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Preface
The volume of data that enterprises acquire every day is increasing exponentially. 
It is now possible to store these vast amounts of information on low cost platforms 
such as Hadoop.

The conundrum these organizations now face is what to do with all this data and 
how to glean key insights from this data. Thus R comes into picture. R is a very 
amazing tool that makes it a snap to run advanced statistical models on data, 
translate the derived models into colorful graphs and visualizations, and do a lot 
more functions related to data science.

One key drawback of R, though, is that it is not very scalable. The core R engine  
can process and work on very limited amount of data. As Hadoop is very popular 
for Big Data processing, corresponding R with Hadoop for scalability is the next 
logical step.

This book is dedicated to R and Hadoop and the intricacies of how data analytics 
operations of R can be made scalable by using a platform as Hadoop.

With this agenda in mind, this book will cater to a wide audience including data 
scientists, statisticians, data architects, and engineers who are looking for solutions to 
process and analyze vast amounts of information using R and Hadoop.

Using R with Hadoop will provide an elastic data analytics platform that will scale 
depending on the size of the dataset to be analyzed. Experienced programmers can 
then write Map/Reduce modules in R and run it using Hadoop's parallel processing 
Map/Reduce mechanism to identify patterns in the dataset.
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Introducing R
R is an open source software package to perform statistical analysis on data. R is a 
programming language used by data scientist statisticians and others who need to 
make statistical analysis of data and glean key insights from data using mechanisms, 
such as regression, clustering, classification, and text analysis. R is registered 
under GNU (General Public License). It was developed by Ross Ihaka and Robert 
Gentleman at the University of Auckland, New Zealand, which is currently handled 
by the R Development Core Team. It can be considered as a different implementation 
of S, developed by Johan Chambers at Bell Labs. There are some important 
differences, but a lot of the code written in S can be unaltered using the R interpreter 
engine.

R provides a wide variety of statistical, machine learning (linear and nonlinear 
modeling, classic statistical tests, time-series analysis, classification, clustering) 
and graphical techniques, and is highly extensible. R has various built-in as well as 
extended functions for statistical, machine learning, and visualization tasks such as:

•	 Data extraction
•	 Data cleaning
•	 Data loading
•	 Data transformation
•	 Statistical analysis
•	 Predictive modeling
•	 Data visualization

It is one of the most popular open source statistical analysis packages available on 
the market today. It is crossplatform, has a very wide community support, and a 
large and ever-growing user community who are adding new packages every day. 
With its growing list of packages, R can now connect with other data stores, such as 
MySQL, SQLite, MongoDB, and Hadoop for data storage activities.
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Understanding features of R
Let's see different useful features of R:

•	 Effective programming language
•	 Relational database support
•	 Data analytics
•	 Data visualization
•	 Extension through the vast library of R packages

Studying the popularity of R
The graph provided from KD suggests that R is the most popular language for data 
analysis and mining:

The following graph provides details about the total number of R packages released 
by R users from 2005 to 2013. This is how we explore R users. The growth was 
exponential in 2012 and it seems that 2013 is on track to beat that.
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R allows performing Data analytics by various statistical and machine learning 
operations as follows:

•	 Regression
•	 Classification
•	 Clustering
•	 Recommendation
•	 Text mining

Introducing Big Data
Big Data has to deal with large and complex datasets that can be structured,  
semi-structured, or unstructured and will typically not fit into memory to be 
processed. They have to be processed in place, which means that computation has 
to be done where the data resides for processing. When we talk to developers, the 
people actually building Big Data systems and applications, we get a better idea 
of what they mean about 3Vs. They typically would mention the 3Vs model of Big 
Data, which are velocity, volume, and variety.

Velocity refers to the low latency, real-time speed at which the analytics need to be 
applied. A typical example of this would be to perform analytics on a continuous 
stream of data originating from a social networking site or aggregation of disparate 
sources of data.
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Volume refers to the size of the dataset. It may be in KB, MB, GB, TB, or PB based on 
the type of the application that generates or receives the data.

Variety refers to the various types of the data that can exist, for example, text, audio, 
video, and photos.

Big Data usually includes datasets with sizes. It is not possible for such systems to 
process this amount of data within the time frame mandated by the business. Big 
Data volumes are a constantly moving target, as of 2012 ranging from a few dozen 
terabytes to many petabytes of data in a single dataset. Faced with this seemingly 
insurmountable challenge, entirely new platforms are called Big Data platforms.

Getting information about popular 
organizations that hold Big Data
Some of the popular organizations that hold Big Data are as follows:

•	 Facebook: It has 40 PB of data and captures 100 TB/day
•	 Yahoo!: It has 60 PB of data
•	 Twitter: It captures 8 TB/day
•	 EBay: It has 40 PB of data and captures 50 TB/day
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How much data is considered as Big Data differs from company to company. 
Though true that one company's Big Data is another's small, there is something 
common: doesn't fit in memory, nor disk, has rapid influx of data that needs to be 
processed and would benefit from distributed software stacks. For some companies, 
10 TB of data would be considered Big Data and for others 1 PB would be Big Data. 
So only you can determine whether the data is really Big Data. It is sufficient to say 
that it would start in the low terabyte range.

Also, a question well worth asking is, as you are not capturing and retaining enough 
of your data do you think you do not have a Big Data problem now? In some 
scenarios, companies literally discard data, because there wasn't a cost effective way 
to store and process it. With platforms as Hadoop, it is possible to start capturing 
and storing all that data.

Introducing Hadoop
Apache Hadoop is an open source Java framework for processing and querying vast 
amounts of data on large clusters of commodity hardware. Hadoop is a top level 
Apache project, initiated and led by Yahoo! and Doug Cutting. It relies on an active 
community of contributors from all over the world for its success.

With a significant technology investment by Yahoo!, Apache Hadoop has become an 
enterprise-ready cloud computing technology. It is becoming the industry de facto 
framework for Big Data processing.

Hadoop changes the economics and the dynamics of large-scale computing. Its 
impact can be boiled down to four salient characteristics. Hadoop enables scalable, 
cost-effective, flexible, fault-tolerant solutions.

Exploring Hadoop features
Apache Hadoop has two main features:

•	 HDFS (Hadoop Distributed File System)
•	 MapReduce
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Studying Hadoop components
Hadoop includes an ecosystem of other products built over the core HDFS and 
MapReduce layer to enable various types of operations on the platform. A few 
popular Hadoop components are as follows:

•	 Mahout: This is an extensive library of machine learning algorithms.
•	 Pig: Pig is a high-level language (such as PERL) to analyze large datasets 

with its own language syntax for expressing data analysis programs, coupled 
with infrastructure for evaluating these programs.

•	 Hive: Hive is a data warehouse system for Hadoop that facilitates easy data 
summarization, ad hoc queries, and the analysis of large datasets stored in 
HDFS. It has its own SQL-like query language called Hive Query Language 
(HQL), which is used to issue query commands to Hadoop.

•	 HBase: HBase (Hadoop Database) is a distributed, column-oriented 
database. HBase uses HDFS for the underlying storage. It supports both 
batch style computations using MapReduce and atomic queries (random 
reads).

•	 Sqoop: Apache Sqoop is a tool designed for efficiently transferring bulk 
data between Hadoop and Structured Relational Databases. Sqoop is an 
abbreviation for (SQ)L to Had(oop).

•	 ZooKeper: ZooKeeper is a centralized service to maintain configuration 
information, naming, providing distributed synchronization, and group 
services, which are very useful for a variety of distributed systems.

•	 Ambari: A web-based tool for provisioning, managing, and monitoring 
Apache Hadoop clusters, which includes support for Hadoop HDFS, Hadoop 
MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig, and Sqoop.
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Understanding the reason for using R and 
Hadoop together
I would also say that sometimes the data resides on the HDFS (in various formats). 
Since a lot of data analysts are very productive in R, it is natural to use R to compute 
with the data stored through Hadoop-related tools.

As mentioned earlier, the strengths of R lie in its ability to analyze data using a rich 
library of packages but fall short when it comes to working on very large datasets. 
The strength of Hadoop on the other hand is to store and process very large amounts 
of data in the TB and even PB range. Such vast datasets cannot be processed in 
memory as the RAM of each machine cannot hold such large datasets. The options 
would be to run analysis on limited chunks also known as sampling or to correspond 
the analytical power of R with the storage and processing power of Hadoop and you 
arrive at an ideal solution. Such solutions can also be achieved in the cloud using 
platforms such as Amazon EMR.

What this book covers
Chapter 1, Getting Ready to Use R and Hadoop, gives an introduction as well as the 
process of installing R and Hadoop.

Chapter 2, Writing Hadoop MapReduce Programs, covers basics of Hadoop MapReduce 
and ways to execute MapReduce using Hadoop.

Chapter 3, Integrating R and Hadoop, shows deployment and running of sample 
MapReduce programs for RHadoop and RHIPE by various data handling processes.

Chapter 4, Using Hadoop Streaming with R, shows how to use Hadoop Streaming  
with R.

Chapter 5, Learning Data Analytics with R and Hadoop, introduces the Data analytics 
project life cycle by demonstrating with real-world Data analytics problems.

Chapter 6, Understanding Big Data Analysis with Machine Learning, covers performing 
Big Data analytics by machine learning techniques with RHadoop.

Chapter 7, Importing and Exporting Data from Various DBs, covers how to interface with 
popular relational databases to import and export data operations with R.

Appendix, References, describes links to additional resources regarding the content of 
all the chapters being present.
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What you need for this book
As we are going to perform Big Data analytics with R and Hadoop, you should 
have basic knowledge of R and Hadoop and how to perform the practicals and you 
will need to have R and Hadoop installed and configured. It would be great if you 
already have a larger size data and problem definition that can be solved with data-
driven technologies, such as R and Hadoop functions.

Who this book is for
This book is great for R developers who are looking for a way to perform Big 
Data analytics with Hadoop. They would like all the techniques of integrating R 
and Hadoop, how to write Hadoop MapReduce, and tutorials for developing and 
running Hadoop MapReduce within R. Also this book is aimed at those who know 
Hadoop and want to build some intelligent applications over Big Data with R 
packages. It would be helpful if readers have basic knowledge of R.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Preparing the Map() input."

A block of code is set as follows:

<property>
<name>mapred.job.tracker</name>
<value>localhost:54311</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
</description>
</property>

Any command-line input or output is written as follows:

// Setting the environment variables for running Java and Hadoop commands

export HADOOP_HOME=/usr/local/hadoop

export JAVA_HOME=/usr/lib/jvm/java-6-sun
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New terms and important words are shown in bold. Words that you see on the 
screen, in menus or dialog boxes for example, appear in the text like this: "Open the 
Password tab. ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for us 
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.





Getting Ready to Use R  
and Hadoop

The first chapter has been bundled with several topics on R and Hadoop basics  
as follows:

•	 R Installation, features, and data modeling
•	 Hadoop installation, features, and components

In the preface, we introduced you to R and Hadoop. This chapter will focus on 
getting you up and running with these two technologies. Until now, R has been 
used mainly for statistical analysis, but due to the increasing number of functions 
and packages, it has become popular in several fields, such as machine learning, 
visualization, and data operations. R will not load all data (Big Data) into machine 
memory. So, Hadoop can be chosen to load the data as Big Data. Not all algorithms 
work across Hadoop, and the algorithms are, in general, not R algorithms. Despite 
this, analytics with R have several issues related to large data. In order to analyze 
the dataset, R loads it into the memory, and if the dataset is large, it will fail with 
exceptions such as "cannot allocate vector of size x". Hence, in order to process large 
datasets, the processing power of R can be vastly magnified by combining it with the 
power of a Hadoop cluster. Hadoop is very a popular framework that provides such 
parallel processing capabilities. So, we can use R algorithms or analysis processing 
over Hadoop clusters to get the work done.

R Hadoop RHadoop
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If we think about a combined RHadoop system, R will take care of data analysis 
operations with the preliminary functions, such as data loading, exploration, 
analysis, and visualization, and Hadoop will take care of parallel data storage as well 
as computation power against distributed data.

Prior to the advent of affordable Big Data technologies, analysis used to be run on 
limited datasets on a single machine. Advanced machine learning algorithms are 
very effective when applied to large datasets, and this is possible only with large 
clusters where data can be stored and processed with distributed data storage 
systems. In the next section, we will see how R and Hadoop can be installed on 
different operating systems and the possible ways to link R and Hadoop.

Installing R
You can download the appropriate version by visiting the official R website.

Here are the steps provided for three different operating systems. We have 
considered Windows, Linux, and Mac OS for R installation. Download the latest 
version of R as it will have all the latest patches and resolutions to the past bugs.

For Windows, follow the given steps:

1.	 Navigate to www.r-project.org.
2.	 Click on the CRAN section, select CRAN mirror, and select your Windows 

OS (stick to Linux; Hadoop is almost always used in a Linux environment).
3.	 Download the latest R version from the mirror.
4.	 Execute the downloaded .exe to install R.

For Linux-Ubuntu, follow the given steps:

1.	 Navigate to www.r-project.org.
2.	 Click on the CRAN section, select CRAN mirror, and select your OS.
3.	 In the /etc/apt/sources.list file, add the CRAN <mirror> entry.
4.	 Download and update the package lists from the repositories using the sudo 

apt-get update command.
5.	 Install R system using the sudo apt-get install r-base command.
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For Linux-RHEL/CentOS, follow the given steps:

1.	 Navigate to www.r-project.org.
2.	 Click on CRAN, select CRAN mirror, and select Red Hat OS.
3.	 Download the R-*core-*.rpm file.
4.	 Install the .rpm package using the rpm -ivh R-*core-*.rpm command.
5.	 Install R system using sudo yum install R.

For Mac, follow the given steps:

1.	 Navigate to www.r-project.org.
2.	 Click on CRAN, select CRAN mirror, and select your OS.
3.	 Download the following files: pkg, gfortran-*.dmg, and tcltk-*.dmg.
4.	 Install the R-*.pkg file.
5.	 Then, install the gfortran-*.dmg and tcltk-*.dmg files.

After installing the base R package, it is advisable to install RStudio, which is a 
powerful and intuitive Integrated Development Environment (IDE) for R.

We can use R distribution of Revolution Analytics as a Modern 
Data analytics tool for statistical computing and predictive 
analytics, which is available in free as well as premium versions. 
Hadoop integration is also available to perform Big Data analytics.

Installing RStudio
To install RStudio, perform the following steps:

1.	 Navigate to http://www.rstudio.com/ide/download/desktop.
2.	 Download the latest version of RStudio for your operating system.
3.	 Execute the installer file and install RStudio.

The RStudio organization and user community has developed a lot of R packages for 
graphics and visualization, such as ggplot2, plyr, Shiny, Rpubs, and devtools.

www.allitebooks.com

http://www.allitebooks.org
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Understanding the features of  
R language
There are over 3,000 R packages and the list is growing day by day. It would be 
beyond the scope of any book to even attempt to explain all these packages.  
This book focuses only on the key features of R and the most frequently used and 
popular packages.

Using R packages
R packages are self-contained units of R functionality that can be invoked as 
functions. A good analogy would be a .jar file in Java. There is a vast library of 
R packages available for a very wide range of operations ranging from statistical 
operations and machine learning to rich graphic visualization and plotting. Every 
package will consist of one or more R functions. An R package is a re-usable entity 
that can be shared and used by others. R users can install the package that contains 
the functionality they are looking for and start calling the functions in the package. 
A comprehensive list of these packages can be found at http://cran.r-project.
org/ called Comprehensive R Archive Network (CRAN).

Performing data operations
R enables a wide range of operations. Statistical operations, such as mean, min, 
max, probability, distribution, and regression. Machine learning operations, such as 
linear regression, logistic regression, classification, and clustering. Universal data 
processing operations are as follows:

•	 Data cleaning: This option is to clean massive datasets
•	 Data exploration: This option is to explore all the possible values of datasets
•	 Data analysis: This option is to perform analytics on data with descriptive 

and predictive analytics data visualization, that is, visualization of analysis 
output programming

To build an effective analytics application, sometimes we need to use the online 
Application Programming Interface (API) to dig up the data, analyze it with 
expedient services, and visualize it by third-party services. Also, to automate the 
data analysis process, programming will be the most useful feature to deal with.
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R has its own programming language to operate data. Also, the available package 
can help to integrate R with other programming features. R supports object-oriented 
programming concepts. It is also capable of integrating with other programming 
languages, such as Java, PHP, C, and C++. There are several packages that will act 
as middle-layer programming features to aid in data analytics, which are similar to 
sqldf, httr, RMongo, RgoogleMaps, RGoogleAnalytics, and google-prediction-
api-r-client.

Increasing community support
As the number of R users are escalating, the groups related to R are also increasing. 
So, R learners or developers can easily connect and get their uncertainty solved with 
the help of several R groups or communities.

The following are many popular sources that can be found useful:

•	 R mailing list: This is an official R group created by R project owners.
•	 R blogs: R has countless bloggers who are writing on several R applications. 

One of the most popular blog websites is http://www.r-bloggers.com/ 
where all the bloggers contribute their blogs.

•	 Stack overflow: This is a great technical knowledge sharing platform 
where the programmers can post their technical queries and enthusiast 
programmers suggest a solution. For more information, visit http://stats.
stackexchange.com/.

•	 Groups: There are many other groups existing on LinkedIn and Meetup 
where professionals across the world meet to discuss their problems and 
innovative ideas.

•	 Books: There are also lot of books about R. Some of the popular books are 
R in Action, by Rob Kabacoff, Manning Publications, R in a Nutshell, by Joseph 
Adler, O'Reilly Media, R and Data Mining, by Yanchang Zhao, Academic Press, 
and R Graphs Cookbook, by Hrishi Mittal, Packt Publishing.
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Performing data modeling in R
Data modeling is a machine learning technique to identify the hidden pattern from 
the historical dataset, and this pattern will help in future value prediction over 
the same data. This techniques highly focus on past user actions and learns their 
taste. Most of these data modeling techniques have been adopted by many popular 
organizations to understand the behavior of their customers based on their past 
transactions. These techniques will analyze data and predict for the customers what 
they are looking for. Amazon, Google, Facebook, eBay, LinkedIn, Twitter, and many 
other organizations are using data mining for changing the definition applications.

The most common data mining techniques are as follows:

•	 Regression: In statistics, regression is a classic technique to identify the scalar 
relationship between two or more variables by fitting the state line on the 
variable values. That relationship will help to predict the variable value for 
future events. For example, any variable y can be modeled as linear function 
of another variable x with the formula y = mx+c. Here, x is the predictor 
variable, y is the response variable, m is slope of the line, and c is the 
intercept. Sales forecasting of products or services and predicting the price 
of stocks can be achieved through this regression. R provides this regression 
feature via the lm method, which is by default present in R.

•	 Classification: This is a machine-learning technique used for labeling the set 
of observations provided for training examples. With this, we can classify 
the observations into one or more labels. The likelihood of sales, online 
fraud detection, and cancer classification (for medical science) are common 
applications of classification problems. Google Mail uses this technique to 
classify e-mails as spam or not. Classification features can be served by glm, 
glmnet, ksvm, svm, and randomForest in R.

•	 Clustering: This technique is all about organizing similar items into 
groups from the given collection of items. User segmentation and image 
compression are the most common applications of clustering. Market 
segmentation, social network analysis, organizing the computer clustering, 
and astronomical data analysis are applications of clustering. Google News 
uses these techniques to group similar news items into the same category. 
Clustering can be achieved through the knn, kmeans, dist, pvclust, and 
Mclust methods in R.
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•	 Recommendation: The recommendation algorithms are used in recommender 
systems where these systems are the most immediately recognizable machine 
learning techniques in use today. Web content recommendations may include 
similar websites, blogs, videos, or related content. Also, recommendation of 
online items can be helpful for cross-selling and up-selling. We have all seen 
online shopping portals that attempt to recommend books, mobiles, or any 
items that can be sold on the Web based on the user's past behavior. Amazon 
is a well-known e-commerce portal that generates 29 percent of sales through 
recommendation systems. Recommender systems can be implemented via 
Recommender()with the recommenderlab package in R.

Installing Hadoop
Now, we presume that you are aware of R, what it is, how to install it, what it's  
key features are, and why you may want to use it. Now we need to know the 
limitations of R (this is a better introduction to Hadoop). Before processing the data; 
R needs to load the data into random access memory (RAM). So, the data needs 
to be smaller than the available machine memory. For data that is larger than the 
machine memory, we consider it as Big Data (only in our case as there are many 
other definitions of Big Data).

To avoid this Big Data issue, we need to scale the hardware configuration; however, 
this is a temporary solution. To get this solved, we need to get a Hadoop cluster that 
is able to store it and perform parallel computation across a large computer cluster. 
Hadoop is the most popular solution. Hadoop is an open source Java framework, 
which is the top level project handled by the Apache software foundation. Hadoop is 
inspired by the Google filesystem and MapReduce, mainly designed for operating on 
Big Data by distributed processing.

Hadoop mainly supports Linux operating systems. To run this on Windows, we 
need to use VMware to host Ubuntu within the Windows OS. There are many ways 
to use and install Hadoop, but here we will consider the way that supports R best. 
Before we combine R and Hadoop, let us understand what Hadoop is.

Machine learning contains all the data modeling techniques that can 
be explored with the web link http://en.wikipedia.org/wiki/
Machine_learning.
The structure blog on Hadoop installation by Michael Noll can 
be found at http://www.michael-noll.com/tutorials/
running-hadoop-on-ubuntu-linux-single-node-cluster/.



Getting Ready to Use R and Hadoop

[ 20 ]

Understanding different Hadoop modes
Hadoop is used with three different modes:

•	 The standalone mode: In this mode, you do not need to start any Hadoop 
daemons. Instead, just call ~/Hadoop-directory/bin/hadoop that will 
execute a Hadoop operation as a single Java process. This is recommended 
for testing purposes. This is the default mode and you don't need to 
configure anything else. All daemons, such as NameNode, DataNode, 
JobTracker, and TaskTracker run in a single Java process.

•	 The pseudo mode: In this mode, you configure Hadoop for all the nodes.  
A separate Java Virtual Machine (JVM) is spawned for each of the Hadoop 
components or daemons like mini cluster on a single host.

•	 The full distributed mode: In this mode, Hadoop is distributed across 
multiple machines. Dedicated hosts are configured for Hadoop components. 
Therefore, separate JVM processes are present for all daemons.

Understanding Hadoop installation steps
Hadoop can be installed in several ways; we will consider the way that is better to 
integrate with R. We will choose Ubuntu OS as it is easy to install and access it.

1.	 Installing Hadoop on Linux, Ubuntu flavor (single and multinode cluster).
2.	 Installing Cloudera Hadoop on Ubuntu.

Installing Hadoop on Linux, Ubuntu flavor  
(single node cluster)
To install Hadoop over Ubuntu OS with the pseudo mode, we need to meet the 
following prerequisites:

•	 Sun Java 6
•	 Dedicated Hadoop system user
•	 Configuring SSH
•	 Disabling IPv6

The provided Hadoop installation will be supported 
with Hadoop MRv1.
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Follow the given steps to install Hadoop:

1.	 Download the latest Hadoop sources from the Apache software foundation. 
Here we have considered Apache Hadoop 1.0.3, whereas the latest version is 
1.1.x.
// Locate to Hadoop installation directory

$ cd /usr/local

// Extract the tar file of Hadoop distribution

$ sudo tar xzf hadoop-1.0.3.tar.gz

// To move Hadoop resources to hadoop folder 

$ sudo mv hadoop-1.0.3 hadoop

// Make user-hduser from group-hadoop as owner of hadoop directory

$ sudo chown -R hduser:hadoop hadoop

2.	 Add the $JAVA_HOME and $HADOOP_HOME variables to the.bashrc file of 
Hadoop system user and the updated .bashrc file looks as follows:
// Setting the environment variables for running Java and Hadoop 
commands

export HADOOP_HOME=/usr/local/hadoop

export JAVA_HOME=/usr/lib/jvm/java-6-sun

// alias for Hadoop commands

unalias fs &> /dev/null

alias fs="hadoop fs"

unalias hls &> /dev/null

aliashls="fs -ls"

// Defining the function for compressing the MapReduce job output 
by lzop command

lzohead () {

hadoopfs -cat $1 | lzop -dc | head -1000 | less

}

// Adding Hadoop_HoME variable to PATH 

export PATH=$PATH:$HADOOP_HOME/bin

3.	 Update the Hadoop configuration files with the conf/*-site.xml format.
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Finally, the three files will look as follows:

•	 conf/core-site.xml:
<property>
<name>hadoop.tmp.dir</name>
<value>/app/hadoop/tmp</value>
<description>A base for other temporary directories.</description>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:54310</value>
<description>The name of the default filesystem. A URI whose
scheme and authority determine the FileSystem implementation. The
uri's scheme determines the config property (fs.SCHEME.impl) 
naming
theFileSystem implementation class. The uri's authority is used to
determine the host, port, etc. for a filesystem.</description>
</property>

•	 conf/mapred-site.xml:
<property>
<name>mapred.job.tracker</name>
<value>localhost:54311</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
</description>
</property>

•	 conf/hdfs-site.xml:

<property>
<name>dfs.replication</name>
<value>1</value>
<description>Default block replication.
  The actual number of replications can be specified when the file 
is created.
  The default is used if replication is not specified in create 
time.
</description>
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After completing the editing of these configuration files, we need to set up the 
distributed filesystem across the Hadoop clusters or node.

•	 Format Hadoop Distributed File System (HDFS) via NameNode by using 
the following command line:
hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoopnamenode -format

•	 Start your single node cluster by using the following command line:

hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the 
files e-mailed directly to you.

Installing Hadoop on Linux, Ubuntu flavor 
(multinode cluster)
We learned how to install Hadoop on a single node cluster. Now we will see how to 
install Hadoop on a multinode cluster (the full distributed mode).

For this, we need several nodes configured with a single node Hadoop cluster. To 
install Hadoop on multinodes, we need to have that machine configured with a 
single node Hadoop cluster as described in the last section.

After getting the single node Hadoop cluster installed, we need to perform the 
following steps: 

1.	 In the networking phase, we are going to use two nodes for setting up a full 
distributed Hadoop mode. To communicate with each other, the nodes need 
to be in the same network in terms of software and hardware configuration.

2.	 Among these two, one of the nodes will be considered as master and the 
other will be considered as slave. So, for performing Hadoop operations, 
master needs to be connected to slave. We will enter 192.168.0.1 in the 
master machine and 192.168.0.2 in the slave machine.

3.	 Update the /etc/hosts directory in both the nodes. It will look as 
192.168.0.1 master and 192.168.0.2 slave.
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You can perform the Secure Shell (SSH) setup similar to what 
we did for a single node cluster setup. For more details, visit 
http://www.michael-noll.com.

4.	 Updating conf/*-site.xml: We must change all these configuration files in 
all of the nodes.

°° conf/core-site.xml and conf/mapred-site.xml: In the single 
node setup, we have updated these files. So, now we need to just 
replace localhost by master in the value tag.

°° conf/hdfs-site.xml: In the single node setup, we have set the value 
of dfs.replication as 1. Now we need to update this as 2.

5.	  In the formatting HDFS phase, before we start the multinode cluster, we 
need to format HDFS with the following command (from the master node):

bin/hadoop namenode -format

Now, we have completed all the steps to install the multinode Hadoop cluster. To 
start the Hadoop clusters, we need to follow these steps:

1.	 Start HDFS daemons:
hduser@master:/usr/local/hadoop$ bin/start-dfs.sh

2.	 Start MapReduce daemons:
hduser@master:/usr/local/hadoop$ bin/start-mapred.sh

3.	 Alternatively, we can start all the daemons with a single command:
hduser@master:/usr/local/hadoop$ bin/start-all.sh

4.	 To stop all these daemons, fire:

hduser@master:/usr/local/hadoop$ bin/stop-all.sh

These installation steps are reproduced after being inspired by the blogs  
(http://www.michael-noll.com) of Michael Noll, who is a researcher and Software 
Engineer based in Switzerland, Europe. He works as a Technical lead for a large scale 
computing infrastructure on the Apache Hadoop stack at VeriSign.

Now the  Hadoop cluster has been set up on your machines. For the installation 
of the same Hadoop cluster on single node or multinode with extended Hadoop 
components, try the Cloudera tool.
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Installing Cloudera Hadoop on Ubuntu
Cloudera Hadoop (CDH) is Cloudera's open source distribution that targets 
enterprise class deployments of Hadoop technology. Cloudera is also a sponsor 
of the Apache software foundation. CDH is available in two versions: CDH3 and 
CDH4. To install one of these, you must have Ubuntu with either 10.04 LTS or 12.04 
LTS (also, you can try CentOS, Debian, and Red Hat systems). Cloudera manager 
will make this installation easier for you if you are installing a Hadoop on cluster of 
computers, which provides GUI-based Hadoop and its component installation over a 
whole cluster. This tool is very much recommended for large clusters.
We need to meet the following prerequisites:

•	 Configuring SSH
•	 OS with the following criteria:

°° Ubuntu 10.04 LTS or 12.04 LTS with 64 bit
°° Red Hat Enterprise Linux 5 or 6
°° CentOS 5 or 6
°° Oracle Enterprise Linux 5
°° SUSE Linux Enterprise server 11 (SP1 or lasso)
°° Debian 6.0

The installation steps are as follows:
1.	 Download and run the Cloudera manager installer: To initialize the Cloudera 

manager installation process, we need to first download the cloudera-
manager-installer.bin file from the download section of the Cloudera 
website. After that, store it at the cluster so that all the nodes can access 
this. Allow ownership for execution permission of cloudera-manager-
installer.bin to the user. Run the following command to start execution.
$ sudo ./cloudera-manager-installer.bin

2.	 Read the Cloudera manager Readme and then click on Next.
3.	 Start the Cloudera manager admin console: The Cloudera manager admin 

console allows you to use Cloudera manager to install, manage, and monitor 
Hadoop on your cluster. After accepting the license from the Cloudera 
service provider, you need to traverse to your local web browser by entering 
http://localhost:7180 in your address bar. You can also use any of the 
following browsers:

°° Firefox 11 or higher
°° Google Chrome
°° Internet Explorer
°° Safari

www.allitebooks.com
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4.	 Log in to the Cloudera manager console with the default credentials using 
admin for both the username and password. Later on you can change it as 
per your choice.

5.	 Use the Cloudera manager for automated CDH3 installation and 
configuration via browser: This step will install most of the required 
Cloudera Hadoop packages from Cloudera to your machines. The steps are 
as follows:

1.	 Install and validate your Cloudera manager license key file if you 
have chosen a full version of software.

2.	 Specify the hostname or IP address range for your CDH cluster 
installation.

3.	 Connect to each host with SSH.
4.	 Install the Java Development Kit (JDK) (if not already installed), the 

Cloudera manager agent, and CDH3 or CDH4 on each cluster host.
5.	 Configure Hadoop on each node and start the Hadoop services.

6.	 After running the wizard and using the Cloudera manager, you should 
change the default administrator password as soon as possible. To change 
the administrator password, follow these steps:

1.	 Click on the icon with the gear sign to display the administration 
page.

2.	 Open the Password tab.
3.	 Enter a new password twice and then click on Update.

7.	 Test the Cloudera Hadoop installation: You can check the Cloudera manager 
installation on your cluster by logging into the Cloudera manager admin 
console and by clicking on the Services tab. You should see something like 
the following screenshot:
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Cloudera manager admin console

8.	 You can also click on each service to see more detailed information. For 
example, if you click on the hdfs1 link, you might see something like the 
following screenshot:

Cloudera manger admin console—HDFS service

To avoid these installation steps, use preconfigured Hadoop 
instances with Amazon Elastic MapReduce and MapReduce.
If you want to use Hadoop on Windows, try the HDP tool by 
Hortonworks. This is 100 percent open source, enterprise grade 
distribution of Hadoop. You can download the HDP tool at 
http://hortonworks.com/download/.
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Understanding Hadoop features
Hadoop is specially designed for two core concepts: HDFS and MapReduce. Both are 
related to distributed computation. MapReduce is believed as the heart of Hadoop 
that performs parallel processing over distributed data.

Let us see more details on Hadoop's features:

•	 HDFS
•	 MapReduce

Understanding HDFS
HDFS is Hadoop's own rack-aware filesystem, which is a UNIX-based data storage 
layer of Hadoop. HDFS is derived from concepts of Google filesystem. An important 
characteristic of Hadoop is the partitioning of data and computation across many 
(thousands of) hosts, and the execution of application computations in parallel, close 
to their data. On HDFS, data files are replicated as sequences of blocks in the cluster. 
A Hadoop cluster scales computation capacity, storage capacity, and I/O bandwidth 
by simply adding commodity servers. HDFS can be accessed from applications in 
many different ways. Natively, HDFS provides a Java API for applications to use.

The Hadoop clusters at Yahoo! span 40,000 servers and store 40 petabytes of 
application data, with the largest Hadoop cluster being 4,000 servers. Also, one 
hundred other organizations worldwide are known to use Hadoop.

Understanding the characteristics of HDFS
Let us now look at the characteristics of HDFS:

•	 Fault tolerant
•	 Runs with commodity hardware
•	 Able to handle large datasets
•	 Master slave paradigm
•	 Write once file access only

Understanding MapReduce
MapReduce is a programming model for processing large datasets distributed on a 
large cluster. MapReduce is the heart of Hadoop. Its programming paradigm allows 
performing massive data processing across thousands of servers configured with 
Hadoop clusters. This is derived from Google MapReduce.
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Hadoop MapReduce is a software framework for writing applications easily, which 
process large amounts of data (multiterabyte datasets) in parallel on large clusters 
(thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner. 
This MapReduce paradigm is divided into two phases, Map and Reduce that mainly 
deal with key and value pairs of data. The Map and Reduce task run sequentially in 
a cluster; the output of the Map phase becomes the input for the Reduce phase. These 
phases are explained as follows:

•	 Map phase: Once divided, datasets are assigned to the task tracker to 
perform the Map phase. The data functional operation will be performed 
over the data, emitting the mapped key and value pairs as the output of the 
Map phase.

•	 Reduce phase: The master node then collects the answers to all the 
subproblems and combines them in some way to form the output; the answer 
to the problem it was originally trying to solve.

The five common steps of parallel computing are as follows:

1.	 Preparing the Map() input: This will take the input data row wise and emit 
key value pairs per rows, or we can explicitly change as per the requirement.

°° Map input: list (k1, v1)

2.	 Run the user-provided Map() code
°° Map output: list (k2, v2)

3.	 Shuffle the Map output to the Reduce processors. Also, shuffle the similar 
keys (grouping them) and input them to the same reducer.

4.	 Run the user-provided Reduce() code: This phase will run the custom 
reducer code designed by developer to run on shuffled data and emit key 
and value.

°° Reduce input: (k2, list(v2))
°° Reduce output: (k3, v3)

5.	 Produce the final output: Finally, the master node collects all reducer output 
and combines and writes them in a text file.

The reference links to review on Google filesystem can be found at 
http://research.google.com/archive/gfs.html and 
Google MapReduce can be found at http://research.google.
com/archive/mapreduce.html.
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Learning the HDFS and MapReduce 
architecture
Since HDFS and MapReduce are considered to be the two main features of the 
Hadoop framework, we will focus on them. So, let's first start with HDFS.

Understanding the HDFS architecture
HDFS can be presented as the master/slave architecture. HDFS master is named 
as NameNode whereas slave as DataNode. NameNode is a sever that manages the 
filesystem namespace and adjusts the access (open, close, rename, and more) to 
files by the client. It divides the input data into blocks and announces which data 
block will be store in which DataNode. DataNode is a slave machine that stores the 
replicas of the partitioned dataset and serves the data as the request comes. It also 
performs block creation and deletion.

The internal mechanism of HDFS divides the file into one or more blocks; these 
blocks are stored in a set of data nodes. Under normal circumstances of the 
replication factor three, the HDFS strategy is to place the first copy on the local node, 
second copy on the local rack with a different node, and a third copy into different 
racks with different nodes. As HDFS is designed to support large files, the HDFS 
block size is defined as 64 MB. If required, this can be increased.

Understanding HDFS components
HDFS is managed with the master-slave architecture included with the  
following components:

•	 NameNode: This is the master of the HDFS system. It maintains the 
directories, files, and manages the blocks that are present on the DataNodes.

•	 DataNode: These are slaves that are deployed on each machine and provide 
actual storage. They are responsible for serving read-and-write data requests 
for the clients.

•	 Secondary NameNode: This is responsible for performing periodic 
checkpoints. So, if the NameNode fails at any time, it can be replaced with  
a snapshot image stored by the secondary NameNode checkpoints.
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Understanding the MapReduce architecture
MapReduce is also implemented over master-slave architectures. Classic MapReduce 
contains job submission, job initialization, task assignment, task execution, progress 
and status update, and job completion-related activities, which are mainly managed by 
the JobTracker node and executed by TaskTracker. Client application submits a job to 
the JobTracker. Then input is divided across the cluster. The JobTracker then calculates 
the number of map and reducer to be processed. It commands the TaskTracker to 
start executing the job. Now, the TaskTracker copies the resources to a local machine 
and launches JVM to map and reduce program over the data. Along with this, the 
TaskTracker periodically sends update to the JobTracker, which can be considered as 
the heartbeat that helps to update JobID, job status, and usage of resources.

Understanding MapReduce components
MapReduce is managed with master-slave architecture included with the  
following components:

•	 JobTracker: This is the master node of the MapReduce system, which 
manages the jobs and resources in the cluster (TaskTrackers). The JobTracker 
tries to schedule each map as close to the actual data being processed on 
the TaskTracker, which is running on the same DataNode as the underlying 
block.

•	 TaskTracker: These are the slaves that are deployed on each machine. They 
are responsible for running the map and reducing tasks as instructed by the 
JobTracker.

Understanding the HDFS and MapReduce 
architecture by plot
In this plot, both HDFS and MapReduce master and slave components have been 
included, where NameNode and DataNode are from HDFS and JobTracker and 
TaskTracker are from the MapReduce paradigm.
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Both paradigms consisting of master and slave candidates have their own specific 
responsibility to handle MapReduce and HDFS operations. In the next plot, there is 
a plot with two sections: the preceding one is a MapReduce layer and the following 
one is an HDFS layer.
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The HDFS and MapReduce architecture

Hadoop is a top-level Apache project and is a very complicated Java framework. 
To avoid technical complications, the Hadoop community has developed a number 
of Java frameworks that has added an extra value to Hadoop features. They are 
considered as Hadoop subprojects. Here, we are departing to discuss several Hadoop 
components that can be considered as an abstraction of HDFS or MapReduce.
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Understanding Hadoop subprojects
Mahout is a popular data mining library. It takes the most popular data mining 
scalable machine learning algorithms for performing clustering, classification, 
regression, and statistical modeling to prepare intelligent applications. Also, it is a 
scalable machine-learning library.

Apache Mahout is distributed under a commercially friendly Apache software 
license. The goal of Apache Mahout is to build a vibrant, responsive, and diverse 
community to facilitate discussions not only on the project itself but also on potential 
use cases.

The following are some companies that are using Mahout:

•	 Amazon: This a shopping portal for providing personalization 
recommendation

•	 AOL: This is a shopping portal for shopping recommendations
•	 Drupal: This is a PHP content management system using Mahout for 

providing open source content-based recommendation
•	 iOffer: This is a shopping portal, which uses Mahout's Frequent Pattern Set 

Mining and collaborative filtering to recommend items to users
•	 LucidWorks Big Data: This is a popular analytics firm, which uses Mahout 

for clustering, duplicate document detection, phase extraction, and 
classification

•	 Radoop: This provides a drag-and-drop interface for Big Data analytics, 
including Mahout clustering and classification algorithms

•	 Twitter: This is a social networking site, which uses Mahout's Latent 
Dirichlet Allocation (LDA) implementation for user interest modeling and 
maintains a fork of Mahout on GitHub.

•	 Yahoo!: This is the world's most popular web service provider, which uses 
Mahout's Frequent Pattern Set Mining for Yahoo! Mail

The reference links on the Hadoop ecosystem can be 
found at http://www.revelytix.com/?q=content/
hadoop-ecosystem.
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Apache HBase is a distributed Big Data store for Hadoop. This allows random, 
real-time read/write access to Big Data. This is designed as a column-oriented data 
storage model innovated after inspired by Google BigTable.

The following are the companies using HBase:

•	 Yahoo!: This is the world's popular web service provider for near duplicate 
document detection

•	 Twitter: This is a social networking site for version control storage and 
retrieval

•	 Mahalo: This is a knowledge sharing service for similar content 
recommendation

•	 NING: This is a social network service provider for real-time analytics and 
reporting

•	 StumbleUpon: This is a universal personalized recommender system, real-
time data storage, and data analytics platform

•	 Veoh: This is an online multimedia content sharing platform for user 
profiling system

For Google Big Data, distributed storage system for structured data, refer 
the link http://research.google.com/archive/bigtable.html.

Hive is a Hadoop-based data warehousing like framework developed by Facebook. 
It allows users to fire queries in SQL-like languages, such as HiveQL, which are 
highly abstracted to Hadoop MapReduce. This allows SQL programmers with no 
MapReduce experience to use the warehouse and makes it easier to integrate with 
business intelligence and visualization tools for real-time query processing.

Pig is a Hadoop-based open source platform for analyzing the large scale datasets 
via its own SQL-like language: Pig Latin. This provides a simple operation and 
programming interface for massive, complex data-parallelization computation.  
This is also easier to develop; it's more optimized and extensible. Apache Pig has 
been developed by Yahoo!. Currently, Yahoo! and Twitter are the primary Pig users.

For developers, the direct use of Java APIs can be tedious or error-prone, but also 
limits the Java programmer's use of Hadoop programming's flexibility. So, Hadoop 
provides two solutions that enable making Hadoop programming for dataset 
management and dataset analysis with MapReduce easier—these are Pig and Hive, 
which are always confusing.
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Apache Sqoop provides Hadoop data processing platform and relational databases, 
data warehouse, and other non-relational databases quickly transferring large 
amounts of data in a new way. Apache Sqoop is a mutual data tool for importing 
data from the relational databases to Hadoop HDFS and exporting data from HDFS 
to relational databases.

It works together with most modern relational databases, such as MySQL, 
PostgreSQL, Oracle, Microsoft SQL Server, and IBM DB2, and enterprise data 
warehouse. Sqoop extension API provides a way to create new connectors for the 
database system. Also, the Sqoop source comes up with some popular database 
connectors. To perform this operation, Sqoop first transforms the data into Hadoop 
MapReduce with some logic of database schema creation and transformation.

Apache Zookeeper is also a Hadoop subproject used for managing Hadoop, Hive, 
Pig, HBase, Solr, and other projects. Zookeeper is an open source distributed 
applications coordination service, which is designed with Fast Paxos algorithm-
based synchronization and configuration and naming services such as maintenance 
of distributed applications. In programming, Zookeeper design is a very simple data 
model style, much like the system directory tree structure.

Zookeeper is divided into two parts: the server and client. For a cluster of Zookeeper 
servers, only one acts as a leader, which accepts and coordinates all rights. The rest 
of the servers are read-only copies of the master. If the leader server goes down, any 
other server can start serving all requests. Zookeeper clients are connected to a server 
on the Zookeeper service. The client sends a request, receives a response, accesses the 
observer events, and sends a heartbeat via a TCP connection with the server.

For a high-performance coordination service for distributed applications, Zookeeper 
is a centralized service for maintaining configuration information, naming, and 
providing distributed synchronization and group services. All these kinds of services 
are used in some form or another by distributed applications. Each time they are 
implemented, there is a lot of work that goes into fixing the bugs and race conditions 
that are inevitable. These services lead to management complexity when the 
applications are deployed.

Apache Solr is an open source enterprise search platform from the Apache license 
project. Apache Solr is highly scalable, supporting distributed search and index 
replication engine. This allows building web application with powerful text search, 
faceted search, real-time indexing, dynamic clustering, database integration, and rich 
document handling.

Apache Solr is written in Java, which runs as a standalone server to serve the search 
results via REST-like HTTP/XML and JSON APIs. So, this Solr server can be easily 
integrated with an application, which is written in other programming languages. Due 
to all these features, this search server is used by Netflix, AOL, CNET, and Zappos.
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Ambari is very specific to Hortonworks. Apache Ambari is a web-based tool that 
supports Apache Hadoop cluster supply, management, and monitoring. Ambari 
handles most of the Hadoop components, including HDFS, MapReduce, Hive, Pig, 
HBase, Zookeeper, Sqoop, and HCatlog as centralized management.

In addition, Ambari is able to install security based on the Kerberos authentication 
protocol over the Hadoop cluster. Also, it provides role-based user authentication, 
authorization, and auditing functions for users to manage integrated LDAP and 
Active Directory.

Summary
In this chapter, we learned what is R, Hadoop, and their features, and how to install 
them before going on to analyzing the datasets with R and Hadoop. In the next 
chapter, we are going to learn what MapReduce is and how to develop MapReduce 
programs with Apache Hadoop.



Writing Hadoop  
MapReduce Programs

In the previous chapter, we learned how to set up the R and Hadoop development 
environment. Since we are interested in performing Big Data analytics, we need to 
learn Hadoop to perform operations with Hadoop MapReduce. In this chapter, we 
will discuss what MapReduce is, why it is necessary, how MapReduce programs can 
be developed through Apache Hadoop, and more.

In this chapter, we will cover:

•	 Understanding the basics of MapReduce
•	 Introducing Hadoop MapReduce
•	 Understanding the Hadoop MapReduce fundamentals
•	 Writing a Hadoop MapReduce example
•	 Understanding several possible MapReduce definitions to  

solve business problems
•	 Learning different ways to write  Hadoop MapReduce in R

Understanding the basics of MapReduce
Understanding the basics of MapReduce could well be a long-term solution if one 
doesn't have a cluster or uses Message Passing Interface (MPI). However, a more 
realistic use case is when the data doesn't fit on one disk but fits on a Distributed 
File System (DFS), or already lives on Hadoop-related software.



Writing Hadoop MapReduce Programs

[ 38 ]

Moreover, MapReduce is a programming model that works in a distributed fashion, 
but it is not the only one that does. It might be illuminating to describe other 
programming models, for example, MPI and Bulk Synchronous Parallel (BSP). 
To process Big Data with tools such as R and several machine learning techniques 
requires a high-configuration machine, but that's not the permanent solution. So, 
distributed processing is the key to handling this data. This distributed computation 
can be implemented with the MapReduce programming model.

MapReduce is the one that answers the Big Data question. Logically, to process data 
we need parallel processing, which means processing over large computation; it can 
either be obtained by clustering the computers or increasing the configuration of the 
machine. Using the computer cluster is an ideal way to process data with a large size.

Before we talk more about MapReduce by parallel processing, we will discuss 
Google MapReduce research and a white paper written by Jeffrey Dean and Sanjay 
Ghemawat in 2004. They introduced MapReduce as simplified data processing 
software on large clusters. MapReduce implementation runs on large clusters with 
commodity hardware. This data processing platform is easier for programmers to 
perform various operations. The system takes care of input data, distributes data 
across the computer network, processes it in parallel, and finally combines its output 
into a single file to be aggregated later. This is very helpful in terms of cost and is 
also a time-saving system for processing large datasets over the cluster. Also, it will 
efficiently use computer resources to perform analytics over huge data. Google has 
been granted a patent on MapReduce.

For MapReduce, programmers need to just design/migrate applications into two 
phases: Map and Reduce. They simply have to design Map functions for processing 
a key-value pair to generate a set of intermediate key-value pairs, and Reduce 
functions to merge all the intermediate keys. Both the Map and Reduce functions 
maintain MapReduce workflow. The Reduce function will start executing the code 
after completion or once the Map output is available to it.

Their execution sequence can be seen as follows:
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MapReduce assumes that the Maps are independent and will execute them in 
parallel. The key aspect of the MapReduce algorithm is that if every Map and Reduce 
is independent of all other ongoing Maps and Reduces in the network, the operation 
will run in parallel on different keys and lists of data.

A distributed filesystem spreads multiple copies of data across different machines. 
This offers reliability as well as fault tolerance. If a machine with one copy of the file 
crashes, the same data will be provided from another replicated data source.

The master node of the MapReduce daemon will take care of all the responsibilities 
of the MapReduce jobs, such as the execution of jobs, the scheduling of Mappers, 
Reducers, Combiners, and Partitioners, the monitoring of successes as well as 
failures of individual job tasks, and finally, the completion of the batch job.

Apache Hadoop processes the distributed data in a parallel manner by  
running Hadoop MapReduce jobs on servers near the data stored on Hadoop's 
distributed filesystem.

Companies using MapReduce include:

•	 Amazon: This is an online e-commerce and cloud web service provider for 
Big Data analytics

•	 eBay: This is an e-commerce portal for finding articles by its description
•	 Google: This is a web search engine for finding relevant pages relating to a 

particular topic
•	 LinkedIn: This is a professional networking site for Big Data storage and 

generating personalized recommendations
•	 Trovit: This is a vertical search engine for finding jobs that match a given 

description
•	 Twitter: This is a social networking site for finding messages

Apart from these, there are many other brands that are using Hadoop for Big  
Data analytics.

Introducing Hadoop MapReduce
Basically, the MapReduce model can be implemented in several languages, but 
apart from that, Hadoop MapReduce is a popular Java framework for easily written 
applications. It processes vast amounts of data (multiterabyte datasets) in parallel on 
large clusters (thousands of nodes) of commodity hardware in a reliable and fault-
tolerant manner. This MapReduce paradigm is divided into two phases, Map and 
Reduce, that mainly deal with key-value pairs of data. The Map and Reduce tasks 
run sequentially in a cluster, and the output of the Map phase becomes the input of 
the Reduce phase.
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All data input elements in MapReduce cannot be updated. If the input (key, 
value) pairs for mapping tasks are changed, it will not be reflected in the input files. 
The Mapper output will be piped to the appropriate Reducer grouped with the key 
attribute as input. This sequential data process will be carried away in a parallel 
manner with the help of Hadoop MapReduce algorithms as well as Hadoop clusters.

MapReduce programs transform the input dataset present in the list format into 
output data that will also be in the list format. This logical list translation process 
is mostly repeated twice in the Map and Reduce phases. We can also handle these 
repetitions by fixing the number of Mappers and Reducers. In the next section, 
MapReduce concepts are described based on the old MapReduce API.

Listing Hadoop MapReduce entities
The following are the components of Hadoop that are responsible for performing 
analytics over Big Data:

•	 Client: This initializes the job
•	 JobTracker: This monitors the job
•	 TaskTracker: This executes the job
•	 HDFS: This stores the input and output data

Understanding the Hadoop MapReduce 
scenario
The four main stages of Hadoop MapReduce data processing are as follows:

•	 The loading of data into HDFS
•	 The execution of the Map phase
•	 Shuffling and sorting
•	 The execution of the Reduce phase

Loading data into HDFS
The input dataset needs to be uploaded to the Hadoop directory so it can be used by 
MapReduce nodes. Then, Hadoop Distributed File System (HDFS) will divide the 
input dataset into data splits and store them to DataNodes in a cluster by taking care 
of the replication factor for fault tolerance. All the data splits will be processed by 
TaskTracker for the Map and Reduce tasks in a parallel manner.
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Also, there are some alternative ways to get the dataset in HDFS with  
Hadoop components:

•	 Sqoop: This is an open source tool designed for efficiently transferring bulk 
data between Apache Hadoop and structured, relational databases. Suppose 
your application has already been configured with the MySQL database 
and you want to use the same data for performing data analytics, Sqoop is 
recommended for importing datasets to HDFS. Also, after the completion 
of the data analytics process, the output can be exported to the MySQL 
database.

•	 Flume: This is a distributed, reliable, and available service for efficiently 
collecting, aggregating, and moving large amounts of log data to HDFS. 
Flume is able to read data from most sources, such as logfiles, sys logs, and 
the standard output of the Unix process.

Using the preceding data collection and moving the framework can make this data 
transfer process very easy for the MapReduce application for data analytics.

Executing the Map phase
Executing the client application starts the Hadoop MapReduce processes. The Map 
phase then copies the job resources (unjarred class files) and stores it to HDFS, and 
requests JobTracker to execute the job. The JobTracker initializes the job, retrieves the 
input, splits the information, and creates a Map task for each job.

The JobTracker will call TaskTracker to run the Map task over the assigned input 
data subset. The Map task reads this input split data as input (key, value) pairs 
provided to the Mapper method, which then produces intermediate (key, value) 
pairs. There will be at least one output for each input (key, value) pair.

Mapping individual elements of an input list
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The list of (key, value) pairs is generated such that the key attribute will be repeated 
many times. So, its key attribute will be re-used in the Reducer for aggregating 
values in MapReduce. As far as format is concerned, Mapper output format values 
and Reducer input values must be the same.

After the completion of this Map operation, the TaskTracker will keep the  
result in its buffer storage and local disk space (if the output data size is more  
than the threshold).

For example, suppose we have a Map function that converts the input text into 
lowercase. This will convert the list of input strings into a list of lowercase strings.

Keys and values: In MapReduce, every value has its identifier 
that is considered as key. The key-value pairs received by the 
Mapper are dependent on the input datatype as specified in the 
job configuration file.

Shuffling and sorting
To optimize the MapReduce program, this intermediate phase is very important.

As soon as the Mapper output from the Map phase is available, this intermediate 
phase will be called automatically. After the completion of the Map phase, all the 
emitted intermediate (key, value) pairs will be partitioned by a Partitioner at the 
Mapper side, only if the Partitioner is present. The output of the Partitioner will be 
sorted out based on the key attribute at the Mapper side. Output from sorting the 
operation is stored on buffer memory available at the Mapper node, TaskTracker.

The Combiner is often the Reducer itself. So by compression, it's not Gzip or some 
similar compression but the Reducer on the node that the map is outputting the 
data on. The data returned by the Combiner is then shuffled and sent to the reduced 
nodes. To speed up data transmission of the Mapper output to the Reducer slot at 
TaskTracker, you need to compress that output with the Combiner function. By 
default, the Mapper output will be stored to buffer memory, and if the output size 
is larger than threshold, it will be stored to a local disk. This output data will be 
available through Hypertext Transfer Protocol (HTTP).

Reducing phase execution
As soon as the Mapper output is available, TaskTracker in the Reducer node will 
retrieve the available partitioned Map's output data, and they will be grouped 
together and merged into one large file, which will then be assigned to a process 
with a Reducer method. Finally, this will be sorted out before data is provided to the 
Reducer method.
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The Reducer method receives a list of input values from an input (key, list 
(value)) and aggregates them based on custom logic, and produces the output 
(key, value) pairs.

Reducing input values to an aggregate value as output

The output of the Reducer method of the Reduce phase will directly be written into 
HDFS as per the format specified by the MapReduce job configuration class.

Understanding the limitations of MapReduce
Let's see some of Hadoop MapReduce's limitations:

•	 The MapReduce framework is notoriously difficult to leverage for 
transformational logic that is not as simple, for example, real-time streaming, 
graph processing, and message passing.

•	 Data querying is inefficient over distributed, unindexed data than in a 
database created with indexed data. However, if the index over the data is 
generated, it needs to be maintained when the data is removed or added.

•	 We can't parallelize the Reduce task to the Map task to reduce the overall 
processing time because Reduce tasks do not start until the output of the 
Map tasks is available to it. (The Reducer's input is fully dependent on the 
Mapper's output.) Also, we can't control the sequence of the execution of the 
Map and Reduce task. But sometimes, based on application logic, we can 
definitely configure a slow start for the Reduce tasks at the instance when the 
data collection starts as soon as the Map tasks complete.

•	 Long-running Reduce tasks can't be completed because of their poor resource 
utilization either if the Reduce task is taking too much time to complete and 
fails or if there are no other Reduce slots available for rescheduling it (this 
can be solved with YARN).
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Understanding Hadoop's ability to solve 
problems
Since this book is geared towards analysts, it might be relevant to provide analytical 
examples; for instance, if the reader has a problem similar to the one described 
previously, Hadoop might be of use. Hadoop is not a universal solution to all Big 
Data issues; it's just a good technique to use when large data needs to be divided into 
small chunks and distributed across servers that need to be processed in a parallel 
fashion. This saves time and the cost of performing analytics over a huge dataset.

If we are able to design the Map and Reduce phase for the problem, it will be 
possible to solve it with MapReduce. Generally, Hadoop provides computation 
power to process data that does not fit into machine memory. (R users mostly found 
an error message while processing large data and see the following message: cannot 
allocate vector of size 2.5 GB.)

Understanding the different Java concepts 
used in Hadoop programming
There are some classic Java concepts that make Hadoop more interactive. They are  
as follows:

•	 Remote procedure calls: This is an interprocess communication that allows a 
computer program to cause a subroutine or procedure to execute in another 
address space (commonly on another computer on shared network) without 
the programmer explicitly coding the details for this remote interaction. That 
is, the programmer writes essentially the same code whether the subroutine 
is local to the executing program or remote.

•	 Serialization/Deserialization: With serialization, a Java Virtual Machine 
(JVM) can write out the state of the object to some stream so that we can 
basically read all the members and write out their state to a stream, disk, and 
so on. The default mechanism is in a binary format so it's more compact than 
the textual format. Through this, machines can send data across the network. 
Deserialization is vice versa and is used for receiving data objects over the 
network.

•	 Java generics: This allows a type or method to operate on objects of various 
types while providing compile-time type safety, making Java a fully static 
typed language.

•	 Java collection: This framework is a set of classes and interfaces for handling 
various types of data collection with single Java objects.
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•	 Java concurrency: This has been designed to support concurrent 
programming, and all execution takes place in the context of threads. It is 
mainly used for implementing computational processes as a set of threads 
within a single operating system process.

•	 Plain Old Java Objects (POJO): These are actually ordinary JavaBeans.  
POJO is temporarily used for setting up as well as retrieving the value of 
data objects.

Understanding the Hadoop MapReduce 
fundamentals
To understand Hadoop MapReduce fundamentals properly, we will:

•	 Understand MapReduce objects
•	 Learn how to decide the number of Maps in MapReduce
•	 Learn how to decide the number of Reduces in MapReduce
•	 Understand MapReduce dataflow
•	 Take a closer look at Hadoop MapReduce terminologies

Understanding MapReduce objects
As we know, MapReduce operations in Hadoop are carried out mainly by three 
objects: Mapper, Reducer, and Driver.

•	 Mapper: This is designed for the Map phase of MapReduce, which starts 
MapReduce operations by carrying input files and splitting them into several 
pieces. For each piece, it will emit a key-value data pair as the output value.

•	 Reducer: This is designed for the Reduce phase of a MapReduce job; it 
accepts key-based grouped data from the Mapper output, reduces it by 
aggregation logic, and emits the (key, value) pair for the group of values.

•	 Driver: This is the main file that drives the MapReduce process. It starts 
the execution of MapReduce tasks after getting a request from the client 
application with parameters. The Driver file is responsible for building the 
configuration of a job and submitting it to the Hadoop cluster. The Driver 
code will contain the main() method that accepts arguments from the 
command line. The input and output directory of the Hadoop MapReduce 
job will be accepted by this program. Driver is the main file for defining 
job configuration details, such as the job name, job input format, job output 
format, and the Mapper, Combiner, Partitioner, and Reducer classes. 
MapReduce is initialized by calling this main() function of the Driver class.
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Not every problem can be solved with a single Map and single Reduce program, but 
fewer can't be solved with a single Map and single Reduce task. Sometimes, it is also 
necessary to design the MapReduce job with multiple Map and Reduce tasks. We 
can design this type of job when we need to perform data operations, such as data 
extraction, data cleaning, and data merging, together in a single job. Many problems 
can be solved by writing multiple Mapper and Reducer tasks for a single job. The 
MapReduce steps that will be called sequentially in the case of multiple Map and 
Reduce tasks are Map1 followed by Reduce1, Map2 followed by Reduce2, and so on.

When we need to write a MapReduce job with multiple Map and Reduce tasks, we 
have to write multiple MapReduce application drivers to run them sequentially.

At the time of the MapReduce job submission, we can provide a number of Map 
tasks, and a number of Reducers will be created based on the output from the 
Mapper input and Hadoop cluster capacity. Also, note that setting the number of 
Mappers and Reducers is not mandatory.

Deciding the number of Maps in MapReduce
The number of Maps is usually defined by the size of the input data and size of the 
data split block that is calculated by the size of the HDFS file / data split. Therefore, 
if we have an HDFS datafile of 5 TB and a block size of 128 MB, there will be 40,960 
maps present in the file. But sometimes, the number of Mappers created will be more 
than this count because of speculative execution. This is true when the input is a file, 
though it entirely depends on the InputFormat class.

In Hadoop MapReduce processing, there will be a delay in the result of the job when 
the assigned Mapper or Reducer is taking a long time to finish. If you want to avoid 
this, speculative execution in Hadoop can run multiple copies of the same Map or 
Reduce task on different nodes, and the result from the first completed nodes can be 
used. From the Hadoop API with the setNumMapTasks(int) method, we can get an 
idea of the number of Mappers.

Deciding the number of Reducers in 
MapReduce
A numbers of Reducers are created based on the Mapper's input. However, if you 
hardcode the number of Reducers in MapReduce, it won't matter how many nodes 
are present in a cluster. It will be executed as specified in the configuration.

Additionally, we can set the number of Reducers at runtime along with 
the MapReduce command at the command prompt -D mapred.reduce.
tasks, with the number you want. Programmatically, it can be set via conf.
setNumReduceTasks(int).
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Understanding MapReduce dataflow
Now that we have seen the components that make a basic MapReduce job possible, 
we will distinguish how everything works together at a higher level. From the 
following diagram, we will understand MapReduce dataflow with multiple nodes in 
a Hadoop cluster:

Preloaded local
input data

Intermediate data
from appersM

Values exchanged
by shuffle process

Reducing process
generates outputs

Outputs stored
locally

Node 1

Mapping process

Node 2

Mapping process

Node 3

Mapping process

Node 3

Reducing process

Node 2

Reducing process

Node 1

Reducing process

MapReduce dataflow

The two APIs available for Hadoop MapReduce are: New (Hadoop 1.x and 2.x) and 
Old Hadoop (0.20). YARN is the next generation of Hadoop MapReduce and the new 
Apache Hadoop subproject that has been released for Hadoop resource management.

Hadoop data processing includes several tasks that help achieve the final output 
from an input dataset. These tasks are as follows:

1.	 Preloading data in HDFS.
2.	 Running MapReduce by calling Driver.
3.	 Reading of input data by the Mappers, which results in the splitting of 

the data execution of the Mapper custom logic and the generation of 
intermediate key-value pairs
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4.	 Executing Combiner and the shuffle phase to optimize the overall Hadoop 
MapReduce process.

5.	 Sorting and providing of intermediate key-value pairs to the Reduce phase. 
The Reduce phase is then executed. Reducers take these partitioned key-
value pairs and aggregate them based on Reducer logic.

6.	 The final output data is stored at HDFS.

Here, Map and Reduce tasks can be defined for several data operations as follows:

•	 Data extraction
•	 Data loading
•	 Data segmentation
•	 Data cleaning
•	 Data transformation
•	 Data integration

We will explore MapReduce tasks in more detail in the next part of this chapter.

Taking a closer look at Hadoop MapReduce 
terminologies
In this section, we will see further details on Hadoop MapReduce dataflow  
with several MapReduce terminologies and their Java class details. In the 
MapReduce dataflow figure in the previous section, multiple nodes are connected 
across the network for performing distributed processing with a Hadoop setup.  
The ensuing attributes of the Map and Reduce phases play an important role for 
getting the final output.

The attributes of the Map phase are as follows:

•	 The InputFiles term refers to input, raw datasets that have been created/
extracted to be analyzed for business analytics, which have been stored in 
HDFS. These input files are very large, and they are available in several 
types.

•	 The InputFormat is a Java class to process the input files by obtaining 
the text of each line of offset and the contents. It defines how to split 
and read input data files. We can set the several input types, such as 
TextInputFormat, KeyValueInputFormat, and SequenceFileInputFormat, 
of the input format that are relevant to the Map and Reduce phase.
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•	 The InputSplits class is used for setting the size of the data split.
•	 The RecordReader is a Java class that comes with several methods to retrieve 

key and values by iterating them among the data splits. Also, it includes 
other methods to get the status on the current progress.

•	 The Mapper instance is created for the Map phase. The Mapper class takes 
input (key, value) pairs (generated by RecordReader) and produces 
an intermediate (key, value) pair by performing user-defined code in 
a Map() method. The Map() method mainly takes two input parameters: 
key and value; the remaining ones are OutputCollector and Reporter. 
OutputCollector. They will provide intermediate the key-value pair to 
reduce the phase of the job. Reporter provides the status of the current job 
to JobTracker periodically. The JobTracker will aggregate them for later 
retrieval when the job ends.

The attributes of the Reduce phase are as follows:

•	 After completing the Map phase, the generated intermediate (key, value) 
pairs are partitioned based on a key attribute similarity consideration in the 
hash function. So, each Map task may emit (key, value) pairs to partition; 
all values for the same key are always reduced together without it caring 
about which Mapper is its origin. This partitioning and shuffling will be done 
automatically by the MapReduce job after the completion of the Map phase. 
There is no need to call them separately. Also, we can explicitly override their 
logic code as per the requirements of the MapReduce job.

•	 After completing partitioning and shuffling and before initializing the 
Reduce task, the intermediate (key, value) pairs are sorted based on a key 
attribute value by the Hadoop MapReduce job.

•	 The Reduce instance is created for the Reduce phase. It is a section of user-
provided code that performs the Reduce task. A Reduce() method of the 
Reducer class mainly takes two parameters along with OutputCollector 
and Reporter, which is the same as the Map() function. They are the 
OutputCollector and Reporter objects. OutputCollector in both 
Map and Reduce has the same functionality, but in the Reduce phase, 
OutputCollector provides output to either the next Map phase (in case of 
multiple map and Reduce job combinations) or reports it as the final output 
of the jobs based on the requirement. Apart from that, Reporter periodically 
reports to JobTracker about the current status of the running task.
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•	 Finally, in OutputFormat the generated output (key, value) pairs 
are provided to the OutputCollector parameter and then written 
to OutputFiles, which is governed by OutputFormat. It controls 
the setting of the OutputFiles format as defined in the MapReduce 
Driver. The format will be chosen from either TextOutputFormat, 
SequenceFileOutputFileFormat, or NullOutputFormat.

•	 The factory RecordWriter used by OutputFormat to write the output data in 
the appropriate format.

•	 The output files are the output data written to HDFS by RecordWriter after 
the completion of the MapReduce job.

To run this MapReduce job efficiently, we need to have some knowledge of Hadoop 
shell commands to perform administrative tasks. Refer to the following table:

Shell commands Usage and code sample
cat To copy source paths to stdout:

Hadoop fs -cat URI [URI …]

chmod To change the permissions of files:
Hadoop fs -chmod [-R] <MODE[,MODE]... | OCTALMODE> 
URI [URI …]

copyFromLocal To copy a file from local storage to HDFS:
Hadoop fs –copyFromLocal<localsrc> URI

copyToLocal To copy a file from HDFS to local storage:
Hadoop fs -copyToLocal [-ignorecrc] [-crc] URI 
<localdst>

cp To copy a file from the source to the destination in HDFS:
Hadoop fs -cp URI [URI …] <dest>

du To display the aggregate length of a file:
Hadoop fs -du URI [URI …]

dus To display the summary of file length:
Hadoop fs -dus<args>

get To copy files to a local filesystem:
Hadoop fs -get [-ignorecrc] [-crc] <src><localdst>

ls To list all files in the current directory in HDFS:
Hadoop fs –ls<args>

mkdir To create a directory in HDFS:
Hadoop fs –mkdir<paths>
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Shell commands Usage and code sample
lv To move files from the source to the destination:

Hadoop fs -mv URI [URI …] <dest>

rmr To remove files from the current directory:
Hadoop fs -rmr URI [URI …]

setrep To change the replication factor of a file:
Hadoop fs -setrep [-R] <path>

tail To display the last kilobyte of a file to stdout:
Hadoop fs -tail [-f] URI

Writing a Hadoop MapReduce example
Now we will move forward with MapReduce by learning a very common and easy 
example of word count. The goal of this example is to calculate how many times 
each word occurs in the provided documents. These documents can be considered as 
input to MapReduce's file.

In this example, we already have a set of text files—we want to identify the 
frequency of all the unique words existing in the files. We will get this by designing 
the Hadoop MapReduce phase.

In this section, we will see more on Hadoop MapReduce programming using 
Hadoop MapReduce's old API. Here we assume that the reader has already set 
up the Hadoop environment as described in Chapter 1, Getting Ready to Use R and 
Hadoop. Also, keep in mind that we are not going to use R to count words; only 
Hadoop will be used here.

Basically, Hadoop MapReduce has three main objects: Mapper, Reducer, and Driver. 
They can be developed with three Java classes; they are the Map class, Reduce class, 
and Driver class, where the Map class denotes the Map phase, the Reducer class 
denotes the Reduce phase, and the Driver class denotes the class with the main() 
method to initialize the Hadoop MapReduce program.

In the previous section of Hadoop MapReduce fundamentals, we already discussed 
what Mapper, Reducer, and Driver are. Now, we will learn how to define them and 
program for them in Java. In upcoming chapters, we will be learning to do more with 
a combination of R and Hadoop.
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There are many languages and frameworks that are used for 
building MapReduce, but each of them has different strengths. 
There are multiple factors that by modification can provide 
high latency over MapReduce. Refer to the article 10 MapReduce 
Tips by Cloudera at http://blog.cloudera.com/
blog/2009/05/10-mapreduce-tips/.
To make MapReduce development easier, use Eclipse configured 
with Maven, which supports the old MapReduce API.

Understanding the steps to run a  
MapReduce job
Let's see the steps to run a MapReduce job with Hadoop:

1.	 In the initial steps of preparing Java classes, we need you to develop a 
Hadoop MapReduce program as per the definition of our business problem. 
In this example, we have considered a word count problem. So, we have 
developed three Java classes for the MapReduce program; they are Map.
java, Reduce.java, and WordCount.java, used for calculating the frequency 
of the word in the provided text files.

°° Map.java: This is the Map class for the word count Mapper.
// Defining package of the class
package com.PACKT.chapter1;

// Importing java libraries 
import java.io.*;
importjava.util.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;

// Defining the Map class
public class Map extends MapReduceBase implements
         Mapper<LongWritable, 
                Text, 
                Text, 
                IntWritable>{

//Defining the map method – for processing the data with // 
problem specific logic
public void map(LongWritable key,
                Text value,
                OutputCollector<Text,
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                IntWritable> output,
                Reporter reporter) 
                throws IOException {

// For breaking the string to tokens and convert them to 
lowercase
StringTokenizer st = new StringTokenizer(value.toString().
toLowerCase());

// For every string tokens
while(st.hasMoreTokens()) {

// Emitting the (key,value) pair with value 1.
output.collect(new Text(st.nextToken()), 
               new IntWritable(1));
        }

    }

}

°° Reduce.java: This is the Reduce class for the word count Reducer.
// Defining package of the class
package com.PACKT.chapter1;

// Importing java libraries
import java.io.*;
importjava.util.*;
import org.apache.hadoop.io.*;
importorg.apache.hadoop.mapred.*;

// Defining the Reduce class 
public class Reduce extends MapReduceBase implements
          Reducer<Text,
                  IntWritable,
                  Text,
                  IntWritable> {

// Defining the reduce method for aggregating the //
generated output of Map phase
public void reduce(Text key,
                   Iterator<IntWritable> values,
                   OutputCollector<Text,IntWritable>
                   output, 
                   Reporter reporter) throws IOException {
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// Setting initial counter value as 0
int count = 0;

// For every element with similar key attribute, increment 
its counter value by adding 1.
while(values.hasNext()) {
count += values.next().get();
        }

// Emitting the (key,value) pair
output.collect(key, new IntWritable(count));
    }
}

°° WordCount.java: This is the task of Driver in the Hadoop 
MapReduce Driver main file.

//Defining package of the class
package com.PACKT.chapter1;

// Importing java libraries
import java.io.*;
importorg.apache.hadoop.fs.*;
import org.apache.hadoop.io.*;
importorg.apache.hadoop.mapred.*;
importorg.apache.hadoop.util.*;
importorg.apache.hadoop.conf.*;

//Defining wordcount class for job configuration 
  // information
public class WordCount extends Configured implements Tool{

publicint run(String[] args) throws IOException{
JobConfconf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

//For defining the output key format
conf.setOutputKeyClass(Text.class);

//For defining the output value format
conf.setOutputValueClass(IntWritable.class);

// For defining the Mapper class implementation
conf.setMapperClass(Map.class);
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// For defining the Reducer class implementation
conf.setReducerClass(Reduce.class);

// For defining the type of input format 
conf.setInputFormat(TextInputFormat.class);

// For defining the type of output format
conf.setOutputFormat(TextOutputFormat.class);

// For defining the command line argument sequence for // 
input dataset path
FileInputFormat.setInputPaths(conf, new Path(args[0]));

// For defining the command line argument sequence for // 
output dataset path
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

// For submitting the configuration object
JobClient.runJob(conf);

return 0;
    }

// Defining the main() method to start the execution of // 
the MapReduce program
public static void main(String[] args) throws Exception {
  intexitCode = ToolRunner.run(new WordCount(), args);
  System.exit(exitCode); } }

2.	 Compile the Java classes.
// create a folder for storing the compiled classes

hduser@ubuntu:~/Desktop/PacktPub$ mkdir classes

// compile the java class files with classpath

hduser@ubuntu:~/Desktop/PacktPub$ javac -classpath /usr/local/
hadoop/hadoop-core-1.1.0.jar:/usr/local/hadoop/lib/commons-cli-
1.2.jar -d classes *.java

www.allitebooks.com

http://www.allitebooks.org
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3.	 Create a .jar file from the compiled classes.
hduser@ubuntu:~/Desktop/PacktPub$ cd classes/

// create jar of developed java classes

hduser@ubuntu:~/Desktop/PacktPub/classes$ jar -cvf wordcount.jar 
com

4.	 Start the Hadoop daemons.
// Go to Hadoop home Directory

hduser@ubuntu:~$ cd $HADOOP_HOME

// Start Hadoop Cluster

hduser@ubuntu:/usr/local/hadoop$ bin/start-all.sh

5.	 Check all the running daemons.
// Ensure all daemons are running properly 

hduser@ubuntu:/usr/local/hadoop$ jps

6.	 Create the HDFS directory /wordcount/input/.
// Create Hadoop directory for storing the input dataset

hduser@ubuntu:/usr/local/hadoop$ bin/Hadoop fs -mkdir /wordcount/
input

7.	 Extract the input dataset to be used in the word count example. As we 
need to have text files to be processed by the word count example, we 
will use the text files provided with the Hadoop distribution (CHANGES.
txt, LICENSE.txt, NOTICE.txt, and README.txt) by copying them to the 
Hadoop directory. We can have other text datasets from the Internet input 
in this MapReduce algorithm instead of using readymade text files. We can 
also extract data from the Internet to process them, but here we are using 
readymade input files.
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8.	 Copy all the text files to HDFS.
// To copying the text files from machine's local

  // directory in to Hadoop directory

hduser@ubuntu:/usr/local/hadoop$ bin/hadoopfs -copyFromLocal 
$HADOOP_HOME/*.txt /wordcount/input/

9.	 Run the Hadoop MapReduce job with the following command:
// Command for running the Hadoop job by specifying jar, main 
class, input directory and output directory.

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar wordcount.jar com.
PACKT.chapter1.WordCount /wordcount/input/ /wordcount/output/

10.	 This is how the final output will look.

// To read the generated output from HDFS directory

hduser@ubuntu:/usr/local/hadoop$ bin/hadoopfs -cat /wordcount/
output/part-00000

During the MapReduce phase, you need to monitor the job as 
well as the nodes. Use the following to monitor MapReduce 
jobs in web browsers:

•	 localhost:50070: NameNode Web interface (for HDFS)
•	 localhost:50030: JobTracker Web interface (for 

MapReduce layer)
•	 localhost:50060: TaskTracker Web interface (for 

MapReduce layer)
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Learning to monitor and debug a Hadoop 
MapReduce job
In this section, we will learn how to monitor as well as debug a Hadoop MapReduce 
job without any commands.

This is one of the easiest ways to use the Hadoop MapReduce administration UI. We 
can access this via a browser by entering the URL http://localhost:50030 (web 
UI for the JobTracker daemon). This will show the logged information of the Hadoop 
MapReduce jobs, which looks like following screenshot:

Map/Reduce administration

Here we can check the information and status of running jobs, the status of the Map 
and Reduce tasks of a job, and the past completed jobs as well as failed jobs with 
failed Map and Reduce tasks. Additionally, we can debug a MapReduce job by 
clicking on the hyperlink of the failed Map or Reduce task of the failed job. This will 
produce an error message printed on standard output while the job is running.
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Exploring HDFS data
In this section, we will see how to explore HDFS directories without running any 
Bash command. The web UI of the NameNode daemon provides such a facility.  
We just need to locate it at http://localhost:50070.

NameNode administration

This UI enables us to get a cluster summary (memory status), NameNode logs, as 
well as information on live and dead nodes in the cluster. Also, this allows us to 
explore the Hadoop directory that we have created for storing input and output data 
for Hadoop MapReduce jobs.
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Understanding several possible MapReduce 
definitions to solve business problems
Until now we have learned what MapReduce is and how to code it. Now, we will see 
some common MapReduce problem definitions that are used for business analytics. 
Any reader who knows MapReduce with Hadoop will easily be able to code and solve 
these problem definitions by modifying the MapReduce example for word count. The 
major changes will be in data parsing and in the logic behind operating the data. The 
major effort will be required in data collection, data cleaning, and data storage.

•	 Server web log processing: Through this MapReduce definition, we can 
perform web log analysis. Logs of the web server provide information about 
web requests, such as requested page's URL, date, time, and protocol. From 
this, we can identify the peak load hours of our website from the web server 
log and scale our web server configuration based on the traffic on the site. 
So, the identification of no traffic at night will help us save money by scaling 
down the server. Also, there are a number of business cases that can be 
solved by this web log server analysis.

•	 Web analytics with website statistics: Website statistics can provide 
more detailed information about the visitor's metadata, such as the 
source, campaign, visitor type, visitor location, search keyword, requested 
page URL, browser, and total time spent on pages. Google analytics is 
one of the popular, free service providers for websites. By analyzing all 
this information, we can understand visitors' behavior on a website. By 
descriptive analytics, we can identify the importance of web pages or other 
web attributes based on visitors' addiction towards them. For an e-commerce 
website, we can identify popular products based on the total number of 
visits, page views, and time spent by a visitor on a page. Also, predictive 
analytics can be implemented on web data to predict the business.

•	 Search engine: Suppose we have a large set of documents and want to 
search the document for a specific keyword, inverted indices with Hadoop 
MapReduce will help us find keywords so we can build a search engine for 
Big Data.

•	 Stock market analysis: Let's say that we have collected stock market data 
(Big Data) for a long period of time and now want to identify the pattern 
and predict it for the next time period. This requires training of all historical 
datasets. Then we can compute the frequency of the stock market changes for 
the said time period using several machine-learning libraries with Hadoop 
MapReduce.

Also, there are too many possible MapReduce applications that can be applied to 
improve business cost.
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Learning the different ways to write 
Hadoop MapReduce in R
We know that Hadoop Big Data processing with MapReduce is a big deal for 
statisticians, web analysts, and product managers who used to use the R tool 
for analyses because supplementary programming knowledge of MapReduce is 
required to migrate the analyses into MapReduce with Hadoop. Also, we know 
R is a tool that is consistently increasing in popularity; there are many packages/
libraries that are being developed for integrating with R. So to develop a MapReduce 
algorithm or program that runs with the log of R and computation power of Hadoop, 
we require the middleware for R and Hadoop. RHadoop, RHIPE, and Hadoop 
streaming are the middleware that help develop and execute Hadoop MapReduce 
within R. In this last section, we will talk about RHadoop, RHIPE, and introducing 
Hadoop streaming, and from the later chapters we will purely develop MapReduce 
with these packages.

Learning RHadoop
RHadoop is a great open source software framework of R for performing data 
analytics with the Hadoop platform via R functions. RHadoop has been developed 
by Revolution Analytics, which is the leading commercial provider of software and 
services based on the open source R project for statistical computing. The RHadoop 
project has three different R packages: rhdfs, rmr, and rhbase. All these packages 
are implemented and tested on the Cloudera Hadoop distributions CDH3, CDH4, 
and R 2.15.0. Also, these are tested with the R version 4.3, 5.0, and 6.0 distributions of 
Revolution Analytics.

These three different R packages have been designed on Hadoop's two main features 
HDFS and MapReduce:

•	 rhdfs: This is an R package for providing all Hadoop HDFS access to R. All 
distributed files can be managed with R functions.

•	 rmr: This is an R package for providing Hadoop MapReduce interfaces to 
R. With the help of this package, the Mapper and Reducer can easily be 
developed.

•	 rhbase: This is an R package for handling data at HBase distributed database 
through R.
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Learning RHIPE
R and Hadoop Integrated Programming Environment (RHIPE) is a free and 
open source project. RHIPE is widely used for performing Big Data analysis with 
D&R analysis. D&R analysis is used to divide huge data, process it in parallel on 
a distributed network to produce intermediate output, and finally recombine all 
this intermediate output into a set. RHIPE is designed to carry out D&R analysis on 
complex Big Data in R on the Hadoop platform. RHIPE was developed by Saptarshi 
Joy Guha (Data Analyst at Mozilla Corporation) and her team as part of her PhD 
thesis in the Purdue Statistics Department.

Learning Hadoop streaming
Hadoop streaming is a utility that comes with the Hadoop distribution. This utility 
allows you to create and run MapReduce jobs with any executable or script as the 
Mapper and/or Reducer. This is supported by R, Python, Ruby, Bash, Perl, and so 
on. We will use the R language with a bash script.

Also, there is one R package named HadoopStreaming that has been developed  
for performing data analysis on Hadoop clusters with the help of R scripts, which  
is an interface to Hadoop streaming with R. Additionally, it also allows the running 
of MapReduce tasks without Hadoop. This package was developed by David 
Rosenberg, Chief Scientist at SenseNetworks. He has expertise in machine learning 
and statistical modeling.

Summary
In this chapter, we have seen what Hadoop MapReduce is, and how to develop it as 
well as run it. In the next chapter, we will learn how to install RHIPE and RHadoop, 
and develop MapReduce and its available functional libraries with examples.



Integrating R and Hadoop
From the first two chapters we got basic information on how to install the R and 
Hadoop tools. Also, we learned what the key features of Hadoop are and why they 
are integrated with R for Big Data solutions to business data problems. So with the 
integration of R and Hadoop we can forward data analytics to Big Data analytics. Both 
of these middleware are still getting improved for being used along with each other.

In Chapter 2, Writing Hadoop MapReduce Programs, we learned how to write a 
MapReduce program in Hadoop. In this chapter, we will learn to develop the 
MapReduce programs in R that run over the Hadoop cluster. This chapter will 
provide development tutorials on R and Hadoop with RHIPE and RHadoop. After 
installing R and Hadoop, we will see how R and Hadoop can be integrated using 
easy steps.

Before we start moving on to the installation, let's see what are the advantages of R 
and Hadoop integration within an organization. Since statisticians and data analysts 
frequently use the R tool for data exploration as well as data analytics, Hadoop 
integration is a big boon for processing large-size data. Similarly, data engineers 
who use Hadoop tools, such as system, to organize the data warehouse can perform 
such logical analytical operations to get informative insights that are actionable by 
integrating with R tool.
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Therefore, the integration of such data-driven tools and technologies can build a 
powerful scalable system that has features of both of them.

Three ways to link R and Hadoop are as follows:

•	 RHIPE
•	 RHadoop
•	 Hadoop streaming

In this chapter, we will be learning integration and analytics with RHIPE and 
RHadoop. Hadoop streaming will be covered in Chapter 4, Using Hadoop Streaming 
with R.

Introducing RHIPE
RHIPE stands for R and Hadoop Integrated Programming Environment. As 
mentioned on http://www.datadr.org/, it means "in a moment" in Greek and is a 
merger of R and Hadoop. It was first developed by Saptarshi Guha for his PhD thesis 
in the Department of Statistics at Purdue University in 2012. Currently this is carried 
out by the Department of Statistics team at Purdue University and other active 
Google discussion groups.
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The RHIPE package uses the Divide and Recombine technique to perform  
data analytics over Big Data. In this technique, data is divided into subsets, 
computation is performed over those subsets by specific R analytics operations,  
and the output is combined. RHIPE has mainly been designed to accomplish two 
goals that are as follows:

•	 Allowing you to perform in-depth analysis of large as well as small data.
•	 Allowing users to perform the analytics operations within R using a lower-

level language. RHIPE is designed with several functions that help perform 
Hadoop Distribute File System (HDFS) as well as MapReduce operations 
using a simple R console.

RHIPE is a lower-level interface as compared to HDFS and MapReduce operation. Use 
the latest supported version of RHIPE which is 0.73.1 as Rhipe_0.73.1-2.tar.gz.

Installing RHIPE
As RHIPE is a connector of R and Hadoop, we need Hadoop and R installed on our 
machine or in our clusters in the following sequence:

1.	 Installing Hadoop.
2.	 Installing R.
3.	 Installing protocol buffers.
4.	 Setting up environment variables.
5.	 Installing rJava.
6.	 Installing RHIPE.

Let us begin with the installation.

Installing Hadoop
As we are here to integrate R and Hadoop with the RHIPE package library, we need 
to install Hadoop on our machine. It will be arbitrary that it either be a single node or 
multinode installation depending on the size of the data to be analyzed.

As we have already learned how to install Hadoop in Ubuntu, we are not going 
to repeat the process here. If you haven't installed it yet, please refer to Chapter 1, 
Getting Ready to Use R and Hadoop, for guidance.
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Installing R
If we use a multinode Hadoop architecture, there are a number of TaskTracker 
nodes for executing the MapReduce job. So, we need to install R over all of these 
TaskTracker nodes. These TaskTracker nodes will start process over the data subsets 
with developed map and reduce logic with the consideration of key values.

Installing protocol buffers
Protocol buffers just serialize the data to make it platform independent, neutral,  
and robust (primarily used for structured data). Google uses the same protocol for 
data interchange. RHIPE depends on protocol buffers 2.4.1 for data serialization over 
the network.

This can be installed using the following command:

## For downloading the protocol buffer 2.4.1

wget http://protobuf.googlecode.com/files/protobuf-2.4.1.tar.gz

## To extracting the protocol buffer

tar -xzf protobuf-2.4.1.tar.gz

## To get in to the extracted protocol buffer directory

cd protobuf-2.4.1

## For making install the protocol buffer

./configure # --prefix=...

make

make install

Environment variables
In order for RHIPE to compile and work correctly, it is better to ensure that the 
following environment variables are set appropriately:

For configuring the Hadoop libraries, we need to set two variables, PKG_CONFIG_
PATH and LD_LIBRARY_PATH, to the ~./bashrc file of hduser (Hadoop user) so that it 
can automatically be set when the user logs in to the system.

Here, PKG_CONFIG_PATH is an environment variable that holds the path of the  
pkg-config script for retrieving information about installed libraries in the system, 
and LD_LIBRARY_PATH is an environment variable that holds the path of native 
shared libraries.
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export PKG_CONFIG_PATH = /usr/local/lib

export LD_LIBRARY_PATH = /usr/local/lib

You can also set all these variables from your R console, as follows:

Sys.setenv(HADOOP_HOME="/usr/local/hadoop/")

Sys.setenv(HADOOP_BIN="/usr/local/hadoop/bin")

Sys.setenv(HADOOP_CONF_DIR="/usr/local/hadoop/conf")

Where HADOOP_HOME is used for specifying the location of the Hadoop directory, 
HADOOP_BIN is used for specifying the location of binary files of Hadoop, and 
HADOOP_CONF_DIR is used for specifying the configuration files of Hadoop.

Setting the variables is temporary and valid up to a particular R session. If we want 
to make this variable permanent, as initialized automatically when the R session 
initializes, we need to set these variables to the /etc/R/Renviron file as we set the 
environment variable in .bashrc of a specific user profile.

The rJava package installation
Since RHIPE is a Java package, it acts like a Java bridge between R and Hadoop. 
RHIPE serializes the input data to a Java type, which has to be serialized over the 
cluster. It needs a low-level interface to Java, which is provided by rJava. So, we will 
install rJava to enable the functioning of RHIPE.

## For installing the rJava Package will be used for calling java 
libraries from R.

install.packages("rJava")

Installing RHIPE
Now, it's time to install the RHIPE package from its repository.

## Downloading RHIPE package from RHIPE repository

Wget http://ml.stat.purdue.edu/rhipebin/Rhipe_0.73.1-2.tar.gz

## Installing the RHIPE package in R via CMD command

R CMD INSTALL Rhipe_0.73.1.tar.gz

Now, we are ready with a RHIPE system for performing data analytics with R and 
Hadoop.
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Understanding the architecture of RHIPE
Let's understand the working of the RHIPE library package developed to integrate R 
and Hadoop for effective Big Data analytics.

Components of RHIPE

There are a number of Hadoop components that will be used for data analytics 
operations with R and Hadoop.

The components of RHIPE are as follows:

•	 RClient: RClient is an R application that calls the JobTracker to execute the 
job with an indication of several MapReduce job resources such as Mapper, 
Reducer, input format, output format, input file, output file, and other 
several parameters that can handle the MapReduce jobs with RClient.

•	 JobTracker: A JobTracker is the master node of the Hadoop MapReduce 
operations for initializing and monitoring the MapReduce jobs over the 
Hadoop cluster.
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•	 TaskTracker: TaskTracker is a slave node in the Hadoop cluster. It executes 
the MapReduce jobs as per the orders given by JobTracker, retrieve the input 
data chunks, and run R-specific Mapper and Reducer over it. Finally, the 
output will be written on the HDFS directory.

•	 HDFS: HDFS is a filesystem distributed over Hadoop clusters with several 
data nodes. It provides data services for various data operations.

Understanding RHIPE samples
In this section, we will create two RHIPE MapReduce examples. These two  
examples are defined with the basic utility of the Hadoop MapReduce job from a 
RHIPE package.

RHIPE sample program (Map only)
MapReduce problem definition: The goal of this MapReduce sample program is to 
test the RHIPE installation by using the min and max functions over numeric data 
with the Hadoop environment. Since this is a sample program, we have included 
only the Map phase, which will store its output in the HDFS directory.

To start the development with RHIPE, we need to initialize the RHIPE subsystem by 
loading the library and calling the rhinit() method.

## Loading the RHIPE library

library(Rhipe)

## initializing the RHIPE subsystem, which is used for everything. RHIPE 
will not work if rhinit is not called.

rhinit()

Input: We insert a numerical value rather than using a file as an input.
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Map phase: The Map phase of this MapReduce program will call 10 different 
iterations and in all of those iterations, random numbers from 1 to 10 will be 
generated as per their iteration number. After that, the max and min values for that 
generated numbers will be calculated.

## Defining the Map phase

Map(function(k,v){

## for generating the random deviates

  X  runif(v)

## for emitting the key-value pairs with key – k and

## value – min and max of generated random deviates.

  rhcollect(k, c(Min=min(x),Max=max(x))

}

Output: Finally the output of the Map phase will be considered here as an output of 
this MapReduce job and it will be stored to HDFS at /app/hadoop/RHIPE/.

Defining the MapReduce job by the rhwatch() method of the RHIPE package:

## Create and running a MapReduce job by following

job = rhwatch(map=map,input=10,reduce=0,

output="/app/Hadoop/RHIPE/test",jobname='test')

Reading the MapReduce output from HDFS:

## Read the results of job from HDFS

result <- rhread(job)

For displaying the result in a more readable form in the table format, use the 
following code:

## Displaying the result

outputdata  <- do.call('rbind', lapply(result, "[[", 2))
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Output:

Word count
MapReduce problem definition: This RHIPE MapReduce program is defined for 
identifying the frequency of all of the words that are present in the provided input 
text files.

Also note that this is the same MapReduce problem as we saw in Chapter 2, Writing 
Hadoop MapReduce Programs.

## Loading the RHIPE Library

library(Rhipe)

Input: We will use the CHANGES.txt file, which comes with Hadoop distribution, 
and use it with this MapReduce algorithm. By using the following command, we will 
copy it to HDFS:

rhput("/usr/local/hadoop/CHANGES.txt","/RHIPE/input/")

Map phase: The Map phase contains the code for reading all the words from a file 
and assigning all of them to value 1.

## Defining the Map function 
w_map<-expression({  
  words_vector<-unlist(strsplit(unlist(map.values)," "))  
  lapply(words_vector,function(i) rhcollect(i,1))

})
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Reduce phase: With this reducer task, we can calculate the total frequency of the 
words in the input text files.

## For reference, RHIPE provides a canned version

Reduce = rhoptions()$templates$scalarsummer

## Defining the Reduce function 
w_reduce<-expression( 
  pre={total=0}, 
  reduce={total<-sum(total,unlist(reduce.values))}, 
  post={rhcollect(reduce.key,total)} 
)

Defining the MapReduce job object: After defining the word count mapper and 
reducer, we need to design the driver method that can execute this MapReduce job 
by calling Mapper and Reducer sequentially.

## defining and executing a MapReduce job object

Job1 <-  
  rhwatch(map=w_map,reduce=w_reduce,  
  ,input="/RHIPE/input/",output="/RHIPE/output/",  
  jobname="word_count")

Reading the MapReduce output:

## for reading the job output data from HDFS

Output_data <- rhread(Job1) 
results <- data.frame(words=unlist(lapply(Output_data,"[[",1)), count 
=unlist(lapply(Output_data,"[[",2)))

The output of MapReduce job will be stored to output_data, we will convert this 
output into R supported dataframe format. The dataframe output will be stored to 
the results variable. For displaying the MapReduce output in the data frame the 
format will be as follows:

Output for head (results):
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Output for tail (results):

Understanding the RHIPE function reference
RHIPE is specially designed for providing a lower-level interface over Hadoop. So 
R users with a RHIPE package can easily fire the Hadoop data operations over large 
datasets that are stored on HDFS, just like the print() function called in R.

Now we will see all the possible functional uses of all methods that are available in 
RHIPE library. All these methods are with three categories: Initialization, HDFS, and 
MapReduce operations.

Initialization
We use the following command for initialization:

•	 rhinit: This is used to initialize the Rhipe subsystem.

rhinit(TRUE,TRUE)

HDFS
We use the following command for HDFS operations:

•	 rhls: This is used to retrieve all directories from HDFS.
Its syntax is rhls(path)
rhls("/")
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Output:

•	 hdfs.getwd: This is used for acquiring the current working HDFS directory. 
Its syntax is hdfs.getwd()

•	 hdfs.setwd: This is used for setting up the current working HDFS directory. 
Its syntax is hdfs.setwd("/RHIPE")

•	 rhput: This is used to copy a file from a local directory to HDFS. Its syntax 
is rhput(src,dest) and rhput("/usr/local/hadoop/NOTICE.txt","/
RHIPE/").

•	 rhcp: This is used to copy a file from one HDFS location to another HDFS 
location. Its syntax is rhcp('/RHIPE/1/change.txt','/RHIPE/2/change.
txt').

•	 rhdel: This is used to delete a directory/file from HDFS. Its syntax is 
rhdel("/RHIPE/1").

•	 rhget: This is used to copy the HDFS file to a local directory. Its syntax is 
rhget("/RHIPE/1/part-r-00000", "/usr/local/").

•	 rwrite: This is used to write the R data to HDFS. its syntax is 
rhwrite(list(1,2,3),"/tmp/x").
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MapReduce
We use the following commands for MapReduce operations:

•	 rhwatch: This is used to prepare, submit, and monitor MapReduce jobs.
# Syntax:

rhwatch(map, reduce, combiner, input, output, 
mapred,partitioner,mapred, jobname)

## to prepare and submit MapReduce job:

z=rhwatch(map=map,reduce=0,input=5000,output="/tmp/
sort",mapred=mapred,read=FALSE)

results <- rhread(z)

•	 rhex: This is used to execute the MapReduce job from over Hadoop cluster.
## Submit the job

rhex(job)

•	 rhjoin: This is used to check whether the MapReduce job is completed or 
not. Its syntax is rhjoin(job).

•	 rhkill: This is used to kill the running MapReduce job. Its syntax is 
rhkill(job).

•	 rhoptions: This is used for getting or setting the RHIPE configuration 
options. Its syntax is rhoptions().

•	 rhstatus: This is used to get the status of the RHIPE MapReduce job. Its 
syntax is rhstatus(job).

rhstatus(job, mon.sec = 5, autokill = TRUE, 
  showErrors = TRUE, verbose = FALSE, handler = NULL)
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Introducing RHadoop
RHadoop is a collection of three R packages for providing large data operations with 
an R environment. It was developed by Revolution Analytics, which is the leading 
commercial provider of software based on R. RHadoop is available with three main 
R packages: rhdfs, rmr, and rhbase. Each of them offers different Hadoop features.

•	 rhdfs is an R interface for providing the HDFS usability from the R console. 
As Hadoop MapReduce programs write their output on HDFS, it is very easy 
to access them by calling the rhdfs methods. The R programmer can easily 
perform read and write operations on distributed data files. Basically, rhdfs 
package calls the HDFS API in backend to operate data sources stored on 
HDFS.

•	 rmr is an R interface for providing Hadoop MapReduce facility inside the 
R environment. So, the R programmer needs to just divide their application 
logic into the map and reduce phases and submit it with the rmr methods. 
After that, rmr calls the Hadoop streaming MapReduce API with several job 
parameters as input directory, output directory, mapper, reducer, and so on, 
to perform the R MapReduce job over Hadoop cluster.

•	 rhbase is an R interface for operating the Hadoop HBase data source 
stored at the distributed network via a Thrift server. The rhbase package is 
designed with several methods for initialization and read/write and table 
manipulation operations.

Here it's not necessary to install all of the three RHadoop packages to run the 
Hadoop MapReduce operations with R and Hadoop. If we have stored our input 
data source at the HBase data source, we need to install rhbase; else we require 
rhdfs and rmr packages. As Hadoop is most popular for its two main features, 
Hadoop MapReduce and HDFS, both of these features will be used within the R 
console with the help of RHadoop rhdfs and rmr packages. These packages are 
enough to run Hadoop MapReduce from R. Basically, rhdfs provides HDFS data 
operations while rmr provides MapReduce execution operations.

RHadoop also includes another package called quick check, which is designed for 
debugging the developed MapReduce job defined by the rmr package.

In the next section, we will see their architectural relationships as well as their 
installation steps.
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Understanding the architecture of RHadoop
Since Hadoop is highly popular because of HDFS and MapReduce, Revolution 
Analytics has developed separate R packages, namely, rhdfs, rmr, and rhbase.  
The architecture of RHadoop is shown in the following diagram:

RHadoop Ecosystem

Installing RHadoop
In this section, we will learn some installation tricks for the three RHadoop packages 
including their prerequisites.

•	 R and Hadoop installation: As we are going to use an R and Hadoop 
integrated environment, we need Hadoop as well as R installed on our 
machine. If you haven't installed yet, see Chapter 1, Getting Ready to Use R and 
Hadoop. As we know, if we have too much data, we need to scale our cluster 
by increasing the number of nodes. Based on this, to get RHadoop installed 
on our system we need Hadoop with either a single node or multimode 
installation as per the size of our data.
RHadoop is already tested with several Hadoop distributions provided by 
Cloudera, Hortonworks, and MapR.
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•	 Installing the R packages: We need several R packages to be installed that 
help it to connect R with Hadoop. The list of the packages is as follows:

°° rJava
°° RJSONIO
°° itertools
°° digest
°° Rcpp
°° httr
°° functional
°° devtools
°° plyr
°° reshape2

We can install them by calling the execution of the following R command in 
the R console:

install.packages( c('rJava','RJSONIO', 'itertools', 'digest','Rcpp
','httr','functional','devtools', 'plyr','reshape2'))

•	 Setting environment variables: We can set this via the R console using the 
following code:
## Setting HADOOP_CMD

Sys.setenv(HADOOP_CMD="/usr/local/hadoop/bin/hadoop")

## Setting up HADOOP_STREAMING

Sys.setenv(HADOOP_STREAMING="/usr/local/hadoop/contrib/streaming/
hadoop-streaming-1.0.3.jar")

or, we can also set the R console via the command line as follows:

export HADOOP_CMD=/usr/local/Hadoop

export HADOOP_STREAMING=/usr/lib/hadoop-0.20-mapreduce/contrib/
streaming/hadoop-streaming-2.0.0-mr1-cdh4.1.1.jar
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•	 Installing RHadoop [rhdfs, rmr, rhbase]

1.	 Download RHadoop packages from GitHub repository of Revolution 
Analytics: https://github.com/RevolutionAnalytics/RHadoop.

°° rmr: [rmr-2.2.2.tar.gz]
°° rhdfs: [rhdfs-1.6.0.tar.gz]
°° rhbase: [rhbase-1.2.0.tar.gz]

2.	 Installing packages.
°° For rmr we use:

R CMD INSTALL rmr-2.2.2.tar.gz

°° For rhdfs we use:
R CMD INSTALL rmr-2.2.2.tar.gz

°° For rhbase we use:

R CMD INSTALL rhbase-1.2.0.tar.gz

To install rhbase, we need to have HBase and Zookeeper 
installed on our Hadoop cluster.

Understanding RHadoop examples
Once we complete the installation of RHadoop, we can test the setup by running the 
MapReduce job with the rmr2 and rhdfs libraries in the RHadoop sample program 
as follows:

## loading the libraries

library(rhdfs')

library('rmr2')

## initializing the RHadoop

hdfs.init()

# defining the input data

small.ints = to.dfs(1:10)

## Defining the MapReduce job

mapreduce(
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# defining input parameters as small.ints hdfs object, map parameter as 
function to calculate the min and max for generated random deviates. 
input = small.ints,  
map = function(k, v) 
{ 
  lapply(seq_along(v), function(r){ 
  x <- runif(v[[r]]) 
  keyval(r,c(max(x),min(x))) 
})})

After running these lines, simply pressing Ctrl + Enter will execute this  
MapReduce program. If it succeeds, the last line will appear as shown in the 
following screenshot:

Where characters of that last line indicate the output location of the MapReduce job.

To read the result of the executed MapReduce job, copy the output location, as 
provided in the last line, and pass it to the from.dfs() function of rhdfs.

Where the first column of the previous output indicates the max value, and the 
second one the min value.
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Word count
MapReduce problem definition: This RHadoop MapReduce program is defined  
for identifying the frequency of all the words that are present in the provided input 
text files.

Also, note that this is the same MapReduce problem as we learned in the previous 
section about RHIPE in Chapter 2, Writing Hadoop MapReduce Programs.

wordcount = function(input,  
  output = NULL,  
  pattern = " "){

Map phase: This map function will read the text file line by line and split them by 
spaces. This map phase will assign 1 as a value to all the words that are caught by 
the mapper.

wc.map = function(., lines) {

  keyval(

  unlist(

  strsplit(

  x = lines,

  split = pattern)),

  1)}

Reduce phase: Reduce phase will calculate the total frequency of all the words by 
performing sum operations over words with the same keys.

wc.reduce = function(word, counts ) {

  keyval(word, sum(counts))}

Defining the MapReduce job: After defining the word count mapper and reducer, we 
need to create the driver method that starts the execution of MapReduce.

# To execute the defined Mapper and Reducer functions

# by specifying the input, output, map, reduce and input.format as 
parameters.

# Syntax:

# mapreduce(input, output, input.format, map,reduce,

# combine)
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mapreduce(input = input ,

  output = output,

  input.format = "text",

  map = wc.map,

  reduce = wc.reduce,

  combine = T)}

Executing the MapReduce job: We will execute the RHadoop MapReduce job by 
passing the input data location as a parameter for the wordcount function.

wordcount('/RHadoop/1/')

Exploring the wordcount output:

from.dfs("/tmp/RtmpRMIXzb/file2bda5e10e25f")

Understanding the RHadoop function 
reference
RHadoop has three different packages, which are in terms of HDFS, MapReduce, 
and HBase operations, to perform operations over the data.

Here we will see how to use the rmr and rhdfs package functions:

The hdfs package
The categorized functions are:

•	 Initialization
°° hdfs.init: This is used to initialize the rhdfs package. Its syntax is 

hdfs.init().
°° hdfs.defaults: This is used to retrieve and set the rhdfs defaults. 

Its syntax is hdfs.defaults().

To retrieve the hdfs configuration defaults, refer to the following screenshot:



Chapter 3

[ 83 ]

•	 File manipulation

°° hdfs.put: This is used to copy files from the local filesystem to the 
HDFS filesystem.
hdfs.put('/usr/local/hadoop/README.txt','/RHadoop/1/')

°° hdfs.copy: This is used to copy files from the HDFS directory to the 
local filesystem.
hdfs.put('/RHadoop/1/','/RHadoop/2/')

°° hdfs.move: This is used to move a file from one HDFS directory to 
another HDFS directory.
hdfs.move('/RHadoop/1/README.txt','/RHadoop/2/')

°° hdfs.rename: This is used to rename the file stored at HDFS from R.
hdfs.rename('/RHadoop/README.txt','/RHadoop/README1.txt')

°° hdfs.delete: This is used to delete the HDFS file or directory from 
R.
hdfs.delete("/RHadoop")

°° hdfs.rm: This is used to delete the HDFS file or directory from R.
hdfs.rm("/RHadoop")

°° hdfs.chmod: This is used to change permissions of some files.

hdfs.chmod('/RHadoop', permissions= '777')

•	 File read/write:
°° hdfs.file: This is used to initialize the file to be used for read/write 

operation.
f = hdfs.file("/RHadoop/2/README.
txt","r",buffersize=104857600)

°° hdfs.write: This is used to write in to the file stored at HDFS via 
streaming.
f = hdfs.file("/RHadoop/2/README.
txt","r",buffersize=104857600)

hdfs.write(object,con,hsync=FALSE)

°° hdfs.close: This is used to close the stream when a file operation 
is complete. It will close the stream and will not allow further file 
operations.
hdfs.close(f)
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°° hdfs.read: This is used to read from binary files on the HDFS 
directory. This will use the stream for the deserialization of the data.

f = hdfs.file("/RHadoop/2/README.txt","r",buffersize=104857600)

m = hdfs.read(f)

c = rawToChar(m)

print(c)

•	 Directory operation:
°° hdfs.dircreate or hdfs.mkdir: Both these functions will be used 

for creating a directory over the HDFS filesystem.
hdfs.mkdir("/RHadoop/2/")

°° hdfs.rm or  hdfs.rmr or hdfs.delete - to delete the directory or file 
from HDFS.

hdfs.rm("/RHadoop/2/")

•	 Utility:

°° hdfs.ls: This is used to list the directory from HDFS.
Hdfs.ls('/')
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°° hdfs.file.info: This is used to get meta information about the file 
stored at HDFS.

hdfs.file.info("/RHadoop")

The rmr package
The categories of the functions are as follows:

•	 For storing and retrieving data:
°° to.dfs: This is used to write R objects from or to the filesystem.

small.ints = to.dfs(1:10)

°° from.dfs: This is used to read the R objects from the HDFS 
filesystem that are in the binary encrypted format.

from.dfs('/tmp/RtmpRMIXzb/file2bda3fa07850')

•	 For MapReduce:
°° mapreduce: This is used for defining and executing the MapReduce 

job.
mapreduce(input, output, map, reduce, combine, input.fromat, 
output.format, verbose)

°° keyval: This is used to create and extract key-value pairs.

keyval(key, val)

Summary
Since RHadoop is considered as matured, we will consider it while performing data 
analytics in further chapters. In Chapter 5, Learning Data Analytics with R and Hadoop 
and Chapter 6, Understanding Big Data Analysis with Machine Learning, we will dive 
into some Big Data analytics techniques as well as see how real world problems 
can be solved with RHadoop. So far we have learned how to write the MapReduce 
program with R and Hadoop using RHIPE and RHadoop. In the next chapter, we 
will see how to write the Hadoop MapReduce program with Hadoop streaming 
utility and also with Hadoop streaming R packages.





Using Hadoop  
Streaming with R

In the previous chapter, we learned how to integrate R and Hadoop with the help 
of RHIPE and RHadoop and also sample examples. In this chapter, we are going to 
discuss the following topics:

•	 Understanding the basics of Hadoop streaming
•	 Understanding how to run Hadoop streaming with R
•	 Exploring the HadoopStreaming R package

Understanding the basics of  
Hadoop streaming
Hadoop streaming is a Hadoop utility for running the Hadoop MapReduce job with 
executable scripts such as Mapper and Reducer. This is similar to the pipe operation 
in Linux. With this, the text input file is printed on stream (stdin), which is provided 
as an input to Mapper and the output (stdout) of Mapper is provided as an input to 
Reducer; finally, Reducer writes the output to the HDFS directory.
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The main advantage of the Hadoop streaming utility is that it allows Java as well as 
non-Java programmed MapReduce jobs to be executed over Hadoop clusters. Also, 
it takes care of the progress of running MapReduce jobs. The Hadoop streaming 
supports the Perl, Python, PHP, R, and C++ programming languages. To run an 
application written in other programming languages, the developer just needs to 
translate the application logic into the Mapper and Reducer sections with the key and 
value output elements. We learned in Chapter 2, Writing Hadoop MapReduce Programs, 
that to create Hadoop MapReduce jobs we need Mapper, Reducer, and Driver as the 
three main components. Here, creating the driver file for running the MapReduce job 
is optional when we are implementing MapReduce with R and Hadoop.

This chapter is written with the intention of integrating R and Hadoop. So we 
will see the example of R with Hadoop streaming. Now, we will see how we can 
use Hadoop streaming with the R script written with Mapper and Reducer. From 
the following diagrams, we can identify the various components of the Hadoop 
streaming MapReduce job.

Hadoop streaming components

Now, assume we have implemented our Mapper and Reducer as code_mapper.R 
and code_reducer.R. We will see how we can run them in an integrated 
environment of R and Hadoop. This can be run with the Hadoop streaming 
command with various generic and streaming options.

Let's see the format of the Hadoop streaming command:

bin/hadoop command [generic Options] [streaming Options]
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The following diagram shows an example of the execution of Hadoop streaming, a 
MapReduce job with several streaming options.

Hadoop streaming command options

In the preceding image, there are about six unique important components that are 
required for the entire Hadoop streaming MapReduce job. All of them are streaming 
options except jar.

The following is a line-wise description of the preceding Hadoop  
streaming command:

•	 Line 1: This is used to specify the Hadoop jar files (setting up the classpath 
for the Hadoop jar)

•	 Line 2: This is used for specifying the input directory of HDFS
•	 Line 3: This is used for specifying the output directory of HDFS
•	 Line 4: This is used for making a file available to a local machine
•	 Line 5: This is used to define the available R file as Mapper
•	 Line 6: This is used for making a file available to a local machine
•	 Line 7: This is used to define the available R file as Reducer

The main six Hadoop streaming components of the preceding command are listed 
and explained as follows:

•	 jar: This option is used to run a jar with coded classes that are designed for 
serving the streaming functionality with Java as well as other programmed 
Mappers and Reducers. It's called the Hadoop streaming jar.

•	 input: This option is used for specifying the location of input dataset (stored 
on HDFS) to Hadoop streaming MapReduce job.
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•	 output: This option is used for telling the HDFS output directory (where 
the output of the MapReduce job will be written) to Hadoop streaming 
MapReduce job.

•	 file: This option is used for copying the MapReduce resources such as 
Mapper, Reducer, and Combiner to computer nodes (Tasktrackers) to make 
it local.

•	 mapper: This option is used for identification of the executable Mapper file.
•	 reducer: This option is used for identification of the executable Reducer file.

There are other Hadoop streaming command options too, but they are optional. Let's 
have a look at them:

•	 inputformat: This is used to define the input data format by specifying the 
Java class name. By default, it's TextInputFormat.

•	 outputformat: This is used to define the output data format by specifying 
the Java class name. By default, it's TextOutputFormat.

•	 partitioner: This is used to include the class or file written with the code 
for partitioning the output as (key, value) pairs of the Mapper phase.

•	 combiner: This is used to include the class or file written with the code for 
reducing the Mapper output by aggregating the values of keys. Also, we can 
use the default combiner that will simply combine all the key attribute values 
before providing the Mapper's output to the Reducer.

•	 cmdenv: This option will pass the environment variable to the streaming 
command. For example, we can pass R_LIBS = /your /path /to /R /
libraries.

•	 inputreader: This can be used instead of the inputformat class for 
specifying the record reader class.

•	 verbose: This is used to verbose the output.
•	 numReduceTasks: This is used to specify the number of Reducers.
•	 mapdebug: This is used to debug the script of the Mapper file when the 

Mapper task fails.
•	 reducedebug: This is used to debug the script of the Reducer file when the 

Reducer task fails.



Chapter 4

[ 91 ]

Now, it's time to look at some generic options for the Hadoop streaming  
MapReduce job.

•	 conf: This is used to specify an application configuration file.
-conf configuration_file

•	 D: This is used to define the value for a specific MapReduce or HDFS 
property. For example:

•	 -D property = value or to specify the temporary HDFS directory.
-D dfs.temp.dir=/app/tmp/Hadoop/

or to specify the total number of zero Reducers:

-D mapred.reduce.tasks=0

The -D option only works when a tool is implemented.

•	 fs: This is used to define the Hadoop NameNode.
-fs localhost:port

•	 jt: This is used to define the Hadoop JobTracker.
-jt localhost:port

•	 files: This is used to specify the large or multiple text files from HDFS.
-files hdfs://host:port/directory/txtfile.txt

•	 libjars: This is used to specify the multiple jar files to be included in the 
classpath.
-libjars  /opt/ current/lib/a.jar, /opt/ current/lib/b.jar

•	 archives: This is used to specify the jar files to be unarchived on the local 
machine.

-archives hdfs://host:fs_port/user/testfile.jar
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Understanding how to run Hadoop 
streaming with R
Now, we understood what Hadoop streaming is and how it can be called with 
Hadoop generic as well as streaming options. Next, it's time to know how an R script 
can be developed and run with R. For this, we can consider a better example than a 
simple word count program.

The four different stages of MapReduce operations are explained here as follows:

•	 Understanding a MapReduce application
•	 Understanding how to code a MapReduce application
•	 Understanding how to run a MapReduce application
•	 Understanding how to explore the output of a MapReduce application

Understanding a MapReduce application
Problem definition: The problem is to segment a page visit by the geolocation. 
In this problem, we are going to consider the website http://www.
gtuadmissionhelpline.com/, which has been developed to provide guidance to 
students who are looking for admission in the Gujarat Technological University.  
This website contains the college details of various fields such as Engineering 
(diploma, degree, and masters), Medical, Hotel Management, Architecture, 
Pharmacy, MBA, and MCA. With this MapReduce application, we will identify the 
fields that visitors are interested in geographically.

For example, most of the online visitors from Valsad city visit the pages of MBA 
colleges more often. Based on this, we can identify the mindset of Valsad students; 
they are highly interested in getting admissions in the MBA field. So, with this 
website traffic dataset, we can identify the city-wise interest levels. Now, if there are 
no MBA colleges in Valsad, it will be a big issue for them. They will need to relocate 
to other cities; this may increase the cost of their education.

By using this type of data, the Gujarat Technological University can generate 
informative insights for students from different cities.

Input dataset source: To perform this type of analysis, we need to have the web 
traffic data for that website. Google Analytics is one of the popular and free services 
for tracking an online visitor's metadata from the website. Google Analytics stores 
the web traffic data in terms of various dimensions ad metrics. We need to design a 
specific query to extract the dataset from Google Analytics.
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Input dataset: The extracted Google Analytics dataset contains the following four 
data columns:

•	 date: This is the date of visit and in the form of YYYY/MM/DD.
•	 country: This is the country of the visitor.
•	 city: This is the city of the visitor.
•	 pagePath: This is the URL of a page of the website.

The head section of the input dataset is as follows:

$ head -5 gadata_mr.csv

20120301,India,Ahmedabad,/

20120302,India,Ahmedabad,/gtuadmissionhelpline-team

20120302,India,Mumbai,/

20120302,India,Mumbai,/merit-calculator

20120303,India,Chennai,/

The expected output format is shown in the following diagram:
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The following is a sample output:

 

Understanding how to code a MapReduce 
application
In this section, we will learn about the following two units of a  
MapReduce application:

•	 Mapper code
•	 Reducer code

Let's start with the Mapper code.

Mapper code: This R script, named ga-mapper.R, will take care of the Map phase of 
a MapReduce job.

The Mapper's job is to work on each line and extract a pair (key, value) and pass it 
to the Reducer to be grouped/aggregated. In this example, each line is an input to 
Mapper and the output City:PagePath. City is a key and PagePath is a value. Now 
Reducer can get all the page paths for a given city; hence, it can be grouped easily.

# To identify the type of the script, here it is RScript

#! /usr/bin/env Rscript

# To disable the warning massages to be printed

options(warn=-1)

# To initiating the connection to standard input

input <- file("stdin", "r")
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Each line has these four fields (date, country, city, and 
pagePath) in the same order. We split the line by a comma. 
The result is a vector which has the date, country, city, and 
pathPath in the indexes 1,2,3, and 4 respectively.

We extract the third and fourth element for the city and pagePath respectively.  
Then, they will be written to the stream as key-value pairs and fed to Reducer for 
further processing.

# Running while loop until all the lines are read

while(length(currentLine <- readLines(input, n=1, warn=FALSE)) > 0) {

# Splitting the line into vectors by "," separator 

  fields <- unlist(strsplit(currentLine, ","))

# Capturing the city and pagePath from fields

  city <- as.character(fields[3])

  pagepath <- as.character(fields[4])

# Printing both to the standard output

print(paste(city, pagepath,sep="\t"),stdout())

}

# Closing the connection to that input stream

close(input)

As soon as the output of the Mapper phase as (key, value) pairs is available to the 
standard output, Reducers will read the line-oriented output from stdout and 
convert it into final aggregated key-value pairs.

Let's see how the Mapper output format is and how the input data format of Reducer 
looks like.

Reducer code: This R script named ga_reducer.R will take care of the Reducer 
section of the MapReduce job.
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As we discussed, the output of Mapper will be considered as the input for Reducer. 
Reducer will read these city and pagePath pairs, and combine all of the values with 
its respective key elements.

# To identify the type of the script, here it is RScript

#! /usr/bin/env Rscript

# Defining the variables with their initial values

city.key <- NA

page.value <- 0.0

# To initiating the connection to standard input

input <- file("stdin", open="r")

# Running while loop until all the lines are read

while (length(currentLine <- readLines(input, n=1)) > 0) {

# Splitting the Mapper output line into vectors by 

# tab("\t") separator

  fields <- strsplit(currentLine, "\t")

# capturing key and value form the fields

# collecting the first data element from line which is city

  key <- fields[[1]][1]

# collecting the pagepath value from line 

  value <- as.character(fields[[1]][2])

The Mapper output is written in two main fields with \t as the separator and the 
data line-by-line; hence, we have split the data by using \t to capture the two main 
attributes (key and values) from the stream input.

After collecting the key and value, the Reducer will compare it with the previously 
captured value. If not set previously, then set it; otherwise, combine it with the 
previous character value using the combine function in R and finally, print it to the 
HDFS output location.

# setting up key and values

# if block will check whether key attribute is 
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# initialized or not. If not initialized then it will be # assigned from 
collected key attribute with value from # mapper output. This is designed 
to run at initial time.

  if (is.na(city.key)) {

    city.key <- key

    page.value <- value

  }

  else {

# Once key attributes are set, then will match with the previous key 
attribute value. If both of them matched then they will combined in to 
one.

    if (city.key == key) {

      page.value <- c(page.value, value)

    }

    else {

# if key attributes are set already but attribute value # is other than 
previous one then it will emit the store #p agepath values along with 
associated key attribute value of city,

      page.value <- unique(page.value)

# printing key and value to standard output

print(list(city.key, page.value),stdout())

      city.key <- key

      page.value <- value

    }

  }

}

print(list(city.key, page.value), stdout())

# closing the connection

close(input)
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Understanding how to run a MapReduce 
application
After the development of the Mapper and Reducer script with the R language, it's 
time to run them in the Hadoop environment. Before we execute this script, it is 
recommended to test them on the sample dataset with simple pipe operations.

$ cat gadata_sample.csv | ga_mapper.R |sort | ga_reducer.R

The preceding command will run the developed Mapper and Reducer scripts 
over a local machine. But it will run similar to the Hadoop streaming job. We need 
to test this for any issue that might occur at runtime or for the identification of 
programming or logical mistakes.

Now, we have Mapper and Reducer tested and ready to be run with the Hadoop 
streaming command. This Hadoop streaming operation can be executed by calling 
the generic jar command followed with the streaming command options as we 
learned in the Understanding the basics of Hadoop streaming section of this chapter. We 
can execute the Hadoop streaming job in the following ways:

•	 From a command prompt
•	 R or the RStudio console

The execution command with the generic and streaming command options will be 
the same for both the ways.

Executing a Hadoop streaming job from the 
command prompt
As we already learned in the section Understanding the basics of Hadoop streaming, the 
execution of Hadoop streaming MapReduce jobs developed with R can be run using 
the following command:

$ bin/hadoop jar {HADOOP_HOME}/contrib/streaming/hadoop-streaming-
1.0.3.jar 

 -input /ga/gadaat_mr.csv 

 -output /ga/output1 

 -file /usr/local/hadoop/ga/ga_mapper.R  

 -mapper ga_mapper.R 

 -file /usr/local/hadoop/ga/ga_ reducer.R 

 -reducer ga_reducer.R
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Executing the Hadoop streaming job from R or an 
RStudio console
Being an R user, it will be more appropriate to run the Hadoop streaming job from 
an R console. This can be done with the system command:

system(paste("bin/hadoop jar", "{HADOOP_HOME}/contrib/streaming/hadoop-
streaming-1.0.3.jar", 
 "-input /ga/gadata_mr.csv",  
 "-output /ga/output2",  
 "-file /usr/local/hadoop/ga/ga_mapper.R", 
"-mapper ga_mapper.R",  
 "-file /usr/local/hadoop/ga/ga_reducer.R",  
 "-reducer ga_reducer.R"))

This preceding command is similar to the one that you have already used in the 
command prompt to execute the Hadoop streaming job with the generic options as 
well as the streaming options.

Understanding how to explore the output of 
MapReduce application
After completing the execution successfully, it's time to explore the output to check 
whether the generated output is important or not. The output will be generated 
along with two directories, _logs and _SUCCESS. _logs will be used for tracking all 
the operations as well as errors; _SUCCESS will be generated only on the successful 
completion of the MapReduce job.

Again, the commands can be fired in the following two ways:

•	 From a command prompt
•	 From an R console

Exploring an output from the command prompt
To list the generated files in the output directory, the following command will be 
called:

$ bin/hadoop dfs -cat /ga/output/part-* > temp.txt

$ head -n 40 temp.txt
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The snapshot for checking the output is as follows:

  

Exploring an output from R or an RStudio console
The same command can be used with the system method in the R  
(with RStudio) console.

dir <- system("bin/hadoop dfs -ls /ga/output",intern=TRUE) 
out <- system("bin/hadoop dfs -cat /ga/output2/part-00000",intern=TRUE)
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A screenshot of the preceding function is shown as follows:

Understanding basic R functions used in 
Hadoop MapReduce scripts
Now, we will see some basic utility functions used in Hadoop Mapper and Reducer 
for data processing:

•	 file: This function is used to create the connection to a file for the reading 
or writing operation. It is also used for reading and writing from/to stdin 
or stdout. This function will be used at the initiation of the Mapper and 
Reducer phase.
Con <- file("stdin", "r")

•	 write: This function is used to write data to a file or standard input. It will be 
used after the key and value pair is set in the Mapper.
write(paste(city,pagepath,sep="\t"),stdout())

•	 print: This function is used to write data to a file or standard input. It will be 
used after the key and value pair is ready in the Mapper.
print(paste(city,pagepath,sep="\t"),stdout())

•	 close: This function can be used for closing the connection to the file after 
the reading or writing operation is completed. It can be used with Mapper 
and Reducer at the close (conn) end when all the processes are completed.
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•	 stdin: This is a standard connection corresponding to the input.  
The stdin() function is a text mode connection that returns the connection 
object. This function will be used in Mapper as well as Reducer.
conn <- file("stdin", open="r")

•	 stdout: This is a standard connection corresponding to the output.  
The stdout() function is a text mode connection that also returns the object. 
This function will be used in Mapper as well as Reducer.
print(list(city.key, page.value),stdout())

## where city.key is key and page.value is value of that key

•	 sink: sink drives the R output to the connection. If there is a file or stream 
connection, the output will be returned to the file or stream. This will be used 
in Mapper and Reducer for tracking all the functional outputs as well as the 
errors.

sink("log.txt")
k <- 1:5
for(i in 1:k){
print(paste("value of k",k))
}sink()
unlink("log.txt")

Monitoring the Hadoop MapReduce job
A small syntax error in the Reducer phase leads to a failure of the MapReduce job. 
After the failure of a Hadoop MapReduce job, we can track the problem from the 
Hadoop MapReduce administration page, where we can get information about 
running jobs as well as completed jobs.

In case of a failed job, we can see the total number of completed/failed Map and 
Reduce jobs. Clicking on the failed jobs will provide the reason for the failing of 
those particular number of Mappers or Reducers.

Also, we can check the real-time progress of that running MapReduce job with the 
JobTracker console as shown in the following screenshot:
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Monitoring Hadoop MapReduce job

Through the command, we can check the history of that particular MapReduce job 
by specifying its output directory with the following command:

$ bin/hadoop job –history /output/location 

The following command will print the details of the MapReduce job, failed and 
reasons for killed up jobs.

$ bin/hadoop job -history all /output/location 

The preceding command will print about the successful task and the task attempts 
made for each task.

Exploring the HadoopStreaming  
R package
HadoopStreaming is an R package developed by David S. Rosenberg. We can say this 
is a simple framework for MapReduce scripting. This also runs without Hadoop for 
operating data in a streaming fashion. We can consider this R package as a Hadoop 
MapReduce initiator. For any analyst or developer who is not able to recall the 
Hadoop streaming command to be passed in the command prompt, this package 
will be helpful to quickly run the Hadoop MapReduce job.
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The three main features of this package are as follows:

•	 Chunkwise data reading: The package allows chunkwise data reading and 
writing for Hadoop streaming. This feature will overcome memory issues.

•	 Supports various data formats: The package allows the reading and writing 
of data in three different data formats.

•	 Robust utility for the Hadoop streaming command: The package also allows 
users to specify the command-line argument for Hadoop streaming.

This package is mainly designed with three functions for reading the data efficiently:

•	 hsTableReader

•	 hsKeyValReader

•	 hsLineReader

Now, let's understand these functions and their use cases. After that we will 
understand these functions with the help of the word count MapReduce job.

Understanding the hsTableReader function
The hsTableReader function is designed for reading data in the table format. This 
function assumes that there is an input connection established with the file, so it will 
retrieve the entire row. It assumes that all the rows with the same keys are stored 
consecutively in the input file.

As the Hadoop streaming job guarantees that the output rows of Mappers will be 
sorted before providing to the reducers, there is no need to use the sort function in a 
Hadoop streaming MapReduce job. When we are not running this over Hadoop, we 
explicitly need to call the sort function after the Mapper function gets execute.

Defining a function of hsTableReader:

hsTableReader(file="", cols='character',

  chunkSize=-1, FUN=print,

  ignoreKey=TRUE, singleKey=TRUE, skip=0,

  sep='\t', keyCol='key',

  FUN=NULL, ,carryMemLimit=512e6,

  carryMaxRows=Inf,

  stringsAsFactors=FALSE)
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The terms in the preceding code are as follows:

•	 file: This is a connection object, stream, or string.
•	 chunkSize: This indicates the maximum number of lines to be read at a time 

by the function. -1 means all the lines at a time.
•	 cols: This means a list of column names as "what" argument to scan.
•	 skip: This is used to skip the first n data rows.
•	 FUN: This function will use the data entered by the user.
•	 carryMemLimit: This indicates the maximum memory limit for the values of 

a single key.
•	 carryMaxRows: This indicates the maximum rows to be considered or read 

from the file.
•	 stringsAsFactors: This defines whether the strings are converted to factors 

or not (TRUE or FALSE).

For example, data in file:

# Loading libraries

Library("HadoopStreaming")

# Input data String with collection of key and values

str <- "  
  key1\t1.91\nkey1\t2.1\nkey1\t20.2\nkey1\t3.2\ 
  nkey2\t1.2\nkey2\t10\nkey3\t2.5\nkey3\t2.1\nkey4\t1.2\n" 

  cat(str)

The output for the preceding code is as shown in the following screenshot:
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The data read by hsTableReader is as follows:

# A list of column names, as'what' arg to scan

cols = list(key='',val=0)

# To make a text connection

con <- textConnection(str, open = "r") 

# To read the data with chunksize 3

hsTableReader(con,cols,chunkSize=3,FUN=print,ignoreKey=TRUE)

The output for the preceding code is as shown in the following screenshot:

Understanding the hsKeyValReader function
The hsKeyValReader function is designed for reading the data available in the key-
value pair format. This function also uses chunkSize for defining the number of lines 
to be read at a time, and each line consists of a key string and a value string.

hsKeyValReader(file = "", chunkSize = -1, skip = 0, sep = "\t",FUN =  
  function(k, v) cat(paste(k, v))

The terms of this function are similar to hsTablereader().
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Example:

# Function for reading chunkwise dataset

printkeyval <- function(k,v) { 
  cat('A chunk:\n') 
  cat(paste(k,v,sep=': '),sep='\n') 
}

 
str <- "key1\tval1\nkey2\tval2\nkey3\tval3\n" 

con <- textConnection(str, open = "r")

hsKeyValReader(con, chunkSize=1, FUN=printFn)

The output for the preceding code is as shown in the following screenshot:

Understanding the hsLineReader function
The hsLineReader function is designed for reading the entire line as a string without 
performing the data-parsing operation. It repeatedly reads the chunkSize lines of 
data from the file and passes a character vector of these strings to FUN.

hsLineReader(file = "", chunkSize = 3, skip = 0, FUN = function(x)  
  cat(x, sep = "\n"))

The terms of this function are similar to hsTablereader().

Example:

str <- " This is HadoopStreaming!!\n here are,\n examples for chunk 
dataset!!\n in R\n  ?"

#  For defining the string as data source

con <- textConnection(str, open = "r")

# read from the con object

hsLineReader(con,chunkSize=2,FUN=print)
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The output for the preceding code is as shown in the following screenshot:

You can get more information on these methods as well as other existing 
methods at http://cran.r-project.org/web/packages/HadoopStreaming/
HadoopStreaming.pdf.

Now, we will implement the above data-reading methods with the Hadoop 
MapReduce program to be run over Hadoop. In some of the cases, the key-values 
pairs or data rows will not be fed in the machine memory; so reading that data chunk 
wise will be more appropriate than improving the machine configuration.

Problem definition:

Hadoop word count: As we already know what a word count application is, we will 
implement the above given methods with the concept of word count. This R script 
has been reproduced here from the HadoopStreaming R package, which can be 
downloaded along with the HadoopStreaming R library distribution as the sample 
code.

Input dataset: This has been taken from Chapter 1 of Anna Karenina (novel) by the 
Russian writer Leo Tolstoy.

R script: This section contains the code of the Mapper, Reducer, and the rest of the 
configuration parameters.

File: hsWordCnt.R

## Loading the library

library(HadoopStreaming)

## Additional command line arguments for this script (rest are  
  default in hsCmdLineArgs)

spec = c('printDone','D',0,"logical","A flag to write DONE at the  
  end.",FALSE)

opts = hsCmdLineArgs(spec, openConnections=T)

if (!opts$set) {
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  quit(status=0)

}

# Defining the Mapper columns names

mapperOutCols = c('word','cnt')

# Defining the Reducer columns names

reducerOutCols = c('word','cnt')

# printing the column header for Mapper output

if (opts$mapcols) {

  cat( paste(mapperOutCols,collapse=opts$outsep),'\n',  
    file=opts$outcon )

} 

# Printing the column header for Reducer output 

if (opts$reducecols) {

  cat( paste(reducerOutCols,collapse=opts$outsep),'\n',  
    file=opts$outcon )

}

## For running the Mapper

if (opts$mapper) {

  mapper <- function(d) {

    words <- strsplit(paste(d,collapse=' '),'[[:punct:][:space:]]+')[[1]] 
# split on punctuation and spaces

    words <- words[!(words=='')]  # get rid of empty words caused by 
whitespace at beginning of lines

    df = data.frame(word=words)

    df[,'cnt']=1

    

# For writing the output in the form of key-value table format

hsWriteTable(df[,mapperOutCols],file=opts$outcon,sep=opts$outsep)

  }

 

## For chunk wise reading the Mapper output, to be feeded to Reducer hsLi
neReader(opts$incon,chunkSize=opts$chunksize,FUN=mapper)
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## For running the Reducer

} else if (opts$reducer) {

  reducer <- function(d) {

    cat(d[1,'word'],sum(d$cnt),'\n',sep=opts$outsep)

  }

  cols=list(word='',cnt=0)  # define the column names and types 
(''-->string 0-->numeric)

  hsTableReader(opts$incon,cols,chunkSize=opts$chunksize,skip=opts$skip,s
ep=opts$insep,keyCol='word',singleKey=T, ignoreKey= F, FUN=reducer)

  if (opts$printDone) {

    cat("DONE\n");

  }

}

# For closing the connection corresponding to input

if (!is.na(opts$infile)) {

  close(opts$incon)

}

# For closing the connection corresponding to input

if (!is.na(opts$outfile)) {

  close(opts$outcon)

}

Running a Hadoop streaming job
Since this is a Hadoop streaming job, it will run same as the executed previous 
example of a Hadoop streaming job. For this example, we will use a shell script to 
execute the runHadoop.sh file to run Hadoop streaming.

Setting up the system environment variable:

#! /usr/bin/env bash

HADOOP="$HADOOP_HOME/bin/hadoop"   # Hadoop command

HADOOPSTREAMING="$HADOOP jar

$HADOOP_HOME/contrib/streaming/hadoop-streaming-1.0.3.jar" # change 
version number as appropriate
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RLIBPATH=/usr/local/lib/R/site-library  # can specify additional R 
Library paths here

Setting up the MapReduce job parameters:

INPUTFILE="anna.txt"

HFSINPUTDIR="/HadoopStreaming"

OUTDIR="/HadoopStreamingRpkg_output"

RFILE=" home/hduser/Desktop/HadoopStreaming/inst/wordCntDemo/ 
hsWordCnt.R"

#LOCALOUT="/home/hduser/Desktop/HadoopStreaming/inst/wordCntDemo/
annaWordCnts.out"

# Put the file into the Hadoop file system

#$HADOOP fs -put $INPUTFILE $HFSINPUTDIR

Removing the existing output directory:

# Remove the directory if already exists (otherwise, won't run)

#$HADOOP fs -rmr $OUTDIR

Designing the Hadoop MapReduce command with generic and streaming options:

MAPARGS="--mapper"  

REDARGS="--reducer"

JOBARGS="-cmdenv R_LIBS=$RLIBPATH" # numReduceTasks 0

# echo $HADOOPSTREAMING -cmdenv R_LIBS=$RLIBPATH  -input 
$HFSINPUTDIR/$INPUTFILE -output $OUTDIR -mapper "$RFILE $MAPARGS" 
-reducer "$RFILE $REDARGS" -file $RFILE 

$HADOOPSTREAMING $JOBARGS   -input $HFSINPUTDIR/$INPUTFILE -output 
$OUTDIR -mapper "$RFILE $MAPARGS" -reducer "$RFILE $REDARGS" -file $RFILE 

Extracting the output from HDFS to the local directory:

# Extract output

./$RFILE --reducecols > $LOCALOUT

$HADOOP fs -cat $OUTDIR/part* >> $LOCALOUT
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Executing the Hadoop streaming job
We can now execute the Hadoop streaming job by executing the command, 
runHadoop.sh. To execute this, we need to set the user permission.

sudo chmod +x runHadoop.sh

Executing via the following command:

./runHadoop.sh

Finally, it will execute the whole Hadoop streaming job and then copy the output to 
the local directory.

Summary
We have learned most of the ways to integrate R and Hadoop for performing data 
operations. In the next chapter, we will learn about the data analytics cycle for 
solving real world data analytics problems with the help of R and Hadoop.



Learning Data Analytics  
with R and Hadoop

In the previous chapters we learned about the installation, configuration, and 
integration of R and Hadoop.

In this chapter, we will learn how to perform data analytics operations over an 
integrated R and Hadoop environment. Since this chapter is designed for data 
analytics, we will understand this with an effective data analytics cycle.

In this chapter we will learn about:

•	 Understanding the data analytics project life cycle
•	 Understanding data analytics problems

Understanding the data analytics project 
life cycle
While dealing with the data analytics projects, there are some fixed tasks that should 
be followed to get the expected output. So here we are going to build a data analytics 
project cycle, which will be a set of standard data-driven processes to lead data to 
insights effectively. The defined data analytics processes of a project life cycle should 
be followed by sequences for effectively achieving the goal using input datasets. 
This data analytics process may include identifying the data analytics problems, 
designing, and collecting datasets, data analytics, and data visualization.
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The data analytics project life cycle stages are seen in the following diagram:

Let's get some perspective on these stages for performing data analytics.

Identifying the problem
Today, business analytics trends change by performing data analytics over web 
datasets for growing business. Since their data size is increasing gradually day  
by day, their analytical application needs to be scalable for collecting insights  
from their datasets.

With the help of web analytics, we can solve the business analytics problems. Let's 
assume that we have a large e-commerce website, and we want to know how 
to increase the business. We can identify the important pages of our website by 
categorizing them as per popularity into high, medium, and low. Based on these 
popular pages, their types, their traffic sources, and their content, we will be able to 
decide the roadmap to improve business by improving web traffic, as well as content.

Designing data requirement
To perform the data analytics for a specific problem, it needs datasets from  
related domains. Based on the domain and problem specification, the data source  
can be decided and based on the problem definition; the data attributes of these 
datasets can be defined.
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For example, if we are going to perform social media analytics (problem 
specification), we use the data source as Facebook or Twitter. For identifying the user 
characteristics, we need user profile information, likes, and posts as data attributes.

Preprocessing data
In data analytics, we do not use the same data sources, data attributes, data tools, 
and algorithms all the time as all of them will not use data in the same format. This 
leads to the performance of data operations, such as data cleansing, data aggregation, 
data augmentation, data sorting, and data formatting, to provide the data in a 
supported format to all the data tools as well as algorithms that will be used in the 
data analytics.

In simple terms, preprocessing is used to perform data operation to translate data 
into a fixed data format before providing data to algorithms or tools. The data 
analytics process will then be initiated with this formatted data as the input.

In case of Big Data, the datasets need to be formatted and uploaded to Hadoop 
Distributed File System (HDFS) and used further by various nodes with Mappers 
and Reducers in Hadoop clusters.

Performing analytics over data
After data is available in the required format for data analytics algorithms, data 
analytics operations will be performed. The data analytics operations are performed 
for discovering meaningful information from data to take better decisions towards 
business with data mining concepts. It may either use descriptive or predictive 
analytics for business intelligence.

Analytics can be performed with various machine learning as well as custom 
algorithmic concepts, such as regression, classification, clustering, and model-based 
recommendation. For Big Data, the same algorithms can be translated to MapReduce 
algorithms for running them on Hadoop clusters by translating their data analytics 
logic to the MapReduce job which is to be run over Hadoop clusters. These models 
need to be further evaluated as well as improved by various evaluation stages  
of machine learning concepts. Improved or optimized algorithms can provide  
better insights.
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Visualizing data
Data visualization is used for displaying the output of data analytics. Visualization is 
an interactive way to represent the data insights. This can be done with various data 
visualization softwares as well as R packages. R has a variety of packages for the 
visualization of datasets. They are as follows:

•	 ggplot2: This is an implementation of the Grammar of Graphics by  
	 Dr. Hadley Wickham (http://had.co.nz/). For more information 
refer http://cran.r-project.org/web/packages/ggplot2/.

•	 rCharts: This is an R package to create, customize, and publish interactive 
JavaScript visualizations from R by using a familiar lattice-style plotting 
interface by Markus Gesmann and Diego de Castillo. For more information refer 
http://ramnathv.github.io/rCharts/.

Some popular examples of visualization with R are as follows:

•	 Plots for facet scales (ggplot): The following figure shows the comparison of 
males and females with different measures; namely, education, income, life 
expectancy, and literacy, using ggplot:
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•	 Dashboard charts: This is an rCharts type. Using this we can build 
interactive animated dashboards with R.

Understanding data analytics problems
In this section, we have included three practical data analytics problems with various 
stages of data-driven activity with R and Hadoop technologies. These data analytics 
problem definitions are designed such that readers can understand how Big Data 
analytics can be done with the analytical power of functions, packages of R, and the 
computational powers of Hadoop.

The data analytics problem definitions are as follows:

•	 Exploring the categorization of web pages
•	 Computing the frequency of changes in the stock market
•	 Predicting the sale price of a blue book for bulldozers (case study)
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Exploring web pages categorization
This data analytics problem is designed to identify the category of a web page of a 
website, which may categorized popularity wise as high, medium, or low (regular), 
based on the visit count of the pages. While designing the data requirement stage 
of the data analytics life cycle, we will see how to collect these types of data from 
Google Analytics.

Popular ategorizationc

Web page ategorization MapReduce Jobc

Analytics

Home Page
Services
Support
Products
Contact Us
About Us

High
Home Page

Medium
Service
Products

Low
Support
Contact Us
About Us

Web agesp

Identifying the problem
As this is a web analytics problem, the goal of the problem is to identify the 
importance of web pages designed for websites. Based on this information, the 
content, design, or visits of the lower popular pages can be improved or increased.

Designing data requirement
In this section, we will be working with data requirement as well as data collection 
for this data analytics problem. First let's see how the requirement for data can be 
achieved for this problem.

Since this is a web analytics problem, we will use Google Analytics data source. 
To retrieve this data from Google Analytics, we need to have an existent Google 
Analytics account with web traffic data stored on it. To increase the popularity, we 
will require the visits information of all of the web pages. Also, there are many other 
attributes available in Google Analytics with respect to dimensions and metrics.
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Understanding the required Google Analytics data 
attributes
The header format of the dataset to be extracted from Google Analytics is as follows:

date, source, pageTitle, pagePath

•	 date: This is the date of the day when the web page was visited
•	 source: This is the referral to the web page
•	 pageTitle: This is the title of the web page
•	 pagePath: This is the URL of the web page

Collecting data
As we are going to extract the data from Google Analytics, we need to use 
RGoogleAnalytics, which is an R library for extracting Google Analytics datasets 
within R. To extract data, you need this plugin to be installed in R. Then you will be 
able to use its functions.

The following is the code for the extraction process from Google Analytics:

# Loading the RGoogleAnalytics library
require("RGoogleAnalyics")

# Step 1. Authorize your account and paste the access_token
query <- QueryBuilder()
access_token <- query$authorize()

# Step 2. Create a new Google Analytics API object
ga <- RGoogleAnalytics()

# To retrieve profiles from Google Analytics
ga.profiles <- ga$GetProfileData(access_token)

# List the GA profiles 
ga.profiles

# Step 3. Setting up the input parameters
profile <- ga.profiles$id[3] 
startdate <- "2010-01-08"
enddate <- "2013-08-23"
dimension <- "ga:date,ga:source,ga:pageTitle,ga:pagePath"
metric <- "ga:visits"
sort <- "ga:visits"
maxresults <- 100099
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# Step 4. Build the query string, use the profile by setting its index 
value
query$Init(start.date = startdate,
           end.date = enddate,
           dimensions = dimension,
           metrics = metric,
           
           max.results = maxresults,
           table.id = paste("ga:",profile,sep="",collapse=","),
           access_token=access_token)

# Step 5. Make a request to get the data from the API
ga.data <- ga$GetReportData(query)

# Look at the returned data
head(ga.data)
write.csv(ga.data,"webpages.csv", row.names=FALSE)

The preceding file will be available with the chapter contents for download.

Preprocessing data
Now, we have the raw data for Google Analytics available in a CSV file. We need to 
process this data before providing it to the MapReduce algorithm.

There are two main changes that need to be performed into the dataset:

•	 Query parameters needs to be removed from the column pagePath as 
follows:
pagePath <- as.character(data$pagePath)
pagePath <- strsplit(pagePath,"\\?")
pagePath <- do.call("rbind", pagePath)
pagePath <- pagePath [,1]

•	 The new CSV file needs to be created as follows:

data  <- data.frame(source=data$source, pagePath=d,visits =)
write.csv(data, "webpages_mapreduce.csv" , row.names=FALSE)
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Performing analytics over data
To perform the categorization over website pages, we will build and run the 
MapReduce algorithm with R and Hadoop integration. As already discussed in the 
Chapter 2, Writing Hadoop MapReduce Programs, sometimes we need to use multiple 
Mappers and Reducers for performing data analytics; this means using the chained 
MapReduce jobs.

In case of chaining MapReduce jobs, multiple Mappers and Reducers can 
communicate in such a way that the output of the first job will be assigned to 
the second job as input. The MapReduce execution sequence is described in the 
following diagram:

Input

MapReduce Job 1

Chaining MapReduce

Map 1 Reduce 1

MapReduce Job 2

Map 2 Reduce 2

Output

Chaining MapReduce

Now let's start with the programming task to perform analytics:

1.	 Initialize by setting Hadoop variables and loading the rmr2 and rhdfs 
packages of the RHadoop libraries:
# setting up the Hadoop variables need by RHadoop
Sys.setenv(HADOOP_HOME="/usr/local/hadoop/")
Sys.setenv(HADOOP_CMD="/usr/local/hadoop/bin/hadoop")

# Loading the RHadoop libraries rmr2 and rhdfs
library(rmr2)
library(rhdfs)

# To initializing hdfs
hdfs.init()

2.	 Upload the datasets to HDFS:

# First uploading the data to R console,
webpages <- read.csv("/home/vigs/Downloads/webpages_mapreduce.
csv")

# saving R file object to HDFS,
webpages.hdfs <- to.dfs(webpages) 
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Now we will see the development of Hadoop MapReduce job 1 for these analytics.  
We will divide this job into Mapper and Reducer. Since, there are two MapReduce 
jobs, there will be two Mappers and Reducers. Also note that here we need to create 
only one file for both the jobs with all Mappers and Reducers. Mapper and Reducer 
will be established by defining their separate functions.

Let's see MapReduce job 1.

•	 Mapper 1: The code for this is as follows:
mapper1 <- function(k,v) {

 # To storing pagePath column data in to key object
 key <- v[2]

 # To store visits column data into val object
 Val <- v[3]

 # emitting key and value for each row
 keyval(key, val)
}
totalvisits <- sum(webpages$visits)

•	 Reducer 1: The code for this is as follows:
reducer1 <- function(k,v) {

  # Calculating percentage visits for the specific URL
  per <- (sum(v)/totalvisits)*100
  # Identify the category of URL
  if (per <33 )
 {
val <- "low"
}
 if (per >33 && per < 67)
 {
 val <- "medium"
 }
 if (per > 67)
 {
 val <- "high"
 }

 # emitting key and values
 keyval(k, val)

}
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•	 Output of MapReduce job 1: The intermediate output for the information is 
shown in the following screenshot:

The output in the preceding screenshot is only for information about the output of 
this MapReduce job 1. This can be considered an intermediate output where only 
100 data rows have been considered from the whole dataset for providing output. In 
these rows, 23 URLs are unique; so the output has provided 23 URLs.

Let's see Hadoop MapReduce job 2:

•	 Mapper 2: The code for this is as follows:
#Mapper:
mapper2 <- function(k, v) {

# Reversing key and values and emitting them 
 keyval(v,k)

}
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•	 Reducer 2: The code for this is as follows:

key <- NA
val <- NULL
# Reducer:
reducer2  <-  function(k, v) {

# for checking whether key-values are already assigned or not.
 if(is.na(key)) {
 key <- k
 val <- v
  } else {
   if(key==k) {
 val <- c(val,v)
  } else{
   key <- k
   val <- v
  }
 }
# emitting key and list of values 

keyval(key,list(val))

}

Before executing the MapReduce job, please start all the Hadoop 
daemons and check the HDFS connection via the hdfs.init() method. 
If your Hadoop daemons have not been started, you can start them by 
$hduser@ubuntu :~ $HADOOP_HOME/bin/start-all.sh.

Once we are ready with the logic of the Mapper and Reducer, MapReduce jobs 
can be executed by the MapReduce method of the rmr2 package. Here we have 
developed multiple MapReduce jobs, so we need to call the mapreduce function 
within the mapreduce function with the required parameters.
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The command for calling a chained MapReduce job is seen in the following figure:

The following is the command for retrieving the generated output from HDFS:

from.dfs(output)

While executing Hadoop MapReduce, the execution log output will be printed over 
the terminal for the purpose of monitoring. We will understand MapReduce job 1 
and MapReduce job 2 by separating them into different parts.

The details for MapReduce job 1 is as follows:

•	 Tracking the MapReduce job metadata: With this initial portion of log, we 
can identify the metadata for the Hadoop MapReduce job. We can also track 
the job status with the web browser by calling the given Tracking URL.
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•	 Tracking status of Mapper and Reducer tasks: With this portion of log, we 
can monitor the status of the Mapper or Reducer task being run on Hadoop 
cluster to get details such as whether it was a success or a failure.

•	 Tracking HDFS output location: Once the MapReduce job is completed, its 
output location will be displayed at the end of logs.

For MapReduce job 2.

•	 Tracking the MapReduce job metadata: With this initial portion of log, we 
can identify the metadata for the Hadoop MapReduce job. We can also track 
the job status with the web browser by calling the given Tracking URL.

•	 Tracking status of the Mapper and Reducer tasks: With this portion of log, 
we can monitor the status of the Mapper or Reducer tasks being run on the 
Hadoop cluster to get the details such as whether it was successful or failed.
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•	 Tracking HDFS output location: Once the MapReduce job is completed, its 
output location will be displayed at the end of the logs.

The output of this chained MapReduce job is stored at an HDFS location, which can 
be retrieved by the command:

from.dfs(output)

The response to the preceding command is shown in the following figure (output 
only for the top 1000 rows of the dataset):
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Visualizing data
We collected the web page categorization output using the three categories. I think 
the best thing we can do is simply list the URLs. But if we have more information, 
such as sources, we can represent the web pages as nodes of a graph, colored by 
popularity with directed edges when users follow the links. This can lead to more 
informative insights.

Computing the frequency of stock market 
change
This data analytics MapReduce problem is designed for calculating the frequency of 
stock market changes.

Identifying the problem
Since this is a typical stock market data analytics problem, it will calculate the 
frequency of past changes for one particular symbol of the stock market, such as 
a Fourier Transformation. Based on this information, the investor can get more 
insights on changes for different time periods. So the goal of this analytics is to 
calculate the frequencies of percentage change.

Yahoo finance data for symbol BP

Change frequency calculation for Yahoo Finance data
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Designing data requirement
For this stock market analytics, we will use Yahoo! Finance as the input dataset. We 
need to retrieve the specific symbol's stock information. To retrieve this data, we will 
use the Yahoo! API with the following parameters:

•	 From month
•	 From day
•	 From year
•	 To month
•	 To day
•	 To year
•	 Symbol

For more information on this API, visit  
http://developer.yahoo.com/finance/.

Preprocessing data
To perform the analytics over the extracted dataset, we will use R to fire the 
following command:

stock_BP <- read.csv("http://ichart.finance.yahoo.com/table.csv?s=BP")

Or you can also download via the terminal:

wget http://ichart.finance.yahoo.com/table.csv?s=BP

#exporting to csv file

write.csv(stock_BP,"table.csv", row.names=FALSE)

Then upload it to HDFS by creating a specific Hadoop directory for this:

# creating /stock directory in hdfs

bin/hadoop dfs -mkdir /stock

# uploading table.csv to hdfs in /stock directory

bin/hadoop dfs -put /home/Vignesh/downloads/table.csv /stock/ 
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Performing analytics over data
To perform the data analytics operations, we will use streaming with R and Hadoop 
(without the HadoopStreaming package). So, the development of this MapReduce 
job can be done without any RHadoop integrated library/package.

In this MapReduce job, we have defined Map and Reduce in different R files to be 
provided to the Hadoop streaming function.

•	 Mapper: stock_mapper.R
#! /usr/bin/env/Rscript

# To disable the warnings

options(warn=-1)

# To take input the data from streaming

input <- file("stdin", "r")

# To reading the each lines of documents till the end

while(length(currentLine <-readLines(input, n=1, warn=FALSE)) > 0)

{

# To split the line by "," seperator

fields <- unlist(strsplit(currentLine, ","))

# Capturing open column value

 open <- as.double(fields[2])

# Capturing close columns value

 close <- as.double(fields[5])

# Calculating the difference of close and open attribute

  change <- (close-open)

# emitting change as key and value as 1

write(paste(change, 1, sep="\t"), stdout())

}

close(input)
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•	 Reducer: stock_reducer.R

#! /usr/bin/env Rscript

stock.key <- NA

stock.val <- 0.0

conn <- file("stdin", open="r")

while (length(next.line <- readLines(conn, n=1)) > 0) {

 split.line <- strsplit(next.line, "\t")

 key <- split.line[[1]][1]

 val <- as.numeric(split.line[[1]][2])

 if (is.na(current.key)) {

 current.key <- key

 current.val <- val

 }

 else {

 if (current.key == key) {

current.val <- current.val + val

}

else {

write(paste(current.key, current.val, sep="\t"), stdout())

current.key <- key

current.val<- val

}

}

}

write(paste(current.key, current.val, sep="\t"), stdout())

close(conn)
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From the following codes, we run MapReduce in R without installing or using any 
R library/package. There is one system() method in R to fire the system command 
within R console to help us direct the firing of Hadoop jobs within R. It will also 
provide the repose of the commands into the R console.

# For locating at Hadoop Directory

system("cd $HADOOP_HOME")

# For listing all HDFS first level directory 
system("bin/hadoop dfs -ls /")

# For running Hadoop MapReduce with streaming parameters

system(paste("bin/hadoop jar 

/usr/local/hadoop/contrib/streaming/hadoop-streaming-1.0.3.jar ",

" -input /stock/table.csv",

" -output /stock/outputs",

" -file /usr/local/hadoop/stock/stock_mapper.R",

" -mapper /usr/local/hadoop/stock/stock_mapper.R",

" -file /usr/local/hadoop/stock/stock_reducer.R",

" -reducer /usr/local/hadoop/stock/stock_reducer.R"))

# For storing the output of list command 

dir <- system("bin/hadoop dfs -ls /stock/outputs", intern=TRUE)

dir

# For storing the output from part-oooo (output file)

out <- system("bin/hadoop dfs -cat /stock/outputs/part-00000", 
intern=TRUE)

# displaying Hadoop MapReduce output data out
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You can also run this same program via the terminal:

bin/hadoop jar /usr/local/hadoop/contrib/streaming/hadoop-streaming-
1.0.3.jar \

 -input /stock/table.csv \

 -output /stock/outputs\

 -file /usr/local/hadoop/stock/stock_mapper.R \

 -mapper /usr/local/hadoop/stock/stock_mapper.R \

 -file /usr/local/hadoop/stock/stock_reducer.R \

 -reducer /usr/local/hadoop/stock/stock_reducer.R 

While running this program, the output at your R console or terminal will be as 
given in the following screenshot, and with the help of this we can monitor the status 
of the Hadoop MapReduce job. Here we will see them sequentially with the divided 
parts. Please note that we have separated the logs output into parts to help you 
understand them better.

The MapReduce log output contains (when run from terminal):

•	 With this initial portion of log, we can identify the metadata for the  
Hadoop MapReduce job. We can also track the job status with the web 
browser, by calling the given Tracking URL. This is how the MapReduce  
job metadata is tracked.
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•	 With this portion of log, we can monitor the status of the Mapper or Reducer 
tasks being run on the Hadoop cluster to get the details like whether it 
was successful or failed. This is how we track the status of the Mapper and 
Reducer tasks.

•	 Once the MapReduce job is completed, its output location will be displayed 
at the end of the logs. This is known as tracking the HDFS output location.

•	 From the terminal, the output of the Hadoop MapReduce program can be 
called using the following command:
bin/hadoop dfs -cat /stock/outputs/part-00000
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•	 The headers of the output of your MapReduce program will look as follows:
change    frequency

•	 The following figure shows the sample output of MapReduce problem:
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Visualizing data
We can get more insights if we visualize our output with various graphs in R.  
Here, we have tried to visualize the output with the help of the ggplot2 package.

From the previous graph, we can quickly identify that most of the time the stock 
price has changed from around 0 to 1.5. So, the stock's price movements in the 
history will be helpful at the time of investing.

The required code for generating this graph is as follows:

# Loading ggplot2 library
library(ggplot2);

# we have stored above terminal output to stock_output.txt file

#loading it to R workspace
myStockData <- read.delim("stock_output.txt", header=F, sep="", 
dec=".");

# plotting the data with ggplot2 geom_smooth function
ggplot(myStockData, aes(x=V1, y=V2)) + geom_smooth() + geom_point();



Chapter 5

[ 137 ]

In the next section, we have included the case study on how Big Data analytics is 
performed with R and Hadoop for the Kaggle data competition.

Predicting the sale price of blue book for 
bulldozers – case study
This is a case study for predicting the auction sale price for a piece of heavy 
equipment to create a blue book for bulldozers.

Identifying the problem
In this example, I have included a case study by Cloudera data scientists on how 
large datasets can be resampled, and applied the random forest model with R and 
Hadoop. Here, I have considered the Kaggle blue book for bulldozers competition 
for understanding the types of Big Data problem definitions. Here, the goal of this 
competition is to predict the sale price of a particular piece of heavy equipment at a 
usage auction based on its usage, equipment type, and configuration. This solution has 
been provided by Uri Laserson (Data Scientist at Cloudera). The provided data contains 
the information about auction result posting, usage, and equipment configuration.

It's a trick to model the Big Data sets and divide them into the smaller datasets. 
Fitting the model on that dataset is a traditional machine learning technique such as 
random forests or bagging. There are possibly two reasons for random forests:

•	 Large datasets typically live in a cluster, so any operations will have some 
level of parallelism. Separate models fit on separate nodes that contain 
different subsets of the initial data.

•	 Even if you can use the entire initial dataset to fit a single model, it turns 
out that ensemble methods, where you fit multiple smaller models by using 
subsets of data, generally outperform single models. Indeed, fitting a single 
model with 100M data points can perform worse than fitting just a few 
models with 10M data points each (so smaller total data outperforms larger 
total data).

Sampling with replacement is the most popular method for sampling from the 
initial dataset for producing a collection of samples for model fitting. This method 
is equivalent to sampling from a multinomial distribution, where the probability of 
selecting any individual input data point is uniform over the entire dataset.

Kaggle is a Big Data platform where data scientists from all 
over the world compete to solve Big Data analytics problems 
hosted by data-driven organizations.
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Designing data requirement
For this competition, Kaggle has provided real-world datasets that comprises 
approximately 4,00,000 training data points. Each data point represents the various 
attributes of sales, configuration of the bulldozer, and sale price. To find out where to 
predict the sales price, the random forest regression model needs to be implemented.

The reference link for this Kaggle competition is http://www.
kaggle.com/c/bluebook-for-bulldozers. You can check 
the data, information, forum, and leaderboard as well as explore 
some other Big Data analytics competitions and participate in 
them to evaluate your data analytics skills.

We chose this model because we are interested in predicting the sales price in 
numeric values from random sets of a large dataset.

The datasets are provided in the terms of the following data files:

File name Description format (size)
Train This is a training set that contains data for 

2011.
Valid This is a validation set that contains data 

from January 1, 2012 to April 30, 2012.
Data dictionary This is the metadata of the training dataset 

variables.
Machine_Appendix This contains the correct year of 

manufacturing for a given machine along 
with the make, model, and product class 
details.

Test This tests datasets.
random_forest_benchmark_test This is the benchmark solution provided by 

the host.

In case you want to learn and practice Big Data analytics, you can 
acquire the Big Data sets from the Kaggle data source by participating 
in the Kaggle data competitions. These contain the datasets of various 
fields from industries worldwide.
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Preprocessing data
To perform the analytics over the provided Kaggle datasets, we need to build a 
predictive model. To predict the sale price for the auction, we will fit the model over 
provided datasets. But the datasets are provided with more than one file. So we will 
merge them as well as perform data augmentation for acquiring more meaningful 
data. We are going to build a model from Train.csv and Machine_Appendix.csv 
for better prediction of the sale price.

Here are the data preprocessing tasks that need to be performed over the datasets:

# Loading Train.csv dataset which includes the Sales as well as 
machine identifier data attributes.

transactions <- read.table(file="~/Downloads/Train.csv",
header=TRUE,
sep=",",
quote="\"",
row.names=1,
fill=TRUE,
colClasses=c(MachineID="factor",
 ModelID="factor",
datasource="factor",
YearMade="character",
SalesID="character",
auctioneerID="factor",
UsageBand="factor",
saledate="custom.date.2",
Tire_Size="tire.size",
Undercarriage_Pad_Width="undercarriage",
Stick_Length="stick.length"),
na.strings=na.values)

# Loading Machine_Appendix.csv for machine configuration information

machines <- read.table(file="~/Downloads/Machine_Appendix.csv",
header=TRUE,
sep=",",
quote="\"",
fill=TRUE,
colClasses=c(MachineID="character",
ModelID="factor",
fiManufacturerID="factor"),
na.strings=na.values)
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# Updating the values to numeric 
# updating sale data number
transactions$saledatenumeric <- as.numeric(transactions$saledate)
transactions$ageAtSale <- as.numeric(transactions$saledate - 
as.Date(transactions$YearMade, format="%Y"))

transactions$saleYear <- as.numeric(format(transactions$saledate, 
"%Y"))

# updating the month of sale from transaction
transactions$saleMonth <- as.factor(format(transactions$saledate, 
"%B"))

# updating the date of sale from transaction
transactions$saleDay <- as.factor(format(transactions$saledate, "%d"))

# updating the day of week of sale from transaction
transactions$saleWeekday <- as.factor(format(transactions$saledate, 
"%A"))

# updating the year of sale from transaction
transactions$YearMade <- as.integer(transactions$YearMade)

# deriving the model price from transaction
transactions$MedianModelPrice <- unsplit(lapply(split(transactions$Sa
lePrice, 
transactions$ModelID), median), transactions$ModelID)

# deriving the model count from transaction
transactions$ModelCount <- unsplit(lapply(split(transactions$SalePri
ce, transactions$ModelID), length), transactions$ModelID)

# Merging the transaction and machine data in to dataframe 
training.data <- merge(x=transactions, y=machines, by="MachineID")

# write denormalized data out
write.table(x=training.data,
file="~/temp/training.csv",
sep=",",
quote=TRUE,
row.names=FALSE,
eol="\n",
col.names=FALSE)
# Create poisson directory at HDFS
bin/hadoop dfs -mkdir /poisson

# Uploading file training.csv at HDFS
bin/hadoop dfs -put ~/temp/training.csv /poisson/
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Performing analytics over data
As we are going to perform analytics with sampled datasets, we need to understand 
how many datasets need to be sampled.

For random sampling, we have considered three model parameters, which are  
as follows:

•	 We have N data points in our initial training set. This is very large (106-109) 
and is distributed over an HDFS cluster.

•	 We are going to train a set of M different models for an ensemble classifier.
•	 Each of the M models will be fitted with K data points, where typically K << 

N. (For example, K may be 1-10 percent of N.).

We have N numbers of training datasets, which are fixed and generally outside our 
control. As we are going to handle this via Poisson sampling, we need to define the 
total number of input vectors to be consumed into the random forest model.

There are three cases to be considered:

•	 KM < N: In this case, we are not using the full amount of data available to us
•	 KM = N: In this case, we can exactly partition our dataset to produce totally 

independent samples
•	 KM > N: In this case, we must resample some of our data with replacements

The Poisson sampling method described in the following section handles all the 
three cases in the same framework. However, note that for the case KM = N, it does 
not partition the data, but simply resamples it.

Understanding Poisson-approximation resampling
Generalized linear models are an extension of the general linear model. Poisson 
regression is a situation of generalized models. The dependent variable obeys 
Poisson distribution.

Poisson sampling will be run on the Map of the MapReduce task because it occurs for 
input data points. This doesn't guarantee that every data point will be considered into 
the model, which is better than multinomial resampling of full datasets. But it will 
guarantee the generation of independent samples by using N training input points.
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Here, the following graph indicates the amount of missed datasets that can be 
retrieved in the Poisson sampling with the function of KM/N:
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The grey line indicates the value of KM=N. Now, let's look at the pseudo code of 
the MapReduce algorithm. We have used three parameters: N, M, and K where K is 
fixed. We used T=K/N to eliminate the need for the value of N in advance.

•	 An example of sampling parameters: Here, we will implement the 
preceding logic with a pseudo code. We will start by defining two model 
input parameters as frac.per.model and num.models, where frac.per.
model is used for defining the fraction of the full dataset that can be used, 
and num.models is used for defining how many models will be fitted from 
the dataset.
T = 0.1  # param 1: K / N-average fraction of input data in each 
model 10%

M = 50   # param 2: number of models
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•	 Logic of Mapper: Mapper will be designed for generating the samples of the 
full dataset by data wrangling.
def map(k, v):
// for each input data point
    for i in 1:M  
    // for each model
        m = Poisson(T)  
    // num times curr point should appear in this sample
        if m > 0
            for j in 1:m
   // emit current input point proper num of times
                emit (i, v)

•	 Logic of Reducer: Reducer will take a data sample as input and fit the 
random forest model over it.

def reduce(k, v):
    fit model or calculate statistic with the sample in v

Fitting random forests with RHadoop
In machine learning, fitting a model means fitting the best line into our data. Fitting 
a model can fall under several types, namely, under fitting, over fitting, and normal 
fitting. In case of under and over fitting, there are chances of high bias (cross 
validation and training errors are high) and high variance (cross validation error is 
high but training error is low) effects, which is not good. We will normally fit the 
model over the datasets.

Here are the diagrams for fitting a model over datasets with three types of fitting:

•	 Under fitting: In this cross validation and training errors are high
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•	 Normal fitting: In this cross-validation and training errors are normal
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•	 Over fitting: In this the cross-validation error is high but training error is low
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We will fit the model over the data using the random forest technique of machine 
learning. This is a type of recursive partitioning method, particularly well suited 
for small and large problems. It involves an ensemble (or set) of classification (or 
regression) trees that are calculated on random subsets of the data, using a subset of 
randomly restricted and selected predictors for every split in each classification tree.
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Furthermore, the results of an ensemble of classification/regression trees have 
been used to produce better predictions instead of using the results of just one 
classification tree.

We will now implement our Poisson sampling strategy with RHadoop. We will start 
by setting global values for our parameters:

#10% of input data to each sample on avg
frac.per.model <- 0.1  
num.models <- 50

Let's check how to implement Mapper as per the specifications in the pseudo code 
with RHadoop.

•	 Mapper is implemented in the the following manner:
poisson.subsample <- function(k, input) {
  # this function is used to generate a sample from the current 
block of data
  generate.sample <- function(i) {
    # generate N Poisson variables
    draws <- rpois(n=nrow(input), lambda=frac.per.model)
    # compute the index vector for the corresponding rows,
    # weighted by the number of Poisson draws
    indices <- rep((1:nrow(input)), draws)
    # emit the rows; RHadoop takes care of replicating the key 
appropriately
    # and rbinding the data frames from different mappers together 
for the
    # reducer
    keyval(i, input[indices, ])
  }

  # here is where we generate the actual sampled data
  c.keyval(lapply(1:num.models, generate.sample))
}

Since we are using R, it's tricky to fit the model with the random forest model 
over the collected sample dataset.
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•	 Reducer is implemented in the following manner:
# REDUCE function
fit.trees <- function(k, v) {
  # rmr rbinds the emitted values, so v is a dataframe
  # note that do.trace=T is used to produce output to stderr to keep 
the reduce task from timing out
  rf <- randomForest(formula=model.formula,
                        data=v,
                        na.action=na.roughfix,
                        ntree=10,
                        do.trace=FALSE)
 
 # rf is a list so wrap it in another list to ensure that only
 # one object gets emitted. this is because keyval is vectorized
  keyval(k, list(forest=rf))
}

•	 To fit the model, we need model.formula, which is as follows:
model.formula <- SalePrice ~ datasource + auctioneerID + YearMade 
+ saledatenumeric + ProductSize + ProductGroupDesc.x + Enclosure 
+ Hydraulics + ageAtSale + saleYear + saleMonth + saleDay + 
saleWeekday + MedianModelPrice + ModelCount + MfgYear

SalePrice is defined as a response variable and the rest of them are defined 
as predictor variables for the random forest model.

Random forest model with R doesn't support factor 
with level more than 32.

•	 The MapReduce job can be executed using the following command:
mapreduce(input="/poisson/training.csv",

               input.format=bulldozer.input.format,

               map=poisson.subsample,

               reduce=fit.trees,

               output="/poisson/output")

The resulting trees are dumped in HDFS at /poisson/output.



Chapter 5

[ 147 ]

•	 Finally, we can load the trees, merge them, and use them to classify new test 
points:

mraw.forests <- values(from.dfs("/poisson/output"))

forest <- do.call(combine, raw.forests)

Each of the 50 samples produced a random forest with 10 trees, so the final random 
forest is a collection of 500 trees, fitted in a distributed fashion over a Hadoop cluster.

The full set of source files is available on the official Cloudera blog 
at http://blog.cloudera.com/blog/2013/02/how-to-
resample-from-a-large-data-set-in-parallel-with-r-
on-hadoop/.

Hopefully, we have learned a scalable approach for training ensemble classifiers 
or bootstrapping in a parallel fashion by using a Poisson approximation for 
multinomial sampling.

Summary
In this chapter, we learned how to perform Big Data analytics with various data 
driven activities over an R and Hadoop integrated environment.

In the next chapter, we will learn more about how R and Hadoop can be used to 
perform machine learning techniques.





Understanding Big Data 
Analysis with Machine 

Learning
In this chapter, we are going to learn about different machine learning techniques 
that can be used with R and Hadoop to perform Big Data analytics with the help of 
the following points:

•	 Introduction to machine learning
•	 Types of machine-learning algorithms
•	 Supervised machine-learning algorithms
•	 Unsupervised machine-learning algorithms
•	 Recommendation algorithms

Introduction to machine learning
Machine learning is a branch of artificial intelligence that allows us to make our 
application intelligent without being explicitly programmed. Machine learning 
concepts are used to enable applications to take a decision from the available 
datasets. A combination of machine learning and data mining can be used to develop 
spam mail detectors, self-driven cars, speech recognition, face recognition, and 
online transactional fraud-activity detection.
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There are many popular organizations that are using machine-learning algorithms 
to make their service or product understand the need of their users and provide 
services as per their behavior. Google has its intelligent web search engine, which 
provides a number one search, spam classification in Google Mail, news labeling in 
Google News, and Amazon for recommender systems. There are many open source 
frameworks available for developing these types of applications/frameworks, such 
as R, Python, Apache Mahout, and Weka.

Types of machine-learning algorithms
There are three different types of machine-learning algorithms for intelligent system 
development:

•	 Supervised machine-learning algorithms
•	 Unsupervised machine-learning algorithms
•	 Recommender systems

In this chapter, we are going to discuss well-known business problems with 
classification, regression, and clustering, as well as how to perform these machine-
learning techniques over Hadoop to overcome memory issues.

If you load a dataset that won't be able to fit into your machine memories and you 
try to run it, the predictive analysis will throw an error related to machine memory, 
such as Error: cannot allocate vector of size 990.1 MB. The solution is to increase the 
machine configuration or parallelize with commodity hardware.

Supervised machine-learning algorithms
In this section, we will be learning about supervised machine-learning algorithms. 
The algorithms are as follows:

•	 Linear regression
•	 Logistic regression

Linear regression
Linear regression is mainly used for predicting and forecasting values based on 
historical information. Regression is a supervised machine-learning technique to 
identify the linear relationship between target variables and explanatory variables. 
We can say it is used for predicting the target variable values in numeric form.
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In the following section, we will be learning about linear regression with R and linear 
regression with R and Hadoop.

Here, the variables that are going to be predicted are considered as target variables 
and the variables that are going to help predict the target variables are called 
explanatory variables. With the linear relationship, we can identify the impact of a 
change in explanatory variables on the target variable.

In mathematics, regression can be formulated as follows:

y = ax +e

Other formulae include:

•	 The slope of the regression line is given by:
a= (NΣxy - (Σx)(Σy)) / (NΣx2 - (Σx)2)

•	 The intercept point of regression is given by:

e = (Σy - b(Σx)) / N

Here, x and y are variables that form a dataset and N is the total numbers of values.

Suppose we have the data shown in the following table:

x y
63 3.1
64 3.6
65 3.8
66 4

If we have a new value of x, we can get the value of y with it with the help of the 
regression formula.

Applications of linear regression include:

•	 Sales forecasting
•	 Predicting optimum product price
•	 Predicting the next online purchase from various sources and campaigns



Understanding Big Data Analysis with Machine Learning

[ 152 ]

Let's look at the statistical technique to implement the regression model for the 
provided dataset. Assume that we have been given n number of statistical data units.
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Its formula is as follows:

Y = e0 + a0x0 + a1x1 + a2x2 +a3x3 + a4x4

Here, Y is the target variable (response variable), xi are explanatory variables, and e0 
is the sum of the squared error term, which can be considered as noise. To get a more 
accurate prediction, we need to reduce this error term as soon as possible with the 
help of the call function.

Linear regression with R
Now we will see how to perform linear regression in R. We can use the in-built lm() 
method to build a linear regression model with R.

Model <-lm(target ~ ex_var1, data=train_dataset)

It will build a regression model based on the property of the provided dataset and 
store all of the variables' coefficients and model parameters used for predicting and 
identifying of data pattern from the model variable values.
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# Defining data variables
X = matrix(rnorm(2000), ncol = 10)
y = as.matrix(rnorm(200))

# Bundling data variables into dataframe
train_data <- data.frame(X,y)

# Training model for generating prediction
lmodel<- lm(y~ train_data $X1 + train_data $X2 + train_data $X3 + 
train_data $X4 + train_data $X5 + train_data $X6 + train_data $X7 + 
train_data $X8 + train_data $X9 + train_data $X10,data= train_data)

summary(lmodel)

The following are the various model parameters that can be displayed with the 
preceding summary command:

•	 RSS: This is equal to ∑(yactual - y)2.
•	 Degrees of Freedom (DOF): This is used for identifying the degree of fit for 

the prediction model, which should be as small as possible (logically, the 
value 0 means perfect prediction).

•	 Residual standard error (RSS/DF): This is used for identifying the goodness 
of fit for the prediction model, which should be as small as possible 
(logically, the value 0 means perfect prediction).

•	 pr: This is the probability for a variable to be included into the model; it 
should be less than 0.05 for a variable to be included.

•	 t-value: This is equal to 15.
•	 f: This is the statistic that checks whether R square is a value other than zero.
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Linear regression with R and Hadoop
Assume we have a large dataset. How will we perform regression data analysis 
now? In such cases, we can use R and Hadoop integration to perform parallel linear 
regression by implementing Mapper and Reducer. It will divide the dataset into 
chunks among the available nodes and then they will process the distributed data in 
parallel. It will not fire memory issues when we run with an R and Hadoop cluster 
because the large dataset is going to be distributed and processed with R among 
Hadoop computation nodes. Also, keep in mind that this implemented method does 
not provide higher prediction accuracy than the lm() model.

RHadoop is used here for integration of R and Hadoop, which is a trusted open 
source distribution of Revolution Analytics. For more information on RHadoop, 
visit https://github.com/RevolutionAnalytics/RHadoop/wiki. Among the 
packages of RHadoop, here we are using only the rmr and rhdfs libraries.

Let's see how to perform regression analysis with R and Hadoop data technologies.

# Defining the datasets with Big Data matrix X
X = matrix(rnorm(20000), ncol = 10)
X.index = to.dfs(cbind(1:nrow(X), X))
y = as.matrix(rnorm(2000))

Here, the Sum() function is re-usable as shown in the following code:

# Function defined to be used as reducers 
Sum = 
  function(., YY) 
    keyval(1, list(Reduce('+', YY)))

The outline of the linear regression algorithm is as follows:

1.	 Calculating the Xtx value with MapReduce job1.
2.	 Calculating the Xty value with MapReduce job2.
3.	 Deriving the coefficient values with Solve (Xtx, Xty).

Let's understand these steps one by one.
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The first step is to calculate the Xtx value with MapReduce job 1.

1.	 The big matrix is passed to the Mapper in chunks of complete rows. Smaller 
cross-products are computed for these submatrices and passed on to a single 
Reducer, which sums them together. Since we have a single key, a Combiner 
is mandatory and since the matrix sum is associative and commutative, we 
certainly can use it here.
# XtX = 
  values(

# For loading hdfs data in to R 
    from.dfs(

# MapReduce Job to produce XT*X
      mapreduce(
        input = X.index,

# Mapper – To calculate and emitting XT*X
        map = 
          function(., Xi) {
            yi = y[Xi[,1],]
            Xi = Xi[,-1]
            keyval(1, list(t(Xi) %*% Xi))},

# Reducer – To reduce the Mapper output by performing sum 
operation over them
        reduce = Sum,
        combine = TRUE)))[[1]]

2.	 When we have a large amount of data stored in Hadoop Distributed File 
System (HDFS), we need to pass its path value to the input parameters in the 
MapReduce method.

3.	 In the preceding code, we saw that X is the design matrix, which has been 
created with the following function:
X = matrix(rnorm(2000), ncol = 10)
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4.	 Its output will look as shown in the following screenshot:

So, here all the columns will be considered as explanatory variables and their 
standard errors can be calculated in a similar manner to how we calculated them 
with normal linear regression.

To calculate the Xty value with MapReduce job 2 is pretty much the same as for the 
vector y, which is available to the nodes according to normal scope rules.

Xty = values(

# For loading hdfs data
from.dfs(

# MapReduce job to produce XT * y
      mapreduce(
       input = X.index,

# Mapper – To calculate and emitting XT*y
        map = function(., Xi) {
          yi = y[Xi[,1],]
          Xi = Xi[,-1]
          keyval(1, list(t(Xi) %*% yi))},

# Reducer – To reducer the Mapper output by performing # sum 
operation over them
        reduce = Sum,
        combine = TRUE)))[[1]]

To derive the coefficient values with solve (Xtx, Xty), use the following steps:

1.	 Finally, we just need to call the following line of code to get the coefficient 
values.
solve(XtX, Xty)
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2.	 The output of the preceding command will be as shown in the  
following screenshot:

Logistic regression
In statistics, logistic regression or logit regression is a type of probabilistic 
classification model. Logistic regression is used extensively in numerous disciplines, 
including the medical and social science fields. It can be binomial or multinomial.

Binary logistic regression deals with situations in which the outcome for a dependent 
variable can have two possible types. Multinomial logistic regression deals with 
situations where the outcome can have three or more possible types.

Logistic regression can be implemented using logistic functions, which are  
listed here.

•	 To predict the log odds ratios, use the following formula:
logit(p) = β0 + β1 × x1 + β2 × x2 + ... + βn × xn

•	 The probability formula is as follows:

p = elogit(p) ⁄ 1 + elogit(p)
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logit(p) is a linear function of the explanatory variable, X (x1,x2,x3..xn), which 
is similar to linear regression. So, the output of this function will be in the range 
0 to 1. Based on the probability score, we can set its probability range from 0 to 1. 
In a majority of the cases, if the score is greater than 0.5, it will be considered as 1, 
otherwise 0. Also, we can say it provides a classification boundary to classify the 
outcome variable.
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The preceding figure is of a training dataset. Based on the training dataset plot, we 
can say there is one classification boundary generated by the glm model in R.

Applications of logistic regression include:

•	 Predicting the likelihood of an online purchase
•	 Detecting the presence of diabetes
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Logistic regression with R
To perform logistic regression with R, we will use the iris dataset and the  
glm model.

#loading iris dataset
data(iris)

# Setting up target variable
target <- data.frame(isSetosa=(iris$Species == 'setosa'))

# Adding target to iris and creating new dataset
inputdata <- cbind(target,iris)

# Defining the logistic regression formula
formula <- isSetosa ~ Sepal.Length + Sepal.Width + Petal.Length + 
Petal.Width

# running Logistic model via glm()
logisticModel <- glm(formula, data=inputdata, family="binomial")

Logistic regression with R and Hadoop
To perform logistic regression with R and Hadoop, we will use RHadoop with rmr2.

The outline of the logistic regression algorithm is as follows:

•	 Defining the lr.map Mapper function
•	 Defining the lr.reducer Reducer function
•	 Defining the logistic.regression MapReduce function

Let's understand them one by one.
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We will first define the logistic regression function with gradient decent. Multivariate 
regression can be performed by forming the nondependent variable into a matrix 
data format. For factorial variables, we can translate them to binary variables for 
fitting the model. This function will ask for input, iterations, dims, and alpha as 
input parameters.

•	 lr.map: This stands for the logistic regression Mapper, which will compute 
the contribution of subset points to the gradient.
# Mapper – computes the contribution of a subset of points to the 
gradient.

lr.map = 
    function(., M) {
      Y = M[,1] 
      X = M[,-1]
      keyval(
        1,
        Y * X * 
          g(-Y * as.numeric(X %*% t(plane))))}

•	 lr.reducer: This stands for the logistic regression Reducer, which is 
performing just a big sum of all the values of key 1.
# Reducer – Perform sum operation over Mapper output.

lr.reduce =
    function(k, Z) 
      keyval(k, t(as.matrix(apply(Z,2,sum))))

•	 logistic.regression: This will mainly define the logistic.regression 
MapReduce function with the following input parameters. Calling this 
function will start executing logistic regression of the MapReduce function.

°° input: This is an input dataset
°° iterations: This is the fixed number of iterations for calculating the 

gradient
°° dims: This is the dimension of input variables
°° alpha: This is the learning rate



Chapter 6

[ 161 ]

Let's see how to develop the logistic regression function.

# MapReduce job – Defining MapReduce function for executing logistic 
regression

logistic.regression = 
  function(input, iterations, dims, alpha){
  plane = t(rep(0, dims))
  g = function(z) 1/(1 + exp(-z))
  for (i in 1:iterations) {
    gradient = 
      values(
        from.dfs(
          mapreduce(
            input,
            map = lr.map,
            reduce = lr.reduce,
            combine = T)))
    plane = plane + alpha * gradient }
  plane }

Let's run this logistic regression function as follows:

# Loading dataset
data(foodstamp)

# Storing data to hdfs 
testdata <-  to.dfs(as.matrix(foodstamp))

# Running logistic regression with R and Hadoop
print(logistic.regression(testdata,10,3,0.05))

The output of the preceding command will be as follows:
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Unsupervised machine learning 
algorithm
In machine learning, unsupervised learning is used for finding the hidden structure 
from the unlabeled dataset. Since the datasets are not labeled, there will be no error 
while evaluating for potential solutions.

Unsupervised machine learning includes several algorithms, some of which are as 
follows:

•	 Clustering
•	 Artificial neural networks
•	 Vector quantization

We will consider popular clustering algorithms here.

Clustering
Clustering is the task of grouping a set of object in such a way that similar objects 
with similar characteristics are grouped in the same category, but other objects are 
grouped in other categories. In clustering, the input datasets are not labeled; they 
need to be labeled based on the similarity of their data structure.

In unsupervised machine learning, the classification technique performs the same 
procedure to map the data to a category with the help of the provided set of input 
training datasets. The corresponding procedure is known as clustering (or cluster 
analysis), and involves grouping data into categories based on some measure of 
inherent similarity; for example, the distance between data points.

From the following figure, we can identify clustering as grouping objects based on 
their similarity:
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There are several clustering techniques available within R libraries, such as k-means, 
k-medoids, hierarchical, and density-based clustering. Among them, k-means is 
widely used as the clustering algorithm in data science. This algorithm asks for a 
number of clusters to be the input parameters from the user side.

Applications of clustering are as follows:

•	 Market segmentation
•	 Social network analysis
•	 Organizing computer network
•	 Astronomical data analysis

Clustering with R
We are considering the k-means method here for implementing the clustering  
model over the iris input dataset, which can be achieved by just calling its  
in-built R dataset – the iris data (for more information, visit http://stat.ethz.
ch/R-manual/R-devel/library/datasets/html/iris.html). Here we will see 
how k-means clustering can be performed with R.

# Loading iris flower dataset
data("iris")
# generating clusters for iris dataset
kmeans <- kmeans(iris[, -5], 3, iter.max = 1000)

# comparing iris Species with generated cluster points
Comp <- table(iris[, 5], kmeans$cluster)

Deriving clusters for small datasets is quite simple, but deriving it for huge datasets 
requires the use of Hadoop for providing computation power.

Performing clustering with R and Hadoop
Since the k-means clustering algorithm is already developed in RHadoop, we 
are going to use and understand it. You can make changes in their Mappers and 
Reducers as per the input dataset format. As we are dealing with Hadoop, we need 
to develop the Mappers and Reducers to be run on nodes in a parallel manner.
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The outline of the clustering algorithm is as follows:

•	 Defining the dist.fun distance function
•	 Defining the k-means.map k-means Mapper function
•	 Defining the k-means.reduce k-means Reducer function
•	 Defining the k-means.mr k-means MapReduce function
•	 Defining input data points to be provided to the clustering algorithms

Now we will run k-means.mr (the k-means MapReduce job) by providing the 
required parameters.

Let's understand them one by one.

•	 dist.fun: First, we will see the dist.fun function for calculating the 
distance between a matrix of center C and a matrix of point P, which is tested. 
It can produce 106 points and 102 centers in five dimensions in approximately 
16 seconds.
# distance calculation function
dist.fun = 
      function(C, P) {
        apply(
          C,
          1, 
          function(x) 
            colSums((t(P) - x)^2))}

•	 k-means.map: The Mapper of the k-means MapReduce algorithm will 
compute the distance between points and all the centers and return the 
closest center for each point. This Mapper will run in iterations based on the 
following code. With the first iteration, the cluster center will be assigned 
randomly and from the next iteration, it will calculate these cluster centers 
based on the minimum distance from all the points of the cluster.
# k-Means Mapper
  kmeans.map = 
      function(., P) {
        nearest = {

# First interations- Assign random cluster centers 
          if(is.null(C)) 
            sample(
              1:num.clusters, 
              nrow(P), 
              replace = T)
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# Rest of the iterations, where the clusters are assigned # based 
on the minimum distance from points
          else {
            D = dist.fun(C, P)
            nearest = max.col(-D)}}
 
       if(!(combine || in.memory.combine))
          keyval(nearest, P) 
        else 
          keyval(nearest, cbind(1, P))}

•	 k-means.reduce: The Reducer of the k-means MapReduce algorithm will 
compute the column average of matrix points as key.
# k-Means Reducer
kmeans.reduce = {

# calculating the column average for both of the 
# conditions

      if (!(combine || in.memory.combine) ) 
        function(., P) 
          t(as.matrix(apply(P, 2, mean)))
      else 
        function(k, P) 
          keyval(
            k, 
            t(as.matrix(apply(P, 2, sum))))}

•	 kmeans.mr: Defining the k-means MapReduce function involves specifying 
several input parameters, which are as follows:

°° P: This denotes the input data points
°° num.clusters: This is the total number of clusters
°° num.iter: This is the total number of iterations to be processed with 

datasets
°° combine: This will decide whether the Combiner should be enabled 

or disabled (TRUE or FALSE)

# k-Means MapReduce – for 
kmeans.mr = 
  function(
    P, 
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    num.clusters, 
    num.iter, 
    combine, 
    in.memory.combine) {
    C = NULL
    for(i in 1:num.iter ) {
      C = 
        values(

# Loading hdfs dataset
          from.dfs(

# MapReduce job, with specification of input dataset,
# Mapper and Reducer
            mapreduce(
              P,
              map = kmeans.map,
              reduce = kmeans.reduce)))
      if(combine || in.memory.combine)
        C = C[, -1]/C[, 1]
      if(nrow(C) < num.clusters) {
        C = 
          rbind(
            C,
            matrix(
              rnorm(
                (num.clusters - 
                   nrow(C)) * nrow(C)), 
              ncol = nrow(C)) %*% C) }}
        C}

•	 Defining the input data points to be provided to the clustering algorithms:
# Input data points
P = do.call(
      rbind, 
      rep(

        list(

# Generating Matrix of
          matrix(
# Generate random normalized data with sd = 10
            rnorm(10, sd = 10), 
            ncol=2)), 
        20)) + 
    matrix(rnorm(200), ncol =2)
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•	 Running kmeans.mr (the k-means MapReduce job) by providing it with the 
required parameters.
# Running kmeans.mr Hadoop MapReduce algorithms with providing the 
required input parameters

kmeans.mr(
      to.dfs(P),
      num.clusters = 12, 
      num.iter = 5,
      combine = FALSE,
      in.memory.combine = FALSE)

•	 The output of the preceding command is shown in the following screenshot:

Recommendation algorithms
Recommendation is a machine-learning technique to predict what new items a user 
would like based on associations with the user's previous items. Recommendations 
are widely used in the field of e-commerce applications. Through this flexible data 
and behavior-driven algorithms, businesses can increase conversions by helping to 
ensure that relevant choices are automatically suggested to the right customers at the 
right time with cross-selling or up-selling.

For example, when a customer is looking for a Samsung Galaxy S IV/S4 mobile 
phone on Amazon, the store will also suggest other mobile phones similar to this 
one, presented in the Customers Who Bought This Item Also Bought window.
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There are two different types of recommendations:

•	 User-based recommendations: In this type, users (customers) similar to 
current user (customer) are determined. Based on this user similarity, their 
interested/used items can be recommended to other users. Let's learn it 
through an example.

Assume there are two users named Wendell and James; both have a similar 
interest because both are using an iPhone. Wendell had used two items, iPad 
and iPhone, so James will be recommended to use iPad. This is user-based 
recommendation.

•	 Item-based recommendations: In this type, items similar to the items that are 
being currently used by a user are determined. Based on the item-similarity 
score, the similar items will be presented to the users for cross-selling and 
up-selling type of recommendations. Let's learn it through an example.
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For example, a user named Vaibhav likes and uses the following books:

•	 Apache Mahout Cookbook, Piero Giacomelli, Packt Publishing
•	 Hadoop MapReduce Cookbook, Thilina Gunarathne and Srinath Perera, Packt 

Publishing
•	 Hadoop Real-World Solutions Cookbook, Brian Femiano, Jon Lentz, and Jonathan R. 

Owens, Packt Publishing

•	 Big Data For Dummies, Dr. Fern Halper, Judith Hurwitz, Marcia Kaufman, and 
Alan Nugent, John Wiley & Sons Publishers

Based on the preceding information, the recommender system will predict which 
new books Vaibhav would like to read, as follows:

•	 Big Data Analytics with R and Hadoop, Vignesh Prajapati, Packt Publishing

Now we will see how to generate recommendations with R and Hadoop. But before 
going towards the R and Hadoop combination, let us first see how to generate it with 
R. This will clear the concepts to translate your generated recommender systems to 
MapReduce recommendation algorithms. In case of generating recommendations 
with R and Hadoop, we will use the RHadoop distribution of Revolution Analytics.
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Steps to generate recommendations in R
To generate recommendations for users, we need to have datasets in a special format 
that can be read by the algorithm. Here, we will use the collaborative filtering 
algorithm for generating the recommendations rather than content-based algorithms. 
Hence, we will need the user's rating information for the available item sets. So, the 
small.csv dataset is given in the format user ID, item ID, item's ratings.

# user ID, item ID, item's rating
1,         101,     5.0
1,         102,     3.0
1,         103,     2.5
2,         101,     2.0
2,         102,     2.5
2,         103,     5.0
2,         104,     2.0
3,         101,     2.0
3,         104,     4.0
3,         105,     4.5
3,         107,     5.0
4,         101,     5.0
4,         103,     3.0
4,         104,     4.5
4,         106,     4.0
5,         101,     4.0
5,         102,     3.0
5,         103,     2.0
5,         104,     4.0
5,         105,     3.5
5,         106,     4.0

The preceding code and datasets are reproduced from the book Mahout in Action, Robin 
Anil, Ellen Friedman, Ted Dunning, and Sean Owen, Manning Publications and the website is 
http://www.fens.me/.

Recommendations can be derived from the matrix-factorization technique as follows:

Co-occurrence matrix * scoring matrix = Recommended Results

To generate the recommenders, we will follow the given steps:

1.	 Computing the co-occurrence matrix.
2.	 Establishing the user-scoring matrix.
3.	 Generating recommendations.
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From the next section, we will see technical details for performing the  
preceding steps.

1.	 In the first section, computing the co-occurrence matrix, we will be able to 
identify the co-occurred item sets given in the dataset. In simple words, we 
can call it counting the pair of items from the given dataset.
# Quote plyr package
library (plyr)

# Read dataset
train <-read.csv (file = "small.csv", header = FALSE)
names (train) <-c ("user", "item", "pref") 

# Calculated User Lists
usersUnique <-function () {
  users <-unique (train $ user)
  users [order (users)]
}

# Calculation Method Product List
itemsUnique <-function () {
  items <-unique (train $ item)
  items [order (items)]
}

# Derive unique User Lists
users <-usersUnique () 

# Product List
items <-itemsUnique () 

# Establish Product List Index
index <-function (x) which (items %in% x)
data<-ddply(train,.(user,item,pref),summarize,idx=index(item)) 

# Co-occurrence matrix
Co-occurrence <-function (data) {
  n <-length (items)
  co <-matrix (rep (0, n * n), nrow = n)
  for (u in users) {
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    idx <-index (data $ item [which(data$user == u)])
    m <-merge (idx, idx)
    for (i in 1: nrow (m)) {
      co [m$x[i], m$y[i]] = co[m$x[i], m$y[i]]+1
    }
  }
  return (co)
}

# Generate co-occurrence matrix
co <-co-occurrence (data) 

2.	 To establish the user-scoring matrix based on the user's rating information, 
the user-item rating matrix can be generated for users.
# Recommendation algorithm
recommend <-function (udata = udata, co = coMatrix, num = 0) {
  n <- length(items)
  
  # All of pref
  pref <- rep (0, n)
  pref[udata$idx] <-udata$pref
  
  # User Rating Matrix
  userx <- matrix(pref, nrow = n)
  
  # Scoring matrix co-occurrence matrix *
  r <- co %*% userx
  
  # Recommended Sort
  r[udata$idx] <-0
  idx <-order(r, decreasing = TRUE)
  topn <-data.frame (user = rep(udata$user[1], length(idx)), item 
= items[idx], val = r[idx])

  # Recommended results take months before the num
  if (num> 0) {
    topn <-head (topn, num)
  }

  # Recommended results take months before the num
  if (num> 0) {
    topn <-head (topn, num)
  }

  # Back to results 
  return (topn)
}
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3.	 Finally, the recommendations as output can be generated by the product 
operations of both matrix items: co-occurrence matrix and user's scoring 
matrix.

# initializing dataframe for recommendations storage
recommendation<-data.frame()

# Generating recommendations for all of the users
for(i in 1:length(users)){
  udata<-data[which(data$user==users[i]),]
  recommendation<-rbind(recommendation,recommend(udata,co,0)) 
}

Generating recommendations via Myrrix and R interface is quite easy. 
For more information, refer to https://github.com/jwijffels/
Myrrix-R-interface.

Generating recommendations with  
R and Hadoop
To generate recommendations with R and Hadoop, we need to develop an  
algorithm that will be able to run and perform data processing in a parallel manner. 
This can be implemented using Mappers and Reducers. A very interesting part of 
this section is how we can use R and Hadoop together to generate recommendations 
from big datasets.

So, here are the steps that are similar to generating recommendations with R, but 
translating them to the Mapper and Reducer paradigms is a little tricky:

1.	 Establishing the co-occurrence matrix items.
2.	 Establishing the user scoring matrix to articles.
3.	 Generating recommendations.
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We will use the same concepts as our previous operation with R to generate 
recommendations with R and Hadoop. But in this case, we need to use a key-value 
paradigm as it's the base of parallel operations. Therefore, every function will be 
implemented by considering the key-value paradigm.

1.	 In the first section, establishment of the co-occurrence matrix items, we will 
establish co-occurrence items in steps: grouped by user, locate each user-
selected items appearing alone counting, and counting in pairs.
# Load rmr2 package
library (rmr2)

# Input Data File
train <-read.csv (file = "small.csv", header = FALSE)
names (train) <-c ("user", "item", "pref")

# Use the hadoop rmr format, hadoop is the default setting.
rmr.options (backend = 'hadoop')

# The data set into HDFS
train.hdfs = to.dfs (keyval (train$user, train))

# see the data from hdfs
from.dfs (train.hdfs)

The key points to note are:
°° train.mr: This is the MapReduce job's key-value paradigm 

information
°° key: This is the list of items vector
°° value: This is the item combination vector

# MapReduce job 1 for co-occurrence matrix items
train.mr <-mapreduce (
  train.hdfs, 
  map = function (k, v) {
    keyval (k, v$item)
  }

# for identification of co-occurrence items
  , Reduce = function (k, v) {
    m <-merge (v, v)
    keyval (m$x, m$y)
  }
)
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The co-occurrence matrix items will be combined to count them.
To define a MapReduce job, step2.mr is used for calculating the frequency 
of the combinations of items.

°° Step2.mr: This is the MapReduce job's key value paradigm 
information

°° key: This is the list of items vector
°° value: This is the co-occurrence matrix dataframe value (item, item, 

Freq)

# MapReduce function for calculating the frequency of the 
combinations of the items.
step2.mr <-mapreduce (
  train.mr,

  map = function (k, v) {
    d <-data.frame (k, v)
    d2 <-ddply (d,. (k, v), count)

    key <- d2$k
    val <- d2
    keyval(key, val)
  }
)

# loading data from HDFS
from.dfs(step2.mr)

2.	 To establish the user-scoring matrix to articles, let us define the Train2.mr 
MapReduce job.
# MapReduce job for establish user scoring matrix to articles

train2.mr <-mapreduce (
  train.hdfs, 
  map = function(k, v) {
      df <- v

# key as item
    key <-df $ item

# value as [item, user pref]
    val <-data.frame (item = df$item, user = df$user, pref = 
df$pref)
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# emitting (key, value)pairs
    keyval(key, val)
  }
)

# loading data from HDFS
from.dfs(train2.mr)

°° Train2.mr: This is the MapReduce job's key value paradigm 
information

°° key: This is the list of items
°° value: This is the value of the user goods scoring matrix

The following is the consolidation and co-occurrence scoring matrix:

# Running equi joining two data – step2.mr and train2.mr
eq.hdfs <-equijoin (
  left.input = step2.mr, 
  right.input = train2.mr,
  map.left = function (k, v) {
    keyval (k, v)
  },
  map.right = function (k, v) {
    keyval (k, v)
  },
  outer = c ("left")
)

# loading data from HDFS
from.dfs (eq.hdfs)

°° eq.hdfs: This is the MapReduce job's key value paradigm 
information

°° key: The key here is null
°° value: This is the merged dataframe value



Chapter 6

[ 177 ]

3.	 In the section of generating recommendations, we will obtain the 
recommended list of results.

# MapReduce job to obtain recommended list of result from 
equijoined data
cal.mr <-mapreduce (
  input = eq.hdfs,

  map = function (k, v) {
    val <-v
    na <-is.na (v$user.r)
    if (length (which(na))> 0) val <-v [-which (is.na (v $ 
user.r)),]
    keyval (val$kl, val)
  }
  , Reduce = function (k, v) {
    val <-ddply (v,. (kl, vl, user.r), summarize, v = freq.l * 
pref.r)
    keyval (val $ kl, val)
  }
)

# loading data from HDFS
from.dfs (cal.mr)

°° Cal.mr: This is the MapReduce job's key value paradigm information
°° key: This is the list of items
°° value: This is the recommended result dataframe value
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By defining the result for getting the list of recommended items with 
preference value, the sorting process will be applied on the  
recommendation result.

# MapReduce job for sorting the recommendation output
result.mr <-mapreduce (
  input = cal.mr,
  map = function (k, v) {
    keyval (v $ user.r, v)
  }
  , Reduce = function (k, v) {
    val <-ddply (v,. (user.r, vl), summarize, v = sum (v))
    val2 <-val [order (val$v, decreasing = TRUE),]
    names (val2) <-c ("user", "item", "pref")
    keyval (val2$user, val2)
  }
)
# loading data from HDFS
from.dfs (result.mr)

°° result.mr: This is the MapReduce job's key value paradigm 
information

°° key: This is the user ID
°° value: This is the recommended outcome dataframe value

Here, we have designed the collaborative algorithms for generating item-based 
recommendation. Since we have tried to make it run on parallel nodes, we have 
focused on the Mapper and Reducer. They may not be optimal in some cases, but 
you can make them optimal by using the available code.

Summary
In this chapter, we learned how we can perform Big Data analytics with machine 
learning with the help of R and Hadoop technologies. In the next chapter, we will 
learn how to enrich datasets in R by integrating R to various external data sources.



Importing and Exporting Data 
from Various DBs

In this final chapter, we are going to see how data from different sources can be 
loaded into R for performing the data analytics operations. Here, we have considered 
some of the popular databases that are being used as data storage, required for 
performing data analytics with different applications and technologies. As we know, 
performing the analytics operations with R is quite easy as compared to the other 
analytics tools and again, it's free and open source. Since, R has available methods 
to use customized functions via installing R packages, many database packages 
are available in CRAN to perform database connection with R. Therefore, the R 
programming language is becoming more and more popular due to database, as well 
as operating system, independence.

We have specially designed this chapter to share knowledge of how data from 
various database systems can be loaded and used into R for performing data 
modeling. In this chapter, we have included several popular database examples for 
performing various DB operations.



Importing and Exporting Data from Various DBs

[ 180 ]

We have covered various data sources that are popular and are used with R. They 
are as follows:

•	 RData
•	 MySQL
•	 Excel
•	 MongoDB
•	 SQLite
•	 PostgreSQL
•	 Hive
•	 HBase

From the preceding diagram, we can understand that R is supported with several 
database systems to perform data analytics related operations over various 
databases. Since there are a large number of libraries available for R to perform the 
connection with various DBs, we just need to inherit them.
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In the following table, the possible database systems and the related R packages are 
given for easy understanding of the related R packages:

Database system name Useful R packages / function utilities
Text files Text data files such as .csv, .txt, and .r
MySQL RMySQL
Excel Xlsx
Mongo RMongo
SQLlite RSQLlite
 PostgreSQL RPostgreSQL
HDFS RHDFS
Hive RHive
HBase RHBase

As we know, each of the mentioned databases have their own importance with the 
features. Each of these data sources will be described with the following points for 
better understanding:

•	 Introduction
•	 Features
•	 Installation
•	 Import the data into R 
•	 Data manipulation
•	 Export the data from R

In this chapter, we are going to install and interact with R packages that will be used 
for various data operations in R.

Now, we will start understanding about databases and how to perform data-related 
operations to forward to data analytics for all databases.

Learning about data files as database
While dealing with the data analytics activities, we need to do data importing, 
loading, or exporting functionalities all the time. Sometimes the same operations 
need to be iterated with R programming language. So, we can use the available R 
function for performing the same data activities.
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Understanding different types of files
There are commonly four different types of data files used with R for data storage 
operations. They are as follows:

•	 CSV (Comma Separated Values)
•	 Txt (with Tab Separated Values)
•	 .RDATA (R's native data format)
•	 .rda (R's native data format)

Installing R packages
To use the data file with the format specified earlier, we don't need to install extra R 
packages. We just need to use the built-in functions available with R.

Importing the data into R
To perform analytics-related activities, we need to use the following functions to get 
the data into R:

•	 CSV: read.csv() is intended for reading the comma separated value (CSV) 
files, where the decimal point is ",". The retrieved data will be stored into 
one R object, which is considered as Dataframe.
Dataframe <- read.csv("data.csv",sep=",")

•	 TXT: To retrieve the tab separated values, the read.table() function will 
be used with some important parameters and the return type of this function 
will be Dataframe type.
Dataframe <- read.table("data.csv", sep="\t")

•	 .RDATA: Here, the .RDATA format is used by R for storing the workspace 
data for a particular time period. It is considered as image file. This will 
store/retrieve all of the data available in the workspace.
load("history.RDATA")

•	 .rda: This is also R's native data format, which stores the specific data 
variable as per requirement.

load("data_variables_a_and_b.rda")
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Exporting the data from R
To export the existing data object from R and to support data files as per 
requirements, we need to use the following functions:

•	 CSV: Write the dataframe object into the csv data file via the following 
command:
write.csv(mydata, "c:/mydata.csv", sep=",", row.names=FALSE)

•	 TXT: Write the data with the tab delimiters via the following command:
write.table(mydata, "c:/mydata.txt", sep="\t")

•	 .RDATA: To store the workspace data variables available to R session, use 
the following command:
save.image()

•	 .rda: This function is used to store specific data objects that can be reused 
later. Use the following code for saving them to the .rda files.

# column vector

a <- c(1,2,3)

# column vector

b <- c(2,4,6)

# saving it to R (.rda) data format

save(a, b, file=" data_variables_a_and_b.rda")

Understanding MySQL
MySQL is world's most popular open source database. Many of the world's largest 
and fastest growing organizations including Facebook, Google, Adobe, and Zappos 
rely on MySQL databases, to save time and money powering high-volume websites, 
business critical systems, and software packages.

Since both R and MySQL both are open source, they can be used for building the 
interactive web analytic applications. Also simple data analytics activities can be 
performed for existing web applications with this unique package.

To install MySQL on your Linux machine, you need to follow the given steps  
in sequence:

•	 Install MySQL
•	 Install RMySQL
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Installing MySQL
We will see how to get MySQL installed on Linux:

// Updating the linux package list

sudo apt-get update

// Upgrading the updated packages

sudo apt-get dist-upgrade

//First, install the MySQL server and client packages:

sudo apt-get install mysql-server mysql-client

Log in to MySQL database using the following command:
mysql -u root -p

Installing RMySQL
Now, we have installed MySQL on our Linux machine. It's time to install RMySQL – 
R library from CRAN via the following R commands:

# to install RMySQL library

install.packages("RMySQL")

#Loading RMySQL 
library(RMySQL)

After the RMySQL library is installed on R, perform MySQL database connection by 
providing the user privileges as provided in MySQL administration console:

mydb = dbConnect(MySQL(), user='root', password='', dbname='sample_
table', host='localhost')

Learning to list the tables and their structure
Now, the database connection has been done successfully. To list the available 
tables and their structure of data base in MySQL database, look at the following 
commands. To return the available tables created under mydb database, use the 
following command:
dbListTables(mydb)

To return a list of data fields created under the sample_table table, use the 
following command:
dbListFields(mydb, 'sample_table')
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Importing the data into R
We know how to check MySQL tables and their fields. After identification of useful 
data tables, we can import them in R using the following RMySQL command. To 
retrieve the custom data from MySQL database as per the provided SQL query, we 
need to store it in an object:

rs = dbSendQuery(mydb, "select * from sample_table")

The available data-related information can be retrieved from MySQL to R via the 
fetch command as follows:

dataset = fetch(rs, n=-1)

Here, the specified parameter n = -1 is used for retrieving all pending records.

Understanding data manipulation
To perform the data operation with MySQL database, we need to fire the  
SQL queries. But in case of RMySQL, we can fire commands with the  
dbSendQuery function.

Creating a new table with the help of available R dataframe into MySQL database 
can be done with the following command:

dbWriteTable(mydb, name='mysql_table_name', value=data.frame.name)

To insert R matrix data into the existing data table in MySQL, use the following 
command:

# defining data matrix

datamatrix <- matrix(1:4, 2, 2)

# defining query to insert the data

query <- paste("INSERT INTO names VALUES(",datamatrix [1,1], ",", 
datamatrix [1,2], ")")

# command for submitting the defined SQL query dbGetQuery(con, query)

Sometimes we need to delete a MySQL table when it is no longer of use. We can fire 
the following query to delete the mysql_some_table table:

dbSendQuery(mydb, 'drop table if exists mysql_some_table').
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Understanding Excel
Excel is a spreadsheet application developed by Microsoft to be run on Windows  
and Mac OS, which has a similar function to R for performing statistical 
computation, graphical visualization, and data modeling. Excel is provided by 
Microsoft with the Microsoft Office bundle, which mainly supports .xls spreadsheet 
data file format. In case, we want to read or write to Microsoft Excel spreadsheets 
from within R, we can use many available R packages. But one of the popular and 
working R library is xlsx.

This package programmatically provides control of the Excel files using R. The high 
level API of this allows users to read a spread sheet of the .xlsx document into a 
data.frame and writing data.frame to a file. This package is basically developed by 
Adrian A. Dragulescu.

Installing Excel
Here, we are considering the .xls file as the data source, which can be built and 
maintained with the help of Microsoft Excel 97/2000/XP/2003.

The following are the prerequisites for the xlsx packages:

•	 xlsxjars
•	 rJava

Installing xlsxX packages:

•	 Install.packages("xlsxjars")
•	 Install.packages("rJava")
•	 Install.packages("xlsx")

Importing data into R
Suppose we have created one excel file and now we want to perform the data 
analytics related operations with R, this is the best package to load the excel file to be 
processed within R.

es <- read.xlsx("D:/ga.xlsx",1) 

The preceding command will store the excel data with sheet 1 into the es dataframe 
format in R.
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Understanding data manipulation with  
R and Excel
The following command will be used for selecting the subset of dataframe, res, 
which selects the first five rows:

r <- res[1:5,]

Exporting the data to Excel
As per the defined name, the processed data with the dataframe format can be stored 
as a xls file to be supported with Excel.

ress <- write.xlsx(r, "D:/ga1.xls")  

Understanding MongoDB
MongoDB is a NoSQL-based distributed document data storage. This has  
been specially designed for providing scalable and high performance data  
storage solutions. In many scenarios, it can be used to replace traditional  
relational database or key/value data storage. The biggest feature of Mongo is  
its query language, which is very powerful, and its syntax is somewhat similar  
to object-oriented query language.

The following are the features of MongoDB:

•	 Set-oriented storage and easy to store the object type
•	 Support for dynamic queries
•	 Full index support
•	 Rich query language
•	 Data fragments processing order to support the expansion of the cloud level
•	 BSON-based file data storage
•	 Supported with C, C++, C#, Erlang, Haskell, Java, JavaScript, Perl, PHP, 

Python, Ruby, and Scala

We can use R and MongoDB together by installing the following prerequisites:

•	 MongoDB installation
•	 rmongodb installation
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Installing MongoDB
The following are the steps provided for installation of MongoDB in Ubuntu 12.04 
and CentOS:

First, we will see installation steps for Ubuntu.

1.	 Configure Package Management System (APT) using the  
following command:
sudo apt-key adv --keyserverhkp://keyserver.ubuntu.com:80  
--recv 7F0CEB10

2.	 Create /etc/apt/sources.list.d/mongodb.list by using the  
following command:
echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart 
dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

3.	 Now, update the package list of your OS using the following command:
sudo apt-get update

4.	 Install the latest version of MongoDB by using the following command:

apt-get install mongodb-10gen

Now, we will see the installation steps for CentOs.

1.	 Configure Package Management System (YUM).
2.	 Create /etc/yum.repos.d/mongodb.repo and use the following 

configurations:
°° For a 64-bit system use the following command:

[mongodb]

name=MongoDB Repository

baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/
x86_64/

gpgcheck=0

enabled=1

°° For a 32-bit system use the following command:

[mongodb]

name=MongoDB Repository

baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/
i686/

gpgcheck=0

enabled=1

3.	 Install Packages.
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With the following command, install a stable version of MongoDB and the  
associated tools:

yum install mongo-10gen mongo-10gen-server

Now, you have successfully installed MongoDB.

Useful commands for controlling a mongodb service

To start the mongodb service we use the following command:
sudo service mongodb start

To stop the mongodb service we use the following command:
sudo service mongodb stop

To restart the mongodb service we use the following command:
sudo service mongodb restart

To start a Mongo console we use the following command:
mongo

Mapping SQL to MongoDB
The following are the mappings of SQL terms to MongoDB terms for better 
understanding of data storage:

No. SQL Term MongoDB Term

1. Database Database
2. Table Collection
3. Index Index
4. Row Document
5. Column Field
6. Joining Embedding & linking
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Mapping SQL to MongoQL
The following are the mapping of SQL statements to Mongo QL statements for the 
understanding of query development/conversion:

No. SQL Statement Mongo QL Statement
1. INSERT INTO students 

VALUES(1,1)
$db->students-
>insert(array("a" => 1, "b" 
=> 1));

2. SELECT a, b FROM students $db->students->find(array(), 
array("a" => 1, "b" => 1));

3. SELECT * FROM students 
WHERE age < 15

$db->students-
>find(array("age" => 
array('$lt' => 15)));

4. UPDATE students SET a=1 
WHERE b='q'

$db->students-
>update(array("b" => "q"), 
array('$set' => array("a" => 
1)));

5. DELETE FROM students WHERE 
name="siddharth"

$db->students-
>remove(array("name" => " 
siddharth"));

Installing rmongodb
To use MongoDB within R, we need to have installed R with the rmongodb library. 
We can install rmongodb from CRAN via the following command:

# installing library rmongodb in R

install.packages (rmongodb)

Importing the data into R
We have learned how to install MongoDB in Ubuntu 12.04. Now, we can perform 
all the necessary operations on our data. In this section, we are going to learn how 
Mongo data can be handled and imported in R for data analytics activity. For loading 
the library we use the following command:

# loading the library of rmongodb

library (rmongodb)

Mongo connection establishment

mongo <-mongo.create ()
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Check whether the normal series

mongo.is.connected (mongo)

Create a BSON object cache

buf <- mongo.bson.buffer.create ()

Add element to the object buf

mongo.bson.buffer.append (buf, "name", "Echo")

Objects of the mongo.bson class are used to store BSON documents. BSON is the 
form that MongoDB uses to store documents in its database. MongoDB network 
traffic also uses BSON messages:

b <- mongo.bson.from.list(list(name="Fred", age=29, city="Boston")) 
  iter <- mongo.bson.iterator.create(b)  # b is of class "mongo.bson" 
  while (mongo.bson.iterator.next(iter)) 
  print(mongo.bson.iterator.value(iter))

Understanding data manipulation
We will now see how Mongo data object can be operated within R:

# To check whether mongo is connected or not in R.

if (mongo.is.connected(mongo)) { 
  ns <- "test.people" 

#Returns a fresh mongo.bson.buffer object ready to have data 

#appended onto it in R. 
  buf <- mongo.bson.buffer.create() 
  mongo.bson.buffer.append(buf, "name", "Joe") 
  criteria <- mongo.bson.from.buffer(buf) 

# mongo.bson.buffer objects are used to build mongo.bson objects. 
  buf <- mongo.bson.buffer.create()

  mongo.bson.buffer.start.object(buf, "inc") 
  mongo.bson.buffer.append(buf, "age", 1L) 
  mongo.bson.buffer.finish.object(buf) 
  objNew <- mongo.bson.from.buffer(buf) 
  # increment the age field of the first record   matching name "Joe" 
  mongo.update(mongo, ns, criteria, objNew)

# mongo.bson.buffer objects are used to build mongo.bson objects. 
  buf <- mongo.bson.buffer.create() 
  mongo.bson.buffer.append(buf, "name", "Jeff") 
  criteria <- mongo.bson.from.buffer(buf) 
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# mongo.bson.buffer objects are used to build mongo.bson objects. 
    buf <- mongo.bson.buffer.create() 
    mongo.bson.buffer.append(buf, "name", "Jeff") 
    mongo.bson.buffer.append(buf, "age", 27L) 
    objNew <- mongo.bson.from.buffer(buf) 
    # update the entire record to { name: "Jeff", age: 27 } 
    # where name equals "Jeff" 
    # if such a record exists; otherwise, insert this as a new reord 
    mongo.update(mongo, ns, criteria, objNew, 
      mongo.update.upsert) 
    # do a shorthand update: 
    mongo.update(mongo, ns, list(name="John"), list(name="John",  
    age=25)) 
}

Understanding SQLite
SQLite is a relational database management system developed with C programming 
language. SQLite is ACID compliant and implements most of the SQL standard. 
Unlike other database systems, SQLite doesn't have a standalone process to serve 
data to client applications. It's an embedded SQL database engine. SQLite system 
reads and writes directly to the system disk files because it's a file-based database. 
Related SQL database with multiple tables, indices, and views are contained there 
and this database file format is supported as cross-platform.

Quick understanding of ACID properties of transactions:

There are a set of properties that needs to be fulfilled to perform the transactions. 
They are Atomicity, Consistency, Isolation, and Durability. which are explained  
as follows:

•	 Atomicity refers to the guarantee that all the tasks of the database are 
performed.

•	 Consistency ensures that the database remains in a consistent manner 
throughout, similar to how it was before we started.

•	 Isolation refers to the requirement that other operations cannot access or see 
the data in an intermediate state during a transaction.

•	 Durability refers to the guarantee that once the user has been notified of 
success, the transaction will persist, and not be undone. This means it 
will survive system failure, and that the database system has checked the 
integrity constraints and won't need to abort the transaction.
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Understanding features of SQLite
The following are the features of SQLite database that follows ACID properties:

•	 Zero configuration
•	 Cross-platform-supported disk format
•	 Faster than client-server type of database system
•	 Easy to use API

We will require the following prerequisites for using SQLite and R together:

•	 SQLite installation
•	 RSQLite installation

Installing SQLite
To install the SQLite database in Ubuntu, follow the given commands:

// install sqllite by firing the following commands

sudo apt-get purge sqlite3 sqlite3-doc libsqlite3-0

sudo apt-get autoremove

sudo apt-get install sqlite3 sqlite3-doc

Installing RSQLite
We can install RSQLite by following the given command:

# installing RSQLite library from CRAN in R

Install.packages("RSQLite")

Importing the data into R
We will see how to insert the data into R with the RSQLite package.

To load an installed package, we use the following command:

#loading the installed package

library("RSQLite")
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With the following commands, you can connect to DB and list all tables from the 
database:

# connect to db

con <- dbConnect(SQLite(), dbname="data/first.db")

# list all tables

tables <- dbListTables(con)

# exclude sqlite_sequence (contains table information)

tables <- tables[tables != "sqlite_sequence"]

lDataFrames <- vector("list", length=length(tables))

# create a data.frame for each table

for (i in seq(along=tables)) {

  lDataFrames[[i]] <- dbGetQuery(conn=con, statement=paste("SELECT *  
  FROM '", tables[[i]], "'", sep=""))

}

Understanding data manipulation
We can manipulate the dataset using the following commands:

dbBeginTransaction(con)

rs <- dbSendQuery(con, "DELETE from candidates WHERE age > 50")

Exporting the data from Rdata(USArrests)

dbWriteTable(con, "USArrests", USArrests)

Understanding PostgreSQL
PostgreSQL is an open source object relational database management system. 
PostgreSQL runs on most of the operating systems such as Linux, UNIX, and 
Windows. It supports text, image, sound, and video data sources. It supports 
programming technologies such as C, C++, Java, Python, Ruby, and Tcl.



Chapter 7

[ 195 ]

Understanding features of PostgreSQL
The following are the features of PostgreSQL:

•	 Complex SQL queries
•	 Fully ACID complaint
•	 SQL subselects

We need to have installed the following prerequisites for using PostgreSQL in R:

•	 Installing Postgre SQL
•	 Installing RPostgre SQL

Installing PostgreSQL
In this section, we will learn about installing PostgreSQL.

The given commands will be followed for the installation of PostgreSQL:

// updating the packages list

Sudo apt-get update

// installing postgresql 

sudo apt-get install postgresql postgresql-contrib

// creating postgresql user

su – postgres createuser

Installing RPostgreSQL
We will now see how to install and use RPostgreSQL:

# installing package from CRAN

install.packages(RPostgreSQL)

Importing the data into R# loading the installed package

library(RPostgreSQL)

## load the PostgreSQL driver 
drv <- dbDriver("PostgreSQL") 
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## Open a connection 
con <- dbConnect(drv, dbname="oxford") 
 
## Submits a statement 
rs <- dbSendQuery(con, "select * from student") 
 
## fetch all elements from the result set 
fetch(rs,n=-1) 
 
## Closes the connection 
dbDisconnect(con) 
 
## Frees all the resources on the driver 
dbUnloadDriver(drv)

With the following code, we will learn how to operate data stored at PostgreSQL 
from within R:

opendbGetQuery(con, "BEGIN TRANSACTION")
rs <- dbSendQuery(con,
"Delete * from sales as p where p.cost>10")
if(dbGetInfo(rs, what = "rowsAffected") > 250){
  warning("Rolling back transaction")
  dbRollback(con)
}else{
  dbCommit(con)
}

Exporting the data from R
In this section, we are going to learn how to load data, write the contents of the 
dataframe value into the table name specified, and remove the specified table from 
the database connection:

conn <- dbConnect("PostgreSQL", dbname = "wireless")
if(dbExistsTable(con, "frame_fuel")){
  dbRemoveTable(conn, "frame_fuel")
  dbWriteTable(conn, "frame_fuel", fuel.frame)
}
if(dbExistsTable(conn, "RESULTS")){
  dbWriteTable(conn, "RESULTS", results2000, append = T)
  else
  dbWriteTable(conn, "RESULTS", results2000)
}
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Understanding Hive
Hive is a Hadoop-based data warehousing-like framework developed by Facebook. 
It allows users to fire queries in SQL, with languages like HiveQL, which are 
highly abstracted to Hadoop MapReduce. This allows SQL programmers with no 
MapReduce experience to use the warehouse and makes it easier to integrate with 
business intelligence and visualization tools for real-time query processing.

Understanding features of Hive
The following are the features of Hive:

•	 Hibernate Query Language (HQL)
•	 Supports UDF
•	 Metadata storage
•	 Data indexing
•	 Different storage type
•	 Hadoop integration

Prerequisites for RHive are as follows:

•	 Hadoop
•	 Hive

We assume here that our readers have already configured Hadoop; else they can 
learn Hadoop installation from Chapter 1, Getting Ready to Use R and Hadoop. As Hive 
will be required for running RHive, we will first see how Hive can be installed.

Installing Hive
The commands to install Hive are as follows:

// Downloading the hive source from apache mirror

wget http://www.motorlogy.com/apache/hive/hive-0.11.0/hive-0.11.0.tar.gz

// For extracting the hive source

tar xzvf  hive-0.11.0.tar.gz
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Setting up Hive configurations
To setup Hive configuration, we need to update the hive-site.xml file with a  
few additions:

•	 Update hive-site.xml using the following commands:
<description> JDBC connect string for a JDBC metastore </ 
description>
</Property>

<property>
<name> javax.jdo.option.ConnectionDriverName </ name>
<value> com.mysql.jdbc.Driver </ value>
<description> Driver class name for a JDBC metastore </ 
description>
</Property>

<property>
<name> javax.jdo.option.ConnectionUserName </ name>
<value> hive </value>
<description> username to use against metastore database </ 
description>
</ Property>

<property>
<name> javax.jdo.option.ConnectionPassword </name>
<value> hive</value>
<description> password to use against metastore database </ 
description>
</Property>

<property>
<name> hive.metastore.warehouse.dir </ name>
<value> /user/hive/warehouse </value>
<description> location of default database for the warehouse </ 
description>
</Property>

•	 Update hive-log4j.properties by adding the following line:
log4j.appender.EventCounter = org.apache.hadoop.log.metrics.
EventCounter

•	 Update the environment variables by using the following command:
export $HIVE_HOME=/usr/local/ hive-0.11.0
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•	 In HDFS, create specific directories for Hive:
$HADOOP_HOME/bin/ hadoop fs-mkidr /tmp

$HADOOP_HOME/bin/ hadoop fs-mkidr /user/hive/warehouse

$HADOOP_HOME/bin/ hadoop fs-chmod g+w / tmp

$HADOOP_HOME/bin/ hadoop fs-chmod g+w /user/hive/warehouse

To start the hive server, the hive --service hiveserver 
command needs to be called from HIVE_HOME.

Installing RHive
•	 Install the dependant library, rjava, using the following commands:

// for setting up java configuration variables

sudo R CMD javareconf

// Installing rJava package

install.packages ("rJava")

// Installing RHive package from CRAN

install.packages("RHive")

// Loading RHive library

library("RHive")

Understanding RHive operations
We will see how we can load and operate over Hive datasets in R using the  
RHive library:

•	 To initialize RHive we use:
rhive.init ()

•	 To connect with the Hive server we use:
rhive.connect ("192.168.1.210")
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•	 To view all tables we use:
rhive.list.tables ()

             tab_name

1 hive_algo_t_account

2 o_account

3 r_t_account

•	 To view the table structure we use:
rhive.desc.table ('o_account');

     col_name data_type comment

1 id int

2 email string

3 create_date string

•	 To execute the HQL queries we use:
rhive.query ("select * from o_account");

•	 To close connection to the Hive server we use:

rhive.close()

Understanding HBase
Apache HBase is a distributed Big Data store for Hadoop. This allows random,  
real-time, read/write access to Big Data. This is designed as a column-oriented,  
data-storage model, innovated after being inspired by Google Big table.

Understanding HBase features
Following are the features for HBase:

•	 RESTful web service with XML
•	 Linear and modular scalability
•	 Strict consistent reads and writes
•	 Extensible shell
•	 Block cache and Bloom filters for real-time queries
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Pre-requisites for RHBase are as follows:

•	 Hadoop
•	 HBase
•	 Thrift

Here we assume that users have already configured Hadoop for their Linux machine. 
If anyone wishes to know how to install Hadoop on Linux, please refer to Chapter 1, 
Getting Ready to Use R and Hadoop.

Installing HBase
Following are the steps for installing HBase:

1.	 Download the tar file of HBase and extract it:
wget http://apache.cs.utah.edu/hbase/stable/hbase-0.94.11.tar.gz

tar -xzf hbase-0.94.11.tar.gz

2.	 Go to HBase installation directory and update the configuration files:
cd hbase-0.94.11/

vi conf/hbase-site.xml

3.	 Modify the configuration files:
1.	 Update hbase-env.sh.

~ Vi conf / hbase-env.sh 

2.	 Set up the configuration for HBase:
  export JAVA_HOME = /usr/lib/jvm/java-6-sun

  export HBASE_HOME = /usr/local/hbase-0.94.11

  export HADOOP_INSTALL = /usr/local/hadoop

  export HBASE_CLASSPATH = /usr/local/hadoop/conf

  export HBASE_MANAGES_ZK = true

3.	 Update hbase-site.xmlzxml:
Vi conf / hbase-site.xml
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4.	 Change hbase-site.cml, which should look like the following code:
    <configuration>
      <property>
        <name> hbase.rootdir </name>
        <value> hdfs://master:9000/hbase </value>
      </Property>

      <property>
        <name>hbase.cluster.distributed </name>
        <value>true</value>
      </Property>

      <property>
         <name>dfs.replication </name>
         <value>1</value>
      </Property>

      <property>
        <name>hbase.zookeeper.quorum </name>
        <value>master</value>
      </Property>

      <property>
          <name>hbase.zookeeper.property.clientPort </name>
          <value>2181</value>
      </Property>

      <property>
        <name>hbase.zookeeper.property.dataDir </name>
        <value>/root/hadoop/hdata</​​value>
      </Property>
    </ Configuration>

If a separate zookeper setup is used, the 
configuration needs to be changed.

5.	 Copy the Hadoop environment configuration files and libraries.

Cp $HADOOP_HOME/conf/hdfs-site.xml $HBASE_HOME/conf

Cp $HADOOP_HOME/hadoop-core-1.0.3.jar $HBASE_HOME/lib

Cp $HADOOP_HOME/lib/commons-configuration-1.6.jar $HBASE_
HOME/lib

Cp $HADOOP_HOME/lib/commons-collections-3.2.1.jar $HBASE_
HOME/lib
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Installing thrift
Following are the steps for installing thrift:

1.	 Download the thrift source from the Internet and place it to client.  
We will do it with Ubuntu O.S 12.04:
get http://archive.apache.org/dist/thrift/0.8.0/thrift-0.8.0.tar.
gz

2.	 To extract the downloaded .tar.gz file, use the following command:
tar xzvf thrift-0.8.0.tar.gz

cd thrift-0.8.0/

3.	 Compile the configuration parameters:
./Configure

4.	 Install thrift:

Make

Make install

To start the HBase thrift server we need to call the 
following command: 
$HBASE_HOME/bin/hbase-daemon.sh start

Installing RHBase
After installing HBase , we will see how to get the RHBase library.

•	 To install rhbase we use the following command:
wget https://github.com/RevolutionAnalytics/rhbase/blob/master/
build/rhbase_1.2.0.tar.gz

•	 To install the downloaded package we use the following command:

R CMD INSTALL rhbase_1.2.0.tar.gz
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Importing the data into R
Once RHBase is installed, we can load the dataset in R from HBase with the help  
of RHBase:

•	 To list all tables we use:
hb.list.tables ()

•	 To create a new table we use:
hb.new.table ("student")

•	 To display the table structure we use:
hb.describe.table("student_rhbase")

•	 To read data we use:

hb.get ('student_rhbase', 'mary')

Understanding data manipulation
Now, we will see how to operate over the dataset of HBase from within R:

•	 To create the table we use:
hb.new.table ("student_rhbase", "info")

•	 To insert the data we use:
hb.insert ("student_rhbase", list (list ("mary", "info: age", 
"24")))

•	 To delete a sheet we use:

hb.delete.table ('student_rhbase')

Summary
In this chapter, we learned how various R packages that are integrated with various 
database systems and their data sets can be loaded in R to perform data analytics. 
Most of the popular database systems have their R packages to load the data, update, 
as well as query the data to analyze them.
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In this appendix, additional resources related to the content of all chapters  
are presented.

R + Hadoop help materials
•	 Big Data university

°° Name: Big Data university
°° URL: http://bigdatauniversity.com/
°° Type: Online course
°° For: Hadoop and its components

•	 Online Coursera courses for machine learning
°° Name: Machine learning
°° URL: https://www.coursera.org/course/ml
°° Type: Online Coursera course
°° By: Dr. Andrew Ng
°° For: Hadoop and its components

•	 Online Coursera courses for introduction to Data Science
°° Name: Introduction to Data Science
°° URL: https://www.coursera.org/course/datasci
°° Type: Online Coursera course
°° By: Dr. Bill Howe
°° For: Learning data manipulation and analytics
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•	 RHadoop
°° Name: RHadoop
°° URL: https://github.com/RevolutionAnalytics/RHadoop/
°° Type: RHadoop reference
°° For: RHadoop packages downloads

•	 RHIPE
°° Name: RHIPE
°° URL: http://www.datadr.org/
°° Type: RHIPE reference
°° For: RHIPE packages downloads

•	 HadoopStreaming
°° Name: HadoopStreaming
°° URL: http://cran.r-project.org/web/packages/

HadoopStreaming/index.html

°° Type: RHadoop package reference
°° For: HadoopStreaming package downloads

•	 R documentation
°° Name: R documentation
°° URL: http://www.rdocumentation.org/
°° Type: Online R dictionary
°° For: R documentation

•	 Revolution Analytics

°° Name: Revolution Analytics
°° URL: http://www.revolutionanalytics.com/news-events/ 

free-webinars/

°° Type: On-demand webinars on R and Hadoop
°° For: Importance of R and Hadoop for business applications in  

large industries
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R groups
•	 Big Data Analytics using R

°° Name: Big Data Analytics using R (Facebook group)
°° URL: http://www.facebook.com/groups/434352233255448/
°° Type: Facebook knowledge sharing group

Hadoop groups
•	 Hadoop in Action

°° Name: Hadoop in Action (Facebook group)
°° URL: http://www.facebook.com/groups/haddopinaction/
°° Type: Facebook knowledge sharing and business context

•	 Hadoop
°° Name: Hadoop (Facebook group)
°° URL: http://www.facebook.com/groups/21410812368/
°° Type: Facebook knowledge sharing

•	 Big Data Analytics using R
°° Name: Hadoop Users (LinkedIn group)
°° URL: http://www.linkedin.com/groups/Hadoop-Users-988957
°° Type: LinkedIn group for building professional connections as well 

as for business context

•	 Hadoop Mailing lists

°° Name: Hadoop Users (LinkedIn group)
°° URL: http://hadoop.apache.org/mailing_lists.html
°° Type: LinkedIn group for building professional connections  

as well as for business context
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R + Hadoop groups
•	 www.fens.me by Conan Z, who contributed to Chapter 6, Understanding Big 

Data Analysis with Machine Learning, for recommender systems with R and 
Mahout, Hadoop in this book

°° Name: Fens.me
°° URL: http://blog.fens.me/
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