity) -> 'productsValue) 
  { x:(String,Double,Int) => x._2 * x._3 }

This operation is especially useful for transformations. For example, when 
transforming some fields into a JSON line, we can discard the original values  
of the input.

Similar to map and mapTo, an operation flatMap and flatMapTo exist. The syntax  
of flatMap is as follows:

pipe.flatMap(existingFields -> additionalFields) { function }
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We use this operation to apply an operation to a field to generate a list of tuples,  
and then create new rows of data by flattening the list. As an example, imagine 
having information about kids liking specific types of fruits as a comma-separated 
string, and we want to compute some statistics on the fruits.

In the preceding diagram, the original data is structured in three columns/fields.  
The flatMap operation splits the values in the column called 'fruits into a list of 
values and generates multiple rows for each element of that list.

val kidsPipe = Tsv(args("input"), ('kid, 'age, 'fruits) ).read
.flatMap('fruits -> 'fruit) { text : String => text.split(",") }

The syntax of flatMapTo is as follows:

pipe.flatMapTo(existingFields -> resultingFields) { function }

This operation is similar to flatMap, but the generated pipe contains only the 
resulting fields.

The syntax of the unpivot operation is as follows:

pipe.unpivot(fields -> columns)
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It converts input from a column-based to a row-based representation. The pivot 
operation is a group operation and is presented later in this chapter. The following 
code example with the accompanying image illustrates the concept of the  
column- and row-based representations:

pipe.unpivot(('wine,'beer,'coffee) -> ('product, 'sales))

The syntax of the project operation is as follows:

pipe.project(fields)

It creates a new pipe containing only the fields specified. In the following example, 
applying project on a pipe results in a pipe that contains a single column of data.

kidsPipe.project('fruit)

The syntax of the discard operation is as follows:

pipe.discard(fields)

It creates a new pipe that contains all the fields of the original pipe, excepting the 
fields specified. It is the opposite of project. In the following example, only the 
column 'fruit will remain in the pipe:

kidsPipe.discard('kid,'age,'fruits)

The syntax of the insert operation is as follows:

pipe.insert(field, value)
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It creates a new pipe containing the data of the original pipe and an additional 
column holding the static value 0.20 in all the rows, as shown:

pipe.insert('vat, 0.20)

The syntax of the limit operation is as follows:

pipe.limit(number)

The resulting pipe contains only a fixed number of lines. In the following example, 
only one hundred rows of data will exist in the new pipe:

pipe.limit(100)

The syntax of the filter operation is as follows:

pipe.filter(fields) { function }

It filters out lines for which the function is false. In the following example, a new 
pipe will be created to contain only kids that like oranges:

val kidsLikeOranges = kidsPipe.filter('fruit)
  { f:String => f == "orange" }

The syntax of the sample operation is as follows:

pipe.sample(percentage)

It samples a percentage of lines from the original pipe. In the following example,  
10 percent of the original data will exist in the new pipe:

pipe.sample(0.10)

The syntax of the pack operation is as follows:

pipe.pack [Type] (fields -> object)

Multiple fields can be packed into a single object using Java reflection. This works  
for objects which have a default constructor that takes no arguments. In the example, 
a class called Product is required with the three attributes productID, price, and 
quantity and the relevant setters setProductID, setPrice, and setQuantity.

val p = productPipe.pack [Product] ( ('productID,'price,'quantity) 
->'product)
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The syntax of the unpack operation is as follows:

pipe.unpack [Type] (object -> fields)

Contents of serialized objects can be unpacked into multiple fields. Packing and 
unpacking uses reflection in Plain Old Java Objects (POJO), standard Thrift and 
Protobuf generated classes, and Scala case classes. To work without reflection, 
TuplePacker and TupleUnpacker abstract classes can be implemented. In effect, 
pack and unpack group or ungroup fields in objects, as shown in the following code:

val p = products.unpack[Product] ('product ->('productId, 'price, 
'quantity) )

All the preceding map-like operations are translated by Scalding that uses the 
Cascading framework into sets of map tasks.

Join operations
Join operations merge two pipes on a specified set of keys, similar to SQL joins. 
Scalding provides all the expected joining modes: inner, outer, left, and right,  
and it utilizes the CoGroup pipe assembly of Cascading, which is implemented  
as a single MapReduce job.

The relative size of the data to be joined allows Cascading to execute the join using 
the most optimized and efficient algorithm. Thus, three types of joins are provided  
as follows:

•	 joinWithSmaller: This is used when the pipe on the right is smaller than  
the pipe on the left.

•	 joinWithLarger: This is used when the pipe on the right is larger than the 
pipe on the left.

•	 joinWithTiny: This is the most optimized type of join, implemented as a 
single map job. Use when the pipe on the right holds a tiny amount of data 
(that is, a few megabytes), and thus data can be distributed to all the nodes 
that contain the larger pipe. Storing the tiny data in memory allows a single 
map to perform the join.

The syntax of the joinWithSmaller operation is as follows:

pipe1.joinWithSmaller(pipe1key -> pipe2key, pipe2,optionalJoiner)
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The following example performs the default inner join using 'movieId as a join key 
from pipe1 and pipe2. Inner join means that the resulting pipe contains all possible 
combinations of rows, where the keys of each pipe are the same. In the following 
diagram, the movie title3 does not exist in the results because of the inner nature 
of the join.

val innerJoinPipe = pipe1.joinWithSmaller('movieId -> 'movieId, pipe2)

To perform a left, right, or outer join, we need to specify the type of 
optionalJoiner. In this case, join keys must be disjoint. This means that we  
can no longer join two pipes that contain the fields 'movieId and 'movieId.  
To overcome this, we need to rename the fields that compose the join key in  
one of the pipes, as shown:

val pipe2Renamed = pipe2.rename('movieId -> 'movieId_)

Once the pipes to be joined do not have any join fields in common, we can specify 
the type of joiner to be used, as shown in the following code:

pipe1.joinWithSmaller('movieId -> 'movieId_, pipe2Renamed, joiner=new 
LeftJoin)
pipe1.joinWithSmaller('movieId -> 'movieId_, pipe2Renamed, joiner=new 
RightJoin)
pipe1.joinWithSmaller('movieId -> 'movieId_, pipe2Renamed, joiner=new 
OuterJoin)

The left join creates a pipe that contains all the data an inner join will produce  
and also all the data of the pipe on the left (pipe1) that was not joined.

The right join creates a pipe that contains all the data an inner join will produce  
and also all the data of the pipe on the right (pipe2Renamed) that was not joined.

Finally, the outer join creates a pipe that contains all the data an inner join will 
produce and retains all the data from both pipes that did not match in the join.
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Pipe operations
Scalding pipes provide a set of operations useful for integration and debugging.

The syntax of the ++ operation is as follows:

pipe1 ++ pipe2

It creates a new pipe that is a union of two or more pipes that have the same fields.

The syntax of the name operation is as follows:

pipe.name("new name")

It gives a new name to the pipe. Associating a name to a pipe is useful for visualizing 
pipelines in a tool, and it is presented in a later chapter.

The syntax of the debug operation is as follows:

pipe.debug

It provides pipe debugging information by printing out some pipe content on  
the screen.

The syntax of the addTrap operation is as follows:

pipe.addTrap(sink)

It adds a trap that captures tuples that cause exceptions in any of the pipe operations 
and stores them in the filesystem. The actual exceptions are not captured, and there 
can be only one trap in a pipe.

pipe.addTrap(Tsv("/project/error_folder/")

The syntax of the rename operation is as follows:

pipe.rename(fields -> fields)

It changes the name of the fields. In the following example, the field 'kid is renamed 
to 'kidName, and 'fruit is renamed to 'favoriteFruit.

kidsPipe.rename( ('kid,'fruit) -> ('kidName,'favoriteFruit) )
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Grouping/reducing functions
Grouping/reducing operations are internally translated into MapReduce pairs  
and operate over groups of rows in a pipe.

The syntax of the groupBy operation is:

pipe.groupBy( fields ) { group => group.operation1.operation2 }

It groups the values in the pipe by the specified set of fields, known as the key.  
The purpose of grouping by key is to apply one or more group operations on the 
group. In the following example, all rows with the same value of fruit are grouped, 
and then the operations size and average of age are calculated:

val data=kidsPipe.groupBy('fruit){group=>group.size.average('age)}

This operation is highly parallelized and distributes data to a number of nodes in 
a Hadoop cluster. The number of reducers is calculated by the framework, but we 
can also control it by manually specifying the exact number of reducers using the 
.reducers operation.

The syntax of the groupAll operation is:

pipe.groupAll { group => group.groupOperation1.groupOperation2 }
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It groups the entire pipe into a single group. This is not a parallelized operation as 
a single reducer is used resulting in us utilizing a single physical node of a Hadoop 
cluster for that operation.

One or more operations can be applied to each group. In the following example,  
a pipe is sorted based on 'age and 'size:

val sortedKids=kidsPipe.groupAll{group =>group.sortBy('age,'size)}

To highlight the importance of the parallelism of groupAll and groupBy, 
consider the ensuing examples. In the first example, we want to sort all of the data 
alphabetically based on surnames. Use the groupAll operator so that all the data 
is grouped into a single node of a Hadoop cluster and the comparison function is 
correctly applied. In the second example, we first want to sort all males and then  
all females based on surname. In this case, groupBy is the operator to use in order  
to distribute work in two nodes of a Hadoop cluster, as shown in the following code:

val sortAll = pipe.groupAll { group => group.sortBy('surname) }
val paralleSort = pipe.groupBy('gender) { group => group.
 sortBy('surname) }

Using parallelism is beneficial in real use cases. It makes sense to use groupBy to 
distribute comedies in a node, thrillers on another node, and manage to distribute 
computations over multiple Hadoop nodes, if we are working on a movie 
recommendation algorithm.

Operations on groups
Operations groupAll and groupBy are essential building blocks of Scalding 
applications, and they generate groups. groupAll generates a single group 
containing all the available tuples. groupBy generates m number of groups,  
where m is the number of unique keys in the data.

For example, if groupBy('color) is executed and three unique colors exist  
in the data, then three groups will be generated. Once grouping is achieved,  
a number of group operations can be applied to them.
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The first seven group operations average, count, min, max, sum, size, and 
sizeAveStdev are useful to extract statistics from data, and their syntax is  
as follows:

group.average(field -> newField)
group.count(field -> newField) { function }
group.min(field -> newField)
group.max(field -> newField)
group.sum(field -> newField)
group.size(newField)
group.sizeAveStdev(field -> sizeField,averageField, stdField)

We can also apply multiple group operations on the same group. To calculate,  
for example, the minimum and maximum age, the average and total age, the  
total population of kids liking a particular fruit, and a count of how many kids  
of age four like the particular fruit, we can use the following code:

val fruitStats = kidsPipe.groupBy('fruit) { group => group
    .min('age -> 'minAge)
    .max('age -> 'maxAge)
    .average('age -> 'averageAge)
    .sum[Int]('age->'totalAge) 
    .size('totalKids)
    .count('age -> 'age4){ x:Int => x == 4 }
    .sizeAveStdev('age -> ('totalAges, 'meanAge, 'stdevAge))
}

The sizeAveStdev group operation calculates the size, average, and standard 
deviation in a single command.

The syntax of the mkString operation is as follows:

group.mkString(field -> newField, separator)

It concatenates the contents of a field in the group into a string using the separator 
we specify. In the following example, all names of kids are concatenated into a 
hyphen-separated string:

val allNames=kidsPipe.groupAll
  { group=>group.mkString('kid->'names, "-") }
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The syntax of the toList group operation is as follows:

group.toList(field)

It transforms a column of the group into a list, while skipping any null items,  
shown as follows.

val nameList = kidsPipe.groupAll
  { group => group.toList('kid ->'nameList) }

Among group operations, mkString and toList require all the data 
in memory. Thus, using mkString on a one billion row data set would 
result into a heap overflow exception. Other group operations iterate 
through the tuples, and thus, can be executed on a billion row data set.

The syntax of the sortBy group operation is as follows:

group.sortBy(field)   or   group.sortBy(field).reverse

It sorts every group, ascending or descending (when using the reverse operator).

val sortedGroup = kidsPipe.groupBy('fruit)
  { group => group.sortBy('age) }

Seven operators are provided to allow us to get a specific number of tuples from a 
group: head, last, take, takeWhile, drop, sortWithTake, and sortedReverseTake.

So, the syntax of the head group operation is as follows:

group.head(fields)

It returns the first element of a group. We usually use this when we sort a group and 
want to get the very first element of that group.

The syntax of the last group operation is as follows:

group.last(fields)

It returns the last element of a group. We usually use this when we sort a group and 
want to get the last element of that group.

The syntax of the take group operation is as follows:

group.take(number)
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It takes a specific number of elements from the beginning of each group. The 
following code example will sort each gender by age and take the first 10 elements:

pipe.groupBy('gender) { group => group.sortBy('age).take(10) }

The syntax of the takeWhile group operation is as follows:

group.takeWhile ( fields ) { function }

It takes elements from a group until the function returns false. It stops taking when 
the first false is returned. The following example will start taking all lines from the 
pipe until the condition age <= 4 is broken:

val takeGroup = kidsPipe.groupAll
  { group => group.takeWhile('age) { age:Int => age <= 4  }  }

The syntax of the drop group operation is as follows:

group.drop(number)

It drops a specific number of elements from the beginning of each group.

The syntax of the sortWithTake group operation is as follows:

group.sortWithTake(fields -> result_field, number)

It sorts using the comparison function provided and then takes the first number  
of items. This operation is more efficient than first sorting and then taking because  
it uses a small buffer of size number, allowing the process to be completed on a  
map phase.

group => group.sortWithTake ( (('age,'kid) -> 'newList), 2 ) {
(prev: (Int,String), next:(Int,String)) => (prev._1 > next._1) }

The syntax of the sortedReverseTake group operation is as follows:

group.sortedReverseTake [Types] (fields -> resultFields, number)

It sorts data in reverse (descending) order and returns a list containing the top 
number of tuples. In the following example, kids are sorted first by oldest to youngest 
in age and then by name in descending order. The types of fields used in ordering 
need to be provided so that the correct comparator is used.

group => group.sortedReverseTake [(Int,String)] (('age, 'kid)-
>'newList, 2)
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The syntax of the pivot group operation is as follows:

group.pivot (fields -> valuesIntoColumns, defaultValue)

pivot and unpivot are similar to SQL and Excel functions: pivot changes data  
from a row-based representation to a column-based one, and unpivot performs  
the reverse operation.

pipe.groupBy('quarter) {
  group => group.pivot(('product,'sales)->('wine, 'beer,'coffee)) }

The preceding pivot operation fills in blanks with the value null. To define a specific 
value to be used instead of null, the defaultValue can be specified.

The syntax of the reducers group operation is as follows:

group.reducers(number)

Scalding applications are translated into a number of map and 
reduce tasks of the MapReduce framework by Cascading. This 
operation is useful to control the number of reducers in the reduce 
phases to optimize a job.

The flow planner calculates the number of reducers to be used for optimal 
performance for groupBy operations (groupAll always results in a single reducer). 
Use the reducers group operation to override the number of reducers to be used.

The syntax of the reduce group operation is:

group.reduce(field) {function}
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Reduce groups on a map phase. In the following example, the volume of boxes is 
calculated by multiplying the lengths of each dimension: width, height, and depth:

group => group.reduce('length -> 'volume)
  { (volumeSoFar : Int, length : Int) => volumeSoFar * length }

The syntax of the foldLeft group operation is as follows:

group.foldLeft(fields -> result_field) (initial_value) {function}

The foldLeft group completes work in the reduce phase of the MapReduce 
framework. An initial value has to be specified for the operation, and a final value  
is created for that group.

For example, let us imagine that we have customers who pay either for service-A  
or service-B. The data structure is as follows:

 customer1  service-A  false

 customer1  service-B  false

 customer2  service-A  true

 customer2  service-B  false

If we want to calculate whether each customer is paying, we can instantiate 
foldLeft with the default value false, as shown in the following code:

pipe.groupBy('customer) {
  group => group.foldLeft('is_paying -> 'is_paying)(false) {
    (previous: Boolean, current: Boolean) => previous || current
  }
}

The previous || current condition will compare every previous value with  
the new one and yield true only if the customer is paying for at least one service.

The syntax of the dot group operation is as follows:

group.dot [Type] (left, right, result)

It calculates the dot product of a group by multiplying the left column with the right 
and storing the results to result for each group. If we imagine a scenario of colored 
postal cards of x width and y height, the following example calculates the total area 
each color of cards can occupy:

pipe.groupBy('square) { group => group.dot[Int]('x,'y,'x_dot_y) }
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The syntax of the histogram group operation is as follows:

group.histogram (field -> histogram, binWidth)

It returns the histogram of a group as a Scalding Histogram object. This object allows 
the extraction of the three quartiles, coefficient of dispersion, inner quartile range, 
the Lorenz Curve, and other values used mostly by data scientists. In the following 
example, the median and first and third quartile of the histogram for the image sizes 
uploaded to a famous photo sharing application are calculated:

pipe.groupBy('date) { group => group.histogram(('imageSize, 
'histogram)) }
.map('histogram -> ('q1, 'median, 'q3)) {
     x:Histogram => (x.q1 , x.median , x.q3)
}

The syntax of the hyperLogLog group operation is as follows:

group.hyperLogLog [Type] (field -> newField, errPercentage)

HyperLogLog is an algorithm able to make accurate cardinality estimates using small 
fixed memory. An accurate count of unique element scales with O(log(n)), on the other 
hand. HyperLogLog uses a small fixed amount of memory and provides approximate 
results with an estimation.

To find further information, on how HyperLogLog algorithm works, check and read 
the responses to the question.

The following code is capable of counting the size of unique elements in a billion  
row dataset while using just 16 kilobytes of memory:

implicit def stringToBytes(text: String) = text.getBytes
val errPercent = 1D // 1% -> 16kB buffer
pipe.groupAll {
   group => group.hyperLogLog[String]
     (('ids ->'denseHHL),errPercent)
}.mapTo('denseHHL -> 'approximateSize) { 
   x: DenseHLL => x.approximateSize.estimate }



Chapter 3

[ 49 ]

HyperLogLog expects input in the Array[Byte] format. However, the value at 'ids 
is cast into a String. The implicit function stringToBytes provides the required 
conversion functionality String -> Array[Byte].

Composite operations
Finally, Scalding provides some operations that are useful in many common use 
cases. The following list of operations internally uses the core operations presented 
already, but they are actually handy to be in place. The syntax of the unique 
operation is as follows:

pipe.unique(fields)

It keeps unique elements of the specified fields. In the following example, the new 
pipe will contain only the unique fruits, and all other fields are discarded. Internally, 
the preceding command uses a group operation, and thus, jobs can be optimized if 
this is applied during a groupBy operation.

val uniqueFruits = kidsPipe.unique('fruit)

The unique operator is actually implemented using the 
groupBy, size, and project operators, as shown in the 
following code.

groupBy(fields) { group => group.size } .project(fields)

The syntax of the crossWithTiny operation is as follows:

pipe1.crossWithTiny(pipe2)
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It calculates the cross product of two pipes. The pipe on the right (pipe2) is tiny, and 
it is thus replicated to all the nodes where the pipe1 data exist locally. A pipe with  
X number of rows crossed with a pipe with Y number of rows will always result in  
a pipe with X times Y number of rows.

The syntax of the normalize operation is as follows:

pipe.normalize(fields)

It normalizes the values of a column by dividing each value by the sum of the column.

The syntax of the partition operation is as follows:

pipe.partition(fields -> partition) { function } {groupOperations}

It partitions data in the pipe into several groups and applies one or more group 
operations to each group. The following example calculates the average weight  
of minors and adults:

Tsv("football_team.tsv", 'player,'age,'weight,).read
  .partition('age -> 'isAdult) { (:Int)> 18 }
     { group => group.average }
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A simple example
To make clear that Scalding operations can be chained together to implement  
a complete pipeline look at the following example:

Tsv(args("input"), ('kid,'age,'fruits))
.read
.flatMap('fruits -> 'fruit) { text : String => text.split(",") }
.project('kid, 'fruit)
.write(Tsv("results.tsv"))

The same example can be expressed in a number of pipes, where we assemble  
and control how each pipe connects to another:

val logs = Tsv(args("logfiles"), LogsOperations.schema )
  .read
  .extractSomeUserInfo

val customers = Tsv(args("cust_log"),COperations.schema).read
  .extractSomeCustomerInfo

val joined = logs.joinWithSmaller(customers, 'user)

val result = joined.filter(
  .write(Tsv(args("output")))

The preceding code allows us to whiteboard our designs for processing data  
before implementing a data processing flow. Refer to the pipeline definition  
of the first chapter to see how the theory matches the implementation.

Typed API
Scalding offers another type-safe API. The type-safe API is not named. Data streams 
through the typed pipe as tuples, and reference to data is achieved through the 
notation tuple._1 or by using the case classes, as shown in the following code:

case class Animal(name : String, kind: String)
val animals : TypedPipe[Animal] = getAnimals
val birds = animals.filter { _.kind == "bird" }

Operations that exist in both APIs and pipes interoperate. We can convert from 
Fields to Typed and the other way round. Using any one of the APIs is a matter  
of preference and code readability.
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Summary
This chapter presented the complete Scalding Fields API. Effective usage of the 
preceding operations can easily solve complex data processing jobs. Ad targeting, 
extracting, transferring and loading, logfile analysis, bioinformatics, machine 
learning, predictive analytics, finance, web content mining, and other applications 
can be built.

In the following chapter, we will do exactly that. We will analyze and implement  
real use cases.



Intermediate Examples
This chapter goes through a real implementation in Scalding of non-trivial 
applications using the operations presented in the previous chapter. We will  
go through the data analysis, design, implementation, and optimization of  
data-transformation jobs for the following:

•	 Logfile analysis
•	 Ad targeting

Analyzing logfiles that have been stored for some time is a usual starting application 
of a new Hadoop team in an organization. The type of value to extract from the 
logfiles depends on the use case. As an example, we will use a case where we will 
need to think a lot about how to manage the data.

Another example of Ad targeting will make us look at how to structure and store  
the data to allow us to run daily jobs. It will involve input from data scientists and 
deep analysis of customer behavior to recommend personalized advertisements.

Logfile analysis
The results of this data-processing job will be displayed on a web application that 
presents on an interactive map, the geographic locations where users log in from. 
This web application will allow filtering data based on the device used.

Our job is to analyze 10 million rows of logs and generate such a report in a JSON file 
that can drive the web application. Because of the nature of the web application, the 
maximum size of that file should not exceed a few hundred kilobytes. The challenge 
here is how to manage data in such a way as to efficiently construct this report.

It is all about the data, and we will be using Scalding to start exploring. Around 10 
million rows of data exist in tab-separated files in a Hadoop cluster in the location 
hdfs:///log-files/YYYY/MM/DD.
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The TSV files contain nine columns of data. We discover that the 'activity  
column contains values such as login, readArticle, and streamVideo, and  
we are interested only in the login events. Also, if we go through the available 
columns of data, we will understand that we are interested in just the columns 
'device and 'location.

We can implement a job in Scalding to read data, filter login lines, and project the 
columns with the following code:

import com.twitter.scalding._
 
class ExploreLogs (args: Args) extends Job(args) {

  val logSchema = List ('datetime, 'user, 'activity, 'data,
   'session, 'location, 'response, 'device, 'error)
  
  val logs = Tsv("/log-files/2014/07/01/", logSchema )
   .read 
   .filter('activity) { x:String => x=="login" }
   .write(Tsv("/results/2014/07/01/log-files-just-logins/"))

  val sliced_logs = logs
   .project('location, 'device)
   .write(Tsv("/results/2014/07/01/logins-important-columns/"))
}

Executing this job will highlight data distribution. By filtering lines and projecting 
important columns, we have minimized the amount of data to be processed by two 
orders of magnitude compared to the original input data:

Having this insight into the data will allow us to optimize our MapReduce job. 
Overall, the performance of the job depends on the size of the Hadoop cluster it  
runs against. A decently sized cluster should only take a few seconds to complete  
the job and generate a number of files in the output folders.
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Let's take a moment to understand how Scalding code is executed as a MapReduce 
application and how it scales and parallelizes in the cluster. First of all, the flow 
planner knows that reading from HDFS, applying a filter, projecting columns, and 
writing data can be packed inside a single map phase. So the preceding diagram is a 
map-only job at the moment.

Scalability now depends on the size of the data. Once the job gets submitted to the 
Hadoop JobTracker, HDFS is interrogated about the number of files to be read and 
the number of HDFS blocks the input data consists of.

In this specific example, if input data of 5 GB is stored in a single file in a Hadoop 
cluster that uses a block size of 128 MB, then in total, 40 blocks of input data exist. 
For every block of data, one map task will be spawned containing our entire Scalding 
application logic.

So our job has two pipes, one that stores only login lines, and another that further 
projects some columns and stores data. For each pipe, there is a map phase that 
consists of 40 map tasks (to match the number of blocks). No reduce phase is required.

Now, we have to tackle the problem of reducing the data by another two 
magnitudes. Results reveal that latitudes and longitudes are precise, and that login 
events originate mostly from urban areas with a high density of population. Multiple 
login locations are only a few hundred meters away, and for the purpose of an 
interactive map, a geographic accuracy of a few miles would be sufficient. We can 
thus apply some compression to the data by restricting accuracy.

This technique is known as bucketing and binning. Instead of having accurate 
locations (as this is not part of the specifications), we will aggregate the login events 
to an accuracy of two decimal points. To complete the data-processing job, we will 
group events by the latitude, longitude, and device type, and then count the number 
of login events on that particular location.

This can be achieved by introducing the following code:

.map('location -> 'lat, 'lon) 
 { x:String => val (lat,lon) = x.split(",") 
  ("%4.2f" format lat.toFloat, "%4.2f" format lon.toFloat)  
 }
.groupBy('lat, 'lon, 'device) 
  { group => group.size('count) }
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In the map operation, we split the comma-separated value of 'location into 'lat 
and 'lon, and format the location into a float with an accuracy of two decimals. We 
then group all the login events that occurred in that day at a specific latitude and 
longitude, and for the same device type, and apply an operation to count the number 
of elements of each group, resulting in the following:

For the preceding specific example, thousands of log lines with locations have been 
compressed into just a few bytes. Executing the data-processing application to the 
whole data reveals that we have reduced the amount of data to more than two orders 
of magnitude (to less than 100 KB).

Let's take a moment to analyze how our code is executed as a MapReduce job on 
the cluster. The tasks of mapping 'location into 'lat and 'lon and applying the 
accuracy restriction to the floats are packaged together and parallelized in the same 
40 map tasks.

We know that after the map phase, a Reduce phase is to be executed because of the 
groupBy operation we used. We usually do not define the exact number of reduce 
tasks to be executed. We let the framework calculate how many reduce tasks to 
parallelize the task into.

In our case, we can see in the JobTracker web interface (presented in Chapter 2, Get 
Ready for Scalding) that the groupBy operation is packaged into a reduce phase that 
consists of 30 reduce tasks. So this is now a full MapReduce job with a map phase 
and a reduce phase.

The question is why do we get 30 reducers. As we said, we let the framework try 
to optimize the execution. Before executing the job, the flow planner knows the 
size of the input data (that is, 40 blocks). It knows the flow as well, which we filter 
and project, but it cannot infer how much of the data will be filtered out, before the 
execution time. Without any insight, it assigns 30 reducers to be executed for this 
task, as it assumes that it is possibly in the worst-case scenario—there is no data to  
be filtered out.
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As we have already explored the data, we know that only around 50 MB are to 
be reduced. So three reducers should be more than enough to group that amount 
of data and perform the count. To improve the performance, we can optimize the 
execution by specifying the number of reducers, for example, as three:

  { group => group.size('count).reducers(3) }

By executing the job including the reducers operation, we will discover that the 
results are stored in three files, part-00000, part-00001, and part-00002 (one file 
per reducer), as that reduce was the last phase of our job before writing the results  
to the file system.

Our job has not been completed before generating the single valid JSON object in 
a file. To achieve that, we first need to transform each line of the results into valid 
JSON lines with the following code:

.mapTo( ('lat, 'lon, 'device, 'count) -> 'json) 
  { x:(String,String,String,String) =>
       val (lat,lon,device,count) = x
       s"""{"lat":$lat,"lon":$lon,"device":"$device",count:$count}"""
} 

Adding the above operation to our pipeline, we now generate valid JSON lines:

{ "lat":40.71, "lon":-73.98, "device":"PC", count: 1285 }

The final step required is to aggregate all the above lines into a single valid JSON 
array, and this is exactly what groupAll achieves:

.groupAll { group => group.mkString('json, ",") }

.map('json -> 'json) { x:String => "[" + x + "]" }

All JSON lines are reduced in a single reducer and then the final result is 
encapsulated within brackets "[" and "]" to construct a valid JSON array.  
A single file is now generated, thereby fulfilling the requirements of the project.

www.allitebooks.com

http://www.allitebooks.org
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Completing the implementation
The final code, in a single file that contains the full data transformation flow,  
is as follows:

import com.twitter.scalding._
import cascading.pipe.Pipe

class LoginGeo (args:Args) extends Job(args) {

 val schema = List ('datetime, 'user, 'activity, 'data,
    'session, 'location, 'response, 'device, 'error)

 def extractLoginGeolocationIntoJSONArray (input:Pipe) =
  input.filter('activity) { x:String => x=="login" }
   .project('location, 'device)
   .map ('location -> ('lat, 'lon)) { x:String => {
      val Array(lat, lon) = x.split(",")
      ("%4.2f" format lat.toFloat, "%4.2f" format lon.toFloat)
     }
   }
   .groupBy('lat, 'lon, 'device) 
     { group => group.size('count).reducers(3) }
   .mapTo( ('lat, 'lon, 'device, 'count) -> 'json) {    
       x:(String,String,String,String) =>
       val (lat,lon,dev,count) = x
       s"""{"lat":$lat,"lon":$lon,"device":"$dev",count:$count}"""
   }
   .groupAll { group => group.mkString('json, ",") }
   .map('json -> 'json) { x:String => "[" + x + "]" }

   val input = Tsv( args("input"), schema ).read
   val result = extractLoginGeolocationIntoJSONArray(input)
    .write(Tsv( args("output") ))
}

To analyze the finalized job scalability, there is a map phase that reads and filters the 
input in 40 map tasks. This is followed by a reduce phase of three reduce tasks, then 
another map phase of three map tasks that generate the JSON lines, followed by a 
reduce phase with a single reducer where we insert a comma between the lines, and 
finally, the last map phase that consists of one map task that adds the brackets to the 
string and stores to a single file.
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So in effect, the application is executed as:

 Map phase | Reduce phase | Map phase | Reduce phase | Map phase

  40 tasks |    3 tasks   |  3 tasks  |    1 task    |  1 task

That's it! With Scalding, we expressed in just a few lines of code a complex algorithm 
with multiple map and reduce phases. The same functionality would require 
hundreds of lines of code in Java MapReduce.

Testing such Scalding jobs will be covered thoroughly in Chapter 6, Testing and TDD. 
A simple example of a test that uses some mock data as the input and asserts that the 
expected output is the same as the mock output is as follows:

import com.twitter.scalding._
import org.scalatest._  

class LoginGeoTest extends WordSpec with Matchers {
  import Dsl._
  val schema = List ('datetime, 'user, 'activity, 'data,
    'session, 'location, 'response, 'device, 'error)
  val testData = List(
    ("2014/07/01","-","login","-","-","40.001,30.001","-","PC","-"),
    ("2014/07/01","-","login","-","-","40.002,30.002","-","PC","-"))

  "The LoginGeo job" should {
   JobTest("LoginGeo")
   .arg("input", "inputFile")
   .arg("output", "outputFile")
   .source(Tsv("inputFile", schema), testData )
   .sink[(String)](Tsv("outputFile")) {
    outputBuffer => val result = outputBuffer.mkString
    "identify and bucket nearby login events" in { res shouldEqual 
       s"""[{"lat":40.00,"lon":30.00,"device":"PC",count:2}]"""
    }
  }.run
   .finish
}
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Exploring ad targeting
As part of our second example, we will explore the same logfiles with another job for 
the purpose of generating personalized ads. Let's assume that the company we are 
working for provides news articles with associated videos to users. For the purpose 
of the example, we will assume that four categories of news are presented: sports, 
technology, culture, and travel.

Category Subcategories
Sports Football Rugby Tennis F1 Cycling
Tech Games Mobile Gadget Apps Internet
Culture Books Film Music Art Theatre
Travel Hotels Skiing Family Budget Breaks

Analyzing and understanding the data deeply, requires lots of exploration. 
Fortunately, a Data Scientist validates and calculates some assumptions that  
result in the following conclusions:

•	 Our users spend time reading articles and spend more than 20 seconds  
if they are slightly interested and more than 60 seconds if they are  
really interested.

•	 Users who also view the video accompanying each article are considered  
as engaged users.

•	 Occasionally, users get interested in a category they are normally not 
interested in. The recent behavior has more relevance than past behavior.

Recent interest in Travel-Skiing is a high indication for us to the 
recommended relevant travel ads.

Quantifying the preceding observations, and for the sake of simplicity, we will assume 
that the recommendation system will be based on an algorithm that assigns to each 
user points on each category and subcategory. So, the type of ads to associate with that 
user depends on the category and subcategory the user is most interested in.

•	 One point for each read event that lasts more than 20 seconds
•	 Three points for each read event that lasts more than 60 seconds
•	 Three points per video view
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•	 The resulting ranking calculation for each user is as follows:

   User points = 40% * points yesterday + 20% * points 2 days ago + 

      10% * points 3 days ago + 30% of the average historic points

To implement the algorithm, we can conceptualize three tasks:

1.	 Initially process daily logfiles and calculate the user points for that day.  
Store the results in a structure /YYYY/MM/DD/ so that the data is nicely 
partitioned across multiple executions.

2.	 In a similar way, calculate the historic points in another pipeline.
3.	 Once all the data is there, read the daily points of the last three days and  

the historic points, and join the results with the available advertisements  
to generate the personalized ads:

Daily logfiles

Daily Points Available Ads
Sunday

2

Daily Points
Saturday

Monday Monday
Daily Points

Monday
Historic Points

Monday

Sunday
Historic Points1

2

3

Personalized Ads

The important aspect of the preceding diagram is how we manage and transform 
data in the filesystem. For a particular day, for example, Monday, we calculate the 
daily points and store the results in an HDFS folder /dailypoints/YYYY/MM/DD/.

Now, we can generate the historic points by joining the daily points generated today, 
(Monday as shown in the previous diagram), with the historic points calculated 
yesterday (Sunday). We perform the same partitioning structure to the historic 
points, that is, /historicpoints/YYYY/MM/DD/.
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Storing the resulting data that makes sense in an organized way is a good practice if 
you want to reuse that data at a later date to extract different types of values out of it.

We will proceed with the implementation of the three pipelines.

Calculating daily points
Our first task is to calculate the daily points. We always explore data before even 
thinking about the implementation. To put the data into perspective, a small job  
will group data together by the user and sort it by time:

import com.twitter.scalding._
 
class CalculateDailyAdPoints (args: Args) extends Job(args) {

  val logSchema = List ('datetime, 'user, 'activity, 'data,
   'session, 'location, 'response, 'device, 'error)

  val logs = Tsv("/log-files/2014/07/01", logSchema )
   .read
   .project('user,'datetime,'activity,'data)
   .groupBy('user) { group => group.sortBy('datetime) }
   .write(Tsv("/analysis/log-files-2014-07-01"))
}

Remember that this is the exact same data we used in the previous example, but 
now, we are not interested in login events, or latitude and longitude locations.  
Now, we are interested in the readArticle and streamVideo activities. The 
following is the data a particular user generated yesterday:

 user1   2014-07-01 09:00:00   login   

 user1   2014-07-01 09:00:05   readArticle   sports/rugby/12   

 user1   2014-07-01 09:00:20   readArticle   sports/rugby/7

 user1   2014-07-01 09:01:00   readArticle   sports/football/4

 user1   2014-07-01 09:02:30   readArticle   sports/football/11

 user1   2014-07-01 09:03:50   streamVideo   sports/football/11

 user1   2014-07-01 09:05:00   readArticle   sports/football/2

 user1   2014-07-01 11:05:00   readArticle   sports/football/3

Looking at the data, we clearly see that we should focus on how to calculate the 
duration in seconds; a user is reading a specific article like sports/football/4. We 
can achieve this using a buffered operation such as scanLeft, which scans through 
the buffer and has access to the event time of the previous line and the event time  
of the current line. Before thinking more about it, let's continue observing the data.
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With a more careful look, we can observe that there is a huge two-hour gap between 
09:05:00 and 11:05:00. The user did not generate any log lines during this period, 
and the user was of course not spending two hours reading the article. He was 
somehow disengaged, that is, he was having his breakfast or chatting on the phone.

Also, we cannot calculate the duration of the very last event. For all we know, the 
user might have switched off their laptop after that event.

 user1   2014-07-01 11:05:00   readArticle   sports/football/3

When we have such lines where we do not have a full picture of what happened in 
reality, and when the duration is more than 20 minutes, the requirements mention 
that we should treat them as a partial read and associate one point.

A naïve implementation of the duration calculation algorithm would be to group 
by user, sort by datetime, and then apply a toList operation in order to iterate 
over that list. In that iteration, we can calculate the duration as nextTime – 
previousTime and then flatten the results. Remember that toList is one of the 
operations that put everything in memory. This could even result in out-of-heap 
space errors in our job execution and is not the most optimized way.

For efficient windowed calculations, Scalding provides the group operation 
scanLeft, which utilizes a tiny buffer to achieve the same result. So for the event 
that is happening at 09:00:05, we can calculate the duration as 09:00:20 – 
09:00:05 = 15 seconds. While performing this calculation, we store the current 
event time in the buffer for the following line to use in its calculations.

For this calculation, we will be emitting a tuple of two elements: duration and 
previous epoch. As we are emitting a tuple of size two, the input to the scanLeft 
operation should also be two. For that, we will use as input the current epoch and  
a helper field called temp.

import com.twitter.scalding._
 
class CalculateDailyAdPoints (args: Args) extends Job(args) {

  val logSchema = List ('datetime, 'user, 'activity, 'data,
   'session, 'location, 'response, 'device, 'error)

  val logs = Tsv("/log-files/2014/07/01", logSchema )
   .read
   .project('user,'datetime,'activity,'data)
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val logsWithDurations = logs
  .map('datetime -> 'epoch) { x: String => toEpoch(x) }
  .insert('temp, 0L) // helper field for scanLeft
  .groupBy('user) { group => 
    group.sortBy('epoch)
    .reverse
    .scanLeft(('epoch,'temp)->('buffer,'duration))((0L,0L)) {
      (buffer: (Long, Long), current: (Long, Long)) =>
        val bufferedEpoch = buffer._1
        val epoch = current._1
        val duration = bufferedEpoch - epoch
        (epoch, duration)
    }
   }
   .filter('duration) { x: Long => x = 0 }
   .discard('bufferedEpoch, 'epoch, 'temp)
   .write(Tsv("/log-files-with-duration/2014/07/01"))
}

During the left scan, we read the value from the epoch symbol and store it in the 
buffer variable so that the next scan can access the current date time. We also read 
temp but do not use it. Instead, we calculate the duration as the difference between 
the value in the buffer and the current epoch. Running the scanLeft on the data 
generates the event duration in seconds:
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The first two lines look bizarre, and we get nine lines as the output using eight lines  
of input. The first line is the side effect of initializing scanLeft with the default values 
(0L, 0L). The second line is the result of the calculation of the duration as zero minus 
the current date time. This happens only in line 11:05:00. Of course, this is the last 
event line in our logs for that user. Remember that for the last event, it is impossible  
to calculate the duration as the user might have just switched off his laptop.

The specifications mention that for such occasions where we do not have the full 
picture, we should treat them as a partial read and associate one point. Also, if the 
duration is more than 20 minutes, we have to treat it as a partial read. We can solve 
both issues with a map that uses the duration to fix to a partial read.

.map('duration->'duration) 
  { x:Long => if ((x<0) | (x>1200)) 20 else x }

We also clean up one extra line that is generated by scanLeft using the  
following code:

   .filter('duration) { x: Long => x != 0 }

The most complex part of the algorithm is now complete. We have correctly 
calculated the duration of events. Generating points is just another map operation:

.map(('activity , 'duration) -> 'points) { x:(String,Int) =>
  val (action, duration) = x
  action match {
    case "streamVideo" => 3
    case "readArticle" => 
     if (duration>=1200) 1 else if (duration>=60) 3 else 
     if (duration>=20) 1 else 0
    case _ => 0
  }
}

The process requires us to filter out lines that do not contribute any points in this 
calculation, and extract the category and subcategory from 'data:

.filter('points) { x: Int => x > 0 }

.map('data -> ('category, 'subcategory)) { x: String =>
   val categories = x.split("/")
   (categories(0), categories(1))
}

Then, group by the user, category, and subcategory, and aggregate the daily points:

  .groupBy('user,'category,'subcategory)
    { group => group.sum[Int]('points) }
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The resulting implementation of the pipeline that calculates points is as follows:

val logs = Csv(args("input"), ",", logSchema ).read
  .project('user,'datetime,'activity,'data)
  .map('datetime -> 'epoch) { x: String => toEpoch(x) }
  .insert('temp, 0L) // helper field for scanLeft
  .groupBy('user) { group =>
   group.sortBy('epoch)
    .reverse
    .scanLeft(('epoch, 'temp)->('buffer,'duration))((0L, 0L)) {
     (buffer: (Long, Long), current: (Long, Long)) =>
       val bufferedEpoch = buffer._1
       val epoch = current._1
       val duration = bufferedEpoch - epoch
       (epoch, duration)
    }
  }
  .map('duration->'duration) 
    { x:Long => if ((x<0) || (x>1200)) 20 else x }
  .filter('duration) { x: Long => x != 0 }
  .map(('activity , 'duration) -> 'points) { x:(String,Int) =>
    val (action, duration) = x
    action match {
      case "streamVideo" => 3
      case "readArticle" =>
        if (duration>=60) 3 else if (duration>=20) 1 else 0
      case _ => 0
    }
  }
  .filter('points) { x: Int => x > 0 }
  .map('data -> ('category, 'subcategory)) { x: String =>
    val categories = x.split("/")
    (categories(0), categories(1))
  }
  .groupBy('user,'category,'subcategory) 
    { group => group.sum[Int]('points) }

This Scalding code is executed in the cluster as follows:

 Map phase | Reduce phase | Map phase | Reduce phase
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It generates the expected results:

Calculating historic points
The implementation of the historic point calculation requires a separate data pipeline 
to be implemented in Scalding. It is a simple one, and we read the existing historic 
points (the ones generated yesterday) and add the just calculated new points.

val historyPipe = Tsv(args("input_history"),schema).read 

val updatedHistoric = 
  (dailyPipe ++ historyPipe)
  .groupBy('user,'category,'subcategory)
    { group => group.sum[Int]('points) }
  .write(Tsv("/historic-points/2014/07/01"))

Thus, if the historic points of a user are as follows:

Generating targeted ads
The final task is to implement the ranking algorithm:

 user points = 40% * points yesterday + 20% * points 2 days ago + 

      10% * points 3 days ago + 30% of the average historic points
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We can achieve this using map, and we can also calculate the average of the historic 
points over the number of days for which the analysis has been running. The ranking 
algorithm is as follows:

val pipe1 = yesterdayPipe.map('points -> 'points)
 { x:Long => x*0.4 }
val pipe2 = twoDaysAgoPipe.map('points -> 'points)
 { x:Long => x*0.2 }
val pipe3 = threeDaysAgoPipe.map('points -> 'points)
 { x:Long => x*0.1 }
val normalize = 40 // Days we calculate historic points 
val pipe4 = historyPipe.map('points -> 'points)
 { x:Long => (x /40) * 0.3 } 

val user_category_point = (pipe1 ++ pipe2 ++ pipe3 ++ pipe4)
  .groupBy('user, 'category, 'subcategory) 
    { group => group.sum[Long]('points) }

We read all input from the respective folders and apply the ranking algorithm.  
The important bit is that we use the ++ operator to add together the four input  
pipes and aggregate the total points of each user in the .sum operation.

Nothing is left except for getting the recommendations. To find the best ad for  
each user, we group by user, sort by points, and take the first element of each 
group. So we are keeping the top category-subcategory for every user based on  
the ranking algorithm.

  .groupBy('user)
    { group => group.sortedReverseTake('points, 1) }

Doing this, we are keeping the top category-subcategory for every user based on  
the ranking algorithm. The final step is to join that information to the available ads 
for tomorrow using the category-subcategory as a join key.

  user_category_point.joinWithSmaller( ('category,'subcategory)->
    ('category, 'subcategory), adsPipe )

That's it. We just implemented a recommendation system for targeted ads in less 
than two pages.
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Summary
In this chapter, we used the same dataset to present two completely different use 
cases. For each use case, we explored the data and then designed and implemented 
data-processing applications in Scalding. We also looked at how an abstract 
pipelining language (Scalding) is translated in MapReduce phases.

We also introduced techniques such as bucketing and windowed calculations 
through a solution to a problem. The expressiveness of the language allows us to 
implement even complex use cases with ease.

In the following chapter, we will present some design patterns that will enable us  
to develop more modular and testable code.





Scalding Design Patterns
MapReduce applications, like all software artifacts, need to be written to be reusable, 
modular, and testable. They must have specific requirements related to the fact 
that they run in a Hadoop environment. The goal of this chapter is to present some 
design patterns to be applied in the implementation of Scalding applications. While 
the principles they follow are common to software development, we will present 
how to implement them in the specific domain.

The principles they follow are simplicity, single responsibility, and dependency 
inversion. In the context of Scalding, we will call them:

•	 The external operations pattern
•	 The dependency injection pattern
•	 The late bound dependency pattern

The external operations pattern
To achieve modularity and fulfill the single responsibility principle, we can structure 
our data processing job in an organized way. An object, a trait, and a job can share 
parts of the responsibilities, explained as follows:

•	 In package object, we can store information about the schema of the data
•	 In trait, we can store all the external operations
•	 In a Scalding job, we can manage arguments, define taps, and use external 

operations to construct data processing pipelines
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A particular dataset will usually be processed by multiple jobs to extract different 
value from the data. Thus, we can create an object called LogsSchemas to store input 
and output schemas, and also to document the locations in HDFS, where the data 
resides. This object can act as a registry of all the variations of datasets, and we can 
reuse it in any of our Scalding jobs, as shown in the following code:

package object LogsSchemas {
  // that is, hdfs:///logs/raw/YYYY/MM/DD/
  val LOG_SCHEMA = List('datetime, 'user, 'url)

  // that is, hdfs:///logs/daily-visits/YYYY/MM/DD/
  val LOGS_DAILY_VISITS = ('day, 'user, 'visits)
}

Our operations trait can contain all the pipe transformations. We will normally 
package a decent amount of complexity in an external operation. In the following 
example, we define two simple external operations: logsAddDayColumn and 
logsCountVisits, as shown in the following code:

import cascading.pipe.Pipe
import com.twitter.scalding._

trait LogsOperations extends FieldConversions {

  def self: RichPipe

  val fmt = org.joda.time.format.DateTimeFormat. 
    forPattern("dd/MM/yyyy HH:mm:ss")

  def logsAddDayColumn : Pipe = self
    .map('datetime -> 'day) {
      date: String => fmt.parseDateTime(date).toString("yyyyMMdd")
    }

  def logsCountVisits : Pipe = self
    .groupBy(('day, 'user)) { _.size('visits) }

}

The trait containing all the transformation operations is external to the job and 
structured in a way that is easy to be tested. The self is an abstract member that  
refers to the pipe the operations will be applied in.
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The next step is to implement a Scalding job that uses the preceding modular code 
using the following code:

import com.twitter.scalding._

class SimpleJob(args: Args) extends Job(args) {
  import LogsSchemas._
  import LogsWrapper._

  Tsv(args("input"), LOG_SCHEMA).read
    .logsAddDayColumn
    .logsCountVisits
    .write(Tsv(args("output"), LOGS_DAILY_VISITS))
}

The responsibilities of the Scalding job are now restricted to the following:

•	 Validating and using input arguments and parameters
•	 Creating input and output taps
•	 Composing the data processing pipelines using external operations

The glue that connects the schemas and external operations to a job are the import 
lines at the beginning of the job, as shown in the following code:

  import LogsSchemas._
  import LogsWrapper._

The wrapper is an object which provides a constructor that enables the external 
operations on Pipe and offers an implicit conversion of RichPipe to Pipe.

import com.twitter.scalding.RichPipe

object LogsWrapper {
  implicit def wrapPipe(self: cascading.pipe.Pipe): LogsWrapper = 
     new LogsWrapper(new RichPipe(self))
  implicit class LogsWrapper(val self: RichPipe) extends 
     LogsOperations with Serializable
}

This wrapper enables our external operations to be executed in a Scalding pipe.

This technique is known as "Extension Methods" in Scala. For further 
details on how this works, please read http://docs.scala-lang.
org/overviews/core/value-classes.html#extension_
methods.
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Now, we can easily imagine the example in the previous chapter to be structured  
in a Scalding job, as shown:

class AdsJob(args: Args) extends Job(args) {
  ...

  val dailyPoints = Tsv(args("logs"), LOG_SCHEMA).read
    .calculateDailyAdPoints
    .write(Tsv(args("daily-points")))

  val histPoints = Tsv(args("historic-points"), HPOINTS).read

  (dailyPoints ++ historicPoints)
    .calculateHistoricAdPoints
    .write(Tsv(args("historic-points"))

  val points2daysAgo = Tsv(args("points-2d"), POINTS_SCHEMA).read
  val points3daysAgo = Tsv(args("points-3d"), POINTS_SCHEMA).read

  (dailyPoints ++ points2daysAgo ++ points3daysAgo + histPoints)
    .calculateTopCategorySubcategory
    .joinWithAds(Tsv(args("daily-ads"), ADS_SCHEMA).read)
    .write(Tsv(args("suggested-ads")))
}

Extracting the operations into a trait allows us to reuse them in a different project by 
simply extending the trait. If this is not needed, it is possible to simplify the pattern 
implementation by simply implementing the methods inside the wrapper classes.

The external operations pattern is the basis of the dependency injection that is 
presented next, and also of the test driven development approach presented in  
the following chapter.

We can execute the preceding code with the following:

$ java -cp target/chapter5-0-jar-with-dependencies.jar

  com.twitter.scalding.Tool externaloperations.ExampleJob --local  

  --input src/main/resources/logs.tsv --users   

  src/main/resources/users.tsv --output data 
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The dependency injection pattern
The dependency injection design pattern allows us to remove hard-coded 
dependencies to make it possible to change them without recompile or at runtime.  
It enables us to effectively unit test the code, increase its reuse and flexibility, and  
support application configuration.

The only cost introduced by the pattern is a slightly more complex structure, since 
we have to expose the dependency and provide it to our underlying code. This is  
in general completely justified, whenever we can (or we have to) extract part of  
our logic into independent components.

Dependency injection is based on the external operations pattern. Again, we have  
a package object as shown:

package object ExampleSchema {
  val LOG_SCHEMA = List('datetime, 'user, 'url)
  val OUTPUT_SCHEMA = List('datetime,'user,'url, 'email, 'address)
}

This time though we will join the users using an external REST API to fetch the email 
and address information. The interface and a mock implementation can be provided 
as the following:

trait ExternalService {
  def getUserInfo(userId: String): (String,String)
}
class ExternalServiceImpl extends ExternalService {
  def getUserInfo(userId: String) = ("email", "address")
}

Then, in our external operations trait, we can use the external service to query data  
as shown:

trait ExampleOperations extends FieldConversions {
  import Dsl._
  def self: Pipe
  def externalService: ExternalService
  def addUserInfo: Pipe = self.map('user ->('email, 'address))
    { userId: String => externalService.getUserInfo(userId)}
}
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The binding to the external service is done in the definition of the wrapper object. 
This is where we will actually inject the dependency:

object ExternalServiceWrapper {

    implicit class ExampleServiceWrapper(val self: Pipe)(implicit val 
externalService : ExternalService) extends ExampleOperations with 
Serializable
    implicit def fromRichPipe(rp: RichPipe)(implicit externalService : 
ExternalService) = new ExampleServiceWrapper(rp.pipe)

}

Our Scalding job preserves the same single responsibilities and injects an 
implementation defined as the externalService.

import com.twitter.scalding._

class ExampleJob(args: Args) extends Job(args) {

  import ExampleSchema._
  import ExternalServiceWrapper._

  implicit val externalService = new ExternalServiceImpl()

  Tsv(args("input"), LOG_SCHEMA).read
    .addUserInfo
    .write(Tsv(args("output"), OUTPUT_SCHEMA))
}

Rather than joining with an existing file source, we will now join data over an 
external service where we inject the dependency. We can execute the preceding  
code with the following:

$ java -cp target/chapter5-0-jar-with-dependencies.jar 

 com.twitter.scalding.Tool dependencyinjection.ExampleJob --local 

 --input src/main/resources/logs.tsv --output data/output.tsv

Find complete project files in the code accompanying this book at 
http://github.com/scalding-io/ProgrammingWithScalding.
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The late bound dependency pattern
Serialization of objects is a problem in all distributed systems since we have to 
send objects between different machines. Sometimes, a class does not extend 
Serializable, and we cannot simply extend java.io.Serializable to solve  
the problem (that is, because of a dependency to a library like the HttpClient).  
An example of such a case could be the following code:

case class UserInfo(email: String, address: String)
// Note this is a non- serializable class
class ExternalServiceImpl extends ExternalService { ... }

In such cases, we need to postpone the object instantiation. We want this object to  
be created in every node of the Hadoop cluster, instead of being instantiated and 
then transferred among cluster nodes.

To achieve this, we can define all the non-serialiazable objects as abstract members 
in the operations trait. The binding can then be done by either using a lazy val 
member or by using a constructor function.

In Scala, defining a variable as lazy will cause the class to be instantiated just at the 
very first usage, thus avoiding the need to transfer it through the cluster. For this,  
we need to take care and not call the variable beforehand.

Working on the same example used to present dependency injection, we can add 
lazy in the wrapper, as shown in the following code:

object LateBoundWrapper {
  implicit class LateBoundWrapper(val self: Pipe) extends 
    ExampleOperations with Serializable {
      lazy val externalService = new ExternalServiceImpl
    }
  implicit def fromRichPipe(richPipe: RichPipe) = 
    new LateBoundWrapper(richPipe.pipe)
} 

The Job class will be similar to the one used in the dependency injection example  
as shown:

class ExampleJob(args: Args) extends Job(args) {
  import ExampleSchema._
  import LateBoundWrapper._

  implicit val externalServiceFactory = new ExternalServiceImpl()
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  Tsv(args("input"), LOG_SCHEMA).read
    .addUserInfo
    .write(Tsv(args("output"), OUTPUT_SCHEMA))
}

This pattern is simple and can be used independently. Also, it doesn't have overhead 
or other cons, thanks to the simplicity of declaring lazy val members in Scala.

We can execute the above code with the following:

$ java -cp target/chapter5-0-jar-with-dependencies.jar 

 com.twitter.scalding.Tool latebound.ExampleJob --local 

 --input src/main/resources/logs.tsv --output data/latebound.tsv

Summary
In this chapter, we presented some design patterns for solving common problems. 
Initially, we presented the idea that a job should not contain complex logic. The job 
has defined responsibilities and delegates all the complexity of data transformations 
to external operations implemented in a trait. By keeping all schemas in an object 
and using a wrapper, we can structure our code in a modular and reusable way.

The dependency injection pattern presented how to inject dependencies at compile 
time, and the late bound pattern displayed how to overcome situations where an 
object cannot be serialized over the network.

In the next chapter, we will present the various testing strategies around our 
Scalding data-processing applications.



Testing and TDD
Testing has always been a critical aspect of application development, and in recent 
years, its importance has been rising steadily. New design and development 
techniques such as Test-Driven Design (TDD) and Domain-Driven Design (DDD) 
put testing at the center of the development process.

MapReduce applications are not exempt from testing requirements. Given their 
specificities, they require even more exhaustive testing than other applications.  
In this chapter, we will discuss testing and aspects related to the development  
of MapReduce applications that affect the way applications can be tested.

The goal of this chapter is as follows:

•	 Introducing testing in the context of MapReduce and its challenges
•	 Presenting unit and functional testing
•	 Presenting the test-driven development methodology

Introduction to testing
The definition of testing in software development is:

"Software testing can be stated as the process of validating and verifying that a 
computer program/application/product meets the requirements that guided its 
design and development, works as expected, can be implemented with the same 
characteristics, and satisfies the needs of stakeholders" (http://en.wikipedia.
org/wiki/Software_testing).
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Properly testing an application means that we will have to focus on every layer of  
the application being developed:

•	 Unit/component testing: This verifies that a specific part or component of  
the application works as designed.

•	 Integration testing: This verifies that the different components interact 
as expected. Also, this validates that interfaces between components are 
consistent to the expectations of other components.

•	 Acceptance testing: This validates the final application behavior against 
stakeholder requirements.

•	 System testing: This validates the application completely in integration and 
production environments. It makes sure that the application is production 
ready and stable, and it respects the performance requirements in terms of 
execution speed and resources.

Testing the application at all the mentioned levels is important in several ways.  
It helps us developers maintain confidence while code evolves and have a proper 
understanding of the responsibilities of the different elements. Another aspect is  
the capability to understand where a problem is by simply following the track of  
the failing tests in different layers.

An important aspect about tests is that they represent a live and executable 
documentation of the written code. For this reason, writing concise and expressive 
tests is of paramount importance. Fortunately, there are frameworks and techniques 
to help us unclutter test code and express the definition and validation of the 
business logic clearly.

MapReduce testing challenges
MapReduce applications process large amounts of data in order to infer and extract 
information. This causes the following:

•	 A long feedback cycle from the execution to the validation of results
•	 Difficulty in finding what data to use as mock data to validate results

Another set of problems is related to the logical complexity of operations. When  
used for business intelligence, for example, a MapReduce application is responsible 
for applying a possibly complex mathematical model to vast amounts of data.



Chapter 6

[ 81 ]

Often, the computation complexity lies in the logical and mathematical concepts 
behind every step, similar to what happens in the development of cryptographic 
applications. Thus, we need to approach design and testing at a higher level.

Due to the complexity, it is difficult to specify the expected outcome of the 
computation in a test. This is why we need to focus on the testability of the 
components participating in the computation.

Development lifecycle with testing 
strategy
The testing strategy described here is deeply intertwined with the software 
development lifecycle we follow. For data processing applications, everything  
starts with a data science phase, where we perform two tasks:

•	 Data exploration: Analysis of the format, frequency of arrival,  
and contents of the data

•	 Whiteboard design: Definition of the processing algorithm and the 
mathematical models to be used to generate features

These tasks are followed by two development tasks, which are:

•	 TDD implementation: Conversion of the algorithm into a scalable 
MapReduce application using Scalding

•	 Production deployment and monitoring: Execution, performance 
enhancement, and monitoring of the MapReduce job

TDD for Scalding developers
This section describes an approach to deal with the development process with a 
testing context. We will work through code examples in Scalding, but the majority 
of the concepts are also valid in a broader context, in other Scala-based MapReduce 
frameworks such as Scoobi and Scrunch in particular. We will first describe the testing 
strategy, and then implement a framework to support this strategy.
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Implementing the TDD methodology
The rest of the chapter presents a step-by-step implementation of the TDD 
methodology. We will use the example presented in the previous chapter,  
which requires the following actions:

•	 Read a logfile and count the number of visits per user per day, where the 
logfiles contain user URL requests

•	 Enrich user information with the e-mail and address retrieved from an 
additional input file containing user info, which is indexed via the user ID

Once the exploration of the data and algorithm design is complete, the test-driven 
methodology requires the following steps:

1.	 Decompose the algorithm in smaller testable steps.
2.	 Define a set of acceptance tests to validate the consistency of the 

implementation with the algorithm as designed.
3.	 Define a set of integration tests to validate that the different steps are 

correctly chaining together.
4.	 Define a set of unit tests for each step and automate execution routinely.  

For simpler jobs, the acceptance and integration tests usually coincide.  
When our logic spans several jobs, the integration and acceptance tests  
will operate at different levels of granularity.

5.	 Implement the MapReduce logic. Steps 4 and 5 are usually interleaved.  
Every time a test is written and executed with failure, the developer will 
implement the part of logic that takes care of making the tests succeed  
and so on.

6.	 Define and perform a set of system tests to verify correctness and scalability 
using real-size or near to real-size amounts of data.

Decomposing the algorithm
To decompose the algorithm in smaller and testable steps, we will use the external 
operations pattern presented in the previous chapter, which results in the following 
code for the job:

class ExampleJob(args: Args) extends Job(args) {
  val visitsPerDay = Tsv(args("input"), LOG_SCHEMA).read
    .logsAddDayColumn
    .logsCountVisits
    .logsJoinWithUsers(Tsv(args("users"), USER_SCHEMA).read)
    .write(Tsv(args("output"),LOG_DAILY_WITH_ADDRESS)) 
}
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Defining acceptance tests
The acceptance tests are defined in terms of mock data. Input mock data is provided, 
and the expected output is also mocked. The correctness of the application will be 
verified when it is executed against the mock input data and produces the expected 
resulting data.

The following is the input event logs:

"01/07/2014 10:22:11"  1000002L    "http://youtube.com"
"01/07/2014 10:22:11"  1000003L    "http://twitter.com"
"01/07/2014 10:22:11"  1000002L    "http://google.com"
"01/07/2014 10:22:11"  1000002L    "http://facebook.com"

The following is the input user information:

1000002  "stefano@email.com"     "10 Downing St. London "
1000003  "antonios@email.com"    "1 Kingdom St. London"

The execution of the job that counts the number of visits per user and then joins with 
the addresses should result in the following output:

"2014/07/01",1000002L,3L,"stefano@email.com","10 Downing St. London"

"2014/07/01",1000003L,1L,"antonios@email.com","1 Kingdom St. London"

Implementing integration tests
Once we have the acceptance testing mock data, we can implement an integration 
test using the JobTest class. This class replaces the input and output taps with 
their in-memory versions, and it allows us to validate that the algorithm works as 
expected using our mock data.

ExampleJobTest is implementation agnostic, which means that the following 
integration test can validate the full job execution, whether the external operations 
design pattern is used or not:

class ExampleJobTest extends FlatSpec with Matchers with
  FieldConversions with TupleConversions {
  import ExampleSchema._

  "A sample job" should "do the full transformation" in {

    val logs = List(
      ("01/07/2014 10:20:10", 1000002L, "http://youtube.com"),
      ("01/07/2014 10:20:35", 1000003L, "http://twitter.com"),
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      ("01/07/2014 10:21:38", 1000002L, "http://google.com"),
      ("01/07/2014 10:21:55", 1000002L, "http://facebook.com")
    )
    val users = List(
      (1000002L, "stefano@email.com", "10 Downing St. London"),
      (1000003L, "antonios@email.com", "1 Kingdom St. London")
    )
    val expectedOutput = List(
      ("2014/07/01", 1000002L, 3L, "stefano@email.com","10 Downing St. 
London"),
      ("2014/07/01", 1000003L, 1L, "antonios@email.com", "1 Kingdom 
St. London")
)

    JobTest(classOf[ExampleJob].getName)
      .arg("input", "input-logs")
      .arg("users", "users-logs")
      .arg("output", "output-data")
      .source(Tsv("input-logs", LOG_SCHEMA), logs)
      .source(Tsv("users-logs", USER_SCHEMA), users)
      .sink(Tsv("output-data", LOG_DAILY_WITH_ADDRESS)) {
         buffer: mutable.Buffer[(String, Long, Long, String, 
          String)] =>
         buffer should equal(expectedOutput)
      }
      .run
  }
}

The preceding code serves great as a documentation of the algorithm and validates 
the complete implementation of the job, including the following:

•	 The definition of the input path and format
•	 The end-to-end data transformation
•	 The output locations and format

Internally, the JobTest class performs the execution of the Scalding job in a 
controlled environment, in which tests replace the input taps with their in-memory 
versions and feed in the job, mock test data. The output taps are also replaced with 
in-memory sinks in which it is possible to execute assertions on the generated data. 
As a result, integration testing forces the tester to deal with the whole job.
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Implementing unit tests
To perform proper unit testing, we will use the external operations design pattern. 
Following the test-driven approach, we will not provide the full implementation in 
our operations trait, as shown:

trait ExampleOperations { 
  import Dsl._
  def self: Pipe
  def addDayColumn : Pipe = pipe
  def countUserEventsPerDay : Pipe = pipe
  def addUserInfo(userData: Pipe) : Pipe = pipe
}

Next, we will start using the ScaldingUnit framework that has been accepted  
in Scalding since Version 0.9.1 as com.twitter.scalding.bdd.

ScaldingUnit has been developed and committed by the authors of this 
chapter, and should be used in Version 0.8.11 of Scalding, or earlier. 
Project files are provided at https://github.com/scalding-io/
ScaldingUnit.

Having extracted the operations into an external class not extending Job, we are able 
to test every single step independently, ignoring all the logic related to the definition 
of the source, sink types, and paths. We can precede implementing one unit test for 
each external operation, starting with logsAddDayColumn, as shown:

class ExampleOperationsUnitTests extends FlatSpec with Matchers with 
BddDsl {
  import ExampleSchema._
  import ExampleWrapper._
  
  "Unit-Test: The example Job" should "add column with day" in {
    Given {
      List(("12/07/2014 10:22:11", 1000002L,
        "http://www.youtube.com")) withSchema LOG_SCHEMA
    } When {
      pipe:Pipe => pipe.logsAddDayColumn
    } Then {
      buffer: mutable.Buffer[(String, Long, String, String)] =>
        buffer.toList(0) should equal (("12/07/2014 10:22:11", 
1000002L, "http://www.youtube.com", "2014/07/12"))
    }
  }
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The preceding unit test defines the expected behavior of the operation and asserts the 
correctness of the output. We can continue implementing a unit test for the external 
operation logsJoinWithUsers, as shown in the following code:

  it should "add user info" in {
    Given {
      List(("2014/07/01", 1000002L, 1L)) withSchema 
        LOGS_DAILY_VISITS
    } And {
      List((1000002L, "stefano@email.com", "10 Downing St. 
        London")) withSchema USER_SCHEMA
    } When {
      (logs: Pipe, users: Pipe) => logs.logsJoinWithUsers(users)
    } Then {
      buffer: mutable.Buffer[(String,Long,Long,String,String)] =>
      buffer.toList should equal (List(("2014/07/01", 1000002L,
        1L, "stefano@email.com", "10 Downing St. London")))
    }
  }

Another unit test for the operation logsCountVisits is shown in the following code:

  it should "count visits per day" in {
    Given {
      List(
        ("2014/07/01", 1000002L, "http://youtube.com"),
        ("2014/07/01", 1000003L, "http://twitter.com"),
        ("2014/07/01", 1000002L, "http://google.com"),
        ("2014/07/01", 1000002L, "http://facebook.com")
      ) withSchema ('day, 'user, 'url)

    } When {
      pipe: Pipe => pipe.logsCountVisits
    } Then {
      buffer: mutable.Buffer[(String, Long, Long)] =>
        buffer.toSet should equal (Set(
          ("2014/07/01", 1000002L, 3L),
          ("2014/07/01", 1000003L, 1L)
        ))
    }
  }
}

The preceding unit tests independently test all the external operations. The benefits 
of unit testing modular code are more evident when applied to more complex 
Scalding applications.
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Implementing the MapReduce logic
Following the test-driven methodology, at this point we compile and execute  
the integration and unit tests only to see them failing:

chapter6 $ mvn test

Using the maven plugins scalatest-maven-plugin and maven-surefire-plugin, 
we can execute both integration and unit tests easily with maven.

We now need to provide the complete implementation of the external operations,  
as shown in the following code:

val fmt = org.joda.time.format.DateTimeFormat
  .forPattern("dd/MM/yyyy HH:mm:ss")

def logsAddDayColumn : Pipe = pipe
  .map('datetime -> 'day) { date: String =>
    fmt.parseDateTime(date).toString("yyyy/MM/dd")
  }
  
def logsCountVisits : Pipe = pipe
    .groupBy(('day, 'user)) { _.size('visits) }

def logsJoinWithUsers(userData: Pipe) : Pipe = pipe
    .joinWithLarger('user -> 'user, userData)
    .project(LOG_DAILY_WITH_ADDRESS) 

Completing the preceding implementation and re-executing the unit and integration 
tests asserts the correctness of our code.

Defining and performing system tests
We implemented unit and functional tests using small amounts of predefined data 
samples. Now, it's time to execute the same Scalding application on the Hadoop 
cluster to work with a few GB of data.

Huge amounts of data can smoke test and reveal blockage points in our MapReduce 
applications. Operations such as toList and mkString may result in heap space 
error if misused, and only massive data can ensure that we have tested the 
application completely.

If the application runs successfully, we can start evaluating the performance. 
Sometimes, making a simple change, such as adding a unique operation before  
a join, can result in major performance gains. So, here is the opportunity to  
enhance performance.
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Black box testing
During test-driven development, we retain an internal perspective of the system.  
We identify all possible paths and exercise them through test case inputs to validate 
the expected output. However, using only valid input is not sufficient, especially 
when implementing MapReduce applications that execute against possibly billions 
of lines of data. As we cannot generate all possible cases of invalid input, we look  
at techniques that increase the data coverage of tests.

Taking a step back, the development lifecycle begins with data exploration  
followed by the algorithm design. Having a data scientist performing these tasks in 
a non-scalable development language such as R or Python is the basis of black box 
testing. Data scientists use multiple tools to extract meaning, insights, and ultimately, 
value from data. These tools provide powerful capabilities and rich visualizations 
that enable them to quickly conclude into mathematical models. The drawback is 
that the resulting implementation is not scalable.

We can easily generate a sample dataset in Scalding with the following code:

class ExampleJob(args: Args) extends Job(args) {
  val visitsPerDay = Tsv(args("input"), LOG_SCHEMA).read
   .sample(0.001)
   .write(Tsv(args("sample-input"), LOG_SCHEMA)) 
}

Running the preceding job generates a new logfile that consists of 0.1 percent of the 
original dataset. We can use this sample data against both our Scalding application 
and the Python implementation, and assert that both produce the same result:

Assert output matches

DATA SAMPLE DATA
OUTPUT 1

OUTPUT 2

R/Python

Scalding

The sample(0.001) operation generates a different sample every time, and we can 
re-execute the black box testing job to increase our data coverage.

Another benefit of black box testing is that a data scientist validates the outcome  
of a developer while the developer validates the assumptions and the correctness  
of the implementation of the data scientist at the same time.
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Summary
In this chapter, we presented the development life cycle that follows the  
test-driven strategy. We went through the process of defining acceptance tests,  
and we implemented and executed integration and unit tests. Then we presented, 
ideas on using black box testing to increase our data coverage.

By testing every layer of the application, the number of bugs is reduced, 
maintainability enhances, and productivity increases. Scalding offers remarkable 
testing capabilities, satisfying all the requirements to build robust and complex 
MapReduce applications.

In the following chapter, we will discuss how to run our jobs on a production  
cluster and how to configure, monitor, and optimize them.





Running Scalding  
in Production

We now know how to implement complex pipelines, use appropriate design 
patterns, and test our Scalding data processing applications in multiple layers.  
In this chapter, we will look at how to productionize a job, and more specifically,  
we will see how to:

•	 Deploy, execute, and schedule
•	 Coordinate task execution
•	 Configure using property files and Hadoop parameters
•	 Monitor and optimize

Executing Scalding in a Hadoop cluster
Deploying an application requires using a build tool to package our application 
into a jar file and copying it to a client node of the Hadoop cluster. The process 
of execution is straightforward and is very similar to submitting any JAR file for 
execution on a Hadoop cluster, as shown in the following command:

$ hadoop jar myjar.jar com.twitter.scalding.Tool mypackage.MyJob 
 –-hdfs –-input /data/set1/ --output /output/res1/

The submitted job has the same permissions in HDFS as the user that submitted  
the job. If the read and write permissions are satisfied, it will process the input  
and store the resulting data.
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Scalding applications, when storing in HDFS, write data to the 
output folder defined in a sink in our job. Any existing content 
on that folder is purged every time a job begins its execution.

Internally, the JAR file is submitted to the JobTracker service that orchestrates  
the execution of the map and reduce phases. The actual tasks are executed in  
the TaskTrackers, as shown in the following diagram:

Client

JobTracker

TaskTracker

Map

Reduce

TaskTracker

Map

Reduce

TaskTracker

Map

Reduce

TaskTracker

Map

Reduce

Scheduling execution
Data processing applications usually run frequently. Some run once a day and others 
run every few hours or minutes. The following is a list of some tools that can be used 
for job scheduling:

•	 Cron: The time-based job scheduler in Unix-like operating systems. It is  
not a very sophisticated tool but suffices for scheduling few jobs.

•	 Jenkins: The continuous integration tool that offers scheduling via a  
cron-like mechanism. It also preserves the history and messages, can send 
e-mail notifications, and use version control. It is capable of scheduling 
thousands of job executions per day.

•	 Oozie: The official workflow scheduling system to manage Apache Hadoop 
jobs. It is a scalable, reliable, and extensible system, and it is built specifically 
to allow workflow scheduling. The downside is that it is based on XML 
configuration files that can easily grow in size and complexity.
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•	 Azkaban: The batch workflow job scheduler created at LinkedIn to run 
Hadoop jobs. It solves the problem of ordering job dependencies and provides 
an easy-to-use web user interface to maintain and track the workflows.

Each scheduling solution offers different capabilities. The easiest tool to use for a few 
executions is cron. Jenkins is another tool that most developers are already familiar 
with. Oozie is the tool best integrated into Hadoop. Azkaban overall provides very 
good visibility over workflows.

When using a script-based approach for scheduling, a good tip is to trap errors. Exit 
code statuses are not propagated in scripts by default. This means that if a script fails 
to execute commands, but the very last command succeeds, the script will return 
success as an exit status. Add the following trap function at the beginning of a script 
to capture all errors:

# Configure bash behavior
set -o pipefail         # Trace errors through pipes 
set -o errtrace         # Trace ERR through 'time command'

error() {     
  JOB="$0"              # job name     
  LASTLINE="$1"         # line of error occurrence     
  LASTERR="$2"          # error code     
  echo "ERROR in ${JOB}:line ${LASTLINE} - exit code ${LASTERR}"     
  exit 1 
} 
trap 'error ${LINENO} ${$?}' ERR
# hadoop jar ... 

Coordinating job execution
A lot of times, we need to coordinate the execution of Scalding jobs and even mix 
them with other applications. For example, let us assume that we have implemented 
two Scalding jobs and one Scala application, as shown:

class JobA (args: Args) extends Job (args) { /*pipeline*/ }
class JobB (args: Args) extends Job (args) { /*pipeline*/ }
object ScalaApp extends App { /*Application logic*/ }

To ensure that we execute the preceding tasks in a predefined order, we can 
implement a runner class. A runner class implemented in Scala should extend App  
in order to work in the imperative programming style. This means that commands 
are executed synchronously and sequentially.
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We can use this to our advantage and coordinate the execution of MapReduce tasks, 
other applications, and even external system commands, such as shown in the 
following example code:

object ExampleRunner extends App {

  val runnerArgs = Args(args)
  val configuration = new org.apache.hadoop.conf.Configuration

  // Executing a [Scalding] Job - A
  ToolRunner.run(configuration, new Tool,
    (classOf[JobA].getName :: runnerArgs.toList).toArray )

  // Executing a [Scala] application
  ScalaApp.main(null)

  // Executing external system command
  import sys.process._
  "ls -la" !

  // Executing [Scalding] Job - B
  ToolRunner.run(configuration, new Tool,
    (classOf[JobB].getName :: runnerArgs.toList).toArray )

} 

To execute the JAR file that contains the preceding code and all the dependencies in 
Hadoop mode and in order to parallelize the execution of the MapReduce tasks, we 
execute the following command:

$ hadoop jar jar-with-dependencies.jar ExampleRunner --hdfs

Configuring using a property file
To read configuration data from a property file, we can use the configuration library 
for JVM languages from typesafe. This is mostly a Scala feature, but an interesting 
example is running Scalding applications in two different clusters.

While during developing and testing, we execute our Scalding application in a 
development cluster, when the jobs are production ready, they are executed in a 
powerful production Hadoop cluster.
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In this case, each cluster will have different configuration requirements. To solve  
this issue, first define two property files as shown:

  dev-cluster.properties

  production-cluster.properties

Each file contains environment and job configuration information. For example,  
the file dev-cluster.properties can contain the following:

  mysql=dev.mysql.company.com

  zookeeper=dev.zookeeper.company.com:2181

  reducers=30

The best way to implement this capability (keeping in mind the single responsibility 
principle) is in a different class called JobBase. In this class, we can inject the 
capability and extend the com.twitter.scalding.Job class, as is shown in the 
following code:

class JobBase(args: Args) extends Job(args) {

val appConfig = com.typesafe.config.ConfigFactory.parseFile(new java.
io.File(getString("cluster-config")))

  def getString(key: String): String = {
    args.m.get(key) match {
      case Some(v) => v.head
      case None => sys.error(f"Argument [$key%s] - NOT FOUND")
    }
  }
}

Scalding applications that need the capability to read configuration values  
from property files can now extend JobBase instead of Job:

class ExampleJob(args: Args) extends JobBase (args) {
  
   println("MySQL    : " + appConfig.getString("mysql"))
   println("ZooKeeper: " + appConfig.getString("zookeeper"))
   // val pipe = ...
}

We can now pass the path through a property file using a parameter at  
execution time:

$ hadoop jar chapter7.jar com.twitter.scalding.Tool 
externalconfiguration.ExampleJob --hdfs –-cluster-config dev-cluster.
properties
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Configuring using Hadoop parameters
There are many Hadoop configuration parameters that can be tuned at job execution. 
A set of default values is assigned at execution time, based on Hadoop configuration 
files. We can, however, overwrite the default values.

We can, for example, set the amount of memory allocated to each map and reduce 
the task of that job as well as the default number of reduce tasks per job. Note that  
all Hadoop parameters have to be added right after com.twitter.scalding.Tool, 
as in the following example:

$ hadoop jar myjar.jar com.twitter.scalding.Tool \

 -D mapred.child.java.opts=-Xmx2048m \

 -D mapred.reduce.tasks=20 \

 com.company.myclass \

 --hdfs --input $input --output $output 

Perform a search on the web for map reduce client default values to find out more 
information about the available Hadoop parameters that can be used.

Monitoring Scalding jobs
A web application that helps us visualize the operational details around all phases of 
our Scalding applications such as application development, debugging, performance 
tuning, and operator monitoring is Driven. This application is developed by 
Concurrent, the same company that developed and open sourced Cascading.

Driven (http://driven.cascading.io/) is a free cloud service that receives and 
visualizes telemetry data from running Scalding applications.

To enable this, we need to include the following plugin:

<dependency>
  <groupId>driven</groupId>
  <artifactId>driven-plugin</artifactId>
  <version>1.0-eap-59</version>
  <classifier>io</classifier>
</dependency>

Then, create a new account and receive an appropriate API key that can be defined 
as a system variable, as shown:

$ export DRIVEN_API_KEY=D991A15E7A174E098900CDEE4F3A3CA6

$ hadoop jar ...



Chapter 7

[ 97 ]

Driven provides both high-level and low-level representations of our Scalding data 
processing applications.

Executing the example presented in Chapter 4, Intermediate Examples, we can see in 
the web interface of Driven how long the job took to complete and also the physical 
view of our job:

We can also drill down into our job to discover the MapReduce phases that the job 
was converted into, the number of tasks, and the time spent. We discover that the job 
for processing 5 GB of input data is executed as follows:

Map phase | Reduce phase | Map phase  | Reduce phase

 39 tasks |  222 tasks   | 222 tasks  |  222 tasks

 50 sec   |   24 sec     |  20 sec    |   26 sec 

If we review the job execution, the first map phase is optimized. 39 map tasks are 
exactly the number of tasks required to read a file of 5000 MB (recall that each block 
is 128 MB, and 39 times 128 equals 5000).

The second and third phases of the job can be improved. 222 tasks for the reduce 
and map phases means that each task will process approximately 22.5 MB (5000 MB 
divided by 222 equals 22.5). Setting that number to 100 tasks would not degrade 
performance and would use fewer resources from the Hadoop cluster.
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The fourth phase of our job is the least optimized. If we recall the code, the final 
group operation was group.sum[Int]('points). This means that the resulting 
output will be minimal. Indeed, if we check in HDFS after executing the job, we  
will discover that the 222 reduce tasks generate 222 part files part-00000 and  
part-00001 ... part-00221, and the size of each output file will be just 201 KB.

This final phase can optimally be executed in a single reduce task that stores all  
the results in a single 43 MB file.

HDFS prefers few and large files. The service NameNode keeps the 
directory and file tree in-memory. This makes it difficult to scale HDFS 
beyond a few tens of millions of blocks/files.

This optimization can be done by using the reducers group operation, as shown:

group => group.sortBy('epoch).reverse.reducers(100)
group => group.sum[Int]('points).reducers(1)

Using slim JAR files
The majority of articles and tutorials recommend developers to package all the 
dependencies and the application code into a single JAR file. This is known as  
the fat jar approach and can be achieved using maven or sbt.

A build tool can generate the JAR file with a single command, such as mvn package, 
once we have all the appropriate plugins, such as maven-assembly-plugin, in place.

This process is awesome, until we have to deal with the compiler or the deployment 
process more than once a day. Assembling a single distributable archive takes time. 
The plugin needs to iterate through all the project dependencies, uncompressing 
every single dependency and aggregating the project output along with its 
dependencies, modules, and other files.

Scalding applications depend on Hadoop libraries, the Scala library, Cascading 
libraries, and other utility libraries. The dependency hierarchy means that the 
resulting JAR files occupy between 60 MB and 100 MB, depending on the amount  
of libraries used. So, there is an extra overhead of storing or transferring it over  
the network.
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A solution to this problem is to generate slim jar files with a size of just a few KBs.  
To achieve this, we need to set the dependencies in the following two places:

•	 In HADOOP_CLASSPATH at execution time
•	 In the classpath of each map and reduce task

Our first task will be to use the plugin maven-dependency-plugin to copy all 
dependency libraries in a specific folder. Provided we store all the dependencies  
in the libs folder, we can easily set the HADOOP_CLASSPATH environment variable  
at execution time, as shown:

$ SLIMJAR=target/chapter7-0.jar

$ for f in libs/*.jar; do CP=$CP:$f; done

$ export HADOOP_CLASSPATH=$SLIMJAR;$CP

The next task is to put all the external dependencies into an HDFS folder, as follows:

$ hadoop fs –mkdir –p /project1/libs/

$ hadoop fs –put libs/* /project1/libs/

$ hadoop fs –put $SLIMJAR /project1/libs/

Then, we can execute the slim (23 KB) JAR file with the following:

$ hadoop jar $SLIMJAR slimjar.JobRunner slimjar.ExampleJob --hdfs 
--heapInc --libjars project1/libs/

In the preceding command, we use the JobRunner class to initiate the job. This  
class looks for the parameter --libjars. If it exists, it loads all the *.jar files  
located at the HDFS folder specified in that parameter into the distributed cache  
and the job configuration.

This is achieved with the following code block, in the JobLibLoader class:

JobLibLoader.loadJars(hadoopPath, conf)
conf.addResource(hadoopPath)

JobLibLoader reads the dependencies at execution time. What is interesting about 
this technique is that although the dependency files need to be both in the local 
filesystem and in HDFS, they change much less frequently than our own code.

Find the complete project code, including JobLibLoader, at  
http://github.com/scalding-io/ProgrammingWithScalding.
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Scalding execution throttling
Scalding execution throttling is a Hadoop-specific trick. It makes sense to highlight  
it here as we may read billions of rows of data when running Scalding applications 
in production.

For resource management, Hadoop offers a number of schedulers. Each cluster has a 
specific capacity, for example 600 simultaneous map tasks and 300 reduce tasks. The 
most common scheduler used in Hadoop is the Fair Scheduler. It attempts to assign 
resources to jobs so that in average they get an equal amount of resources.

There are occasions, however, when we will want to protect some resources for 
business critical jobs, or we will want to throttle some job. Sometimes, we may need 
to limit resources to newer members of the team, or limit resources on a new beta 
release of an application.

For this, we can access the JobTracker using ssh and add a new pool in the file  
fair-scheduler.xml, as shown in the following code:

<pool name="staging_pool">

  <maxMaps>50</maxMaps>

  <maxReduces>50</maxReduces>

</pool>

The allocation file is reloaded periodically at runtime, allowing us to change pool 
settings without restarting any Hadoop service. We can verify the existence of a new 
pool called staging-pool with maximum allocation of resources at JobTracker. For 
more information, check http://localhost:50030/scheduler.

To allocate a job to the new pool, we use the following Hadoop parameter  
at execution time:

-Dmapred.fairscheduler.pool=staging-pool
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Summary
In this chapter, executing and scheduling jobs were presented. As our data processing 
workflows can depend on a number of applications, we showed how to chain 
together and coordinate the execution of a number of tasks. Then, we proceeded with 
configuring our jobs using both property files and Hadoop parameters.

Monitoring and optimizing our job execution was also presented. Finally, two more 
techniques we presented about using slim jars were to optimize the deployment 
process and how to throttle job execution.

In the next chapter, we will see how to use external data sources to read data from 
and store data to.





Using External Data Stores
By now, we have presented how to run MapReduce applications on data present in 
files and how to use external services to enhance data.

On top of this, Scalding offers a rich set of capabilities regarding interaction with 
external systems. In this chapter, we will present:

•	 How to read and write in SQL databases
•	 How to read and write in NoSQL databases
•	 Using search and analytics engines

Interacting with external systems
Scalding allows us to build rich pipelines that read data from one or more sources, 
perform data transformations, and store results into one or more sinks. The sources 
and the sinks are called taps.

With Scalding, we can tap into the HDFS filesystem. A characteristic of HDFS is that 
it does not allow appending to files. Once a file is closed, it is immutable and can 
only be changed by writing a new copy with a different filename. This style of file 
access fits nicely with MapReduce and batch processing jobs.
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There are, however, use cases where data changes very frequently, or fast response 
times are required for real-time applications. The use cases fit nicely with in-memory 
systems. Fortunately, Scalding can tap to multiple external data stores, and thus, 
elaborate pipelines can be achieved:

Scalding supports interaction with SQL, NoSQL, and in-memory systems either 
through external libraries or by using wrappers over Cascading libraries. Moreover, 
with Scalding, external data stores can be used both to read and write data.  
This chapter presents thorough examples of how this can be achieved.

SQL databases
It is a common scenario for a Scalding job to process files from HDFS and join them 
with data fetched from a SQL database. Similarly, we will often have to implement a 
MapReduce job that writes some results into a SQL database.

For SQL, and in the context of MapReduce, we are interested to have support for  
all access patterns, many SQL dialects, and also batch capabilities. Batching is  
the technique of aggregating multiple, possibly hundreds of SQL statements  
and executing them as a single batch command into the database system.

The latter is very important as a MapReduce application can easily scale to hundreds 
of Java virtual machines, running the map and reduce tasks. Having hundreds of 
nodes trying to communicate with a database system at the same time can stress the 
system to its limits.
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In SQL, the available access patterns are as follows:

•	 SELECT: This is used to select data from a database and add them into a pipe
•	 INSERT: This is used to insert new records from a pipe into a database
•	 UPDATE: This is used to update existing records in a database with  

new values
•	 UPSERT: This is used to INSERT new records or UPDATE existing records
•	 DELETE: This is used to delete existing records from a database

Several SQL dialects are used by proprietary and open source database systems.  
They mostly adhere to the SQL standard, but there is some misalignment on 
commands that are useful while splitting data, such as LIMIT and OFFSET.

Fortunately, multiple JDBC (Java Database Connectivity) tap implementations exist. 
Cascading, since Version 2.2, announced that moving forward they will curate all the 
integrations into a single project called cascading-jdbc at https://github.com/
Cascading/cascading-jdbc/.

This library currently supports six database systems: H2, Derby, Oracle, MySQL, 
PostgreSQL, and Amazon Redshift. The project is modular, and adding support 
for more databases is possible by following instructions found in the provided 
documentation.

To use cascading-jdbc in Scalding, we need to include the appropriate library  
and a Scalding wrapper into our dependency tool. For example, use the following  
in Maven:

<dependency>
  <groupId>cascading</groupId>
  <artifactId>cascading-jdbc-mysql</artifactId>     
  <version>2.5.1</version>
</dependency>
<dependency>
  <groupId>com.twitter</groupId>
  <artifactId>scalding-jdbc_2.10</artifactId>
  <version>0.10.0</version>
</dependency>
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To connect a Scalding pipe with a database, we can use the JDBCSource wrapper  
and specify an object with connectivity details:

case object MySQLTableTap extends JDBCSource {
  override val tableName = "tableName"
  override val columns = List(
    varchar("user", 16),
    date("time"),
    varchar("activity",256),
    smallint("code")
  )

  val connectUrl = "jdbc:mysql://localhost:3306/testdb"
  val dbuser = "user"
  val dbpass = "password"
  val adapter= "mysql"
  override def currentConfig = ConnectionSpec (connectUrl, dbuser,
      dbpass, adapter)
}

To use this new MySQLTableTap, we need a pipe with a schema similar to the SQL 
table that we want to read from or write to. For every column in the table, the 
relevant field should exist in the pipe. We can use the tap to write to the database 
table with the following code:

val schema = List('user, 'time, 'activity, 'code)
pipe
  .project(schema)
  .write(MySQLTableTap)

Similarly, we can read from the database table with the following code:

val read_mysql = MySQLTableTap
  .read
  .write(Tsv("jdbc-output"))

By default, the JDBCSource batches up to 1000 requests before contacting the 
database to minimize the overhead to the external system.

NoSQL databases
Another common scenario is to read, insert, or update existing data in a NoSQL 
database. Such systems are usually used to drive real-time applications such as an 
Analytics platform, or store and provide traversal capabilities to a graph database.
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Fortunately, a lot of taps are available, and Cascading provides a number of 
extensions for popular NoSQL databases such as MongoDB, Cassandra,  
ElaphantDB, and HBase. A brief introduction to these NoSQL systems follows:

•	 MongoDB: This is a document-oriented database that uses JSON-like 
documents with dynamic schemas and is the most popular NoSQL database.

•	 Cassandra: This is a highly distributed database capable of spanning 
over multiple data centers that aims to provide low latency for real-time 
applications. It uses a flat hierarchy across nodes architecture and is not 
dependent on Hadoop applications or HDFS.

•	 ElephantDB: This is a distributed database specializing in exporting  
key-value data from Hadoop. The library elephantdb-cascading  
allows interacting with this data store from Cascading workflows.

•	 HBase: This is a distributed, versioned, and non-relational database modeled 
after Google's Bigtable. It builds directly on top of the capabilities of Hadoop 
and HDFS.

Each NoSQL database provides unique features related to sharding, indexing, 
sorting, and internal data representation. Scalding interoperation with NoSQL 
databases is continuously improving, as integration with MapReduce pipelines is 
becoming a highly desirable feature. In the following section of the book, we will 
first present the specifics of HBase, and then show how to use Scalding to interact 
with this distributed database.

Understanding HBase
HBase is the Hadoop database. It is a platform to store and retrieve data with 
random access, which means that we can write data as we like and read the data 
back again as we need it. It can store structured and semi-structured data similar 
to those held in a SQL database, such as the products and the customer reviews of 
an e-commerce site. It can store unstructured data too. It does not care about types 
and allows for a dynamic and flexible data model that does not constrain the kind of 
data we store. Thus, it does not mind storing one integer in one row and a string in 
another for the same column.
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Similar to Cassandra, HBase can be described as a key-value store, but for the value, 
it can have multiple columns of data. Multiple columns of data can also be grouped 
into families. Values can be stored in multiple dimensions. The default number is 
three, but we can control this as well, which means that we can retain a full history  
of values changing over time.

Reading and writing to HBase works amazingly fast when we have many nodes, 
each contributing CPU, memory to the distributed cache, and disk storage. As a 
distributed system, each node in the cluster holds different regions of data in disk  
and in memory. HBase utilizes caching to preserve most frequently requested  
items in cache.

Internally, data is sorted based on the key, and the design of the row-key is of 
upmost importance. So, data in HBase is sorted lexicographically based on the  
row-key. The point is that monotonically increasing values are bad. When saving 
entities to HBase at a high write rate, we must avoid using monotonically increasing 
keys as they will hit the same nodes in our cluster continuously due to how data is 
split into shards.

Reading from HBase
In this section, we will present the Scalding library for HBase with advanced 
features. Visit https://github.com/ParallelAI/SpyGlass for more information.

SpyGlass can easily read data from HBase when we know exactly which keys we are 
interested in. To do this, we need to define a new tap and specify the following:

•	 Which table to read from
•	 How to communicate with zookeeper, the service that knows how the database 

is distributed over the cluster
•	 In which Scalding field to store the row-key
•	 Which column families to read
•	 Which columns of the preceding families to read
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•	 The operation to be performed is a GET request
•	 How many versions of each value to read
•	 Which keys are we interested in

Once we know what we need to read, structuring an HBaseSource is 
straightforward, as shown in the following code:

val hbaseSource = new HBaseSource(
   "table_name",     
   "zookeeper.quorum.ip:2181",     
   'key,     
    Array("column_families"),
    Array('column_names),     
    sourceMode = SourceMode.GET_LIST,     
    versions = 5,      
    keyList = List("5003914", "5000687", "5004897"))

In the preceding example, the five most recent versions of the values stored in the 
specific column families and columns are retrieved for the three keys specified.  
In a real-world scenario, we can use a single tap to read up to a few hundred 
thousand values.

HBase stores data internally using an ImmutableBytesWritable format. However, 
we want data to flow as strings or other objects inside our Scalding pipes. To convert 
to such a format when reading data, we can use the fromBytesWritable(schema) 
command to automatically translate data into plain strings. Similarly, before writing 
into HBase, we can use the toBytesWritable(schema) command to translate all the 
current data in the pipe into the HBase format.

So, in order to read data from HBaseSource into a Scalding pipe, we can use the 
following code:

val schema = List('key, 'column1, 'column2)
val pipe = hbaseSource.read.fromBytesWritable(schema)

HBase lacks query commands of any kind. However, it effectively provides the 
capability to scan. We can scan the data from a particular key up to another key,  
and apply a filter to retrieve only the relevant records.

val hbaseSink = new HBaseSource(
   "table_name",     
   "zookeeper.quorum.ip:2181",     
   'key,     
    Array("column_families"),
    Array('column_names),     
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    sourceMode = SourceMode.SCAN_RANGE,
    startKey = "5003914",
    stopKey = "5010000")
  .read
  .fromBytesWritable(schema)
  .filter('action) { x:String => x="login" }
  .write(Tsv("results")))

Writing in HBase
SpyGlass can be used to write new data or update existing data in HBase. Versions 
in the database tables are nothing more than values associated with a timestamp.  
The most recent timestamp is also the most recent version. This is a handy feature 
when building a system for ad-targeting. We can store data on a daily basis but  
also retain older versions. To specify the version, use the timestamp parameter.  
If this parameter is not present, then the current time is used by default.

Val schema = List('rowkey,'artistname,'country)
val hbaseSink = new HBaseSource(
   "table_name",     
   "zookeeper.quorum.ip:2181",     
   'key,     
    schema.tail.map((x: Symbol) => "data").toArray,     
    schema.tail.map((x: Symbol) => new Fields(x.name)).toArray,
    )
pipe
  .toBytesWritable(schema)
  .write(hbaseSink)

The byte transformation capabilities are provided in a trait called 
HBasePipeConversions that we need to inherit into the job:

class HBaseJob (args: Args)  extends Job(args) 
  with HBasePipeConversions { /* scalding code */ }
}

Using advanced HBase features
SpyGlass provides more HBase-specific capabilities, which are as follows:

•	 Deleting from HBase by specifying a list of row-keys to be deleted. This is 
achieved using the SinkMode.REPLACE mode that deletes all rows, including 
all versions.
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•	 Preventing the common problem of region hot spotting with HBase by 
providing a simple and configurable hashing capability.

•	 Scanning capabilities on hashed row-keys. When using hashing, row-keys 
are distributed equally in a cluster, achieving maximum performance. 
However, the distribution makes it difficult to perform sequential scans.  
This problem is solved with the SplitType.REGIONAL mode.

Detailed examples can be found at https://github.com/ParallelAI/SpyGlass.

Search platforms
The Apache Lucene library provides Java-based indexing and search technology 
as well as spellchecking, hit highlighting, advanced analysis, and tokenization 
capabilities. There are two popular open source projects that use this library and 
provide a distributed platform with replication and caching capabilities.

Solr has been an Apache open source project since 2006, and thus, it has been used 
by many enterprises and has grown and improved as a project. ElasticSearch was 
released a few years later, and it was designed since the beginning to be distributed 
and easy-to-scale out to handle massive amounts of data.

As distributed systems, they both fit nicely in the Hadoop environment. Nodes that 
participate in the cluster can run both the Hadoop applications—an HBase database 
and a search platform.

As high memory nodes are usually in place, we can allocate enough memory to  
each system. Then, depending on the job running, we can utilize the processing  
and caching capabilities of the hardware as much as possible.

Elastic search
Elasticsearch is a powerful search and analytics engine that makes data easy to 
explore. Integration with Hadoop with support for MapReduce, Cascading, Hive, 
and Pig is provided through the library elasticsearch-hadoop available at 
https://github.com/elasticsearch/elasticsearch-hadoop.

We will implement a Scalding wrapper for elastic search as an exercise. To 
implement ElasticSearchTap that can read and write to elastic search, we need  
to create a class that extends the Source class and overrides the method createTap, 
as shown in the following code:

case class ElasticSearchTap (
   esHost : String,
   esPort : Int,
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   esResource : String, 
   esQuery : String,
   esFields : Fields)
  extends Source {

  def createTap: Tap[_, _, _] =
    new EsTap(esHost, esPort, esResource,esQuery,esFields)

  override def createTap(readOrWrite: AccessMode)
    (implicit mode: Mode): Tap[_, _, _] = {
    mode match {
      case Local(_) | Hdfs(_, _) => { createTap }
    }
  }
}

The preceding code is a working tap to read and write to elastic search. To use it, 
we need to define the host and the port that the elastic search server is listening to, 
and also define the resource, that is, the index and the type that we need to access. 
Finally, we have to define the fields we are interested in.

Writing to an elastic search server from Scalding is as simple as shown in the 
following code:

val schema = List('number, 'product, 'description)
val pipe = Tsv(arg("input"),schema).read
.write(ElasticSearchTap("localhost",9200,"index/data","",schema))

From the elastic search, we can read either the whole index or the part of it specified 
by a particular query as shown:

val query = "number:(>=10 AND < 20)"
val readDataFromElasticSearch =
  ElasticSearchTap("localhost", 9200, "index/data", query)
  .read
  .write(Tsv("results"))

A more advanced elastic search tap is available at https://github.com/scalding-
io/scalding-taps.
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Summary
In Big Data, the HDFS filesystem solves the storage and distribution of data on 
multiple nodes. MapReduce solves the problem of distributing execution and takes 
advantage of data locality. NoSQL databases solve the problem of driving real-time 
applications and storing frequently updated data efficiently. Some NoSQL databases 
by design, however, do not provide the commonly requested feature of querying the 
data. Distributed search platforms provide this capability.

As presented, Scalding is capable of taping into multiple systems. The ubiquity and 
expressiveness of the language make it a valid technology for completing tasks such 
as transferring data between SQL, NoSQL, or search systems. Given that the taps are 
also testable components, there are practically unlimited use cases where Scalding 
can be used to integrate various distributed systems.

In the next chapter, we will look at some advanced statistical calculations  
using matrix calculations, and we will see how Scalding can be used in  
machine learning applications.





Matrix Calculations and 
Machine Learning

In this chapter, we will look at matrix calculations and machine learning. The main 
differences between data processing applications, is that this chapter focuses on 
matrix and set algebra.

Machine learning requires understanding of the basic vector and matrix 
representations and operations. A vector is a list (or a tuple) of elements, and a 
matrix is a rectangular array of elements. The transpose of matrix A is a matrix  
that is formed by turning all the rows of a given matrix into columns.

We will use the above principles and present how Scalding can be utilized to 
implement concrete examples, including the following:

•	 Text similarity using term frequency/inverse document frequency
•	 Set-based similarity using the Jaccard coefficient
•	 Clustering algorithm using K-Means

Text similarity using TF-IDF
Term Frequency/Inverse Document Frequency (TF-IDF) is a simple ranking 
algorithm useful when working with text. Search engines, text classification, text 
summarization, and other applications rely on sophisticated models of TF-IDF. The 
algorithm is based on term frequency (the number of times the term t occurs in 
document d) and document frequency (the number of documents in which the term 
t occurs). Inverse document frequency is the log of the total number of documents,  
N, divided by the document frequency.
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The basic idea is that common words, such as the word the, should receive a smaller 
significance compared to words that appear less frequently in documents.

We will use a collection of 62 books as an example dataset. A document consists  
of the title of the book and the actual text. For example:

In Book A (ASHPUTTEL), the word the is repeated 184 times and the word child  
two times. In Book B (Cat And Mouse In Partnership), the word the is repeated  
73 times and the word child five times. Overall, the word the exists in all 62 
documents whereas the word child exists in 27 of them.

Word TF Book A TF Book B Document Frequency Inverse DF
the 184 73 62 0
child 2 5 27 0.361

The inverse document frequency is obtained by dividing the total number of 
documents by the number of documents containing the term and then taking  
the logarithm of that quotient, as shown:

In the occasion of the term the, the idf value is 0 (because log(62/62) = 0). This means 
that the term the adds no value in characterizing a document. Thus, we can safely 
ignore it in the book's similarity algorithm.

The tf-idf variable reflects how important a word is to a document. So, the word child 
is more important to Book B and less important to Book A. It is calculated as shown:

To calculate the preceding values in Scalding, we need the following:

•	 A pipe to transform the original dataset into tuples of 'book and 'word
•	 A pipe to calculate the term frequency
•	 A pipe to calculate the inverse document frequency
•	 A pipe to calculate the tf-idf score

The complete code that performs all the required calculations including counting  
the population in the data is as follows:
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val inputSchema = List('book, 'text)
val books = Tsv("data/books.txt", inputSchema).read
  .flatMap('text -> 'word) { text:String =>
     text.toLowerCase.replaceAll("[^a-zA-Z0-9\\s]","")
         .split("\\s+").filter(_.length > 0)
  }
  .project('book, 'word)

val numberOfBooks = books.unique('book)
  .groupAll { _.size('numberOfBooks) }

val tf = books.groupBy('book, 'word) { _.size('tf) }
  .project('book, 'word, 'tf).crossWithTiny(numberOfBooks)

val df = tf.groupBy('word) { _.size('df) }

val tfidf = tf.joinWithSmaller('word -> 'word, df)
  .map(('tf, 'df) -> 'idf) { x:(Int,Int) =>
      x._1 * math.log(numberOfBooks / x._2)
  }
  .filter('tfidf) { x:Double => x > 0}
  .project('book, 'word, 'tfidf) 

The preceding statistics can now be used to compute the similarity between the 
books. Cosine similarity gives a useful measure of how similar two documents are 
likely to be in terms of the words they contain. To achieve this, we need to normalize 
the vectors and then use sparse matrix multiplication.

In statistics, normalization is the process of adjusting values measured on 
different scales to a notionally common scale. For example, transform all 
the values into a range of 0 to 1.

This can be implemented using the Matrix API as shown:

import com.twitter.scalding.mathematics.Matrix._
val booksMatrix = tfidf.toMatrix[String,String,Double
    ('book, 'word,'tfidf)
val normedMatrix = booksMatrix.rowL2Normalize
val similarities = (normedMatrix * normedMatrix.transpose)
  .filter('row, 'col) { x:(String,String) => x._1 < x._2 }
  .groupAll { group => group.sortBy('similarity).reverse }
  .write(Tsv(args("output"))
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In the preceding Scalding code, we import the matrix library in order to transform 
the existing tfidf pipe into a matrix. The matrix is then normalized, and the 
similarity is calculated as the product of the matrix with the transpose of the matrix.

The result is the similarities between all the possible pairs of books. This includes the 
calculation of the similarity between the items 1-1, 1-2, and 2-1. To deduplicate the 
results, we use the filter operation.

Finally, we group all the results and sort them in descending order, based  
on similarity.

Setting a similarity using the Jaccard 
index
Quite often, we have to work with sets of data in machine learning. Users like posts, 
buy products, listen to music, or watch movies. In this case, data is structured in the 
two columns: 'user and 'item.

In order to calculate correlations, we need to work with sets. The Jaccard similarity 
coefficient is a statistic that measures the similarity between sets. The level of 
similarity is the calculation of the size of the intersection divided by the size of  
the union of the sample sets, as shown.

For example, if two users in the dataset are related to the same two items,  
and each user is also related to a distinct item, the Jaccard similarity indicates  
the following:

•	 The similarity between item1 and item2 is 100 percent
•	 The similarity between the common and distinct items is 50 percent
•	 The similarity between two distinct items is 0 percent

To begin the implementation, we first need to calculate the item popularity,  
and then add the popularity back to the data, as shown:
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This can be implemented with the following:

val pipe1 = inputPipe.groupBy('item) { _.size('popularity) }
val pipe2 = inputPipe.joinWithSmaller('item->'item, pipe1)

Once the item popularity is added to every line, we can generate a new pipe that 
contains all possible pairs of items. The allItemPairs pipe can be generated by 
joining pipe2 with a clone of pipe2 based on 'user.

In the preceding diagram, pipe2 contains two users. The inner join based on  
'user produces the complete product of all the possible pairs: (item1-item1),  
(item1-item2), and (item2-item1). As the similarity between the same items is 100 
percent by default, and the similarity between (item1-item2) is the same as the 
similarity between (item2-item1), we can deduplicate using the filter operation,  
as shown in the following code:

val clone=pipe2.rename(('item,'popularity)->('itemB,'popularityB))
val allItemPairs = pipe2
    .joinWithSmaller('user -> 'user, clone)
    .filter('item, 'itemB) { x: (String,String) => x._1 < x._2 }
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The resulting pipe allItemPairs contains all the possible pairs of items for every 
user and the popularity of each item, as shown:

The following step requires calculating the pair popularity. This can be achieved 
with the size operation in groupBy('item, 'itemB). As the column 'user is no 
longer required, we will propagate only the popularity of each item, as shown in the 
following code:

allItemPairs.groupBy('item, 'itemB) { group => group
  .size('pairPopularity)
  .head('popularity)
  .head('popularityB)
}

The resulting pipe contains all the information required to calculate the Jaccard 
similarity, as shown:
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To calculate the final item-to-item similarity, we can use a map operation, as shown 
in the following code:

val jaccardPopularity = allItemPairs
  .map(('popularity, 'popularityB, 'pairPopularity)-> 'jaccard) {
     x:(Double, Double, Double) => {
        val item1Popularity = x._1
        val item2Popularity = x._2
        val pairPopularity = x._3

       pairPopularity / ( item1Popularity + item2Popularity 
          - pairPopularity )
     }
  }

K-Means using Mahout
K-Means is a clustering algorithm that aims to partition n observations in k clusters.

Clustering is a form of unsupervised learning that can be successfully applied  
to a wide variety of problems. The algorithm is computationally difficult, and  
the open source project Mahout provides distributed implementations of many 
machine algorithms.

Find more detailed information on K-Means at http://mahout.
apache.org/users/clustering/k-means-clustering.html.

The K-Means algorithm assigns observations to the nearest cluster. Initially, the 
algorithm is instructed how many clusters to identify. For each cluster, a random 
centroid is generated. Samples are partitioned into clusters by minimizing a measure 
between the samples and the centroids of the cluster. In a number of iterations,  
the centroids and the assignments of samples in clusters are refined.

The distance between each sample and a centroid can be measured in a number of 
ways. Euclidean is usually used for samples in numerical space, and the Cosine and 
Jaccard distances are often employed for document clustering.

To provide a meaningful example, we will consider a popular application that users 
interact in unpredictable ways. We want to identify all abnormal behavior—users 
who manipulate services instead of legitimately using them. On such occasions,  
we don't really know what to look for.

http://mahout.apache.org/users/clustering/k-means-clustering.html
http://mahout.apache.org/users/clustering/k-means-clustering.html
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The technique we will use is known as outlier detection and is based on the idea of 
generating a number of features for every user. Thinking as a data scientist, we can 
generate tens or hundreds of such features for each user, such as the number of  
sign-ins, clicks, periodicity between actions, and others.

K-Means can then be instructed to generate a single cluster. This will force the 
algorithm to calculate the center (centroid) of that single cluster. The centroid 
highlights the average and normal user behavior. Outliers (values that are  
"far away" from the cluster) are more interesting than common cases.

The implementation of the solution requires the chaining of Scalding and  
Mahout jobs.

In the following KMeansRunner application, we can perform these required steps:

1.	 Execute a Scalding ETL job that generates the user features and stores them 
into HDFS in a format that Mahout is compatible with.

2.	 Use Mahout to generate the initial centroid of the cluster.
3.	 Use Mahout to run the K-Means algorithm and calculate the centroid.
4.	 Run a Scalding job to calculate the Euclidean distance between the centroid 

and each user, and store results in descending order.

This can be implemented as follows:

object KMeansRunner extends App {

  val mArgs = Args(args)
  val configuration: Configuration = new Configuration
  
  ToolRunner.run(configuration, new Tool, 
      (classOf[ETLJob].getName :: mArgs.toList).toArray )

  RandomCentroid.main(null)

  KMeans.main(null)

  ToolRunner.run(configuration, new Tool,
    (classOf[FinalJob].getName :: mArgs.toList).toArray )
}
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The ETLJob processes logs and stores data in the Mahout vector [Text, 
VectorWritable], storing the user as text and the features as vectors. Mahout 
requires input data to be stored in sequence files so that the WritableSequenceFile 
object is used for storage. Thus, if a pipe contains a column with the users, and 
another column with the features, as a comma-separated string, we can generate  
the Mahout input with the following code:

val userFeatures=pipe.mapTo(('user,'features)->('user, 'vector)) {
  x: (String, String) =>
    val user = x._1
    val allFeatures = x._2.split(",").map(_.toDouble)

    val namedVector = new NamedVector(new DenseVector 
        (allFeatures), user)
    val vectorWritable = new VectorWritable(namedVector)
        (new Text(user), vectorWritable)
  }

  val out = WritableSequenceFile [Text, VectorWritable] 
     ("data/kmeans/mahout_vectors", 'user -> 'vector)
  userFeatures.write(out)

Then, RandomCentroid runs a Mahout job that takes the output of the previous  
job as input and generates one random centroid to initialize the next job. This is 
achieved with:

org.apache.mahout.clustering.kmeans.RandomSeedGenerator
  .buildRandom(conf,("data/kmeans/mahout_vectors",
  "data/kmeans/random_centroids", 1, new EuclideanDistanceMeasure)

Then, KMeans runs a Mahout job that uses the output of the two previous jobs and 
stores the resulting centroid to the filesystem after completing a maximum of 20 
iterations as shown in the following code:

    org.apache.mahout.clustering.kmeans.KMeansDriver.run(
      conf,
      new Path("data/kmeans/mahout_vectors"),
      new Path("data/kmeans/random_centroids"),
      new Path("data/kmeans/result_cluster"),   // OUTPUT_PATH
      0.01,  // convergence delta
      20,    // maximum number of iterations
      true,  // run clustering
      0,     // cluster classification threshold
      false) // run sequential
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Mahout is peculiar in the way it stores output. Over a number of iterations, it 
generates results into folders /clusters-0, /clusters-1 … /clusters-N-final, 
where N depends on the number of iterations.

However, FinalJob can easily access the final cluster results using the wildcard 
pattern "/*-final". Then, we can extract the vector that holds the centroid of the 
final cluster from the ClusterWritable object as shown in the following code:

val finalClusterPath = "data/kmeans/result_cluster/*-final"
val finalCluster = WritableSequenceFile [IntWritable, 
      ClusterWritable](finalClusterPath, 'clusterId -> 'cluster)

  val clusterCenter = finalCluster.read
    .map('cluster -> 'center) { 
      x: ClusterWritable => x.getValue.getCenter
    }

By crossing the above pipe with the user's pipe, we can construct a new pipe that 
holds all the dates, including users, the vector containing the features of each user, 
and the vector of the center of the cluster.

We can then calculate the distance of each user from the center of the cluster and  
sort users in descending order, with the following pipeline:

val userVectors  = WritableSequenceFile [Text,
 VectorWritable]("data/kmeans/mahout_vectors", 'user -> 'vector)
    .crossWithTiny(clusterCenter)
    .map(('center, 'vector) -> 'distance) {
      x:(DenseVector, VectorWritable) =>
        (new EuclideanDistanceMeasure()).distance(x._1, x._2.get)
    }
    .project('user, 'distance)
    .groupAll { group => group.sortBy('distance).reverse }
    .write(Tsv("data/kmeans/result-distances.tsv"))

To execute this coordinated data processing application, run the following command:

$ hadoop jar chapter9-0-all-dependencies.jar kmeans.KMeansRunner -–hdfs

Find complete project files in the code accompanying this book at 
http://github.com/scalding-io/ProgrammingWithScalding.

http://github.com/scalding-io/ProgrammingWithScalding
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Other libraries
For mining massive datasets, we can utilize the Algebird abstract algebra library for 
Scala, also open sourced by Twitter. The code was originally developed as part of the 
Scalding Matrix API. As it had broader applications in aggregation systems, such as 
Scalding and Storm, it became a separate library.

Locality Sensitivity Hashing is a technique that minimizes the data space and can 
provide an approximate similarity. It is based on the idea that items that have  
high-dimensional properties can be hashed into a smaller space but still produce 
results with high accuracy.

An implementation of the approximate Jaccard item-similarity using Locality 
Sensitive Hashing (LSH) is provided in the source code accompanying this book.

Another interesting open source project that integrates Mahout vectors into Scalding 
and provides implementations of Naive Bayes classifiers and K-Means is Ganitha, 
which can be found at https://github.com/tresata/ganitha. This library, among 
others, simplifies the interaction with Mahout vectors. Random access sparse vectors 
or dense vectors can be created with the following:

val randAccessSparseVector = RichVector(6,List((1,1.0),(3,2.0)))
val denseVector = = RichVector(Array(1.0,2.0,3.0))

Summary
Scalding provides a number of ways to implement and execute machine learning 
algorithms. As presented, we can manipulate pipes, use the Matrix API or algebird, 
and interoperate with existing libraries such as Mahout.

The majority of ML jobs originate as Big Data ETL jobs that reduce to a smaller data 
space. The final result usually needs some form of post-processing, and it is then 
stored in an external source. Scalding provides great interoperability with external 
systems, and it is thus one of the most suitable technologies to solve such problems.

https://github.com/tresata/ganitha
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