
www.allitebooks.com

http://www.allitebooks.org

Big Data Analytics with
R and Hadoop

Set up an integrated infrastructure of R and Hadoop to
turn your data analytics into Big Data analytics

Vignesh Prajapati

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Big Data Analytics with R and Hadoop

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-328-2

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Vignesh Prajapati

Reviewers
Krishnanand Khambadkone

Muthusamy Manigandan

Vidyasagar N V

Siddharth Tiwari

Acquisition Editor
James Jones

Lead Technical Editor
Mandar Ghate

Technical Editors
Shashank Desai

Jinesh Kampani

Chandni Maishery

Project Coordinator
Wendell Palmar

Copy Editors
Roshni Banerjee

Mradula Hegde

Insiya Morbiwala

Aditya Nair

Kirti Pai

Shambhavi Pai

Laxmi Subramanian

Proofreaders
Maria Gould

Lesley Harrison

Elinor Perry-Smith

Indexer
Mariammal Chettiyar

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Pooja Chiplunkar

Cover Work
Pooja Chiplunkar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vignesh Prajapati, from India, is a Big Data enthusiast, a Pingax (www.pingax.
com) consultant and a software professional at Enjay. He is an experienced ML
Data engineer. He is experienced with Machine learning and Big Data technologies
such as R, Hadoop, Mahout, Pig, Hive, and related Hadoop components to analyze
datasets to achieve informative insights by data analytics cycles.

He pursued B.E from Gujarat Technological University in 2012 and started his
career as Data Engineer at Tatvic. His professional experience includes working on
the development of various Data analytics algorithms for Google Analytics data
source, for providing economic value to the products. To get the ML in action,
he implemented several analytical apps in collaboration with Google Analytics
and Google Prediction API services. He also contributes to the R community by
developing the RGoogleAnalytics' R library as an open source code Google project
and writes articles on Data-driven technologies.

Vignesh is not limited to a single domain; he has also worked for developing
various interactive apps via various Google APIs, such as Google Analytics API,
Realtime API, Google Prediction API, Google Chart API, and Translate API with
the Java and PHP platforms. He is highly interested in the development of open
source technologies.

Vignesh has also reviewed the Apache Mahout Cookbook for Packt Publishing. This
book provides a fresh, scope-oriented approach to the Mahout world for beginners
as well as advanced users. Mahout Cookbook is specially designed to make users
aware of the different possible machine learning applications, strategies, and
algorithms to produce an intelligent as well as Big Data application.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgment

First and foremost, I would like to thank my loving parents and younger brother
Vaibhav for standing beside me throughout my career as well as while writing this
book. Without their support it would have been totally impossible to achieve this
knowledge sharing. As I started writing this book, I was continuously motivated by
my father (Prahlad Prajapati) and regularly followed up by my mother (Dharmistha
Prajapati). Also, thanks to my friends for encouraging me to initiate writing for big
technologies such as Hadoop and R.

During this writing period I went through some critical phases of my life, which
were challenging for me at all times. I am grateful to Ravi Pathak, CEO and founder
at Tatvic, who introduced me to this vast field of Machine learning and Big Data
and helped me realize my potential. And yes, I can't forget James, Wendell, and
Mandar from Packt Publishing for their valuable support, motivation, and guidance
to achieve these heights. Special thanks to them for filling up the communication gap
on the technical and graphical sections of this book.

Thanks to Big Data and Machine learning. Finally a big thanks to God, you have
given me the power to believe in myself and pursue my dreams. I could never have
done this without the faith I have in you, the Almighty.

Let us go forward together into the future of Big Data analytics.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Krishnanand Khambadkone has over 20 years of overall experience. He is
currently working as a senior solutions architect in the Big Data and Hadoop Practice
of TCS America and is architecting and implementing Hadoop solutions for Fortune
500 clients, mainly large banking organizations. Prior to this he worked on delivering
middleware and SOA solutions using the Oracle middleware stack and built and
delivered software using the J2EE product stack.

He is an avid evangelist and enthusiast of Big Data and Hadoop. He has written
several articles and white papers on this subject, and has also presented these at
conferences.

Muthusamy Manigandan is the Head of Engineering and Architecture
with Ozone Media. Mani has more than 15 years of experience in designing
large-scale software systems in the areas of virtualization, Distributed Version
Control systems, ERP, supply chain management, Machine Learning and
Recommendation Engine, behavior-based retargeting, and behavior targeting
creative. Prior to joining Ozone Media, Mani handled various responsibilities at
VMware, Oracle, AOL, and Manhattan Associates. At Ozone Media he is responsible
for products, technology, and research initiatives. Mani can be reached at mmaniga@
yahoo.co.uk and http://in.linkedin.com/in/mmanigandan/.

www.allitebooks.com

http://www.allitebooks.org

Vidyasagar N V had an interest in computer science since an early age. Some of his
serious work in computers and computer networks began during his high school days.
Later he went to the prestigious Institute Of Technology, Banaras Hindu University
for his B.Tech. He is working as a software developer and data expert, developing and
building scalable systems. He has worked with a variety of second, third, and fourth
generation languages. He has also worked with flat files, indexed files, hierarchical
databases, network databases, and relational databases, such as NOSQL databases,
Hadoop, and related technologies. Currently, he is working as a senior developer at
Collective Inc., developing Big-Data-based structured data extraction techniques using
the web and local information. He enjoys developing high-quality software, web-based
solutions, and designing secure and scalable data systems.

I would like to thank my parents, Mr. N Srinivasa Rao and
Mrs. Latha Rao, and my family who supported and backed me
throughout my life, and friends for being friends. I would also like
to thank all those people who willingly donate their time, effort, and
expertise by participating in open source software projects. Thanks
to Packt Publishing for selecting me as one of the technical reviewers
on this wonderful book. It is my honor to be a part of this book. You
can contact me at vidyasagar1729@gmail.com.

Siddharth Tiwari has been in the industry since the past three years working
on Machine learning, Text Analytics, Big Data Management, and information
search and Management. Currently he is employed by EMC Corporation's Big Data
management and analytics initiative and product engineering wing for their Hadoop
distribution.

He is a part of the TeraSort and MinuteSort world records, achieved while working
with a large financial services firm.

He pursued Bachelor of Technology from Uttar Pradesh Technical University with
equivalent CGPA 8.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Ready to Use R and Hadoop	 13

Installing R	 14
Installing RStudio	 15
Understanding the features of R language	 16

Using R packages	 16
Performing data operations	 16
Increasing community support	 17
Performing data modeling in R	 18

Installing Hadoop	 19
Understanding different Hadoop modes	 20
Understanding Hadoop installation steps	 20

Installing Hadoop on Linux, Ubuntu flavor (single node cluster)	 20
Installing Hadoop on Linux, Ubuntu flavor (multinode cluster)	 23
Installing Cloudera Hadoop on Ubuntu	 25

Understanding Hadoop features	 28
Understanding HDFS	 28

Understanding the characteristics of HDFS	 28
Understanding MapReduce	 28

Learning the HDFS and MapReduce architecture	 30
Understanding the HDFS architecture	 30

Understanding HDFS components	 30
Understanding the MapReduce architecture	 31

Understanding MapReduce components	 31
Understanding the HDFS and MapReduce architecture by plot	 31

Understanding Hadoop subprojects	 33
Summary	 36

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Writing Hadoop MapReduce Programs	 37
Understanding the basics of MapReduce	 37
Introducing Hadoop MapReduce	 39

Listing Hadoop MapReduce entities	 40
Understanding the Hadoop MapReduce scenario	 40

Loading data into HDFS	 40
Executing the Map phase	 41
Shuffling and sorting	 42
Reducing phase execution	 42

Understanding the limitations of MapReduce	 43
Understanding Hadoop's ability to solve problems	 44
Understanding the different Java concepts used in Hadoop programming	 44

Understanding the Hadoop MapReduce fundamentals	 45
Understanding MapReduce objects	 45
Deciding the number of Maps in MapReduce	 46
Deciding the number of Reducers in MapReduce	 46
Understanding MapReduce dataflow	 47
Taking a closer look at Hadoop MapReduce terminologies	 48

Writing a Hadoop MapReduce example	 51
Understanding the steps to run a MapReduce job	 52

Learning to monitor and debug a Hadoop MapReduce job	 58
Exploring HDFS data	 59

Understanding several possible MapReduce definitions to
solve business problems	 60

Learning the different ways to write Hadoop MapReduce in R	 61
Learning RHadoop	 61
Learning RHIPE	 62
Learning Hadoop streaming	 62

Summary	 62
Chapter 3: Integrating R and Hadoop	 63

Introducing RHIPE	 64
Installing RHIPE	 65

Installing Hadoop	 65
Installing R	 66
Installing protocol buffers	 66
Environment variables	 66
The rJava package installation	 67
Installing RHIPE	 67

Understanding the architecture of RHIPE	 68
Understanding RHIPE samples	 69

RHIPE sample program (Map only)	 69
Word count	 71

Table of Contents

[iii]

Understanding the RHIPE function reference	 73
Initialization	 73
HDFS	 73
MapReduce	 75

Introducing RHadoop	 76
Understanding the architecture of RHadoop	 77
Installing RHadoop	 77
Understanding RHadoop examples	 79

Word count	 81
Understanding the RHadoop function reference	 82

The hdfs package	 82
The rmr package	 85

Summary	 85
Chapter 4: Using Hadoop Streaming with R	 87

Understanding the basics of Hadoop streaming	 87
Understanding how to run Hadoop streaming with R	 92

Understanding a MapReduce application	 92
Understanding how to code a MapReduce application	 94
Understanding how to run a MapReduce application	 98

Executing a Hadoop streaming job from the command prompt	 98
Executing the Hadoop streaming job from R or an RStudio console	 99

Understanding how to explore the output of MapReduce application	 99
Exploring an output from the command prompt	 99
Exploring an output from R or an RStudio console	 100

Understanding basic R functions used in Hadoop MapReduce scripts	 101
Monitoring the Hadoop MapReduce job	 102

Exploring the HadoopStreaming R package	 103
Understanding the hsTableReader function	 104
Understanding the hsKeyValReader function	 106
Understanding the hsLineReader function	 107
Running a Hadoop streaming job	 110

Executing the Hadoop streaming job	 112
Summary	 112

Chapter 5: Learning Data Analytics with R and Hadoop	 113
Understanding the data analytics project life cycle	 113

Identifying the problem	 114
Designing data requirement	 114
Preprocessing data	 115
Performing analytics over data	 115
Visualizing data	 116

Table of Contents

[iv]

Understanding data analytics problems	 117
Exploring web pages categorization	 118

Identifying the problem	 118
Designing data requirement	 118
Preprocessing data	 120
Performing analytics over data	 121
Visualizing data	 128

Computing the frequency of stock market change	 128
Identifying the problem	 128
Designing data requirement	 129
Preprocessing data	 129
Performing analytics over data	 130
Visualizing data	 136

Predicting the sale price of blue book for bulldozers – case study	 137
Identifying the problem	 137
Designing data requirement	 138
Preprocessing data	 139
Performing analytics over data	 141
Understanding Poisson-approximation resampling	 141

Summary	 147
Chapter 6: Understanding Big Data Analysis with
Machine Learning	 149

Introduction to machine learning	 149
Types of machine-learning algorithms	 150

Supervised machine-learning algorithms	 150
Linear regression	 150

Linear regression with R	 152
Linear regression with R and Hadoop	 154

Logistic regression	 157
Logistic regression with R	 159
Logistic regression with R and Hadoop	 159

Unsupervised machine learning algorithm	 162
Clustering	 162

Clustering with R	 163
Performing clustering with R and Hadoop	 163

Recommendation algorithms	 167
Steps to generate recommendations in R	 170
Generating recommendations with R and Hadoop	 173

Summary	 178
Chapter 7: Importing and Exporting Data from Various DBs	 179

Learning about data files as database	 181
Understanding different types of files	 182
Installing R packages	 182

Table of Contents

[v]

Importing the data into R	 182
Exporting the data from R	 183

Understanding MySQL	 183
Installing MySQL	 184
Installing RMySQL	 184
Learning to list the tables and their structure	 184
Importing the data into R	 185
Understanding data manipulation	 185

Understanding Excel	 186
Installing Excel	 186
Importing data into R	 186
Exporting the data to Excel	 187

Understanding MongoDB	 187
Installing MongoDB	 188

Mapping SQL to MongoDB	 189
Mapping SQL to MongoQL	 190

Installing rmongodb	 190
Importing the data into R	 190
Understanding data manipulation	 191

Understanding SQLite	 192
Understanding features of SQLite	 193
Installing SQLite	 193
Installing RSQLite	 193
Importing the data into R	 193
Understanding data manipulation	 194

Understanding PostgreSQL	 194
Understanding features of PostgreSQL	 195
Installing PostgreSQL	 195
Installing RPostgreSQL	 195
Exporting the data from R	 196

Understanding Hive	 197
Understanding features of Hive	 197
Installing Hive	 197

Setting up Hive configurations	 198
Installing RHive	 199
Understanding RHive operations	 199

Understanding HBase	 200
Understanding HBase features	 200
Installing HBase	 201
Installing thrift	 203
Installing RHBase	 203

Table of Contents

[vi]

Importing the data into R	 204
Understanding data manipulation	 204

Summary	 204
Appendix: References	 205

R + Hadoop help materials	 205
R groups	 207
Hadoop groups	 207
R + Hadoop groups	 208
Popular R contributors	 208
Popular Hadoop contributors	 209

Index	 211

Preface
The volume of data that enterprises acquire every day is increasing exponentially.
It is now possible to store these vast amounts of information on low cost platforms
such as Hadoop.

The conundrum these organizations now face is what to do with all this data and
how to glean key insights from this data. Thus R comes into picture. R is a very
amazing tool that makes it a snap to run advanced statistical models on data,
translate the derived models into colorful graphs and visualizations, and do a lot
more functions related to data science.

One key drawback of R, though, is that it is not very scalable. The core R engine
can process and work on very limited amount of data. As Hadoop is very popular
for Big Data processing, corresponding R with Hadoop for scalability is the next
logical step.

This book is dedicated to R and Hadoop and the intricacies of how data analytics
operations of R can be made scalable by using a platform as Hadoop.

With this agenda in mind, this book will cater to a wide audience including data
scientists, statisticians, data architects, and engineers who are looking for solutions to
process and analyze vast amounts of information using R and Hadoop.

Using R with Hadoop will provide an elastic data analytics platform that will scale
depending on the size of the dataset to be analyzed. Experienced programmers can
then write Map/Reduce modules in R and run it using Hadoop's parallel processing
Map/Reduce mechanism to identify patterns in the dataset.

Preface

[2]

Introducing R
R is an open source software package to perform statistical analysis on data. R is a
programming language used by data scientist statisticians and others who need to
make statistical analysis of data and glean key insights from data using mechanisms,
such as regression, clustering, classification, and text analysis. R is registered
under GNU (General Public License). It was developed by Ross Ihaka and Robert
Gentleman at the University of Auckland, New Zealand, which is currently handled
by the R Development Core Team. It can be considered as a different implementation
of S, developed by Johan Chambers at Bell Labs. There are some important
differences, but a lot of the code written in S can be unaltered using the R interpreter
engine.

R provides a wide variety of statistical, machine learning (linear and nonlinear
modeling, classic statistical tests, time-series analysis, classification, clustering)
and graphical techniques, and is highly extensible. R has various built-in as well as
extended functions for statistical, machine learning, and visualization tasks such as:

•	 Data extraction
•	 Data cleaning
•	 Data loading
•	 Data transformation
•	 Statistical analysis
•	 Predictive modeling
•	 Data visualization

It is one of the most popular open source statistical analysis packages available on
the market today. It is crossplatform, has a very wide community support, and a
large and ever-growing user community who are adding new packages every day.
With its growing list of packages, R can now connect with other data stores, such as
MySQL, SQLite, MongoDB, and Hadoop for data storage activities.

Preface

[3]

Understanding features of R
Let's see different useful features of R:

•	 Effective programming language
•	 Relational database support
•	 Data analytics
•	 Data visualization
•	 Extension through the vast library of R packages

Studying the popularity of R
The graph provided from KD suggests that R is the most popular language for data
analysis and mining:

The following graph provides details about the total number of R packages released
by R users from 2005 to 2013. This is how we explore R users. The growth was
exponential in 2012 and it seems that 2013 is on track to beat that.

Preface

[4]

R allows performing Data analytics by various statistical and machine learning
operations as follows:

•	 Regression
•	 Classification
•	 Clustering
•	 Recommendation
•	 Text mining

Introducing Big Data
Big Data has to deal with large and complex datasets that can be structured,
semi-structured, or unstructured and will typically not fit into memory to be
processed. They have to be processed in place, which means that computation has
to be done where the data resides for processing. When we talk to developers, the
people actually building Big Data systems and applications, we get a better idea
of what they mean about 3Vs. They typically would mention the 3Vs model of Big
Data, which are velocity, volume, and variety.

Velocity refers to the low latency, real-time speed at which the analytics need to be
applied. A typical example of this would be to perform analytics on a continuous
stream of data originating from a social networking site or aggregation of disparate
sources of data.

Preface

[5]

Volume refers to the size of the dataset. It may be in KB, MB, GB, TB, or PB based on
the type of the application that generates or receives the data.

Variety refers to the various types of the data that can exist, for example, text, audio,
video, and photos.

Big Data usually includes datasets with sizes. It is not possible for such systems to
process this amount of data within the time frame mandated by the business. Big
Data volumes are a constantly moving target, as of 2012 ranging from a few dozen
terabytes to many petabytes of data in a single dataset. Faced with this seemingly
insurmountable challenge, entirely new platforms are called Big Data platforms.

Getting information about popular
organizations that hold Big Data
Some of the popular organizations that hold Big Data are as follows:

•	 Facebook: It has 40 PB of data and captures 100 TB/day
•	 Yahoo!: It has 60 PB of data
•	 Twitter: It captures 8 TB/day
•	 EBay: It has 40 PB of data and captures 50 TB/day

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

How much data is considered as Big Data differs from company to company.
Though true that one company's Big Data is another's small, there is something
common: doesn't fit in memory, nor disk, has rapid influx of data that needs to be
processed and would benefit from distributed software stacks. For some companies,
10 TB of data would be considered Big Data and for others 1 PB would be Big Data.
So only you can determine whether the data is really Big Data. It is sufficient to say
that it would start in the low terabyte range.

Also, a question well worth asking is, as you are not capturing and retaining enough
of your data do you think you do not have a Big Data problem now? In some
scenarios, companies literally discard data, because there wasn't a cost effective way
to store and process it. With platforms as Hadoop, it is possible to start capturing
and storing all that data.

Introducing Hadoop
Apache Hadoop is an open source Java framework for processing and querying vast
amounts of data on large clusters of commodity hardware. Hadoop is a top level
Apache project, initiated and led by Yahoo! and Doug Cutting. It relies on an active
community of contributors from all over the world for its success.

With a significant technology investment by Yahoo!, Apache Hadoop has become an
enterprise-ready cloud computing technology. It is becoming the industry de facto
framework for Big Data processing.

Hadoop changes the economics and the dynamics of large-scale computing. Its
impact can be boiled down to four salient characteristics. Hadoop enables scalable,
cost-effective, flexible, fault-tolerant solutions.

Exploring Hadoop features
Apache Hadoop has two main features:

•	 HDFS (Hadoop Distributed File System)
•	 MapReduce

Preface

[7]

Studying Hadoop components
Hadoop includes an ecosystem of other products built over the core HDFS and
MapReduce layer to enable various types of operations on the platform. A few
popular Hadoop components are as follows:

•	 Mahout: This is an extensive library of machine learning algorithms.
•	 Pig: Pig is a high-level language (such as PERL) to analyze large datasets

with its own language syntax for expressing data analysis programs, coupled
with infrastructure for evaluating these programs.

•	 Hive: Hive is a data warehouse system for Hadoop that facilitates easy data
summarization, ad hoc queries, and the analysis of large datasets stored in
HDFS. It has its own SQL-like query language called Hive Query Language
(HQL), which is used to issue query commands to Hadoop.

•	 HBase: HBase (Hadoop Database) is a distributed, column-oriented
database. HBase uses HDFS for the underlying storage. It supports both
batch style computations using MapReduce and atomic queries (random
reads).

•	 Sqoop: Apache Sqoop is a tool designed for efficiently transferring bulk
data between Hadoop and Structured Relational Databases. Sqoop is an
abbreviation for (SQ)L to Had(oop).

•	 ZooKeper: ZooKeeper is a centralized service to maintain configuration
information, naming, providing distributed synchronization, and group
services, which are very useful for a variety of distributed systems.

•	 Ambari: A web-based tool for provisioning, managing, and monitoring
Apache Hadoop clusters, which includes support for Hadoop HDFS, Hadoop
MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig, and Sqoop.

Preface

[8]

Understanding the reason for using R and
Hadoop together
I would also say that sometimes the data resides on the HDFS (in various formats).
Since a lot of data analysts are very productive in R, it is natural to use R to compute
with the data stored through Hadoop-related tools.

As mentioned earlier, the strengths of R lie in its ability to analyze data using a rich
library of packages but fall short when it comes to working on very large datasets.
The strength of Hadoop on the other hand is to store and process very large amounts
of data in the TB and even PB range. Such vast datasets cannot be processed in
memory as the RAM of each machine cannot hold such large datasets. The options
would be to run analysis on limited chunks also known as sampling or to correspond
the analytical power of R with the storage and processing power of Hadoop and you
arrive at an ideal solution. Such solutions can also be achieved in the cloud using
platforms such as Amazon EMR.

What this book covers
Chapter 1, Getting Ready to Use R and Hadoop, gives an introduction as well as the
process of installing R and Hadoop.

Chapter 2, Writing Hadoop MapReduce Programs, covers basics of Hadoop MapReduce
and ways to execute MapReduce using Hadoop.

Chapter 3, Integrating R and Hadoop, shows deployment and running of sample
MapReduce programs for RHadoop and RHIPE by various data handling processes.

Chapter 4, Using Hadoop Streaming with R, shows how to use Hadoop Streaming
with R.

Chapter 5, Learning Data Analytics with R and Hadoop, introduces the Data analytics
project life cycle by demonstrating with real-world Data analytics problems.

Chapter 6, Understanding Big Data Analysis with Machine Learning, covers performing
Big Data analytics by machine learning techniques with RHadoop.

Chapter 7, Importing and Exporting Data from Various DBs, covers how to interface with
popular relational databases to import and export data operations with R.

Appendix, References, describes links to additional resources regarding the content of
all the chapters being present.

Preface

[9]

What you need for this book
As we are going to perform Big Data analytics with R and Hadoop, you should
have basic knowledge of R and Hadoop and how to perform the practicals and you
will need to have R and Hadoop installed and configured. It would be great if you
already have a larger size data and problem definition that can be solved with data-
driven technologies, such as R and Hadoop functions.

Who this book is for
This book is great for R developers who are looking for a way to perform Big
Data analytics with Hadoop. They would like all the techniques of integrating R
and Hadoop, how to write Hadoop MapReduce, and tutorials for developing and
running Hadoop MapReduce within R. Also this book is aimed at those who know
Hadoop and want to build some intelligent applications over Big Data with R
packages. It would be helpful if readers have basic knowledge of R.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Preparing the Map() input."

A block of code is set as follows:

<property>
<name>mapred.job.tracker</name>
<value>localhost:54311</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
</description>
</property>

Any command-line input or output is written as follows:

// Setting the environment variables for running Java and Hadoop commands

export HADOOP_HOME=/usr/local/hadoop

export JAVA_HOME=/usr/lib/jvm/java-6-sun

Preface

[10]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Open the
Password tab. ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[11]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Ready to Use R
and Hadoop

The first chapter has been bundled with several topics on R and Hadoop basics
as follows:

•	 R Installation, features, and data modeling
•	 Hadoop installation, features, and components

In the preface, we introduced you to R and Hadoop. This chapter will focus on
getting you up and running with these two technologies. Until now, R has been
used mainly for statistical analysis, but due to the increasing number of functions
and packages, it has become popular in several fields, such as machine learning,
visualization, and data operations. R will not load all data (Big Data) into machine
memory. So, Hadoop can be chosen to load the data as Big Data. Not all algorithms
work across Hadoop, and the algorithms are, in general, not R algorithms. Despite
this, analytics with R have several issues related to large data. In order to analyze
the dataset, R loads it into the memory, and if the dataset is large, it will fail with
exceptions such as "cannot allocate vector of size x". Hence, in order to process large
datasets, the processing power of R can be vastly magnified by combining it with the
power of a Hadoop cluster. Hadoop is very a popular framework that provides such
parallel processing capabilities. So, we can use R algorithms or analysis processing
over Hadoop clusters to get the work done.

R Hadoop RHadoop

Getting Ready to Use R and Hadoop

[14]

If we think about a combined RHadoop system, R will take care of data analysis
operations with the preliminary functions, such as data loading, exploration,
analysis, and visualization, and Hadoop will take care of parallel data storage as well
as computation power against distributed data.

Prior to the advent of affordable Big Data technologies, analysis used to be run on
limited datasets on a single machine. Advanced machine learning algorithms are
very effective when applied to large datasets, and this is possible only with large
clusters where data can be stored and processed with distributed data storage
systems. In the next section, we will see how R and Hadoop can be installed on
different operating systems and the possible ways to link R and Hadoop.

Installing R
You can download the appropriate version by visiting the official R website.

Here are the steps provided for three different operating systems. We have
considered Windows, Linux, and Mac OS for R installation. Download the latest
version of R as it will have all the latest patches and resolutions to the past bugs.

For Windows, follow the given steps:

1.	 Navigate to www.r-project.org.
2.	 Click on the CRAN section, select CRAN mirror, and select your Windows

OS (stick to Linux; Hadoop is almost always used in a Linux environment).
3.	 Download the latest R version from the mirror.
4.	 Execute the downloaded .exe to install R.

For Linux-Ubuntu, follow the given steps:

1.	 Navigate to www.r-project.org.
2.	 Click on the CRAN section, select CRAN mirror, and select your OS.
3.	 In the /etc/apt/sources.list file, add the CRAN <mirror> entry.
4.	 Download and update the package lists from the repositories using the sudo

apt-get update command.
5.	 Install R system using the sudo apt-get install r-base command.

Chapter 1

[15]

For Linux-RHEL/CentOS, follow the given steps:

1.	 Navigate to www.r-project.org.
2.	 Click on CRAN, select CRAN mirror, and select Red Hat OS.
3.	 Download the R-*core-*.rpm file.
4.	 Install the .rpm package using the rpm -ivh R-*core-*.rpm command.
5.	 Install R system using sudo yum install R.

For Mac, follow the given steps:

1.	 Navigate to www.r-project.org.
2.	 Click on CRAN, select CRAN mirror, and select your OS.
3.	 Download the following files: pkg, gfortran-*.dmg, and tcltk-*.dmg.
4.	 Install the R-*.pkg file.
5.	 Then, install the gfortran-*.dmg and tcltk-*.dmg files.

After installing the base R package, it is advisable to install RStudio, which is a
powerful and intuitive Integrated Development Environment (IDE) for R.

We can use R distribution of Revolution Analytics as a Modern
Data analytics tool for statistical computing and predictive
analytics, which is available in free as well as premium versions.
Hadoop integration is also available to perform Big Data analytics.

Installing RStudio
To install RStudio, perform the following steps:

1.	 Navigate to http://www.rstudio.com/ide/download/desktop.
2.	 Download the latest version of RStudio for your operating system.
3.	 Execute the installer file and install RStudio.

The RStudio organization and user community has developed a lot of R packages for
graphics and visualization, such as ggplot2, plyr, Shiny, Rpubs, and devtools.

www.allitebooks.com

http://www.allitebooks.org

Getting Ready to Use R and Hadoop

[16]

Understanding the features of
R language
There are over 3,000 R packages and the list is growing day by day. It would be
beyond the scope of any book to even attempt to explain all these packages.
This book focuses only on the key features of R and the most frequently used and
popular packages.

Using R packages
R packages are self-contained units of R functionality that can be invoked as
functions. A good analogy would be a .jar file in Java. There is a vast library of
R packages available for a very wide range of operations ranging from statistical
operations and machine learning to rich graphic visualization and plotting. Every
package will consist of one or more R functions. An R package is a re-usable entity
that can be shared and used by others. R users can install the package that contains
the functionality they are looking for and start calling the functions in the package.
A comprehensive list of these packages can be found at http://cran.r-project.
org/ called Comprehensive R Archive Network (CRAN).

Performing data operations
R enables a wide range of operations. Statistical operations, such as mean, min,
max, probability, distribution, and regression. Machine learning operations, such as
linear regression, logistic regression, classification, and clustering. Universal data
processing operations are as follows:

•	 Data cleaning: This option is to clean massive datasets
•	 Data exploration: This option is to explore all the possible values of datasets
•	 Data analysis: This option is to perform analytics on data with descriptive

and predictive analytics data visualization, that is, visualization of analysis
output programming

To build an effective analytics application, sometimes we need to use the online
Application Programming Interface (API) to dig up the data, analyze it with
expedient services, and visualize it by third-party services. Also, to automate the
data analysis process, programming will be the most useful feature to deal with.

Chapter 1

[17]

R has its own programming language to operate data. Also, the available package
can help to integrate R with other programming features. R supports object-oriented
programming concepts. It is also capable of integrating with other programming
languages, such as Java, PHP, C, and C++. There are several packages that will act
as middle-layer programming features to aid in data analytics, which are similar to
sqldf, httr, RMongo, RgoogleMaps, RGoogleAnalytics, and google-prediction-
api-r-client.

Increasing community support
As the number of R users are escalating, the groups related to R are also increasing.
So, R learners or developers can easily connect and get their uncertainty solved with
the help of several R groups or communities.

The following are many popular sources that can be found useful:

•	 R mailing list: This is an official R group created by R project owners.
•	 R blogs: R has countless bloggers who are writing on several R applications.

One of the most popular blog websites is http://www.r-bloggers.com/
where all the bloggers contribute their blogs.

•	 Stack overflow: This is a great technical knowledge sharing platform
where the programmers can post their technical queries and enthusiast
programmers suggest a solution. For more information, visit http://stats.
stackexchange.com/.

•	 Groups: There are many other groups existing on LinkedIn and Meetup
where professionals across the world meet to discuss their problems and
innovative ideas.

•	 Books: There are also lot of books about R. Some of the popular books are
R in Action, by Rob Kabacoff, Manning Publications, R in a Nutshell, by Joseph
Adler, O'Reilly Media, R and Data Mining, by Yanchang Zhao, Academic Press,
and R Graphs Cookbook, by Hrishi Mittal, Packt Publishing.

Getting Ready to Use R and Hadoop

[18]

Performing data modeling in R
Data modeling is a machine learning technique to identify the hidden pattern from
the historical dataset, and this pattern will help in future value prediction over
the same data. This techniques highly focus on past user actions and learns their
taste. Most of these data modeling techniques have been adopted by many popular
organizations to understand the behavior of their customers based on their past
transactions. These techniques will analyze data and predict for the customers what
they are looking for. Amazon, Google, Facebook, eBay, LinkedIn, Twitter, and many
other organizations are using data mining for changing the definition applications.

The most common data mining techniques are as follows:

•	 Regression: In statistics, regression is a classic technique to identify the scalar
relationship between two or more variables by fitting the state line on the
variable values. That relationship will help to predict the variable value for
future events. For example, any variable y can be modeled as linear function
of another variable x with the formula y = mx+c. Here, x is the predictor
variable, y is the response variable, m is slope of the line, and c is the
intercept. Sales forecasting of products or services and predicting the price
of stocks can be achieved through this regression. R provides this regression
feature via the lm method, which is by default present in R.

•	 Classification: This is a machine-learning technique used for labeling the set
of observations provided for training examples. With this, we can classify
the observations into one or more labels. The likelihood of sales, online
fraud detection, and cancer classification (for medical science) are common
applications of classification problems. Google Mail uses this technique to
classify e-mails as spam or not. Classification features can be served by glm,
glmnet, ksvm, svm, and randomForest in R.

•	 Clustering: This technique is all about organizing similar items into
groups from the given collection of items. User segmentation and image
compression are the most common applications of clustering. Market
segmentation, social network analysis, organizing the computer clustering,
and astronomical data analysis are applications of clustering. Google News
uses these techniques to group similar news items into the same category.
Clustering can be achieved through the knn, kmeans, dist, pvclust, and
Mclust methods in R.

Chapter 1

[19]

•	 Recommendation: The recommendation algorithms are used in recommender
systems where these systems are the most immediately recognizable machine
learning techniques in use today. Web content recommendations may include
similar websites, blogs, videos, or related content. Also, recommendation of
online items can be helpful for cross-selling and up-selling. We have all seen
online shopping portals that attempt to recommend books, mobiles, or any
items that can be sold on the Web based on the user's past behavior. Amazon
is a well-known e-commerce portal that generates 29 percent of sales through
recommendation systems. Recommender systems can be implemented via
Recommender()with the recommenderlab package in R.

Installing Hadoop
Now, we presume that you are aware of R, what it is, how to install it, what it's
key features are, and why you may want to use it. Now we need to know the
limitations of R (this is a better introduction to Hadoop). Before processing the data;
R needs to load the data into random access memory (RAM). So, the data needs
to be smaller than the available machine memory. For data that is larger than the
machine memory, we consider it as Big Data (only in our case as there are many
other definitions of Big Data).

To avoid this Big Data issue, we need to scale the hardware configuration; however,
this is a temporary solution. To get this solved, we need to get a Hadoop cluster that
is able to store it and perform parallel computation across a large computer cluster.
Hadoop is the most popular solution. Hadoop is an open source Java framework,
which is the top level project handled by the Apache software foundation. Hadoop is
inspired by the Google filesystem and MapReduce, mainly designed for operating on
Big Data by distributed processing.

Hadoop mainly supports Linux operating systems. To run this on Windows, we
need to use VMware to host Ubuntu within the Windows OS. There are many ways
to use and install Hadoop, but here we will consider the way that supports R best.
Before we combine R and Hadoop, let us understand what Hadoop is.

Machine learning contains all the data modeling techniques that can
be explored with the web link http://en.wikipedia.org/wiki/
Machine_learning.
The structure blog on Hadoop installation by Michael Noll can
be found at http://www.michael-noll.com/tutorials/
running-hadoop-on-ubuntu-linux-single-node-cluster/.

Getting Ready to Use R and Hadoop

[20]

Understanding different Hadoop modes
Hadoop is used with three different modes:

•	 The standalone mode: In this mode, you do not need to start any Hadoop
daemons. Instead, just call ~/Hadoop-directory/bin/hadoop that will
execute a Hadoop operation as a single Java process. This is recommended
for testing purposes. This is the default mode and you don't need to
configure anything else. All daemons, such as NameNode, DataNode,
JobTracker, and TaskTracker run in a single Java process.

•	 The pseudo mode: In this mode, you configure Hadoop for all the nodes.
A separate Java Virtual Machine (JVM) is spawned for each of the Hadoop
components or daemons like mini cluster on a single host.

•	 The full distributed mode: In this mode, Hadoop is distributed across
multiple machines. Dedicated hosts are configured for Hadoop components.
Therefore, separate JVM processes are present for all daemons.

Understanding Hadoop installation steps
Hadoop can be installed in several ways; we will consider the way that is better to
integrate with R. We will choose Ubuntu OS as it is easy to install and access it.

1.	 Installing Hadoop on Linux, Ubuntu flavor (single and multinode cluster).
2.	 Installing Cloudera Hadoop on Ubuntu.

Installing Hadoop on Linux, Ubuntu flavor
(single node cluster)
To install Hadoop over Ubuntu OS with the pseudo mode, we need to meet the
following prerequisites:

•	 Sun Java 6
•	 Dedicated Hadoop system user
•	 Configuring SSH
•	 Disabling IPv6

The provided Hadoop installation will be supported
with Hadoop MRv1.

Chapter 1

[21]

Follow the given steps to install Hadoop:

1.	 Download the latest Hadoop sources from the Apache software foundation.
Here we have considered Apache Hadoop 1.0.3, whereas the latest version is
1.1.x.
// Locate to Hadoop installation directory

$ cd /usr/local

// Extract the tar file of Hadoop distribution

$ sudo tar xzf hadoop-1.0.3.tar.gz

// To move Hadoop resources to hadoop folder

$ sudo mv hadoop-1.0.3 hadoop

// Make user-hduser from group-hadoop as owner of hadoop directory

$ sudo chown -R hduser:hadoop hadoop

2.	 Add the $JAVA_HOME and $HADOOP_HOME variables to the.bashrc file of
Hadoop system user and the updated .bashrc file looks as follows:
// Setting the environment variables for running Java and Hadoop
commands

export HADOOP_HOME=/usr/local/hadoop

export JAVA_HOME=/usr/lib/jvm/java-6-sun

// alias for Hadoop commands

unalias fs &> /dev/null

alias fs="hadoop fs"

unalias hls &> /dev/null

aliashls="fs -ls"

// Defining the function for compressing the MapReduce job output
by lzop command

lzohead () {

hadoopfs -cat $1 | lzop -dc | head -1000 | less

}

// Adding Hadoop_HoME variable to PATH

export PATH=$PATH:$HADOOP_HOME/bin

3.	 Update the Hadoop configuration files with the conf/*-site.xml format.

Getting Ready to Use R and Hadoop

[22]

Finally, the three files will look as follows:

•	 conf/core-site.xml:
<property>
<name>hadoop.tmp.dir</name>
<value>/app/hadoop/tmp</value>
<description>A base for other temporary directories.</description>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:54310</value>
<description>The name of the default filesystem. A URI whose
scheme and authority determine the FileSystem implementation. The
uri's scheme determines the config property (fs.SCHEME.impl)
naming
theFileSystem implementation class. The uri's authority is used to
determine the host, port, etc. for a filesystem.</description>
</property>

•	 conf/mapred-site.xml:
<property>
<name>mapred.job.tracker</name>
<value>localhost:54311</value>
<description>The host and port that the MapReduce job tracker runs
at. If "local", then jobs are run in-process as a single map
and reduce task.
</description>
</property>

•	 conf/hdfs-site.xml:

<property>
<name>dfs.replication</name>
<value>1</value>
<description>Default block replication.
 The actual number of replications can be specified when the file
is created.
 The default is used if replication is not specified in create
time.
</description>

Chapter 1

[23]

After completing the editing of these configuration files, we need to set up the
distributed filesystem across the Hadoop clusters or node.

•	 Format Hadoop Distributed File System (HDFS) via NameNode by using
the following command line:
hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoopnamenode -format

•	 Start your single node cluster by using the following command line:

hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

Installing Hadoop on Linux, Ubuntu flavor
(multinode cluster)
We learned how to install Hadoop on a single node cluster. Now we will see how to
install Hadoop on a multinode cluster (the full distributed mode).

For this, we need several nodes configured with a single node Hadoop cluster. To
install Hadoop on multinodes, we need to have that machine configured with a
single node Hadoop cluster as described in the last section.

After getting the single node Hadoop cluster installed, we need to perform the
following steps:

1.	 In the networking phase, we are going to use two nodes for setting up a full
distributed Hadoop mode. To communicate with each other, the nodes need
to be in the same network in terms of software and hardware configuration.

2.	 Among these two, one of the nodes will be considered as master and the
other will be considered as slave. So, for performing Hadoop operations,
master needs to be connected to slave. We will enter 192.168.0.1 in the
master machine and 192.168.0.2 in the slave machine.

3.	 Update the /etc/hosts directory in both the nodes. It will look as
192.168.0.1 master and 192.168.0.2 slave.

Getting Ready to Use R and Hadoop

[24]

You can perform the Secure Shell (SSH) setup similar to what
we did for a single node cluster setup. For more details, visit
http://www.michael-noll.com.

4.	 Updating conf/*-site.xml: We must change all these configuration files in
all of the nodes.

°° conf/core-site.xml and conf/mapred-site.xml: In the single
node setup, we have updated these files. So, now we need to just
replace localhost by master in the value tag.

°° conf/hdfs-site.xml: In the single node setup, we have set the value
of dfs.replication as 1. Now we need to update this as 2.

5.	 In the formatting HDFS phase, before we start the multinode cluster, we
need to format HDFS with the following command (from the master node):

bin/hadoop namenode -format

Now, we have completed all the steps to install the multinode Hadoop cluster. To
start the Hadoop clusters, we need to follow these steps:

1.	 Start HDFS daemons:
hduser@master:/usr/local/hadoop$ bin/start-dfs.sh

2.	 Start MapReduce daemons:
hduser@master:/usr/local/hadoop$ bin/start-mapred.sh

3.	 Alternatively, we can start all the daemons with a single command:
hduser@master:/usr/local/hadoop$ bin/start-all.sh

4.	 To stop all these daemons, fire:

hduser@master:/usr/local/hadoop$ bin/stop-all.sh

These installation steps are reproduced after being inspired by the blogs
(http://www.michael-noll.com) of Michael Noll, who is a researcher and Software
Engineer based in Switzerland, Europe. He works as a Technical lead for a large scale
computing infrastructure on the Apache Hadoop stack at VeriSign.

Now the Hadoop cluster has been set up on your machines. For the installation
of the same Hadoop cluster on single node or multinode with extended Hadoop
components, try the Cloudera tool.

Chapter 1

[25]

Installing Cloudera Hadoop on Ubuntu
Cloudera Hadoop (CDH) is Cloudera's open source distribution that targets
enterprise class deployments of Hadoop technology. Cloudera is also a sponsor
of the Apache software foundation. CDH is available in two versions: CDH3 and
CDH4. To install one of these, you must have Ubuntu with either 10.04 LTS or 12.04
LTS (also, you can try CentOS, Debian, and Red Hat systems). Cloudera manager
will make this installation easier for you if you are installing a Hadoop on cluster of
computers, which provides GUI-based Hadoop and its component installation over a
whole cluster. This tool is very much recommended for large clusters.
We need to meet the following prerequisites:

•	 Configuring SSH
•	 OS with the following criteria:

°° Ubuntu 10.04 LTS or 12.04 LTS with 64 bit
°° Red Hat Enterprise Linux 5 or 6
°° CentOS 5 or 6
°° Oracle Enterprise Linux 5
°° SUSE Linux Enterprise server 11 (SP1 or lasso)
°° Debian 6.0

The installation steps are as follows:
1.	 Download and run the Cloudera manager installer: To initialize the Cloudera

manager installation process, we need to first download the cloudera-
manager-installer.bin file from the download section of the Cloudera
website. After that, store it at the cluster so that all the nodes can access
this. Allow ownership for execution permission of cloudera-manager-
installer.bin to the user. Run the following command to start execution.
$ sudo ./cloudera-manager-installer.bin

2.	 Read the Cloudera manager Readme and then click on Next.
3.	 Start the Cloudera manager admin console: The Cloudera manager admin

console allows you to use Cloudera manager to install, manage, and monitor
Hadoop on your cluster. After accepting the license from the Cloudera
service provider, you need to traverse to your local web browser by entering
http://localhost:7180 in your address bar. You can also use any of the
following browsers:

°° Firefox 11 or higher
°° Google Chrome
°° Internet Explorer
°° Safari

www.allitebooks.com

http://www.allitebooks.org

Getting Ready to Use R and Hadoop

[26]

4.	 Log in to the Cloudera manager console with the default credentials using
admin for both the username and password. Later on you can change it as
per your choice.

5.	 Use the Cloudera manager for automated CDH3 installation and
configuration via browser: This step will install most of the required
Cloudera Hadoop packages from Cloudera to your machines. The steps are
as follows:

1.	 Install and validate your Cloudera manager license key file if you
have chosen a full version of software.

2.	 Specify the hostname or IP address range for your CDH cluster
installation.

3.	 Connect to each host with SSH.
4.	 Install the Java Development Kit (JDK) (if not already installed), the

Cloudera manager agent, and CDH3 or CDH4 on each cluster host.
5.	 Configure Hadoop on each node and start the Hadoop services.

6.	 After running the wizard and using the Cloudera manager, you should
change the default administrator password as soon as possible. To change
the administrator password, follow these steps:

1.	 Click on the icon with the gear sign to display the administration
page.

2.	 Open the Password tab.
3.	 Enter a new password twice and then click on Update.

7.	 Test the Cloudera Hadoop installation: You can check the Cloudera manager
installation on your cluster by logging into the Cloudera manager admin
console and by clicking on the Services tab. You should see something like
the following screenshot:

Chapter 1

[27]

Cloudera manager admin console

8.	 You can also click on each service to see more detailed information. For
example, if you click on the hdfs1 link, you might see something like the
following screenshot:

Cloudera manger admin console—HDFS service

To avoid these installation steps, use preconfigured Hadoop
instances with Amazon Elastic MapReduce and MapReduce.
If you want to use Hadoop on Windows, try the HDP tool by
Hortonworks. This is 100 percent open source, enterprise grade
distribution of Hadoop. You can download the HDP tool at
http://hortonworks.com/download/.

Getting Ready to Use R and Hadoop

[28]

Understanding Hadoop features
Hadoop is specially designed for two core concepts: HDFS and MapReduce. Both are
related to distributed computation. MapReduce is believed as the heart of Hadoop
that performs parallel processing over distributed data.

Let us see more details on Hadoop's features:

•	 HDFS
•	 MapReduce

Understanding HDFS
HDFS is Hadoop's own rack-aware filesystem, which is a UNIX-based data storage
layer of Hadoop. HDFS is derived from concepts of Google filesystem. An important
characteristic of Hadoop is the partitioning of data and computation across many
(thousands of) hosts, and the execution of application computations in parallel, close
to their data. On HDFS, data files are replicated as sequences of blocks in the cluster.
A Hadoop cluster scales computation capacity, storage capacity, and I/O bandwidth
by simply adding commodity servers. HDFS can be accessed from applications in
many different ways. Natively, HDFS provides a Java API for applications to use.

The Hadoop clusters at Yahoo! span 40,000 servers and store 40 petabytes of
application data, with the largest Hadoop cluster being 4,000 servers. Also, one
hundred other organizations worldwide are known to use Hadoop.

Understanding the characteristics of HDFS
Let us now look at the characteristics of HDFS:

•	 Fault tolerant
•	 Runs with commodity hardware
•	 Able to handle large datasets
•	 Master slave paradigm
•	 Write once file access only

Understanding MapReduce
MapReduce is a programming model for processing large datasets distributed on a
large cluster. MapReduce is the heart of Hadoop. Its programming paradigm allows
performing massive data processing across thousands of servers configured with
Hadoop clusters. This is derived from Google MapReduce.

Chapter 1

[29]

Hadoop MapReduce is a software framework for writing applications easily, which
process large amounts of data (multiterabyte datasets) in parallel on large clusters
(thousands of nodes) of commodity hardware in a reliable, fault-tolerant manner.
This MapReduce paradigm is divided into two phases, Map and Reduce that mainly
deal with key and value pairs of data. The Map and Reduce task run sequentially in
a cluster; the output of the Map phase becomes the input for the Reduce phase. These
phases are explained as follows:

•	 Map phase: Once divided, datasets are assigned to the task tracker to
perform the Map phase. The data functional operation will be performed
over the data, emitting the mapped key and value pairs as the output of the
Map phase.

•	 Reduce phase: The master node then collects the answers to all the
subproblems and combines them in some way to form the output; the answer
to the problem it was originally trying to solve.

The five common steps of parallel computing are as follows:

1.	 Preparing the Map() input: This will take the input data row wise and emit
key value pairs per rows, or we can explicitly change as per the requirement.

°° Map input: list (k1, v1)

2.	 Run the user-provided Map() code
°° Map output: list (k2, v2)

3.	 Shuffle the Map output to the Reduce processors. Also, shuffle the similar
keys (grouping them) and input them to the same reducer.

4.	 Run the user-provided Reduce() code: This phase will run the custom
reducer code designed by developer to run on shuffled data and emit key
and value.

°° Reduce input: (k2, list(v2))
°° Reduce output: (k3, v3)

5.	 Produce the final output: Finally, the master node collects all reducer output
and combines and writes them in a text file.

The reference links to review on Google filesystem can be found at
http://research.google.com/archive/gfs.html and
Google MapReduce can be found at http://research.google.
com/archive/mapreduce.html.

Getting Ready to Use R and Hadoop

[30]

Learning the HDFS and MapReduce
architecture
Since HDFS and MapReduce are considered to be the two main features of the
Hadoop framework, we will focus on them. So, let's first start with HDFS.

Understanding the HDFS architecture
HDFS can be presented as the master/slave architecture. HDFS master is named
as NameNode whereas slave as DataNode. NameNode is a sever that manages the
filesystem namespace and adjusts the access (open, close, rename, and more) to
files by the client. It divides the input data into blocks and announces which data
block will be store in which DataNode. DataNode is a slave machine that stores the
replicas of the partitioned dataset and serves the data as the request comes. It also
performs block creation and deletion.

The internal mechanism of HDFS divides the file into one or more blocks; these
blocks are stored in a set of data nodes. Under normal circumstances of the
replication factor three, the HDFS strategy is to place the first copy on the local node,
second copy on the local rack with a different node, and a third copy into different
racks with different nodes. As HDFS is designed to support large files, the HDFS
block size is defined as 64 MB. If required, this can be increased.

Understanding HDFS components
HDFS is managed with the master-slave architecture included with the
following components:

•	 NameNode: This is the master of the HDFS system. It maintains the
directories, files, and manages the blocks that are present on the DataNodes.

•	 DataNode: These are slaves that are deployed on each machine and provide
actual storage. They are responsible for serving read-and-write data requests
for the clients.

•	 Secondary NameNode: This is responsible for performing periodic
checkpoints. So, if the NameNode fails at any time, it can be replaced with
a snapshot image stored by the secondary NameNode checkpoints.

Chapter 1

[31]

Understanding the MapReduce architecture
MapReduce is also implemented over master-slave architectures. Classic MapReduce
contains job submission, job initialization, task assignment, task execution, progress
and status update, and job completion-related activities, which are mainly managed by
the JobTracker node and executed by TaskTracker. Client application submits a job to
the JobTracker. Then input is divided across the cluster. The JobTracker then calculates
the number of map and reducer to be processed. It commands the TaskTracker to
start executing the job. Now, the TaskTracker copies the resources to a local machine
and launches JVM to map and reduce program over the data. Along with this, the
TaskTracker periodically sends update to the JobTracker, which can be considered as
the heartbeat that helps to update JobID, job status, and usage of resources.

Understanding MapReduce components
MapReduce is managed with master-slave architecture included with the
following components:

•	 JobTracker: This is the master node of the MapReduce system, which
manages the jobs and resources in the cluster (TaskTrackers). The JobTracker
tries to schedule each map as close to the actual data being processed on
the TaskTracker, which is running on the same DataNode as the underlying
block.

•	 TaskTracker: These are the slaves that are deployed on each machine. They
are responsible for running the map and reducing tasks as instructed by the
JobTracker.

Understanding the HDFS and MapReduce
architecture by plot
In this plot, both HDFS and MapReduce master and slave components have been
included, where NameNode and DataNode are from HDFS and JobTracker and
TaskTracker are from the MapReduce paradigm.

Getting Ready to Use R and Hadoop

[32]

Both paradigms consisting of master and slave candidates have their own specific
responsibility to handle MapReduce and HDFS operations. In the next plot, there is
a plot with two sections: the preceding one is a MapReduce layer and the following
one is an HDFS layer.

master slave

task
tracker

job
tracker

MapReduce
layer

HDFS
layer

name
node

data
node

multinode cluster

task
tracker

data
node

The HDFS and MapReduce architecture

Hadoop is a top-level Apache project and is a very complicated Java framework.
To avoid technical complications, the Hadoop community has developed a number
of Java frameworks that has added an extra value to Hadoop features. They are
considered as Hadoop subprojects. Here, we are departing to discuss several Hadoop
components that can be considered as an abstraction of HDFS or MapReduce.

Chapter 1

[33]

Understanding Hadoop subprojects
Mahout is a popular data mining library. It takes the most popular data mining
scalable machine learning algorithms for performing clustering, classification,
regression, and statistical modeling to prepare intelligent applications. Also, it is a
scalable machine-learning library.

Apache Mahout is distributed under a commercially friendly Apache software
license. The goal of Apache Mahout is to build a vibrant, responsive, and diverse
community to facilitate discussions not only on the project itself but also on potential
use cases.

The following are some companies that are using Mahout:

•	 Amazon: This a shopping portal for providing personalization
recommendation

•	 AOL: This is a shopping portal for shopping recommendations
•	 Drupal: This is a PHP content management system using Mahout for

providing open source content-based recommendation
•	 iOffer: This is a shopping portal, which uses Mahout's Frequent Pattern Set

Mining and collaborative filtering to recommend items to users
•	 LucidWorks Big Data: This is a popular analytics firm, which uses Mahout

for clustering, duplicate document detection, phase extraction, and
classification

•	 Radoop: This provides a drag-and-drop interface for Big Data analytics,
including Mahout clustering and classification algorithms

•	 Twitter: This is a social networking site, which uses Mahout's Latent
Dirichlet Allocation (LDA) implementation for user interest modeling and
maintains a fork of Mahout on GitHub.

•	 Yahoo!: This is the world's most popular web service provider, which uses
Mahout's Frequent Pattern Set Mining for Yahoo! Mail

The reference links on the Hadoop ecosystem can be
found at http://www.revelytix.com/?q=content/
hadoop-ecosystem.

Getting Ready to Use R and Hadoop

[34]

Apache HBase is a distributed Big Data store for Hadoop. This allows random,
real-time read/write access to Big Data. This is designed as a column-oriented data
storage model innovated after inspired by Google BigTable.

The following are the companies using HBase:

•	 Yahoo!: This is the world's popular web service provider for near duplicate
document detection

•	 Twitter: This is a social networking site for version control storage and
retrieval

•	 Mahalo: This is a knowledge sharing service for similar content
recommendation

•	 NING: This is a social network service provider for real-time analytics and
reporting

•	 StumbleUpon: This is a universal personalized recommender system, real-
time data storage, and data analytics platform

•	 Veoh: This is an online multimedia content sharing platform for user
profiling system

For Google Big Data, distributed storage system for structured data, refer
the link http://research.google.com/archive/bigtable.html.

Hive is a Hadoop-based data warehousing like framework developed by Facebook.
It allows users to fire queries in SQL-like languages, such as HiveQL, which are
highly abstracted to Hadoop MapReduce. This allows SQL programmers with no
MapReduce experience to use the warehouse and makes it easier to integrate with
business intelligence and visualization tools for real-time query processing.

Pig is a Hadoop-based open source platform for analyzing the large scale datasets
via its own SQL-like language: Pig Latin. This provides a simple operation and
programming interface for massive, complex data-parallelization computation.
This is also easier to develop; it's more optimized and extensible. Apache Pig has
been developed by Yahoo!. Currently, Yahoo! and Twitter are the primary Pig users.

For developers, the direct use of Java APIs can be tedious or error-prone, but also
limits the Java programmer's use of Hadoop programming's flexibility. So, Hadoop
provides two solutions that enable making Hadoop programming for dataset
management and dataset analysis with MapReduce easier—these are Pig and Hive,
which are always confusing.

Chapter 1

[35]

Apache Sqoop provides Hadoop data processing platform and relational databases,
data warehouse, and other non-relational databases quickly transferring large
amounts of data in a new way. Apache Sqoop is a mutual data tool for importing
data from the relational databases to Hadoop HDFS and exporting data from HDFS
to relational databases.

It works together with most modern relational databases, such as MySQL,
PostgreSQL, Oracle, Microsoft SQL Server, and IBM DB2, and enterprise data
warehouse. Sqoop extension API provides a way to create new connectors for the
database system. Also, the Sqoop source comes up with some popular database
connectors. To perform this operation, Sqoop first transforms the data into Hadoop
MapReduce with some logic of database schema creation and transformation.

Apache Zookeeper is also a Hadoop subproject used for managing Hadoop, Hive,
Pig, HBase, Solr, and other projects. Zookeeper is an open source distributed
applications coordination service, which is designed with Fast Paxos algorithm-
based synchronization and configuration and naming services such as maintenance
of distributed applications. In programming, Zookeeper design is a very simple data
model style, much like the system directory tree structure.

Zookeeper is divided into two parts: the server and client. For a cluster of Zookeeper
servers, only one acts as a leader, which accepts and coordinates all rights. The rest
of the servers are read-only copies of the master. If the leader server goes down, any
other server can start serving all requests. Zookeeper clients are connected to a server
on the Zookeeper service. The client sends a request, receives a response, accesses the
observer events, and sends a heartbeat via a TCP connection with the server.

For a high-performance coordination service for distributed applications, Zookeeper
is a centralized service for maintaining configuration information, naming, and
providing distributed synchronization and group services. All these kinds of services
are used in some form or another by distributed applications. Each time they are
implemented, there is a lot of work that goes into fixing the bugs and race conditions
that are inevitable. These services lead to management complexity when the
applications are deployed.

Apache Solr is an open source enterprise search platform from the Apache license
project. Apache Solr is highly scalable, supporting distributed search and index
replication engine. This allows building web application with powerful text search,
faceted search, real-time indexing, dynamic clustering, database integration, and rich
document handling.

Apache Solr is written in Java, which runs as a standalone server to serve the search
results via REST-like HTTP/XML and JSON APIs. So, this Solr server can be easily
integrated with an application, which is written in other programming languages. Due
to all these features, this search server is used by Netflix, AOL, CNET, and Zappos.

www.allitebooks.com

http://www.allitebooks.org

Getting Ready to Use R and Hadoop

[36]

Ambari is very specific to Hortonworks. Apache Ambari is a web-based tool that
supports Apache Hadoop cluster supply, management, and monitoring. Ambari
handles most of the Hadoop components, including HDFS, MapReduce, Hive, Pig,
HBase, Zookeeper, Sqoop, and HCatlog as centralized management.

In addition, Ambari is able to install security based on the Kerberos authentication
protocol over the Hadoop cluster. Also, it provides role-based user authentication,
authorization, and auditing functions for users to manage integrated LDAP and
Active Directory.

Summary
In this chapter, we learned what is R, Hadoop, and their features, and how to install
them before going on to analyzing the datasets with R and Hadoop. In the next
chapter, we are going to learn what MapReduce is and how to develop MapReduce
programs with Apache Hadoop.

Writing Hadoop
MapReduce Programs

In the previous chapter, we learned how to set up the R and Hadoop development
environment. Since we are interested in performing Big Data analytics, we need to
learn Hadoop to perform operations with Hadoop MapReduce. In this chapter, we
will discuss what MapReduce is, why it is necessary, how MapReduce programs can
be developed through Apache Hadoop, and more.

In this chapter, we will cover:

•	 Understanding the basics of MapReduce
•	 Introducing Hadoop MapReduce
•	 Understanding the Hadoop MapReduce fundamentals
•	 Writing a Hadoop MapReduce example
•	 Understanding several possible MapReduce definitions to

solve business problems
•	 Learning different ways to write Hadoop MapReduce in R

Understanding the basics of MapReduce
Understanding the basics of MapReduce could well be a long-term solution if one
doesn't have a cluster or uses Message Passing Interface (MPI). However, a more
realistic use case is when the data doesn't fit on one disk but fits on a Distributed
File System (DFS), or already lives on Hadoop-related software.

Writing Hadoop MapReduce Programs

[38]

Moreover, MapReduce is a programming model that works in a distributed fashion,
but it is not the only one that does. It might be illuminating to describe other
programming models, for example, MPI and Bulk Synchronous Parallel (BSP).
To process Big Data with tools such as R and several machine learning techniques
requires a high-configuration machine, but that's not the permanent solution. So,
distributed processing is the key to handling this data. This distributed computation
can be implemented with the MapReduce programming model.

MapReduce is the one that answers the Big Data question. Logically, to process data
we need parallel processing, which means processing over large computation; it can
either be obtained by clustering the computers or increasing the configuration of the
machine. Using the computer cluster is an ideal way to process data with a large size.

Before we talk more about MapReduce by parallel processing, we will discuss
Google MapReduce research and a white paper written by Jeffrey Dean and Sanjay
Ghemawat in 2004. They introduced MapReduce as simplified data processing
software on large clusters. MapReduce implementation runs on large clusters with
commodity hardware. This data processing platform is easier for programmers to
perform various operations. The system takes care of input data, distributes data
across the computer network, processes it in parallel, and finally combines its output
into a single file to be aggregated later. This is very helpful in terms of cost and is
also a time-saving system for processing large datasets over the cluster. Also, it will
efficiently use computer resources to perform analytics over huge data. Google has
been granted a patent on MapReduce.

For MapReduce, programmers need to just design/migrate applications into two
phases: Map and Reduce. They simply have to design Map functions for processing
a key-value pair to generate a set of intermediate key-value pairs, and Reduce
functions to merge all the intermediate keys. Both the Map and Reduce functions
maintain MapReduce workflow. The Reduce function will start executing the code
after completion or once the Map output is available to it.

Their execution sequence can be seen as follows:

Chapter 2

[39]

MapReduce assumes that the Maps are independent and will execute them in
parallel. The key aspect of the MapReduce algorithm is that if every Map and Reduce
is independent of all other ongoing Maps and Reduces in the network, the operation
will run in parallel on different keys and lists of data.

A distributed filesystem spreads multiple copies of data across different machines.
This offers reliability as well as fault tolerance. If a machine with one copy of the file
crashes, the same data will be provided from another replicated data source.

The master node of the MapReduce daemon will take care of all the responsibilities
of the MapReduce jobs, such as the execution of jobs, the scheduling of Mappers,
Reducers, Combiners, and Partitioners, the monitoring of successes as well as
failures of individual job tasks, and finally, the completion of the batch job.

Apache Hadoop processes the distributed data in a parallel manner by
running Hadoop MapReduce jobs on servers near the data stored on Hadoop's
distributed filesystem.

Companies using MapReduce include:

•	 Amazon: This is an online e-commerce and cloud web service provider for
Big Data analytics

•	 eBay: This is an e-commerce portal for finding articles by its description
•	 Google: This is a web search engine for finding relevant pages relating to a

particular topic
•	 LinkedIn: This is a professional networking site for Big Data storage and

generating personalized recommendations
•	 Trovit: This is a vertical search engine for finding jobs that match a given

description
•	 Twitter: This is a social networking site for finding messages

Apart from these, there are many other brands that are using Hadoop for Big
Data analytics.

Introducing Hadoop MapReduce
Basically, the MapReduce model can be implemented in several languages, but
apart from that, Hadoop MapReduce is a popular Java framework for easily written
applications. It processes vast amounts of data (multiterabyte datasets) in parallel on
large clusters (thousands of nodes) of commodity hardware in a reliable and fault-
tolerant manner. This MapReduce paradigm is divided into two phases, Map and
Reduce, that mainly deal with key-value pairs of data. The Map and Reduce tasks
run sequentially in a cluster, and the output of the Map phase becomes the input of
the Reduce phase.

Writing Hadoop MapReduce Programs

[40]

All data input elements in MapReduce cannot be updated. If the input (key,
value) pairs for mapping tasks are changed, it will not be reflected in the input files.
The Mapper output will be piped to the appropriate Reducer grouped with the key
attribute as input. This sequential data process will be carried away in a parallel
manner with the help of Hadoop MapReduce algorithms as well as Hadoop clusters.

MapReduce programs transform the input dataset present in the list format into
output data that will also be in the list format. This logical list translation process
is mostly repeated twice in the Map and Reduce phases. We can also handle these
repetitions by fixing the number of Mappers and Reducers. In the next section,
MapReduce concepts are described based on the old MapReduce API.

Listing Hadoop MapReduce entities
The following are the components of Hadoop that are responsible for performing
analytics over Big Data:

•	 Client: This initializes the job
•	 JobTracker: This monitors the job
•	 TaskTracker: This executes the job
•	 HDFS: This stores the input and output data

Understanding the Hadoop MapReduce
scenario
The four main stages of Hadoop MapReduce data processing are as follows:

•	 The loading of data into HDFS
•	 The execution of the Map phase
•	 Shuffling and sorting
•	 The execution of the Reduce phase

Loading data into HDFS
The input dataset needs to be uploaded to the Hadoop directory so it can be used by
MapReduce nodes. Then, Hadoop Distributed File System (HDFS) will divide the
input dataset into data splits and store them to DataNodes in a cluster by taking care
of the replication factor for fault tolerance. All the data splits will be processed by
TaskTracker for the Map and Reduce tasks in a parallel manner.

Chapter 2

[41]

Also, there are some alternative ways to get the dataset in HDFS with
Hadoop components:

•	 Sqoop: This is an open source tool designed for efficiently transferring bulk
data between Apache Hadoop and structured, relational databases. Suppose
your application has already been configured with the MySQL database
and you want to use the same data for performing data analytics, Sqoop is
recommended for importing datasets to HDFS. Also, after the completion
of the data analytics process, the output can be exported to the MySQL
database.

•	 Flume: This is a distributed, reliable, and available service for efficiently
collecting, aggregating, and moving large amounts of log data to HDFS.
Flume is able to read data from most sources, such as logfiles, sys logs, and
the standard output of the Unix process.

Using the preceding data collection and moving the framework can make this data
transfer process very easy for the MapReduce application for data analytics.

Executing the Map phase
Executing the client application starts the Hadoop MapReduce processes. The Map
phase then copies the job resources (unjarred class files) and stores it to HDFS, and
requests JobTracker to execute the job. The JobTracker initializes the job, retrieves the
input, splits the information, and creates a Map task for each job.

The JobTracker will call TaskTracker to run the Map task over the assigned input
data subset. The Map task reads this input split data as input (key, value) pairs
provided to the Mapper method, which then produces intermediate (key, value)
pairs. There will be at least one output for each input (key, value) pair.

Mapping individual elements of an input list

Writing Hadoop MapReduce Programs

[42]

The list of (key, value) pairs is generated such that the key attribute will be repeated
many times. So, its key attribute will be re-used in the Reducer for aggregating
values in MapReduce. As far as format is concerned, Mapper output format values
and Reducer input values must be the same.

After the completion of this Map operation, the TaskTracker will keep the
result in its buffer storage and local disk space (if the output data size is more
than the threshold).

For example, suppose we have a Map function that converts the input text into
lowercase. This will convert the list of input strings into a list of lowercase strings.

Keys and values: In MapReduce, every value has its identifier
that is considered as key. The key-value pairs received by the
Mapper are dependent on the input datatype as specified in the
job configuration file.

Shuffling and sorting
To optimize the MapReduce program, this intermediate phase is very important.

As soon as the Mapper output from the Map phase is available, this intermediate
phase will be called automatically. After the completion of the Map phase, all the
emitted intermediate (key, value) pairs will be partitioned by a Partitioner at the
Mapper side, only if the Partitioner is present. The output of the Partitioner will be
sorted out based on the key attribute at the Mapper side. Output from sorting the
operation is stored on buffer memory available at the Mapper node, TaskTracker.

The Combiner is often the Reducer itself. So by compression, it's not Gzip or some
similar compression but the Reducer on the node that the map is outputting the
data on. The data returned by the Combiner is then shuffled and sent to the reduced
nodes. To speed up data transmission of the Mapper output to the Reducer slot at
TaskTracker, you need to compress that output with the Combiner function. By
default, the Mapper output will be stored to buffer memory, and if the output size
is larger than threshold, it will be stored to a local disk. This output data will be
available through Hypertext Transfer Protocol (HTTP).

Reducing phase execution
As soon as the Mapper output is available, TaskTracker in the Reducer node will
retrieve the available partitioned Map's output data, and they will be grouped
together and merged into one large file, which will then be assigned to a process
with a Reducer method. Finally, this will be sorted out before data is provided to the
Reducer method.

Chapter 2

[43]

The Reducer method receives a list of input values from an input (key, list
(value)) and aggregates them based on custom logic, and produces the output
(key, value) pairs.

Reducing input values to an aggregate value as output

The output of the Reducer method of the Reduce phase will directly be written into
HDFS as per the format specified by the MapReduce job configuration class.

Understanding the limitations of MapReduce
Let's see some of Hadoop MapReduce's limitations:

•	 The MapReduce framework is notoriously difficult to leverage for
transformational logic that is not as simple, for example, real-time streaming,
graph processing, and message passing.

•	 Data querying is inefficient over distributed, unindexed data than in a
database created with indexed data. However, if the index over the data is
generated, it needs to be maintained when the data is removed or added.

•	 We can't parallelize the Reduce task to the Map task to reduce the overall
processing time because Reduce tasks do not start until the output of the
Map tasks is available to it. (The Reducer's input is fully dependent on the
Mapper's output.) Also, we can't control the sequence of the execution of the
Map and Reduce task. But sometimes, based on application logic, we can
definitely configure a slow start for the Reduce tasks at the instance when the
data collection starts as soon as the Map tasks complete.

•	 Long-running Reduce tasks can't be completed because of their poor resource
utilization either if the Reduce task is taking too much time to complete and
fails or if there are no other Reduce slots available for rescheduling it (this
can be solved with YARN).

Writing Hadoop MapReduce Programs

[44]

Understanding Hadoop's ability to solve
problems
Since this book is geared towards analysts, it might be relevant to provide analytical
examples; for instance, if the reader has a problem similar to the one described
previously, Hadoop might be of use. Hadoop is not a universal solution to all Big
Data issues; it's just a good technique to use when large data needs to be divided into
small chunks and distributed across servers that need to be processed in a parallel
fashion. This saves time and the cost of performing analytics over a huge dataset.

If we are able to design the Map and Reduce phase for the problem, it will be
possible to solve it with MapReduce. Generally, Hadoop provides computation
power to process data that does not fit into machine memory. (R users mostly found
an error message while processing large data and see the following message: cannot
allocate vector of size 2.5 GB.)

Understanding the different Java concepts
used in Hadoop programming
There are some classic Java concepts that make Hadoop more interactive. They are
as follows:

•	 Remote procedure calls: This is an interprocess communication that allows a
computer program to cause a subroutine or procedure to execute in another
address space (commonly on another computer on shared network) without
the programmer explicitly coding the details for this remote interaction. That
is, the programmer writes essentially the same code whether the subroutine
is local to the executing program or remote.

•	 Serialization/Deserialization: With serialization, a Java Virtual Machine
(JVM) can write out the state of the object to some stream so that we can
basically read all the members and write out their state to a stream, disk, and
so on. The default mechanism is in a binary format so it's more compact than
the textual format. Through this, machines can send data across the network.
Deserialization is vice versa and is used for receiving data objects over the
network.

•	 Java generics: This allows a type or method to operate on objects of various
types while providing compile-time type safety, making Java a fully static
typed language.

•	 Java collection: This framework is a set of classes and interfaces for handling
various types of data collection with single Java objects.

Chapter 2

[45]

•	 Java concurrency: This has been designed to support concurrent
programming, and all execution takes place in the context of threads. It is
mainly used for implementing computational processes as a set of threads
within a single operating system process.

•	 Plain Old Java Objects (POJO): These are actually ordinary JavaBeans.
POJO is temporarily used for setting up as well as retrieving the value of
data objects.

Understanding the Hadoop MapReduce
fundamentals
To understand Hadoop MapReduce fundamentals properly, we will:

•	 Understand MapReduce objects
•	 Learn how to decide the number of Maps in MapReduce
•	 Learn how to decide the number of Reduces in MapReduce
•	 Understand MapReduce dataflow
•	 Take a closer look at Hadoop MapReduce terminologies

Understanding MapReduce objects
As we know, MapReduce operations in Hadoop are carried out mainly by three
objects: Mapper, Reducer, and Driver.

•	 Mapper: This is designed for the Map phase of MapReduce, which starts
MapReduce operations by carrying input files and splitting them into several
pieces. For each piece, it will emit a key-value data pair as the output value.

•	 Reducer: This is designed for the Reduce phase of a MapReduce job; it
accepts key-based grouped data from the Mapper output, reduces it by
aggregation logic, and emits the (key, value) pair for the group of values.

•	 Driver: This is the main file that drives the MapReduce process. It starts
the execution of MapReduce tasks after getting a request from the client
application with parameters. The Driver file is responsible for building the
configuration of a job and submitting it to the Hadoop cluster. The Driver
code will contain the main() method that accepts arguments from the
command line. The input and output directory of the Hadoop MapReduce
job will be accepted by this program. Driver is the main file for defining
job configuration details, such as the job name, job input format, job output
format, and the Mapper, Combiner, Partitioner, and Reducer classes.
MapReduce is initialized by calling this main() function of the Driver class.

www.allitebooks.com

http://www.allitebooks.org

Writing Hadoop MapReduce Programs

[46]

Not every problem can be solved with a single Map and single Reduce program, but
fewer can't be solved with a single Map and single Reduce task. Sometimes, it is also
necessary to design the MapReduce job with multiple Map and Reduce tasks. We
can design this type of job when we need to perform data operations, such as data
extraction, data cleaning, and data merging, together in a single job. Many problems
can be solved by writing multiple Mapper and Reducer tasks for a single job. The
MapReduce steps that will be called sequentially in the case of multiple Map and
Reduce tasks are Map1 followed by Reduce1, Map2 followed by Reduce2, and so on.

When we need to write a MapReduce job with multiple Map and Reduce tasks, we
have to write multiple MapReduce application drivers to run them sequentially.

At the time of the MapReduce job submission, we can provide a number of Map
tasks, and a number of Reducers will be created based on the output from the
Mapper input and Hadoop cluster capacity. Also, note that setting the number of
Mappers and Reducers is not mandatory.

Deciding the number of Maps in MapReduce
The number of Maps is usually defined by the size of the input data and size of the
data split block that is calculated by the size of the HDFS file / data split. Therefore,
if we have an HDFS datafile of 5 TB and a block size of 128 MB, there will be 40,960
maps present in the file. But sometimes, the number of Mappers created will be more
than this count because of speculative execution. This is true when the input is a file,
though it entirely depends on the InputFormat class.

In Hadoop MapReduce processing, there will be a delay in the result of the job when
the assigned Mapper or Reducer is taking a long time to finish. If you want to avoid
this, speculative execution in Hadoop can run multiple copies of the same Map or
Reduce task on different nodes, and the result from the first completed nodes can be
used. From the Hadoop API with the setNumMapTasks(int) method, we can get an
idea of the number of Mappers.

Deciding the number of Reducers in
MapReduce
A numbers of Reducers are created based on the Mapper's input. However, if you
hardcode the number of Reducers in MapReduce, it won't matter how many nodes
are present in a cluster. It will be executed as specified in the configuration.

Additionally, we can set the number of Reducers at runtime along with
the MapReduce command at the command prompt -D mapred.reduce.
tasks, with the number you want. Programmatically, it can be set via conf.
setNumReduceTasks(int).

Chapter 2

[47]

Understanding MapReduce dataflow
Now that we have seen the components that make a basic MapReduce job possible,
we will distinguish how everything works together at a higher level. From the
following diagram, we will understand MapReduce dataflow with multiple nodes in
a Hadoop cluster:

Preloaded local
input data

Intermediate data
from appersM

Values exchanged
by shuffle process

Reducing process
generates outputs

Outputs stored
locally

Node 1

Mapping process

Node 2

Mapping process

Node 3

Mapping process

Node 3

Reducing process

Node 2

Reducing process

Node 1

Reducing process

MapReduce dataflow

The two APIs available for Hadoop MapReduce are: New (Hadoop 1.x and 2.x) and
Old Hadoop (0.20). YARN is the next generation of Hadoop MapReduce and the new
Apache Hadoop subproject that has been released for Hadoop resource management.

Hadoop data processing includes several tasks that help achieve the final output
from an input dataset. These tasks are as follows:

1.	 Preloading data in HDFS.
2.	 Running MapReduce by calling Driver.
3.	 Reading of input data by the Mappers, which results in the splitting of

the data execution of the Mapper custom logic and the generation of
intermediate key-value pairs

Writing Hadoop MapReduce Programs

[48]

4.	 Executing Combiner and the shuffle phase to optimize the overall Hadoop
MapReduce process.

5.	 Sorting and providing of intermediate key-value pairs to the Reduce phase.
The Reduce phase is then executed. Reducers take these partitioned key-
value pairs and aggregate them based on Reducer logic.

6.	 The final output data is stored at HDFS.

Here, Map and Reduce tasks can be defined for several data operations as follows:

•	 Data extraction
•	 Data loading
•	 Data segmentation
•	 Data cleaning
•	 Data transformation
•	 Data integration

We will explore MapReduce tasks in more detail in the next part of this chapter.

Taking a closer look at Hadoop MapReduce
terminologies
In this section, we will see further details on Hadoop MapReduce dataflow
with several MapReduce terminologies and their Java class details. In the
MapReduce dataflow figure in the previous section, multiple nodes are connected
across the network for performing distributed processing with a Hadoop setup.
The ensuing attributes of the Map and Reduce phases play an important role for
getting the final output.

The attributes of the Map phase are as follows:

•	 The InputFiles term refers to input, raw datasets that have been created/
extracted to be analyzed for business analytics, which have been stored in
HDFS. These input files are very large, and they are available in several
types.

•	 The InputFormat is a Java class to process the input files by obtaining
the text of each line of offset and the contents. It defines how to split
and read input data files. We can set the several input types, such as
TextInputFormat, KeyValueInputFormat, and SequenceFileInputFormat,
of the input format that are relevant to the Map and Reduce phase.

Chapter 2

[49]

•	 The InputSplits class is used for setting the size of the data split.
•	 The RecordReader is a Java class that comes with several methods to retrieve

key and values by iterating them among the data splits. Also, it includes
other methods to get the status on the current progress.

•	 The Mapper instance is created for the Map phase. The Mapper class takes
input (key, value) pairs (generated by RecordReader) and produces
an intermediate (key, value) pair by performing user-defined code in
a Map() method. The Map() method mainly takes two input parameters:
key and value; the remaining ones are OutputCollector and Reporter.
OutputCollector. They will provide intermediate the key-value pair to
reduce the phase of the job. Reporter provides the status of the current job
to JobTracker periodically. The JobTracker will aggregate them for later
retrieval when the job ends.

The attributes of the Reduce phase are as follows:

•	 After completing the Map phase, the generated intermediate (key, value)
pairs are partitioned based on a key attribute similarity consideration in the
hash function. So, each Map task may emit (key, value) pairs to partition;
all values for the same key are always reduced together without it caring
about which Mapper is its origin. This partitioning and shuffling will be done
automatically by the MapReduce job after the completion of the Map phase.
There is no need to call them separately. Also, we can explicitly override their
logic code as per the requirements of the MapReduce job.

•	 After completing partitioning and shuffling and before initializing the
Reduce task, the intermediate (key, value) pairs are sorted based on a key
attribute value by the Hadoop MapReduce job.

•	 The Reduce instance is created for the Reduce phase. It is a section of user-
provided code that performs the Reduce task. A Reduce() method of the
Reducer class mainly takes two parameters along with OutputCollector
and Reporter, which is the same as the Map() function. They are the
OutputCollector and Reporter objects. OutputCollector in both
Map and Reduce has the same functionality, but in the Reduce phase,
OutputCollector provides output to either the next Map phase (in case of
multiple map and Reduce job combinations) or reports it as the final output
of the jobs based on the requirement. Apart from that, Reporter periodically
reports to JobTracker about the current status of the running task.

Writing Hadoop MapReduce Programs

[50]

•	 Finally, in OutputFormat the generated output (key, value) pairs
are provided to the OutputCollector parameter and then written
to OutputFiles, which is governed by OutputFormat. It controls
the setting of the OutputFiles format as defined in the MapReduce
Driver. The format will be chosen from either TextOutputFormat,
SequenceFileOutputFileFormat, or NullOutputFormat.

•	 The factory RecordWriter used by OutputFormat to write the output data in
the appropriate format.

•	 The output files are the output data written to HDFS by RecordWriter after
the completion of the MapReduce job.

To run this MapReduce job efficiently, we need to have some knowledge of Hadoop
shell commands to perform administrative tasks. Refer to the following table:

Shell commands Usage and code sample
cat To copy source paths to stdout:

Hadoop fs -cat URI [URI …]

chmod To change the permissions of files:
Hadoop fs -chmod [-R] <MODE[,MODE]... | OCTALMODE>
URI [URI …]

copyFromLocal To copy a file from local storage to HDFS:
Hadoop fs –copyFromLocal<localsrc> URI

copyToLocal To copy a file from HDFS to local storage:
Hadoop fs -copyToLocal [-ignorecrc] [-crc] URI
<localdst>

cp To copy a file from the source to the destination in HDFS:
Hadoop fs -cp URI [URI …] <dest>

du To display the aggregate length of a file:
Hadoop fs -du URI [URI …]

dus To display the summary of file length:
Hadoop fs -dus<args>

get To copy files to a local filesystem:
Hadoop fs -get [-ignorecrc] [-crc] <src><localdst>

ls To list all files in the current directory in HDFS:
Hadoop fs –ls<args>

mkdir To create a directory in HDFS:
Hadoop fs –mkdir<paths>

Chapter 2

[51]

Shell commands Usage and code sample
lv To move files from the source to the destination:

Hadoop fs -mv URI [URI …] <dest>

rmr To remove files from the current directory:
Hadoop fs -rmr URI [URI …]

setrep To change the replication factor of a file:
Hadoop fs -setrep [-R] <path>

tail To display the last kilobyte of a file to stdout:
Hadoop fs -tail [-f] URI

Writing a Hadoop MapReduce example
Now we will move forward with MapReduce by learning a very common and easy
example of word count. The goal of this example is to calculate how many times
each word occurs in the provided documents. These documents can be considered as
input to MapReduce's file.

In this example, we already have a set of text files—we want to identify the
frequency of all the unique words existing in the files. We will get this by designing
the Hadoop MapReduce phase.

In this section, we will see more on Hadoop MapReduce programming using
Hadoop MapReduce's old API. Here we assume that the reader has already set
up the Hadoop environment as described in Chapter 1, Getting Ready to Use R and
Hadoop. Also, keep in mind that we are not going to use R to count words; only
Hadoop will be used here.

Basically, Hadoop MapReduce has three main objects: Mapper, Reducer, and Driver.
They can be developed with three Java classes; they are the Map class, Reduce class,
and Driver class, where the Map class denotes the Map phase, the Reducer class
denotes the Reduce phase, and the Driver class denotes the class with the main()
method to initialize the Hadoop MapReduce program.

In the previous section of Hadoop MapReduce fundamentals, we already discussed
what Mapper, Reducer, and Driver are. Now, we will learn how to define them and
program for them in Java. In upcoming chapters, we will be learning to do more with
a combination of R and Hadoop.

Writing Hadoop MapReduce Programs

[52]

There are many languages and frameworks that are used for
building MapReduce, but each of them has different strengths.
There are multiple factors that by modification can provide
high latency over MapReduce. Refer to the article 10 MapReduce
Tips by Cloudera at http://blog.cloudera.com/
blog/2009/05/10-mapreduce-tips/.
To make MapReduce development easier, use Eclipse configured
with Maven, which supports the old MapReduce API.

Understanding the steps to run a
MapReduce job
Let's see the steps to run a MapReduce job with Hadoop:

1.	 In the initial steps of preparing Java classes, we need you to develop a
Hadoop MapReduce program as per the definition of our business problem.
In this example, we have considered a word count problem. So, we have
developed three Java classes for the MapReduce program; they are Map.
java, Reduce.java, and WordCount.java, used for calculating the frequency
of the word in the provided text files.

°° Map.java: This is the Map class for the word count Mapper.
// Defining package of the class
package com.PACKT.chapter1;

// Importing java libraries
import java.io.*;
importjava.util.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;

// Defining the Map class
public class Map extends MapReduceBase implements
 Mapper<LongWritable,
 Text,
 Text,
 IntWritable>{

//Defining the map method – for processing the data with //
problem specific logic
public void map(LongWritable key,
 Text value,
 OutputCollector<Text,

Chapter 2

[53]

 IntWritable> output,
 Reporter reporter)
 throws IOException {

// For breaking the string to tokens and convert them to
lowercase
StringTokenizer st = new StringTokenizer(value.toString().
toLowerCase());

// For every string tokens
while(st.hasMoreTokens()) {

// Emitting the (key,value) pair with value 1.
output.collect(new Text(st.nextToken()),
 new IntWritable(1));
 }

 }

}

°° Reduce.java: This is the Reduce class for the word count Reducer.
// Defining package of the class
package com.PACKT.chapter1;

// Importing java libraries
import java.io.*;
importjava.util.*;
import org.apache.hadoop.io.*;
importorg.apache.hadoop.mapred.*;

// Defining the Reduce class
public class Reduce extends MapReduceBase implements
 Reducer<Text,
 IntWritable,
 Text,
 IntWritable> {

// Defining the reduce method for aggregating the //
generated output of Map phase
public void reduce(Text key,
 Iterator<IntWritable> values,
 OutputCollector<Text,IntWritable>
 output,
 Reporter reporter) throws IOException {

Writing Hadoop MapReduce Programs

[54]

// Setting initial counter value as 0
int count = 0;

// For every element with similar key attribute, increment
its counter value by adding 1.
while(values.hasNext()) {
count += values.next().get();
 }

// Emitting the (key,value) pair
output.collect(key, new IntWritable(count));
 }
}

°° WordCount.java: This is the task of Driver in the Hadoop
MapReduce Driver main file.

//Defining package of the class
package com.PACKT.chapter1;

// Importing java libraries
import java.io.*;
importorg.apache.hadoop.fs.*;
import org.apache.hadoop.io.*;
importorg.apache.hadoop.mapred.*;
importorg.apache.hadoop.util.*;
importorg.apache.hadoop.conf.*;

//Defining wordcount class for job configuration
 // information
public class WordCount extends Configured implements Tool{

publicint run(String[] args) throws IOException{
JobConfconf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

//For defining the output key format
conf.setOutputKeyClass(Text.class);

//For defining the output value format
conf.setOutputValueClass(IntWritable.class);

// For defining the Mapper class implementation
conf.setMapperClass(Map.class);

Chapter 2

[55]

// For defining the Reducer class implementation
conf.setReducerClass(Reduce.class);

// For defining the type of input format
conf.setInputFormat(TextInputFormat.class);

// For defining the type of output format
conf.setOutputFormat(TextOutputFormat.class);

// For defining the command line argument sequence for //
input dataset path
FileInputFormat.setInputPaths(conf, new Path(args[0]));

// For defining the command line argument sequence for //
output dataset path
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

// For submitting the configuration object
JobClient.runJob(conf);

return 0;
 }

// Defining the main() method to start the execution of //
the MapReduce program
public static void main(String[] args) throws Exception {
 intexitCode = ToolRunner.run(new WordCount(), args);
 System.exit(exitCode); } }

2.	 Compile the Java classes.
// create a folder for storing the compiled classes

hduser@ubuntu:~/Desktop/PacktPub$ mkdir classes

// compile the java class files with classpath

hduser@ubuntu:~/Desktop/PacktPub$ javac -classpath /usr/local/
hadoop/hadoop-core-1.1.0.jar:/usr/local/hadoop/lib/commons-cli-
1.2.jar -d classes *.java

www.allitebooks.com

http://www.allitebooks.org

Writing Hadoop MapReduce Programs

[56]

3.	 Create a .jar file from the compiled classes.
hduser@ubuntu:~/Desktop/PacktPub$ cd classes/

// create jar of developed java classes

hduser@ubuntu:~/Desktop/PacktPub/classes$ jar -cvf wordcount.jar
com

4.	 Start the Hadoop daemons.
// Go to Hadoop home Directory

hduser@ubuntu:~$ cd $HADOOP_HOME

// Start Hadoop Cluster

hduser@ubuntu:/usr/local/hadoop$ bin/start-all.sh

5.	 Check all the running daemons.
// Ensure all daemons are running properly

hduser@ubuntu:/usr/local/hadoop$ jps

6.	 Create the HDFS directory /wordcount/input/.
// Create Hadoop directory for storing the input dataset

hduser@ubuntu:/usr/local/hadoop$ bin/Hadoop fs -mkdir /wordcount/
input

7.	 Extract the input dataset to be used in the word count example. As we
need to have text files to be processed by the word count example, we
will use the text files provided with the Hadoop distribution (CHANGES.
txt, LICENSE.txt, NOTICE.txt, and README.txt) by copying them to the
Hadoop directory. We can have other text datasets from the Internet input
in this MapReduce algorithm instead of using readymade text files. We can
also extract data from the Internet to process them, but here we are using
readymade input files.

Chapter 2

[57]

8.	 Copy all the text files to HDFS.
// To copying the text files from machine's local

 // directory in to Hadoop directory

hduser@ubuntu:/usr/local/hadoop$ bin/hadoopfs -copyFromLocal
$HADOOP_HOME/*.txt /wordcount/input/

9.	 Run the Hadoop MapReduce job with the following command:
// Command for running the Hadoop job by specifying jar, main
class, input directory and output directory.

hduser@ubuntu:/usr/local/hadoop$ bin/hadoop jar wordcount.jar com.
PACKT.chapter1.WordCount /wordcount/input/ /wordcount/output/

10.	 This is how the final output will look.

// To read the generated output from HDFS directory

hduser@ubuntu:/usr/local/hadoop$ bin/hadoopfs -cat /wordcount/
output/part-00000

During the MapReduce phase, you need to monitor the job as
well as the nodes. Use the following to monitor MapReduce
jobs in web browsers:

•	 localhost:50070: NameNode Web interface (for HDFS)
•	 localhost:50030: JobTracker Web interface (for

MapReduce layer)
•	 localhost:50060: TaskTracker Web interface (for

MapReduce layer)

Writing Hadoop MapReduce Programs

[58]

Learning to monitor and debug a Hadoop
MapReduce job
In this section, we will learn how to monitor as well as debug a Hadoop MapReduce
job without any commands.

This is one of the easiest ways to use the Hadoop MapReduce administration UI. We
can access this via a browser by entering the URL http://localhost:50030 (web
UI for the JobTracker daemon). This will show the logged information of the Hadoop
MapReduce jobs, which looks like following screenshot:

Map/Reduce administration

Here we can check the information and status of running jobs, the status of the Map
and Reduce tasks of a job, and the past completed jobs as well as failed jobs with
failed Map and Reduce tasks. Additionally, we can debug a MapReduce job by
clicking on the hyperlink of the failed Map or Reduce task of the failed job. This will
produce an error message printed on standard output while the job is running.

Chapter 2

[59]

Exploring HDFS data
In this section, we will see how to explore HDFS directories without running any
Bash command. The web UI of the NameNode daemon provides such a facility.
We just need to locate it at http://localhost:50070.

NameNode administration

This UI enables us to get a cluster summary (memory status), NameNode logs, as
well as information on live and dead nodes in the cluster. Also, this allows us to
explore the Hadoop directory that we have created for storing input and output data
for Hadoop MapReduce jobs.

Writing Hadoop MapReduce Programs

[60]

Understanding several possible MapReduce
definitions to solve business problems
Until now we have learned what MapReduce is and how to code it. Now, we will see
some common MapReduce problem definitions that are used for business analytics.
Any reader who knows MapReduce with Hadoop will easily be able to code and solve
these problem definitions by modifying the MapReduce example for word count. The
major changes will be in data parsing and in the logic behind operating the data. The
major effort will be required in data collection, data cleaning, and data storage.

•	 Server web log processing: Through this MapReduce definition, we can
perform web log analysis. Logs of the web server provide information about
web requests, such as requested page's URL, date, time, and protocol. From
this, we can identify the peak load hours of our website from the web server
log and scale our web server configuration based on the traffic on the site.
So, the identification of no traffic at night will help us save money by scaling
down the server. Also, there are a number of business cases that can be
solved by this web log server analysis.

•	 Web analytics with website statistics: Website statistics can provide
more detailed information about the visitor's metadata, such as the
source, campaign, visitor type, visitor location, search keyword, requested
page URL, browser, and total time spent on pages. Google analytics is
one of the popular, free service providers for websites. By analyzing all
this information, we can understand visitors' behavior on a website. By
descriptive analytics, we can identify the importance of web pages or other
web attributes based on visitors' addiction towards them. For an e-commerce
website, we can identify popular products based on the total number of
visits, page views, and time spent by a visitor on a page. Also, predictive
analytics can be implemented on web data to predict the business.

•	 Search engine: Suppose we have a large set of documents and want to
search the document for a specific keyword, inverted indices with Hadoop
MapReduce will help us find keywords so we can build a search engine for
Big Data.

•	 Stock market analysis: Let's say that we have collected stock market data
(Big Data) for a long period of time and now want to identify the pattern
and predict it for the next time period. This requires training of all historical
datasets. Then we can compute the frequency of the stock market changes for
the said time period using several machine-learning libraries with Hadoop
MapReduce.

Also, there are too many possible MapReduce applications that can be applied to
improve business cost.

Chapter 2

[61]

Learning the different ways to write
Hadoop MapReduce in R
We know that Hadoop Big Data processing with MapReduce is a big deal for
statisticians, web analysts, and product managers who used to use the R tool
for analyses because supplementary programming knowledge of MapReduce is
required to migrate the analyses into MapReduce with Hadoop. Also, we know
R is a tool that is consistently increasing in popularity; there are many packages/
libraries that are being developed for integrating with R. So to develop a MapReduce
algorithm or program that runs with the log of R and computation power of Hadoop,
we require the middleware for R and Hadoop. RHadoop, RHIPE, and Hadoop
streaming are the middleware that help develop and execute Hadoop MapReduce
within R. In this last section, we will talk about RHadoop, RHIPE, and introducing
Hadoop streaming, and from the later chapters we will purely develop MapReduce
with these packages.

Learning RHadoop
RHadoop is a great open source software framework of R for performing data
analytics with the Hadoop platform via R functions. RHadoop has been developed
by Revolution Analytics, which is the leading commercial provider of software and
services based on the open source R project for statistical computing. The RHadoop
project has three different R packages: rhdfs, rmr, and rhbase. All these packages
are implemented and tested on the Cloudera Hadoop distributions CDH3, CDH4,
and R 2.15.0. Also, these are tested with the R version 4.3, 5.0, and 6.0 distributions of
Revolution Analytics.

These three different R packages have been designed on Hadoop's two main features
HDFS and MapReduce:

•	 rhdfs: This is an R package for providing all Hadoop HDFS access to R. All
distributed files can be managed with R functions.

•	 rmr: This is an R package for providing Hadoop MapReduce interfaces to
R. With the help of this package, the Mapper and Reducer can easily be
developed.

•	 rhbase: This is an R package for handling data at HBase distributed database
through R.

Writing Hadoop MapReduce Programs

[62]

Learning RHIPE
R and Hadoop Integrated Programming Environment (RHIPE) is a free and
open source project. RHIPE is widely used for performing Big Data analysis with
D&R analysis. D&R analysis is used to divide huge data, process it in parallel on
a distributed network to produce intermediate output, and finally recombine all
this intermediate output into a set. RHIPE is designed to carry out D&R analysis on
complex Big Data in R on the Hadoop platform. RHIPE was developed by Saptarshi
Joy Guha (Data Analyst at Mozilla Corporation) and her team as part of her PhD
thesis in the Purdue Statistics Department.

Learning Hadoop streaming
Hadoop streaming is a utility that comes with the Hadoop distribution. This utility
allows you to create and run MapReduce jobs with any executable or script as the
Mapper and/or Reducer. This is supported by R, Python, Ruby, Bash, Perl, and so
on. We will use the R language with a bash script.

Also, there is one R package named HadoopStreaming that has been developed
for performing data analysis on Hadoop clusters with the help of R scripts, which
is an interface to Hadoop streaming with R. Additionally, it also allows the running
of MapReduce tasks without Hadoop. This package was developed by David
Rosenberg, Chief Scientist at SenseNetworks. He has expertise in machine learning
and statistical modeling.

Summary
In this chapter, we have seen what Hadoop MapReduce is, and how to develop it as
well as run it. In the next chapter, we will learn how to install RHIPE and RHadoop,
and develop MapReduce and its available functional libraries with examples.

Integrating R and Hadoop
From the first two chapters we got basic information on how to install the R and
Hadoop tools. Also, we learned what the key features of Hadoop are and why they
are integrated with R for Big Data solutions to business data problems. So with the
integration of R and Hadoop we can forward data analytics to Big Data analytics. Both
of these middleware are still getting improved for being used along with each other.

In Chapter 2, Writing Hadoop MapReduce Programs, we learned how to write a
MapReduce program in Hadoop. In this chapter, we will learn to develop the
MapReduce programs in R that run over the Hadoop cluster. This chapter will
provide development tutorials on R and Hadoop with RHIPE and RHadoop. After
installing R and Hadoop, we will see how R and Hadoop can be integrated using
easy steps.

Before we start moving on to the installation, let's see what are the advantages of R
and Hadoop integration within an organization. Since statisticians and data analysts
frequently use the R tool for data exploration as well as data analytics, Hadoop
integration is a big boon for processing large-size data. Similarly, data engineers
who use Hadoop tools, such as system, to organize the data warehouse can perform
such logical analytical operations to get informative insights that are actionable by
integrating with R tool.

Integrating R and Hadoop

[64]

Therefore, the integration of such data-driven tools and technologies can build a
powerful scalable system that has features of both of them.

Three ways to link R and Hadoop are as follows:

•	 RHIPE
•	 RHadoop
•	 Hadoop streaming

In this chapter, we will be learning integration and analytics with RHIPE and
RHadoop. Hadoop streaming will be covered in Chapter 4, Using Hadoop Streaming
with R.

Introducing RHIPE
RHIPE stands for R and Hadoop Integrated Programming Environment. As
mentioned on http://www.datadr.org/, it means "in a moment" in Greek and is a
merger of R and Hadoop. It was first developed by Saptarshi Guha for his PhD thesis
in the Department of Statistics at Purdue University in 2012. Currently this is carried
out by the Department of Statistics team at Purdue University and other active
Google discussion groups.

Chapter 3

[65]

The RHIPE package uses the Divide and Recombine technique to perform
data analytics over Big Data. In this technique, data is divided into subsets,
computation is performed over those subsets by specific R analytics operations,
and the output is combined. RHIPE has mainly been designed to accomplish two
goals that are as follows:

•	 Allowing you to perform in-depth analysis of large as well as small data.
•	 Allowing users to perform the analytics operations within R using a lower-

level language. RHIPE is designed with several functions that help perform
Hadoop Distribute File System (HDFS) as well as MapReduce operations
using a simple R console.

RHIPE is a lower-level interface as compared to HDFS and MapReduce operation. Use
the latest supported version of RHIPE which is 0.73.1 as Rhipe_0.73.1-2.tar.gz.

Installing RHIPE
As RHIPE is a connector of R and Hadoop, we need Hadoop and R installed on our
machine or in our clusters in the following sequence:

1.	 Installing Hadoop.
2.	 Installing R.
3.	 Installing protocol buffers.
4.	 Setting up environment variables.
5.	 Installing rJava.
6.	 Installing RHIPE.

Let us begin with the installation.

Installing Hadoop
As we are here to integrate R and Hadoop with the RHIPE package library, we need
to install Hadoop on our machine. It will be arbitrary that it either be a single node or
multinode installation depending on the size of the data to be analyzed.

As we have already learned how to install Hadoop in Ubuntu, we are not going
to repeat the process here. If you haven't installed it yet, please refer to Chapter 1,
Getting Ready to Use R and Hadoop, for guidance.

Integrating R and Hadoop

[66]

Installing R
If we use a multinode Hadoop architecture, there are a number of TaskTracker
nodes for executing the MapReduce job. So, we need to install R over all of these
TaskTracker nodes. These TaskTracker nodes will start process over the data subsets
with developed map and reduce logic with the consideration of key values.

Installing protocol buffers
Protocol buffers just serialize the data to make it platform independent, neutral,
and robust (primarily used for structured data). Google uses the same protocol for
data interchange. RHIPE depends on protocol buffers 2.4.1 for data serialization over
the network.

This can be installed using the following command:

For downloading the protocol buffer 2.4.1

wget http://protobuf.googlecode.com/files/protobuf-2.4.1.tar.gz

To extracting the protocol buffer

tar -xzf protobuf-2.4.1.tar.gz

To get in to the extracted protocol buffer directory

cd protobuf-2.4.1

For making install the protocol buffer

./configure # --prefix=...

make

make install

Environment variables
In order for RHIPE to compile and work correctly, it is better to ensure that the
following environment variables are set appropriately:

For configuring the Hadoop libraries, we need to set two variables, PKG_CONFIG_
PATH and LD_LIBRARY_PATH, to the ~./bashrc file of hduser (Hadoop user) so that it
can automatically be set when the user logs in to the system.

Here, PKG_CONFIG_PATH is an environment variable that holds the path of the
pkg-config script for retrieving information about installed libraries in the system,
and LD_LIBRARY_PATH is an environment variable that holds the path of native
shared libraries.

Chapter 3

[67]

export PKG_CONFIG_PATH = /usr/local/lib

export LD_LIBRARY_PATH = /usr/local/lib

You can also set all these variables from your R console, as follows:

Sys.setenv(HADOOP_HOME="/usr/local/hadoop/")

Sys.setenv(HADOOP_BIN="/usr/local/hadoop/bin")

Sys.setenv(HADOOP_CONF_DIR="/usr/local/hadoop/conf")

Where HADOOP_HOME is used for specifying the location of the Hadoop directory,
HADOOP_BIN is used for specifying the location of binary files of Hadoop, and
HADOOP_CONF_DIR is used for specifying the configuration files of Hadoop.

Setting the variables is temporary and valid up to a particular R session. If we want
to make this variable permanent, as initialized automatically when the R session
initializes, we need to set these variables to the /etc/R/Renviron file as we set the
environment variable in .bashrc of a specific user profile.

The rJava package installation
Since RHIPE is a Java package, it acts like a Java bridge between R and Hadoop.
RHIPE serializes the input data to a Java type, which has to be serialized over the
cluster. It needs a low-level interface to Java, which is provided by rJava. So, we will
install rJava to enable the functioning of RHIPE.

For installing the rJava Package will be used for calling java
libraries from R.

install.packages("rJava")

Installing RHIPE
Now, it's time to install the RHIPE package from its repository.

Downloading RHIPE package from RHIPE repository

Wget http://ml.stat.purdue.edu/rhipebin/Rhipe_0.73.1-2.tar.gz

Installing the RHIPE package in R via CMD command

R CMD INSTALL Rhipe_0.73.1.tar.gz

Now, we are ready with a RHIPE system for performing data analytics with R and
Hadoop.

Integrating R and Hadoop

[68]

Understanding the architecture of RHIPE
Let's understand the working of the RHIPE library package developed to integrate R
and Hadoop for effective Big Data analytics.

Components of RHIPE

There are a number of Hadoop components that will be used for data analytics
operations with R and Hadoop.

The components of RHIPE are as follows:

•	 RClient: RClient is an R application that calls the JobTracker to execute the
job with an indication of several MapReduce job resources such as Mapper,
Reducer, input format, output format, input file, output file, and other
several parameters that can handle the MapReduce jobs with RClient.

•	 JobTracker: A JobTracker is the master node of the Hadoop MapReduce
operations for initializing and monitoring the MapReduce jobs over the
Hadoop cluster.

Chapter 3

[69]

•	 TaskTracker: TaskTracker is a slave node in the Hadoop cluster. It executes
the MapReduce jobs as per the orders given by JobTracker, retrieve the input
data chunks, and run R-specific Mapper and Reducer over it. Finally, the
output will be written on the HDFS directory.

•	 HDFS: HDFS is a filesystem distributed over Hadoop clusters with several
data nodes. It provides data services for various data operations.

Understanding RHIPE samples
In this section, we will create two RHIPE MapReduce examples. These two
examples are defined with the basic utility of the Hadoop MapReduce job from a
RHIPE package.

RHIPE sample program (Map only)
MapReduce problem definition: The goal of this MapReduce sample program is to
test the RHIPE installation by using the min and max functions over numeric data
with the Hadoop environment. Since this is a sample program, we have included
only the Map phase, which will store its output in the HDFS directory.

To start the development with RHIPE, we need to initialize the RHIPE subsystem by
loading the library and calling the rhinit() method.

Loading the RHIPE library

library(Rhipe)

initializing the RHIPE subsystem, which is used for everything. RHIPE
will not work if rhinit is not called.

rhinit()

Input: We insert a numerical value rather than using a file as an input.

Integrating R and Hadoop

[70]

Map phase: The Map phase of this MapReduce program will call 10 different
iterations and in all of those iterations, random numbers from 1 to 10 will be
generated as per their iteration number. After that, the max and min values for that
generated numbers will be calculated.

Defining the Map phase

Map(function(k,v){

for generating the random deviates

 X runif(v)

for emitting the key-value pairs with key – k and

value – min and max of generated random deviates.

 rhcollect(k, c(Min=min(x),Max=max(x))

}

Output: Finally the output of the Map phase will be considered here as an output of
this MapReduce job and it will be stored to HDFS at /app/hadoop/RHIPE/.

Defining the MapReduce job by the rhwatch() method of the RHIPE package:

Create and running a MapReduce job by following

job = rhwatch(map=map,input=10,reduce=0,

output="/app/Hadoop/RHIPE/test",jobname='test')

Reading the MapReduce output from HDFS:

Read the results of job from HDFS

result <- rhread(job)

For displaying the result in a more readable form in the table format, use the
following code:

Displaying the result

outputdata <- do.call('rbind', lapply(result, "[[", 2))

Chapter 3

[71]

Output:

Word count
MapReduce problem definition: This RHIPE MapReduce program is defined for
identifying the frequency of all of the words that are present in the provided input
text files.

Also note that this is the same MapReduce problem as we saw in Chapter 2, Writing
Hadoop MapReduce Programs.

Loading the RHIPE Library

library(Rhipe)

Input: We will use the CHANGES.txt file, which comes with Hadoop distribution,
and use it with this MapReduce algorithm. By using the following command, we will
copy it to HDFS:

rhput("/usr/local/hadoop/CHANGES.txt","/RHIPE/input/")

Map phase: The Map phase contains the code for reading all the words from a file
and assigning all of them to value 1.

Defining the Map function
w_map<-expression({
 words_vector<-unlist(strsplit(unlist(map.values)," "))
 lapply(words_vector,function(i) rhcollect(i,1))

})

Integrating R and Hadoop

[72]

Reduce phase: With this reducer task, we can calculate the total frequency of the
words in the input text files.

For reference, RHIPE provides a canned version

Reduce = rhoptions()$templates$scalarsummer

Defining the Reduce function
w_reduce<-expression(
 pre={total=0},
 reduce={total<-sum(total,unlist(reduce.values))},
 post={rhcollect(reduce.key,total)}
)

Defining the MapReduce job object: After defining the word count mapper and
reducer, we need to design the driver method that can execute this MapReduce job
by calling Mapper and Reducer sequentially.

defining and executing a MapReduce job object

Job1 <-
 rhwatch(map=w_map,reduce=w_reduce,
 ,input="/RHIPE/input/",output="/RHIPE/output/",
 jobname="word_count")

Reading the MapReduce output:

for reading the job output data from HDFS

Output_data <- rhread(Job1)
results <- data.frame(words=unlist(lapply(Output_data,"[[",1)), count
=unlist(lapply(Output_data,"[[",2)))

The output of MapReduce job will be stored to output_data, we will convert this
output into R supported dataframe format. The dataframe output will be stored to
the results variable. For displaying the MapReduce output in the data frame the
format will be as follows:

Output for head (results):

Chapter 3

[73]

Output for tail (results):

Understanding the RHIPE function reference
RHIPE is specially designed for providing a lower-level interface over Hadoop. So
R users with a RHIPE package can easily fire the Hadoop data operations over large
datasets that are stored on HDFS, just like the print() function called in R.

Now we will see all the possible functional uses of all methods that are available in
RHIPE library. All these methods are with three categories: Initialization, HDFS, and
MapReduce operations.

Initialization
We use the following command for initialization:

•	 rhinit: This is used to initialize the Rhipe subsystem.

rhinit(TRUE,TRUE)

HDFS
We use the following command for HDFS operations:

•	 rhls: This is used to retrieve all directories from HDFS.
Its syntax is rhls(path)
rhls("/")

Integrating R and Hadoop

[74]

Output:

•	 hdfs.getwd: This is used for acquiring the current working HDFS directory.
Its syntax is hdfs.getwd()

•	 hdfs.setwd: This is used for setting up the current working HDFS directory.
Its syntax is hdfs.setwd("/RHIPE")

•	 rhput: This is used to copy a file from a local directory to HDFS. Its syntax
is rhput(src,dest) and rhput("/usr/local/hadoop/NOTICE.txt","/
RHIPE/").

•	 rhcp: This is used to copy a file from one HDFS location to another HDFS
location. Its syntax is rhcp('/RHIPE/1/change.txt','/RHIPE/2/change.
txt').

•	 rhdel: This is used to delete a directory/file from HDFS. Its syntax is
rhdel("/RHIPE/1").

•	 rhget: This is used to copy the HDFS file to a local directory. Its syntax is
rhget("/RHIPE/1/part-r-00000", "/usr/local/").

•	 rwrite: This is used to write the R data to HDFS. its syntax is
rhwrite(list(1,2,3),"/tmp/x").

Chapter 3

[75]

MapReduce
We use the following commands for MapReduce operations:

•	 rhwatch: This is used to prepare, submit, and monitor MapReduce jobs.
Syntax:

rhwatch(map, reduce, combiner, input, output,
mapred,partitioner,mapred, jobname)

to prepare and submit MapReduce job:

z=rhwatch(map=map,reduce=0,input=5000,output="/tmp/
sort",mapred=mapred,read=FALSE)

results <- rhread(z)

•	 rhex: This is used to execute the MapReduce job from over Hadoop cluster.
Submit the job

rhex(job)

•	 rhjoin: This is used to check whether the MapReduce job is completed or
not. Its syntax is rhjoin(job).

•	 rhkill: This is used to kill the running MapReduce job. Its syntax is
rhkill(job).

•	 rhoptions: This is used for getting or setting the RHIPE configuration
options. Its syntax is rhoptions().

•	 rhstatus: This is used to get the status of the RHIPE MapReduce job. Its
syntax is rhstatus(job).

rhstatus(job, mon.sec = 5, autokill = TRUE,
 showErrors = TRUE, verbose = FALSE, handler = NULL)

Integrating R and Hadoop

[76]

Introducing RHadoop
RHadoop is a collection of three R packages for providing large data operations with
an R environment. It was developed by Revolution Analytics, which is the leading
commercial provider of software based on R. RHadoop is available with three main
R packages: rhdfs, rmr, and rhbase. Each of them offers different Hadoop features.

•	 rhdfs is an R interface for providing the HDFS usability from the R console.
As Hadoop MapReduce programs write their output on HDFS, it is very easy
to access them by calling the rhdfs methods. The R programmer can easily
perform read and write operations on distributed data files. Basically, rhdfs
package calls the HDFS API in backend to operate data sources stored on
HDFS.

•	 rmr is an R interface for providing Hadoop MapReduce facility inside the
R environment. So, the R programmer needs to just divide their application
logic into the map and reduce phases and submit it with the rmr methods.
After that, rmr calls the Hadoop streaming MapReduce API with several job
parameters as input directory, output directory, mapper, reducer, and so on,
to perform the R MapReduce job over Hadoop cluster.

•	 rhbase is an R interface for operating the Hadoop HBase data source
stored at the distributed network via a Thrift server. The rhbase package is
designed with several methods for initialization and read/write and table
manipulation operations.

Here it's not necessary to install all of the three RHadoop packages to run the
Hadoop MapReduce operations with R and Hadoop. If we have stored our input
data source at the HBase data source, we need to install rhbase; else we require
rhdfs and rmr packages. As Hadoop is most popular for its two main features,
Hadoop MapReduce and HDFS, both of these features will be used within the R
console with the help of RHadoop rhdfs and rmr packages. These packages are
enough to run Hadoop MapReduce from R. Basically, rhdfs provides HDFS data
operations while rmr provides MapReduce execution operations.

RHadoop also includes another package called quick check, which is designed for
debugging the developed MapReduce job defined by the rmr package.

In the next section, we will see their architectural relationships as well as their
installation steps.

Chapter 3

[77]

Understanding the architecture of RHadoop
Since Hadoop is highly popular because of HDFS and MapReduce, Revolution
Analytics has developed separate R packages, namely, rhdfs, rmr, and rhbase.
The architecture of RHadoop is shown in the following diagram:

RHadoop Ecosystem

Installing RHadoop
In this section, we will learn some installation tricks for the three RHadoop packages
including their prerequisites.

•	 R and Hadoop installation: As we are going to use an R and Hadoop
integrated environment, we need Hadoop as well as R installed on our
machine. If you haven't installed yet, see Chapter 1, Getting Ready to Use R and
Hadoop. As we know, if we have too much data, we need to scale our cluster
by increasing the number of nodes. Based on this, to get RHadoop installed
on our system we need Hadoop with either a single node or multimode
installation as per the size of our data.
RHadoop is already tested with several Hadoop distributions provided by
Cloudera, Hortonworks, and MapR.

Integrating R and Hadoop

[78]

•	 Installing the R packages: We need several R packages to be installed that
help it to connect R with Hadoop. The list of the packages is as follows:

°° rJava
°° RJSONIO
°° itertools
°° digest
°° Rcpp
°° httr
°° functional
°° devtools
°° plyr
°° reshape2

We can install them by calling the execution of the following R command in
the R console:

install.packages(c('rJava','RJSONIO', 'itertools', 'digest','Rcpp
','httr','functional','devtools', 'plyr','reshape2'))

•	 Setting environment variables: We can set this via the R console using the
following code:
Setting HADOOP_CMD

Sys.setenv(HADOOP_CMD="/usr/local/hadoop/bin/hadoop")

Setting up HADOOP_STREAMING

Sys.setenv(HADOOP_STREAMING="/usr/local/hadoop/contrib/streaming/
hadoop-streaming-1.0.3.jar")

or, we can also set the R console via the command line as follows:

export HADOOP_CMD=/usr/local/Hadoop

export HADOOP_STREAMING=/usr/lib/hadoop-0.20-mapreduce/contrib/
streaming/hadoop-streaming-2.0.0-mr1-cdh4.1.1.jar

Chapter 3

[79]

•	 Installing RHadoop [rhdfs, rmr, rhbase]

1.	 Download RHadoop packages from GitHub repository of Revolution
Analytics: https://github.com/RevolutionAnalytics/RHadoop.

°° rmr: [rmr-2.2.2.tar.gz]
°° rhdfs: [rhdfs-1.6.0.tar.gz]
°° rhbase: [rhbase-1.2.0.tar.gz]

2.	 Installing packages.
°° For rmr we use:

R CMD INSTALL rmr-2.2.2.tar.gz

°° For rhdfs we use:
R CMD INSTALL rmr-2.2.2.tar.gz

°° For rhbase we use:

R CMD INSTALL rhbase-1.2.0.tar.gz

To install rhbase, we need to have HBase and Zookeeper
installed on our Hadoop cluster.

Understanding RHadoop examples
Once we complete the installation of RHadoop, we can test the setup by running the
MapReduce job with the rmr2 and rhdfs libraries in the RHadoop sample program
as follows:

loading the libraries

library(rhdfs')

library('rmr2')

initializing the RHadoop

hdfs.init()

defining the input data

small.ints = to.dfs(1:10)

Defining the MapReduce job

mapreduce(

Integrating R and Hadoop

[80]

defining input parameters as small.ints hdfs object, map parameter as
function to calculate the min and max for generated random deviates.
input = small.ints,
map = function(k, v)
{
 lapply(seq_along(v), function(r){
 x <- runif(v[[r]])
 keyval(r,c(max(x),min(x)))
})})

After running these lines, simply pressing Ctrl + Enter will execute this
MapReduce program. If it succeeds, the last line will appear as shown in the
following screenshot:

Where characters of that last line indicate the output location of the MapReduce job.

To read the result of the executed MapReduce job, copy the output location, as
provided in the last line, and pass it to the from.dfs() function of rhdfs.

Where the first column of the previous output indicates the max value, and the
second one the min value.

Chapter 3

[81]

Word count
MapReduce problem definition: This RHadoop MapReduce program is defined
for identifying the frequency of all the words that are present in the provided input
text files.

Also, note that this is the same MapReduce problem as we learned in the previous
section about RHIPE in Chapter 2, Writing Hadoop MapReduce Programs.

wordcount = function(input,
 output = NULL,
 pattern = " "){

Map phase: This map function will read the text file line by line and split them by
spaces. This map phase will assign 1 as a value to all the words that are caught by
the mapper.

wc.map = function(., lines) {

 keyval(

 unlist(

 strsplit(

 x = lines,

 split = pattern)),

 1)}

Reduce phase: Reduce phase will calculate the total frequency of all the words by
performing sum operations over words with the same keys.

wc.reduce = function(word, counts) {

 keyval(word, sum(counts))}

Defining the MapReduce job: After defining the word count mapper and reducer, we
need to create the driver method that starts the execution of MapReduce.

To execute the defined Mapper and Reducer functions

by specifying the input, output, map, reduce and input.format as
parameters.

Syntax:

mapreduce(input, output, input.format, map,reduce,

combine)

Integrating R and Hadoop

[82]

mapreduce(input = input ,

 output = output,

 input.format = "text",

 map = wc.map,

 reduce = wc.reduce,

 combine = T)}

Executing the MapReduce job: We will execute the RHadoop MapReduce job by
passing the input data location as a parameter for the wordcount function.

wordcount('/RHadoop/1/')

Exploring the wordcount output:

from.dfs("/tmp/RtmpRMIXzb/file2bda5e10e25f")

Understanding the RHadoop function
reference
RHadoop has three different packages, which are in terms of HDFS, MapReduce,
and HBase operations, to perform operations over the data.

Here we will see how to use the rmr and rhdfs package functions:

The hdfs package
The categorized functions are:

•	 Initialization
°° hdfs.init: This is used to initialize the rhdfs package. Its syntax is

hdfs.init().
°° hdfs.defaults: This is used to retrieve and set the rhdfs defaults.

Its syntax is hdfs.defaults().

To retrieve the hdfs configuration defaults, refer to the following screenshot:

Chapter 3

[83]

•	 File manipulation

°° hdfs.put: This is used to copy files from the local filesystem to the
HDFS filesystem.
hdfs.put('/usr/local/hadoop/README.txt','/RHadoop/1/')

°° hdfs.copy: This is used to copy files from the HDFS directory to the
local filesystem.
hdfs.put('/RHadoop/1/','/RHadoop/2/')

°° hdfs.move: This is used to move a file from one HDFS directory to
another HDFS directory.
hdfs.move('/RHadoop/1/README.txt','/RHadoop/2/')

°° hdfs.rename: This is used to rename the file stored at HDFS from R.
hdfs.rename('/RHadoop/README.txt','/RHadoop/README1.txt')

°° hdfs.delete: This is used to delete the HDFS file or directory from
R.
hdfs.delete("/RHadoop")

°° hdfs.rm: This is used to delete the HDFS file or directory from R.
hdfs.rm("/RHadoop")

°° hdfs.chmod: This is used to change permissions of some files.

hdfs.chmod('/RHadoop', permissions= '777')

•	 File read/write:
°° hdfs.file: This is used to initialize the file to be used for read/write

operation.
f = hdfs.file("/RHadoop/2/README.
txt","r",buffersize=104857600)

°° hdfs.write: This is used to write in to the file stored at HDFS via
streaming.
f = hdfs.file("/RHadoop/2/README.
txt","r",buffersize=104857600)

hdfs.write(object,con,hsync=FALSE)

°° hdfs.close: This is used to close the stream when a file operation
is complete. It will close the stream and will not allow further file
operations.
hdfs.close(f)

Integrating R and Hadoop

[84]

°° hdfs.read: This is used to read from binary files on the HDFS
directory. This will use the stream for the deserialization of the data.

f = hdfs.file("/RHadoop/2/README.txt","r",buffersize=104857600)

m = hdfs.read(f)

c = rawToChar(m)

print(c)

•	 Directory operation:
°° hdfs.dircreate or hdfs.mkdir: Both these functions will be used

for creating a directory over the HDFS filesystem.
hdfs.mkdir("/RHadoop/2/")

°° hdfs.rm or hdfs.rmr or hdfs.delete - to delete the directory or file
from HDFS.

hdfs.rm("/RHadoop/2/")

•	 Utility:

°° hdfs.ls: This is used to list the directory from HDFS.
Hdfs.ls('/')

Chapter 3

[85]

°° hdfs.file.info: This is used to get meta information about the file
stored at HDFS.

hdfs.file.info("/RHadoop")

The rmr package
The categories of the functions are as follows:

•	 For storing and retrieving data:
°° to.dfs: This is used to write R objects from or to the filesystem.

small.ints = to.dfs(1:10)

°° from.dfs: This is used to read the R objects from the HDFS
filesystem that are in the binary encrypted format.

from.dfs('/tmp/RtmpRMIXzb/file2bda3fa07850')

•	 For MapReduce:
°° mapreduce: This is used for defining and executing the MapReduce

job.
mapreduce(input, output, map, reduce, combine, input.fromat,
output.format, verbose)

°° keyval: This is used to create and extract key-value pairs.

keyval(key, val)

Summary
Since RHadoop is considered as matured, we will consider it while performing data
analytics in further chapters. In Chapter 5, Learning Data Analytics with R and Hadoop
and Chapter 6, Understanding Big Data Analysis with Machine Learning, we will dive
into some Big Data analytics techniques as well as see how real world problems
can be solved with RHadoop. So far we have learned how to write the MapReduce
program with R and Hadoop using RHIPE and RHadoop. In the next chapter, we
will see how to write the Hadoop MapReduce program with Hadoop streaming
utility and also with Hadoop streaming R packages.

Using Hadoop
Streaming with R

In the previous chapter, we learned how to integrate R and Hadoop with the help
of RHIPE and RHadoop and also sample examples. In this chapter, we are going to
discuss the following topics:

•	 Understanding the basics of Hadoop streaming
•	 Understanding how to run Hadoop streaming with R
•	 Exploring the HadoopStreaming R package

Understanding the basics of
Hadoop streaming
Hadoop streaming is a Hadoop utility for running the Hadoop MapReduce job with
executable scripts such as Mapper and Reducer. This is similar to the pipe operation
in Linux. With this, the text input file is printed on stream (stdin), which is provided
as an input to Mapper and the output (stdout) of Mapper is provided as an input to
Reducer; finally, Reducer writes the output to the HDFS directory.

Using Hadoop Streaming with R

[88]

The main advantage of the Hadoop streaming utility is that it allows Java as well as
non-Java programmed MapReduce jobs to be executed over Hadoop clusters. Also,
it takes care of the progress of running MapReduce jobs. The Hadoop streaming
supports the Perl, Python, PHP, R, and C++ programming languages. To run an
application written in other programming languages, the developer just needs to
translate the application logic into the Mapper and Reducer sections with the key and
value output elements. We learned in Chapter 2, Writing Hadoop MapReduce Programs,
that to create Hadoop MapReduce jobs we need Mapper, Reducer, and Driver as the
three main components. Here, creating the driver file for running the MapReduce job
is optional when we are implementing MapReduce with R and Hadoop.

This chapter is written with the intention of integrating R and Hadoop. So we
will see the example of R with Hadoop streaming. Now, we will see how we can
use Hadoop streaming with the R script written with Mapper and Reducer. From
the following diagrams, we can identify the various components of the Hadoop
streaming MapReduce job.

Hadoop streaming components

Now, assume we have implemented our Mapper and Reducer as code_mapper.R
and code_reducer.R. We will see how we can run them in an integrated
environment of R and Hadoop. This can be run with the Hadoop streaming
command with various generic and streaming options.

Let's see the format of the Hadoop streaming command:

bin/hadoop command [generic Options] [streaming Options]

Chapter 4

[89]

The following diagram shows an example of the execution of Hadoop streaming, a
MapReduce job with several streaming options.

Hadoop streaming command options

In the preceding image, there are about six unique important components that are
required for the entire Hadoop streaming MapReduce job. All of them are streaming
options except jar.

The following is a line-wise description of the preceding Hadoop
streaming command:

•	 Line 1: This is used to specify the Hadoop jar files (setting up the classpath
for the Hadoop jar)

•	 Line 2: This is used for specifying the input directory of HDFS
•	 Line 3: This is used for specifying the output directory of HDFS
•	 Line 4: This is used for making a file available to a local machine
•	 Line 5: This is used to define the available R file as Mapper
•	 Line 6: This is used for making a file available to a local machine
•	 Line 7: This is used to define the available R file as Reducer

The main six Hadoop streaming components of the preceding command are listed
and explained as follows:

•	 jar: This option is used to run a jar with coded classes that are designed for
serving the streaming functionality with Java as well as other programmed
Mappers and Reducers. It's called the Hadoop streaming jar.

•	 input: This option is used for specifying the location of input dataset (stored
on HDFS) to Hadoop streaming MapReduce job.

Using Hadoop Streaming with R

[90]

•	 output: This option is used for telling the HDFS output directory (where
the output of the MapReduce job will be written) to Hadoop streaming
MapReduce job.

•	 file: This option is used for copying the MapReduce resources such as
Mapper, Reducer, and Combiner to computer nodes (Tasktrackers) to make
it local.

•	 mapper: This option is used for identification of the executable Mapper file.
•	 reducer: This option is used for identification of the executable Reducer file.

There are other Hadoop streaming command options too, but they are optional. Let's
have a look at them:

•	 inputformat: This is used to define the input data format by specifying the
Java class name. By default, it's TextInputFormat.

•	 outputformat: This is used to define the output data format by specifying
the Java class name. By default, it's TextOutputFormat.

•	 partitioner: This is used to include the class or file written with the code
for partitioning the output as (key, value) pairs of the Mapper phase.

•	 combiner: This is used to include the class or file written with the code for
reducing the Mapper output by aggregating the values of keys. Also, we can
use the default combiner that will simply combine all the key attribute values
before providing the Mapper's output to the Reducer.

•	 cmdenv: This option will pass the environment variable to the streaming
command. For example, we can pass R_LIBS = /your /path /to /R /
libraries.

•	 inputreader: This can be used instead of the inputformat class for
specifying the record reader class.

•	 verbose: This is used to verbose the output.
•	 numReduceTasks: This is used to specify the number of Reducers.
•	 mapdebug: This is used to debug the script of the Mapper file when the

Mapper task fails.
•	 reducedebug: This is used to debug the script of the Reducer file when the

Reducer task fails.

Chapter 4

[91]

Now, it's time to look at some generic options for the Hadoop streaming
MapReduce job.

•	 conf: This is used to specify an application configuration file.
-conf configuration_file

•	 D: This is used to define the value for a specific MapReduce or HDFS
property. For example:

•	 -D property = value or to specify the temporary HDFS directory.
-D dfs.temp.dir=/app/tmp/Hadoop/

or to specify the total number of zero Reducers:

-D mapred.reduce.tasks=0

The -D option only works when a tool is implemented.

•	 fs: This is used to define the Hadoop NameNode.
-fs localhost:port

•	 jt: This is used to define the Hadoop JobTracker.
-jt localhost:port

•	 files: This is used to specify the large or multiple text files from HDFS.
-files hdfs://host:port/directory/txtfile.txt

•	 libjars: This is used to specify the multiple jar files to be included in the
classpath.
-libjars /opt/ current/lib/a.jar, /opt/ current/lib/b.jar

•	 archives: This is used to specify the jar files to be unarchived on the local
machine.

-archives hdfs://host:fs_port/user/testfile.jar

Using Hadoop Streaming with R

[92]

Understanding how to run Hadoop
streaming with R
Now, we understood what Hadoop streaming is and how it can be called with
Hadoop generic as well as streaming options. Next, it's time to know how an R script
can be developed and run with R. For this, we can consider a better example than a
simple word count program.

The four different stages of MapReduce operations are explained here as follows:

•	 Understanding a MapReduce application
•	 Understanding how to code a MapReduce application
•	 Understanding how to run a MapReduce application
•	 Understanding how to explore the output of a MapReduce application

Understanding a MapReduce application
Problem definition: The problem is to segment a page visit by the geolocation.
In this problem, we are going to consider the website http://www.
gtuadmissionhelpline.com/, which has been developed to provide guidance to
students who are looking for admission in the Gujarat Technological University.
This website contains the college details of various fields such as Engineering
(diploma, degree, and masters), Medical, Hotel Management, Architecture,
Pharmacy, MBA, and MCA. With this MapReduce application, we will identify the
fields that visitors are interested in geographically.

For example, most of the online visitors from Valsad city visit the pages of MBA
colleges more often. Based on this, we can identify the mindset of Valsad students;
they are highly interested in getting admissions in the MBA field. So, with this
website traffic dataset, we can identify the city-wise interest levels. Now, if there are
no MBA colleges in Valsad, it will be a big issue for them. They will need to relocate
to other cities; this may increase the cost of their education.

By using this type of data, the Gujarat Technological University can generate
informative insights for students from different cities.

Input dataset source: To perform this type of analysis, we need to have the web
traffic data for that website. Google Analytics is one of the popular and free services
for tracking an online visitor's metadata from the website. Google Analytics stores
the web traffic data in terms of various dimensions ad metrics. We need to design a
specific query to extract the dataset from Google Analytics.

Chapter 4

[93]

Input dataset: The extracted Google Analytics dataset contains the following four
data columns:

•	 date: This is the date of visit and in the form of YYYY/MM/DD.
•	 country: This is the country of the visitor.
•	 city: This is the city of the visitor.
•	 pagePath: This is the URL of a page of the website.

The head section of the input dataset is as follows:

$ head -5 gadata_mr.csv

20120301,India,Ahmedabad,/

20120302,India,Ahmedabad,/gtuadmissionhelpline-team

20120302,India,Mumbai,/

20120302,India,Mumbai,/merit-calculator

20120303,India,Chennai,/

The expected output format is shown in the following diagram:

Using Hadoop Streaming with R

[94]

The following is a sample output:

Understanding how to code a MapReduce
application
In this section, we will learn about the following two units of a
MapReduce application:

•	 Mapper code
•	 Reducer code

Let's start with the Mapper code.

Mapper code: This R script, named ga-mapper.R, will take care of the Map phase of
a MapReduce job.

The Mapper's job is to work on each line and extract a pair (key, value) and pass it
to the Reducer to be grouped/aggregated. In this example, each line is an input to
Mapper and the output City:PagePath. City is a key and PagePath is a value. Now
Reducer can get all the page paths for a given city; hence, it can be grouped easily.

To identify the type of the script, here it is RScript

#! /usr/bin/env Rscript

To disable the warning massages to be printed

options(warn=-1)

To initiating the connection to standard input

input <- file("stdin", "r")

Chapter 4

[95]

Each line has these four fields (date, country, city, and
pagePath) in the same order. We split the line by a comma.
The result is a vector which has the date, country, city, and
pathPath in the indexes 1,2,3, and 4 respectively.

We extract the third and fourth element for the city and pagePath respectively.
Then, they will be written to the stream as key-value pairs and fed to Reducer for
further processing.

Running while loop until all the lines are read

while(length(currentLine <- readLines(input, n=1, warn=FALSE)) > 0) {

Splitting the line into vectors by "," separator

 fields <- unlist(strsplit(currentLine, ","))

Capturing the city and pagePath from fields

 city <- as.character(fields[3])

 pagepath <- as.character(fields[4])

Printing both to the standard output

print(paste(city, pagepath,sep="\t"),stdout())

}

Closing the connection to that input stream

close(input)

As soon as the output of the Mapper phase as (key, value) pairs is available to the
standard output, Reducers will read the line-oriented output from stdout and
convert it into final aggregated key-value pairs.

Let's see how the Mapper output format is and how the input data format of Reducer
looks like.

Reducer code: This R script named ga_reducer.R will take care of the Reducer
section of the MapReduce job.

Using Hadoop Streaming with R

[96]

As we discussed, the output of Mapper will be considered as the input for Reducer.
Reducer will read these city and pagePath pairs, and combine all of the values with
its respective key elements.

To identify the type of the script, here it is RScript

#! /usr/bin/env Rscript

Defining the variables with their initial values

city.key <- NA

page.value <- 0.0

To initiating the connection to standard input

input <- file("stdin", open="r")

Running while loop until all the lines are read

while (length(currentLine <- readLines(input, n=1)) > 0) {

Splitting the Mapper output line into vectors by

tab("\t") separator

 fields <- strsplit(currentLine, "\t")

capturing key and value form the fields

collecting the first data element from line which is city

 key <- fields[[1]][1]

collecting the pagepath value from line

 value <- as.character(fields[[1]][2])

The Mapper output is written in two main fields with \t as the separator and the
data line-by-line; hence, we have split the data by using \t to capture the two main
attributes (key and values) from the stream input.

After collecting the key and value, the Reducer will compare it with the previously
captured value. If not set previously, then set it; otherwise, combine it with the
previous character value using the combine function in R and finally, print it to the
HDFS output location.

setting up key and values

if block will check whether key attribute is

Chapter 4

[97]

initialized or not. If not initialized then it will be # assigned from
collected key attribute with value from # mapper output. This is designed
to run at initial time.

 if (is.na(city.key)) {

 city.key <- key

 page.value <- value

 }

 else {

Once key attributes are set, then will match with the previous key
attribute value. If both of them matched then they will combined in to
one.

 if (city.key == key) {

 page.value <- c(page.value, value)

 }

 else {

if key attributes are set already but attribute value # is other than
previous one then it will emit the store #p agepath values along with
associated key attribute value of city,

 page.value <- unique(page.value)

printing key and value to standard output

print(list(city.key, page.value),stdout())

 city.key <- key

 page.value <- value

 }

 }

}

print(list(city.key, page.value), stdout())

closing the connection

close(input)

Using Hadoop Streaming with R

[98]

Understanding how to run a MapReduce
application
After the development of the Mapper and Reducer script with the R language, it's
time to run them in the Hadoop environment. Before we execute this script, it is
recommended to test them on the sample dataset with simple pipe operations.

$ cat gadata_sample.csv | ga_mapper.R |sort | ga_reducer.R

The preceding command will run the developed Mapper and Reducer scripts
over a local machine. But it will run similar to the Hadoop streaming job. We need
to test this for any issue that might occur at runtime or for the identification of
programming or logical mistakes.

Now, we have Mapper and Reducer tested and ready to be run with the Hadoop
streaming command. This Hadoop streaming operation can be executed by calling
the generic jar command followed with the streaming command options as we
learned in the Understanding the basics of Hadoop streaming section of this chapter. We
can execute the Hadoop streaming job in the following ways:

•	 From a command prompt
•	 R or the RStudio console

The execution command with the generic and streaming command options will be
the same for both the ways.

Executing a Hadoop streaming job from the
command prompt
As we already learned in the section Understanding the basics of Hadoop streaming, the
execution of Hadoop streaming MapReduce jobs developed with R can be run using
the following command:

$ bin/hadoop jar {HADOOP_HOME}/contrib/streaming/hadoop-streaming-
1.0.3.jar

 -input /ga/gadaat_mr.csv

 -output /ga/output1

 -file /usr/local/hadoop/ga/ga_mapper.R

 -mapper ga_mapper.R

 -file /usr/local/hadoop/ga/ga_ reducer.R

 -reducer ga_reducer.R

Chapter 4

[99]

Executing the Hadoop streaming job from R or an
RStudio console
Being an R user, it will be more appropriate to run the Hadoop streaming job from
an R console. This can be done with the system command:

system(paste("bin/hadoop jar", "{HADOOP_HOME}/contrib/streaming/hadoop-
streaming-1.0.3.jar",
 "-input /ga/gadata_mr.csv",
 "-output /ga/output2",
 "-file /usr/local/hadoop/ga/ga_mapper.R",
"-mapper ga_mapper.R",
 "-file /usr/local/hadoop/ga/ga_reducer.R",
 "-reducer ga_reducer.R"))

This preceding command is similar to the one that you have already used in the
command prompt to execute the Hadoop streaming job with the generic options as
well as the streaming options.

Understanding how to explore the output of
MapReduce application
After completing the execution successfully, it's time to explore the output to check
whether the generated output is important or not. The output will be generated
along with two directories, _logs and _SUCCESS. _logs will be used for tracking all
the operations as well as errors; _SUCCESS will be generated only on the successful
completion of the MapReduce job.

Again, the commands can be fired in the following two ways:

•	 From a command prompt
•	 From an R console

Exploring an output from the command prompt
To list the generated files in the output directory, the following command will be
called:

$ bin/hadoop dfs -cat /ga/output/part-* > temp.txt

$ head -n 40 temp.txt

Using Hadoop Streaming with R

[100]

The snapshot for checking the output is as follows:

Exploring an output from R or an RStudio console
The same command can be used with the system method in the R
(with RStudio) console.

dir <- system("bin/hadoop dfs -ls /ga/output",intern=TRUE)
out <- system("bin/hadoop dfs -cat /ga/output2/part-00000",intern=TRUE)

Chapter 4

[101]

A screenshot of the preceding function is shown as follows:

Understanding basic R functions used in
Hadoop MapReduce scripts
Now, we will see some basic utility functions used in Hadoop Mapper and Reducer
for data processing:

•	 file: This function is used to create the connection to a file for the reading
or writing operation. It is also used for reading and writing from/to stdin
or stdout. This function will be used at the initiation of the Mapper and
Reducer phase.
Con <- file("stdin", "r")

•	 write: This function is used to write data to a file or standard input. It will be
used after the key and value pair is set in the Mapper.
write(paste(city,pagepath,sep="\t"),stdout())

•	 print: This function is used to write data to a file or standard input. It will be
used after the key and value pair is ready in the Mapper.
print(paste(city,pagepath,sep="\t"),stdout())

•	 close: This function can be used for closing the connection to the file after
the reading or writing operation is completed. It can be used with Mapper
and Reducer at the close (conn) end when all the processes are completed.

Using Hadoop Streaming with R

[102]

•	 stdin: This is a standard connection corresponding to the input.
The stdin() function is a text mode connection that returns the connection
object. This function will be used in Mapper as well as Reducer.
conn <- file("stdin", open="r")

•	 stdout: This is a standard connection corresponding to the output.
The stdout() function is a text mode connection that also returns the object.
This function will be used in Mapper as well as Reducer.
print(list(city.key, page.value),stdout())

where city.key is key and page.value is value of that key

•	 sink: sink drives the R output to the connection. If there is a file or stream
connection, the output will be returned to the file or stream. This will be used
in Mapper and Reducer for tracking all the functional outputs as well as the
errors.

sink("log.txt")
k <- 1:5
for(i in 1:k){
print(paste("value of k",k))
}sink()
unlink("log.txt")

Monitoring the Hadoop MapReduce job
A small syntax error in the Reducer phase leads to a failure of the MapReduce job.
After the failure of a Hadoop MapReduce job, we can track the problem from the
Hadoop MapReduce administration page, where we can get information about
running jobs as well as completed jobs.

In case of a failed job, we can see the total number of completed/failed Map and
Reduce jobs. Clicking on the failed jobs will provide the reason for the failing of
those particular number of Mappers or Reducers.

Also, we can check the real-time progress of that running MapReduce job with the
JobTracker console as shown in the following screenshot:

Chapter 4

[103]

Monitoring Hadoop MapReduce job

Through the command, we can check the history of that particular MapReduce job
by specifying its output directory with the following command:

$ bin/hadoop job –history /output/location

The following command will print the details of the MapReduce job, failed and
reasons for killed up jobs.

$ bin/hadoop job -history all /output/location

The preceding command will print about the successful task and the task attempts
made for each task.

Exploring the HadoopStreaming
R package
HadoopStreaming is an R package developed by David S. Rosenberg. We can say this
is a simple framework for MapReduce scripting. This also runs without Hadoop for
operating data in a streaming fashion. We can consider this R package as a Hadoop
MapReduce initiator. For any analyst or developer who is not able to recall the
Hadoop streaming command to be passed in the command prompt, this package
will be helpful to quickly run the Hadoop MapReduce job.

Using Hadoop Streaming with R

[104]

The three main features of this package are as follows:

•	 Chunkwise data reading: The package allows chunkwise data reading and
writing for Hadoop streaming. This feature will overcome memory issues.

•	 Supports various data formats: The package allows the reading and writing
of data in three different data formats.

•	 Robust utility for the Hadoop streaming command: The package also allows
users to specify the command-line argument for Hadoop streaming.

This package is mainly designed with three functions for reading the data efficiently:

•	 hsTableReader

•	 hsKeyValReader

•	 hsLineReader

Now, let's understand these functions and their use cases. After that we will
understand these functions with the help of the word count MapReduce job.

Understanding the hsTableReader function
The hsTableReader function is designed for reading data in the table format. This
function assumes that there is an input connection established with the file, so it will
retrieve the entire row. It assumes that all the rows with the same keys are stored
consecutively in the input file.

As the Hadoop streaming job guarantees that the output rows of Mappers will be
sorted before providing to the reducers, there is no need to use the sort function in a
Hadoop streaming MapReduce job. When we are not running this over Hadoop, we
explicitly need to call the sort function after the Mapper function gets execute.

Defining a function of hsTableReader:

hsTableReader(file="", cols='character',

 chunkSize=-1, FUN=print,

 ignoreKey=TRUE, singleKey=TRUE, skip=0,

 sep='\t', keyCol='key',

 FUN=NULL, ,carryMemLimit=512e6,

 carryMaxRows=Inf,

 stringsAsFactors=FALSE)

Chapter 4

[105]

The terms in the preceding code are as follows:

•	 file: This is a connection object, stream, or string.
•	 chunkSize: This indicates the maximum number of lines to be read at a time

by the function. -1 means all the lines at a time.
•	 cols: This means a list of column names as "what" argument to scan.
•	 skip: This is used to skip the first n data rows.
•	 FUN: This function will use the data entered by the user.
•	 carryMemLimit: This indicates the maximum memory limit for the values of

a single key.
•	 carryMaxRows: This indicates the maximum rows to be considered or read

from the file.
•	 stringsAsFactors: This defines whether the strings are converted to factors

or not (TRUE or FALSE).

For example, data in file:

Loading libraries

Library("HadoopStreaming")

Input data String with collection of key and values

str <- "
 key1\t1.91\nkey1\t2.1\nkey1\t20.2\nkey1\t3.2\
 nkey2\t1.2\nkey2\t10\nkey3\t2.5\nkey3\t2.1\nkey4\t1.2\n"

 cat(str)

The output for the preceding code is as shown in the following screenshot:

Using Hadoop Streaming with R

[106]

The data read by hsTableReader is as follows:

A list of column names, as'what' arg to scan

cols = list(key='',val=0)

To make a text connection

con <- textConnection(str, open = "r")

To read the data with chunksize 3

hsTableReader(con,cols,chunkSize=3,FUN=print,ignoreKey=TRUE)

The output for the preceding code is as shown in the following screenshot:

Understanding the hsKeyValReader function
The hsKeyValReader function is designed for reading the data available in the key-
value pair format. This function also uses chunkSize for defining the number of lines
to be read at a time, and each line consists of a key string and a value string.

hsKeyValReader(file = "", chunkSize = -1, skip = 0, sep = "\t",FUN =
 function(k, v) cat(paste(k, v))

The terms of this function are similar to hsTablereader().

Chapter 4

[107]

Example:

Function for reading chunkwise dataset

printkeyval <- function(k,v) {
 cat('A chunk:\n')
 cat(paste(k,v,sep=': '),sep='\n')
}

str <- "key1\tval1\nkey2\tval2\nkey3\tval3\n"

con <- textConnection(str, open = "r")

hsKeyValReader(con, chunkSize=1, FUN=printFn)

The output for the preceding code is as shown in the following screenshot:

Understanding the hsLineReader function
The hsLineReader function is designed for reading the entire line as a string without
performing the data-parsing operation. It repeatedly reads the chunkSize lines of
data from the file and passes a character vector of these strings to FUN.

hsLineReader(file = "", chunkSize = 3, skip = 0, FUN = function(x)
 cat(x, sep = "\n"))

The terms of this function are similar to hsTablereader().

Example:

str <- " This is HadoopStreaming!!\n here are,\n examples for chunk
dataset!!\n in R\n ?"

For defining the string as data source

con <- textConnection(str, open = "r")

read from the con object

hsLineReader(con,chunkSize=2,FUN=print)

Using Hadoop Streaming with R

[108]

The output for the preceding code is as shown in the following screenshot:

You can get more information on these methods as well as other existing
methods at http://cran.r-project.org/web/packages/HadoopStreaming/
HadoopStreaming.pdf.

Now, we will implement the above data-reading methods with the Hadoop
MapReduce program to be run over Hadoop. In some of the cases, the key-values
pairs or data rows will not be fed in the machine memory; so reading that data chunk
wise will be more appropriate than improving the machine configuration.

Problem definition:

Hadoop word count: As we already know what a word count application is, we will
implement the above given methods with the concept of word count. This R script
has been reproduced here from the HadoopStreaming R package, which can be
downloaded along with the HadoopStreaming R library distribution as the sample
code.

Input dataset: This has been taken from Chapter 1 of Anna Karenina (novel) by the
Russian writer Leo Tolstoy.

R script: This section contains the code of the Mapper, Reducer, and the rest of the
configuration parameters.

File: hsWordCnt.R

Loading the library

library(HadoopStreaming)

Additional command line arguments for this script (rest are
 default in hsCmdLineArgs)

spec = c('printDone','D',0,"logical","A flag to write DONE at the
 end.",FALSE)

opts = hsCmdLineArgs(spec, openConnections=T)

if (!opts$set) {

Chapter 4

[109]

 quit(status=0)

}

Defining the Mapper columns names

mapperOutCols = c('word','cnt')

Defining the Reducer columns names

reducerOutCols = c('word','cnt')

printing the column header for Mapper output

if (opts$mapcols) {

 cat(paste(mapperOutCols,collapse=opts$outsep),'\n',
 file=opts$outcon)

}

Printing the column header for Reducer output

if (opts$reducecols) {

 cat(paste(reducerOutCols,collapse=opts$outsep),'\n',
 file=opts$outcon)

}

For running the Mapper

if (opts$mapper) {

 mapper <- function(d) {

 words <- strsplit(paste(d,collapse=' '),'[[:punct:][:space:]]+')[[1]]
split on punctuation and spaces

 words <- words[!(words=='')] # get rid of empty words caused by
whitespace at beginning of lines

 df = data.frame(word=words)

 df[,'cnt']=1

For writing the output in the form of key-value table format

hsWriteTable(df[,mapperOutCols],file=opts$outcon,sep=opts$outsep)

 }

For chunk wise reading the Mapper output, to be feeded to Reducer hsLi
neReader(opts$incon,chunkSize=opts$chunksize,FUN=mapper)

Using Hadoop Streaming with R

[110]

For running the Reducer

} else if (opts$reducer) {

 reducer <- function(d) {

 cat(d[1,'word'],sum(d$cnt),'\n',sep=opts$outsep)

 }

 cols=list(word='',cnt=0) # define the column names and types
(''-->string 0-->numeric)

 hsTableReader(opts$incon,cols,chunkSize=opts$chunksize,skip=opts$skip,s
ep=opts$insep,keyCol='word',singleKey=T, ignoreKey= F, FUN=reducer)

 if (opts$printDone) {

 cat("DONE\n");

 }

}

For closing the connection corresponding to input

if (!is.na(opts$infile)) {

 close(opts$incon)

}

For closing the connection corresponding to input

if (!is.na(opts$outfile)) {

 close(opts$outcon)

}

Running a Hadoop streaming job
Since this is a Hadoop streaming job, it will run same as the executed previous
example of a Hadoop streaming job. For this example, we will use a shell script to
execute the runHadoop.sh file to run Hadoop streaming.

Setting up the system environment variable:

#! /usr/bin/env bash

HADOOP="$HADOOP_HOME/bin/hadoop" # Hadoop command

HADOOPSTREAMING="$HADOOP jar

$HADOOP_HOME/contrib/streaming/hadoop-streaming-1.0.3.jar" # change
version number as appropriate

Chapter 4

[111]

RLIBPATH=/usr/local/lib/R/site-library # can specify additional R
Library paths here

Setting up the MapReduce job parameters:

INPUTFILE="anna.txt"

HFSINPUTDIR="/HadoopStreaming"

OUTDIR="/HadoopStreamingRpkg_output"

RFILE=" home/hduser/Desktop/HadoopStreaming/inst/wordCntDemo/
hsWordCnt.R"

#LOCALOUT="/home/hduser/Desktop/HadoopStreaming/inst/wordCntDemo/
annaWordCnts.out"

Put the file into the Hadoop file system

#$HADOOP fs -put $INPUTFILE $HFSINPUTDIR

Removing the existing output directory:

Remove the directory if already exists (otherwise, won't run)

#$HADOOP fs -rmr $OUTDIR

Designing the Hadoop MapReduce command with generic and streaming options:

MAPARGS="--mapper"

REDARGS="--reducer"

JOBARGS="-cmdenv R_LIBS=$RLIBPATH" # numReduceTasks 0

echo $HADOOPSTREAMING -cmdenv R_LIBS=$RLIBPATH -input
$HFSINPUTDIR/$INPUTFILE -output $OUTDIR -mapper "$RFILE $MAPARGS"
-reducer "$RFILE $REDARGS" -file $RFILE

$HADOOPSTREAMING $JOBARGS -input $HFSINPUTDIR/$INPUTFILE -output
$OUTDIR -mapper "$RFILE $MAPARGS" -reducer "$RFILE $REDARGS" -file $RFILE

Extracting the output from HDFS to the local directory:

Extract output

./$RFILE --reducecols > $LOCALOUT

$HADOOP fs -cat $OUTDIR/part* >> $LOCALOUT

Using Hadoop Streaming with R

[112]

Executing the Hadoop streaming job
We can now execute the Hadoop streaming job by executing the command,
runHadoop.sh. To execute this, we need to set the user permission.

sudo chmod +x runHadoop.sh

Executing via the following command:

./runHadoop.sh

Finally, it will execute the whole Hadoop streaming job and then copy the output to
the local directory.

Summary
We have learned most of the ways to integrate R and Hadoop for performing data
operations. In the next chapter, we will learn about the data analytics cycle for
solving real world data analytics problems with the help of R and Hadoop.

Learning Data Analytics
with R and Hadoop

In the previous chapters we learned about the installation, configuration, and
integration of R and Hadoop.

In this chapter, we will learn how to perform data analytics operations over an
integrated R and Hadoop environment. Since this chapter is designed for data
analytics, we will understand this with an effective data analytics cycle.

In this chapter we will learn about:

•	 Understanding the data analytics project life cycle
•	 Understanding data analytics problems

Understanding the data analytics project
life cycle
While dealing with the data analytics projects, there are some fixed tasks that should
be followed to get the expected output. So here we are going to build a data analytics
project cycle, which will be a set of standard data-driven processes to lead data to
insights effectively. The defined data analytics processes of a project life cycle should
be followed by sequences for effectively achieving the goal using input datasets.
This data analytics process may include identifying the data analytics problems,
designing, and collecting datasets, data analytics, and data visualization.

Learning Data Analytics with R and Hadoop

[114]

The data analytics project life cycle stages are seen in the following diagram:

Let's get some perspective on these stages for performing data analytics.

Identifying the problem
Today, business analytics trends change by performing data analytics over web
datasets for growing business. Since their data size is increasing gradually day
by day, their analytical application needs to be scalable for collecting insights
from their datasets.

With the help of web analytics, we can solve the business analytics problems. Let's
assume that we have a large e-commerce website, and we want to know how
to increase the business. We can identify the important pages of our website by
categorizing them as per popularity into high, medium, and low. Based on these
popular pages, their types, their traffic sources, and their content, we will be able to
decide the roadmap to improve business by improving web traffic, as well as content.

Designing data requirement
To perform the data analytics for a specific problem, it needs datasets from
related domains. Based on the domain and problem specification, the data source
can be decided and based on the problem definition; the data attributes of these
datasets can be defined.

Chapter 5

[115]

For example, if we are going to perform social media analytics (problem
specification), we use the data source as Facebook or Twitter. For identifying the user
characteristics, we need user profile information, likes, and posts as data attributes.

Preprocessing data
In data analytics, we do not use the same data sources, data attributes, data tools,
and algorithms all the time as all of them will not use data in the same format. This
leads to the performance of data operations, such as data cleansing, data aggregation,
data augmentation, data sorting, and data formatting, to provide the data in a
supported format to all the data tools as well as algorithms that will be used in the
data analytics.

In simple terms, preprocessing is used to perform data operation to translate data
into a fixed data format before providing data to algorithms or tools. The data
analytics process will then be initiated with this formatted data as the input.

In case of Big Data, the datasets need to be formatted and uploaded to Hadoop
Distributed File System (HDFS) and used further by various nodes with Mappers
and Reducers in Hadoop clusters.

Performing analytics over data
After data is available in the required format for data analytics algorithms, data
analytics operations will be performed. The data analytics operations are performed
for discovering meaningful information from data to take better decisions towards
business with data mining concepts. It may either use descriptive or predictive
analytics for business intelligence.

Analytics can be performed with various machine learning as well as custom
algorithmic concepts, such as regression, classification, clustering, and model-based
recommendation. For Big Data, the same algorithms can be translated to MapReduce
algorithms for running them on Hadoop clusters by translating their data analytics
logic to the MapReduce job which is to be run over Hadoop clusters. These models
need to be further evaluated as well as improved by various evaluation stages
of machine learning concepts. Improved or optimized algorithms can provide
better insights.

Learning Data Analytics with R and Hadoop

[116]

Visualizing data
Data visualization is used for displaying the output of data analytics. Visualization is
an interactive way to represent the data insights. This can be done with various data
visualization softwares as well as R packages. R has a variety of packages for the
visualization of datasets. They are as follows:

•	 ggplot2: This is an implementation of the Grammar of Graphics by
	 Dr. Hadley Wickham (http://had.co.nz/). For more information
refer http://cran.r-project.org/web/packages/ggplot2/.

•	 rCharts: This is an R package to create, customize, and publish interactive
JavaScript visualizations from R by using a familiar lattice-style plotting
interface by Markus Gesmann and Diego de Castillo. For more information refer
http://ramnathv.github.io/rCharts/.

Some popular examples of visualization with R are as follows:

•	 Plots for facet scales (ggplot): The following figure shows the comparison of
males and females with different measures; namely, education, income, life
expectancy, and literacy, using ggplot:

Chapter 5

[117]

•	 Dashboard charts: This is an rCharts type. Using this we can build
interactive animated dashboards with R.

Understanding data analytics problems
In this section, we have included three practical data analytics problems with various
stages of data-driven activity with R and Hadoop technologies. These data analytics
problem definitions are designed such that readers can understand how Big Data
analytics can be done with the analytical power of functions, packages of R, and the
computational powers of Hadoop.

The data analytics problem definitions are as follows:

•	 Exploring the categorization of web pages
•	 Computing the frequency of changes in the stock market
•	 Predicting the sale price of a blue book for bulldozers (case study)

Learning Data Analytics with R and Hadoop

[118]

Exploring web pages categorization
This data analytics problem is designed to identify the category of a web page of a
website, which may categorized popularity wise as high, medium, or low (regular),
based on the visit count of the pages. While designing the data requirement stage
of the data analytics life cycle, we will see how to collect these types of data from
Google Analytics.

Popular ategorizationc

Web page ategorization MapReduce Jobc

Analytics

Home Page
Services
Support
Products
Contact Us
About Us

High
Home Page

Medium
Service
Products

Low
Support
Contact Us
About Us

Web agesp

Identifying the problem
As this is a web analytics problem, the goal of the problem is to identify the
importance of web pages designed for websites. Based on this information, the
content, design, or visits of the lower popular pages can be improved or increased.

Designing data requirement
In this section, we will be working with data requirement as well as data collection
for this data analytics problem. First let's see how the requirement for data can be
achieved for this problem.

Since this is a web analytics problem, we will use Google Analytics data source.
To retrieve this data from Google Analytics, we need to have an existent Google
Analytics account with web traffic data stored on it. To increase the popularity, we
will require the visits information of all of the web pages. Also, there are many other
attributes available in Google Analytics with respect to dimensions and metrics.

Chapter 5

[119]

Understanding the required Google Analytics data
attributes
The header format of the dataset to be extracted from Google Analytics is as follows:

date, source, pageTitle, pagePath

•	 date: This is the date of the day when the web page was visited
•	 source: This is the referral to the web page
•	 pageTitle: This is the title of the web page
•	 pagePath: This is the URL of the web page

Collecting data
As we are going to extract the data from Google Analytics, we need to use
RGoogleAnalytics, which is an R library for extracting Google Analytics datasets
within R. To extract data, you need this plugin to be installed in R. Then you will be
able to use its functions.

The following is the code for the extraction process from Google Analytics:

Loading the RGoogleAnalytics library
require("RGoogleAnalyics")

Step 1. Authorize your account and paste the access_token
query <- QueryBuilder()
access_token <- query$authorize()

Step 2. Create a new Google Analytics API object
ga <- RGoogleAnalytics()

To retrieve profiles from Google Analytics
ga.profiles <- ga$GetProfileData(access_token)

List the GA profiles
ga.profiles

Step 3. Setting up the input parameters
profile <- ga.profiles$id[3]
startdate <- "2010-01-08"
enddate <- "2013-08-23"
dimension <- "ga:date,ga:source,ga:pageTitle,ga:pagePath"
metric <- "ga:visits"
sort <- "ga:visits"
maxresults <- 100099

Learning Data Analytics with R and Hadoop

[120]

Step 4. Build the query string, use the profile by setting its index
value
query$Init(start.date = startdate,
 end.date = enddate,
 dimensions = dimension,
 metrics = metric,

 max.results = maxresults,
 table.id = paste("ga:",profile,sep="",collapse=","),
 access_token=access_token)

Step 5. Make a request to get the data from the API
ga.data <- ga$GetReportData(query)

Look at the returned data
head(ga.data)
write.csv(ga.data,"webpages.csv", row.names=FALSE)

The preceding file will be available with the chapter contents for download.

Preprocessing data
Now, we have the raw data for Google Analytics available in a CSV file. We need to
process this data before providing it to the MapReduce algorithm.

There are two main changes that need to be performed into the dataset:

•	 Query parameters needs to be removed from the column pagePath as
follows:
pagePath <- as.character(data$pagePath)
pagePath <- strsplit(pagePath,"\\?")
pagePath <- do.call("rbind", pagePath)
pagePath <- pagePath [,1]

•	 The new CSV file needs to be created as follows:

data <- data.frame(source=data$source, pagePath=d,visits =)
write.csv(data, "webpages_mapreduce.csv" , row.names=FALSE)

Chapter 5

[121]

Performing analytics over data
To perform the categorization over website pages, we will build and run the
MapReduce algorithm with R and Hadoop integration. As already discussed in the
Chapter 2, Writing Hadoop MapReduce Programs, sometimes we need to use multiple
Mappers and Reducers for performing data analytics; this means using the chained
MapReduce jobs.

In case of chaining MapReduce jobs, multiple Mappers and Reducers can
communicate in such a way that the output of the first job will be assigned to
the second job as input. The MapReduce execution sequence is described in the
following diagram:

Input

MapReduce Job 1

Chaining MapReduce

Map 1 Reduce 1

MapReduce Job 2

Map 2 Reduce 2

Output

Chaining MapReduce

Now let's start with the programming task to perform analytics:

1.	 Initialize by setting Hadoop variables and loading the rmr2 and rhdfs
packages of the RHadoop libraries:
setting up the Hadoop variables need by RHadoop
Sys.setenv(HADOOP_HOME="/usr/local/hadoop/")
Sys.setenv(HADOOP_CMD="/usr/local/hadoop/bin/hadoop")

Loading the RHadoop libraries rmr2 and rhdfs
library(rmr2)
library(rhdfs)

To initializing hdfs
hdfs.init()

2.	 Upload the datasets to HDFS:

First uploading the data to R console,
webpages <- read.csv("/home/vigs/Downloads/webpages_mapreduce.
csv")

saving R file object to HDFS,
webpages.hdfs <- to.dfs(webpages)

Learning Data Analytics with R and Hadoop

[122]

Now we will see the development of Hadoop MapReduce job 1 for these analytics.
We will divide this job into Mapper and Reducer. Since, there are two MapReduce
jobs, there will be two Mappers and Reducers. Also note that here we need to create
only one file for both the jobs with all Mappers and Reducers. Mapper and Reducer
will be established by defining their separate functions.

Let's see MapReduce job 1.

•	 Mapper 1: The code for this is as follows:
mapper1 <- function(k,v) {

 # To storing pagePath column data in to key object
 key <- v[2]

 # To store visits column data into val object
 Val <- v[3]

 # emitting key and value for each row
 keyval(key, val)
}
totalvisits <- sum(webpages$visits)

•	 Reducer 1: The code for this is as follows:
reducer1 <- function(k,v) {

 # Calculating percentage visits for the specific URL
 per <- (sum(v)/totalvisits)*100
 # Identify the category of URL
 if (per <33)
 {
val <- "low"
}
 if (per >33 && per < 67)
 {
 val <- "medium"
 }
 if (per > 67)
 {
 val <- "high"
 }

 # emitting key and values
 keyval(k, val)

}

Chapter 5

[123]

•	 Output of MapReduce job 1: The intermediate output for the information is
shown in the following screenshot:

The output in the preceding screenshot is only for information about the output of
this MapReduce job 1. This can be considered an intermediate output where only
100 data rows have been considered from the whole dataset for providing output. In
these rows, 23 URLs are unique; so the output has provided 23 URLs.

Let's see Hadoop MapReduce job 2:

•	 Mapper 2: The code for this is as follows:
#Mapper:
mapper2 <- function(k, v) {

Reversing key and values and emitting them
 keyval(v,k)

}

Learning Data Analytics with R and Hadoop

[124]

•	 Reducer 2: The code for this is as follows:

key <- NA
val <- NULL
Reducer:
reducer2 <- function(k, v) {

for checking whether key-values are already assigned or not.
 if(is.na(key)) {
 key <- k
 val <- v
 } else {
 if(key==k) {
 val <- c(val,v)
 } else{
 key <- k
 val <- v
 }
 }
emitting key and list of values

keyval(key,list(val))

}

Before executing the MapReduce job, please start all the Hadoop
daemons and check the HDFS connection via the hdfs.init() method.
If your Hadoop daemons have not been started, you can start them by
$hduser@ubuntu :~ $HADOOP_HOME/bin/start-all.sh.

Once we are ready with the logic of the Mapper and Reducer, MapReduce jobs
can be executed by the MapReduce method of the rmr2 package. Here we have
developed multiple MapReduce jobs, so we need to call the mapreduce function
within the mapreduce function with the required parameters.

Chapter 5

[125]

The command for calling a chained MapReduce job is seen in the following figure:

The following is the command for retrieving the generated output from HDFS:

from.dfs(output)

While executing Hadoop MapReduce, the execution log output will be printed over
the terminal for the purpose of monitoring. We will understand MapReduce job 1
and MapReduce job 2 by separating them into different parts.

The details for MapReduce job 1 is as follows:

•	 Tracking the MapReduce job metadata: With this initial portion of log, we
can identify the metadata for the Hadoop MapReduce job. We can also track
the job status with the web browser by calling the given Tracking URL.

Learning Data Analytics with R and Hadoop

[126]

•	 Tracking status of Mapper and Reducer tasks: With this portion of log, we
can monitor the status of the Mapper or Reducer task being run on Hadoop
cluster to get details such as whether it was a success or a failure.

•	 Tracking HDFS output location: Once the MapReduce job is completed, its
output location will be displayed at the end of logs.

For MapReduce job 2.

•	 Tracking the MapReduce job metadata: With this initial portion of log, we
can identify the metadata for the Hadoop MapReduce job. We can also track
the job status with the web browser by calling the given Tracking URL.

•	 Tracking status of the Mapper and Reducer tasks: With this portion of log,
we can monitor the status of the Mapper or Reducer tasks being run on the
Hadoop cluster to get the details such as whether it was successful or failed.

Chapter 5

[127]

•	 Tracking HDFS output location: Once the MapReduce job is completed, its
output location will be displayed at the end of the logs.

The output of this chained MapReduce job is stored at an HDFS location, which can
be retrieved by the command:

from.dfs(output)

The response to the preceding command is shown in the following figure (output
only for the top 1000 rows of the dataset):

Learning Data Analytics with R and Hadoop

[128]

Visualizing data
We collected the web page categorization output using the three categories. I think
the best thing we can do is simply list the URLs. But if we have more information,
such as sources, we can represent the web pages as nodes of a graph, colored by
popularity with directed edges when users follow the links. This can lead to more
informative insights.

Computing the frequency of stock market
change
This data analytics MapReduce problem is designed for calculating the frequency of
stock market changes.

Identifying the problem
Since this is a typical stock market data analytics problem, it will calculate the
frequency of past changes for one particular symbol of the stock market, such as
a Fourier Transformation. Based on this information, the investor can get more
insights on changes for different time periods. So the goal of this analytics is to
calculate the frequencies of percentage change.

Yahoo finance data for symbol BP

Change frequency calculation for Yahoo Finance data

2013-08-23 41.16 41.54 41.11 4117400 41.51

2013-08-22

2013-08-21

2013-08-20

2013-08-19

4 .820

4 .840

41.02

41.29

40.99

4 .890

4 .900

41.35

4 .750

4 .510

4 .900

41.05

2808300

4296800

40.90

3633800

40.91

40.53

41.10

41.51

40.91

40.53

4354200

41.10

Date Open High Low Close Volume Adj Close

-0.1

0.3

0.8

1.0

1.9

20

2

1

22

12

Change Frequency

Chapter 5

[129]

Designing data requirement
For this stock market analytics, we will use Yahoo! Finance as the input dataset. We
need to retrieve the specific symbol's stock information. To retrieve this data, we will
use the Yahoo! API with the following parameters:

•	 From month
•	 From day
•	 From year
•	 To month
•	 To day
•	 To year
•	 Symbol

For more information on this API, visit
http://developer.yahoo.com/finance/.

Preprocessing data
To perform the analytics over the extracted dataset, we will use R to fire the
following command:

stock_BP <- read.csv("http://ichart.finance.yahoo.com/table.csv?s=BP")

Or you can also download via the terminal:

wget http://ichart.finance.yahoo.com/table.csv?s=BP

#exporting to csv file

write.csv(stock_BP,"table.csv", row.names=FALSE)

Then upload it to HDFS by creating a specific Hadoop directory for this:

creating /stock directory in hdfs

bin/hadoop dfs -mkdir /stock

uploading table.csv to hdfs in /stock directory

bin/hadoop dfs -put /home/Vignesh/downloads/table.csv /stock/

Learning Data Analytics with R and Hadoop

[130]

Performing analytics over data
To perform the data analytics operations, we will use streaming with R and Hadoop
(without the HadoopStreaming package). So, the development of this MapReduce
job can be done without any RHadoop integrated library/package.

In this MapReduce job, we have defined Map and Reduce in different R files to be
provided to the Hadoop streaming function.

•	 Mapper: stock_mapper.R
#! /usr/bin/env/Rscript

To disable the warnings

options(warn=-1)

To take input the data from streaming

input <- file("stdin", "r")

To reading the each lines of documents till the end

while(length(currentLine <-readLines(input, n=1, warn=FALSE)) > 0)

{

To split the line by "," seperator

fields <- unlist(strsplit(currentLine, ","))

Capturing open column value

 open <- as.double(fields[2])

Capturing close columns value

 close <- as.double(fields[5])

Calculating the difference of close and open attribute

 change <- (close-open)

emitting change as key and value as 1

write(paste(change, 1, sep="\t"), stdout())

}

close(input)

Chapter 5

[131]

•	 Reducer: stock_reducer.R

#! /usr/bin/env Rscript

stock.key <- NA

stock.val <- 0.0

conn <- file("stdin", open="r")

while (length(next.line <- readLines(conn, n=1)) > 0) {

 split.line <- strsplit(next.line, "\t")

 key <- split.line[[1]][1]

 val <- as.numeric(split.line[[1]][2])

 if (is.na(current.key)) {

 current.key <- key

 current.val <- val

 }

 else {

 if (current.key == key) {

current.val <- current.val + val

}

else {

write(paste(current.key, current.val, sep="\t"), stdout())

current.key <- key

current.val<- val

}

}

}

write(paste(current.key, current.val, sep="\t"), stdout())

close(conn)

Learning Data Analytics with R and Hadoop

[132]

From the following codes, we run MapReduce in R without installing or using any
R library/package. There is one system() method in R to fire the system command
within R console to help us direct the firing of Hadoop jobs within R. It will also
provide the repose of the commands into the R console.

For locating at Hadoop Directory

system("cd $HADOOP_HOME")

For listing all HDFS first level directory
system("bin/hadoop dfs -ls /")

For running Hadoop MapReduce with streaming parameters

system(paste("bin/hadoop jar

/usr/local/hadoop/contrib/streaming/hadoop-streaming-1.0.3.jar ",

" -input /stock/table.csv",

" -output /stock/outputs",

" -file /usr/local/hadoop/stock/stock_mapper.R",

" -mapper /usr/local/hadoop/stock/stock_mapper.R",

" -file /usr/local/hadoop/stock/stock_reducer.R",

" -reducer /usr/local/hadoop/stock/stock_reducer.R"))

For storing the output of list command

dir <- system("bin/hadoop dfs -ls /stock/outputs", intern=TRUE)

dir

For storing the output from part-oooo (output file)

out <- system("bin/hadoop dfs -cat /stock/outputs/part-00000",
intern=TRUE)

displaying Hadoop MapReduce output data out

Chapter 5

[133]

You can also run this same program via the terminal:

bin/hadoop jar /usr/local/hadoop/contrib/streaming/hadoop-streaming-
1.0.3.jar \

 -input /stock/table.csv \

 -output /stock/outputs\

 -file /usr/local/hadoop/stock/stock_mapper.R \

 -mapper /usr/local/hadoop/stock/stock_mapper.R \

 -file /usr/local/hadoop/stock/stock_reducer.R \

 -reducer /usr/local/hadoop/stock/stock_reducer.R

While running this program, the output at your R console or terminal will be as
given in the following screenshot, and with the help of this we can monitor the status
of the Hadoop MapReduce job. Here we will see them sequentially with the divided
parts. Please note that we have separated the logs output into parts to help you
understand them better.

The MapReduce log output contains (when run from terminal):

•	 With this initial portion of log, we can identify the metadata for the
Hadoop MapReduce job. We can also track the job status with the web
browser, by calling the given Tracking URL. This is how the MapReduce
job metadata is tracked.

Learning Data Analytics with R and Hadoop

[134]

•	 With this portion of log, we can monitor the status of the Mapper or Reducer
tasks being run on the Hadoop cluster to get the details like whether it
was successful or failed. This is how we track the status of the Mapper and
Reducer tasks.

•	 Once the MapReduce job is completed, its output location will be displayed
at the end of the logs. This is known as tracking the HDFS output location.

•	 From the terminal, the output of the Hadoop MapReduce program can be
called using the following command:
bin/hadoop dfs -cat /stock/outputs/part-00000

Chapter 5

[135]

•	 The headers of the output of your MapReduce program will look as follows:
change frequency

•	 The following figure shows the sample output of MapReduce problem:

Learning Data Analytics with R and Hadoop

[136]

Visualizing data
We can get more insights if we visualize our output with various graphs in R.
Here, we have tried to visualize the output with the help of the ggplot2 package.

From the previous graph, we can quickly identify that most of the time the stock
price has changed from around 0 to 1.5. So, the stock's price movements in the
history will be helpful at the time of investing.

The required code for generating this graph is as follows:

Loading ggplot2 library
library(ggplot2);

we have stored above terminal output to stock_output.txt file

#loading it to R workspace
myStockData <- read.delim("stock_output.txt", header=F, sep="",
dec=".");

plotting the data with ggplot2 geom_smooth function
ggplot(myStockData, aes(x=V1, y=V2)) + geom_smooth() + geom_point();

Chapter 5

[137]

In the next section, we have included the case study on how Big Data analytics is
performed with R and Hadoop for the Kaggle data competition.

Predicting the sale price of blue book for
bulldozers – case study
This is a case study for predicting the auction sale price for a piece of heavy
equipment to create a blue book for bulldozers.

Identifying the problem
In this example, I have included a case study by Cloudera data scientists on how
large datasets can be resampled, and applied the random forest model with R and
Hadoop. Here, I have considered the Kaggle blue book for bulldozers competition
for understanding the types of Big Data problem definitions. Here, the goal of this
competition is to predict the sale price of a particular piece of heavy equipment at a
usage auction based on its usage, equipment type, and configuration. This solution has
been provided by Uri Laserson (Data Scientist at Cloudera). The provided data contains
the information about auction result posting, usage, and equipment configuration.

It's a trick to model the Big Data sets and divide them into the smaller datasets.
Fitting the model on that dataset is a traditional machine learning technique such as
random forests or bagging. There are possibly two reasons for random forests:

•	 Large datasets typically live in a cluster, so any operations will have some
level of parallelism. Separate models fit on separate nodes that contain
different subsets of the initial data.

•	 Even if you can use the entire initial dataset to fit a single model, it turns
out that ensemble methods, where you fit multiple smaller models by using
subsets of data, generally outperform single models. Indeed, fitting a single
model with 100M data points can perform worse than fitting just a few
models with 10M data points each (so smaller total data outperforms larger
total data).

Sampling with replacement is the most popular method for sampling from the
initial dataset for producing a collection of samples for model fitting. This method
is equivalent to sampling from a multinomial distribution, where the probability of
selecting any individual input data point is uniform over the entire dataset.

Kaggle is a Big Data platform where data scientists from all
over the world compete to solve Big Data analytics problems
hosted by data-driven organizations.

Learning Data Analytics with R and Hadoop

[138]

Designing data requirement
For this competition, Kaggle has provided real-world datasets that comprises
approximately 4,00,000 training data points. Each data point represents the various
attributes of sales, configuration of the bulldozer, and sale price. To find out where to
predict the sales price, the random forest regression model needs to be implemented.

The reference link for this Kaggle competition is http://www.
kaggle.com/c/bluebook-for-bulldozers. You can check
the data, information, forum, and leaderboard as well as explore
some other Big Data analytics competitions and participate in
them to evaluate your data analytics skills.

We chose this model because we are interested in predicting the sales price in
numeric values from random sets of a large dataset.

The datasets are provided in the terms of the following data files:

File name Description format (size)
Train This is a training set that contains data for

2011.
Valid This is a validation set that contains data

from January 1, 2012 to April 30, 2012.
Data dictionary This is the metadata of the training dataset

variables.
Machine_Appendix This contains the correct year of

manufacturing for a given machine along
with the make, model, and product class
details.

Test This tests datasets.
random_forest_benchmark_test This is the benchmark solution provided by

the host.

In case you want to learn and practice Big Data analytics, you can
acquire the Big Data sets from the Kaggle data source by participating
in the Kaggle data competitions. These contain the datasets of various
fields from industries worldwide.

Chapter 5

[139]

Preprocessing data
To perform the analytics over the provided Kaggle datasets, we need to build a
predictive model. To predict the sale price for the auction, we will fit the model over
provided datasets. But the datasets are provided with more than one file. So we will
merge them as well as perform data augmentation for acquiring more meaningful
data. We are going to build a model from Train.csv and Machine_Appendix.csv
for better prediction of the sale price.

Here are the data preprocessing tasks that need to be performed over the datasets:

Loading Train.csv dataset which includes the Sales as well as
machine identifier data attributes.

transactions <- read.table(file="~/Downloads/Train.csv",
header=TRUE,
sep=",",
quote="\"",
row.names=1,
fill=TRUE,
colClasses=c(MachineID="factor",
 ModelID="factor",
datasource="factor",
YearMade="character",
SalesID="character",
auctioneerID="factor",
UsageBand="factor",
saledate="custom.date.2",
Tire_Size="tire.size",
Undercarriage_Pad_Width="undercarriage",
Stick_Length="stick.length"),
na.strings=na.values)

Loading Machine_Appendix.csv for machine configuration information

machines <- read.table(file="~/Downloads/Machine_Appendix.csv",
header=TRUE,
sep=",",
quote="\"",
fill=TRUE,
colClasses=c(MachineID="character",
ModelID="factor",
fiManufacturerID="factor"),
na.strings=na.values)

Learning Data Analytics with R and Hadoop

[140]

Updating the values to numeric
updating sale data number
transactions$saledatenumeric <- as.numeric(transactions$saledate)
transactions$ageAtSale <- as.numeric(transactions$saledate -
as.Date(transactions$YearMade, format="%Y"))

transactions$saleYear <- as.numeric(format(transactions$saledate,
"%Y"))

updating the month of sale from transaction
transactions$saleMonth <- as.factor(format(transactions$saledate,
"%B"))

updating the date of sale from transaction
transactions$saleDay <- as.factor(format(transactions$saledate, "%d"))

updating the day of week of sale from transaction
transactions$saleWeekday <- as.factor(format(transactions$saledate,
"%A"))

updating the year of sale from transaction
transactions$YearMade <- as.integer(transactions$YearMade)

deriving the model price from transaction
transactions$MedianModelPrice <- unsplit(lapply(split(transactions$Sa
lePrice,
transactions$ModelID), median), transactions$ModelID)

deriving the model count from transaction
transactions$ModelCount <- unsplit(lapply(split(transactions$SalePri
ce, transactions$ModelID), length), transactions$ModelID)

Merging the transaction and machine data in to dataframe
training.data <- merge(x=transactions, y=machines, by="MachineID")

write denormalized data out
write.table(x=training.data,
file="~/temp/training.csv",
sep=",",
quote=TRUE,
row.names=FALSE,
eol="\n",
col.names=FALSE)
Create poisson directory at HDFS
bin/hadoop dfs -mkdir /poisson

Uploading file training.csv at HDFS
bin/hadoop dfs -put ~/temp/training.csv /poisson/

Chapter 5

[141]

Performing analytics over data
As we are going to perform analytics with sampled datasets, we need to understand
how many datasets need to be sampled.

For random sampling, we have considered three model parameters, which are
as follows:

•	 We have N data points in our initial training set. This is very large (106-109)
and is distributed over an HDFS cluster.

•	 We are going to train a set of M different models for an ensemble classifier.
•	 Each of the M models will be fitted with K data points, where typically K <<

N. (For example, K may be 1-10 percent of N.).

We have N numbers of training datasets, which are fixed and generally outside our
control. As we are going to handle this via Poisson sampling, we need to define the
total number of input vectors to be consumed into the random forest model.

There are three cases to be considered:

•	 KM < N: In this case, we are not using the full amount of data available to us
•	 KM = N: In this case, we can exactly partition our dataset to produce totally

independent samples
•	 KM > N: In this case, we must resample some of our data with replacements

The Poisson sampling method described in the following section handles all the
three cases in the same framework. However, note that for the case KM = N, it does
not partition the data, but simply resamples it.

Understanding Poisson-approximation resampling
Generalized linear models are an extension of the general linear model. Poisson
regression is a situation of generalized models. The dependent variable obeys
Poisson distribution.

Poisson sampling will be run on the Map of the MapReduce task because it occurs for
input data points. This doesn't guarantee that every data point will be considered into
the model, which is better than multinomial resampling of full datasets. But it will
guarantee the generation of independent samples by using N training input points.

Learning Data Analytics with R and Hadoop

[142]

Here, the following graph indicates the amount of missed datasets that can be
retrieved in the Poisson sampling with the function of KM/N:

KM/N

100

75

50

25

0

2.50.0 5.0 7.5 10.0

Pe
rc

en
t

of
 in

it
ia

l d
at

a
se

t
m

is
se

d

The grey line indicates the value of KM=N. Now, let's look at the pseudo code of
the MapReduce algorithm. We have used three parameters: N, M, and K where K is
fixed. We used T=K/N to eliminate the need for the value of N in advance.

•	 An example of sampling parameters: Here, we will implement the
preceding logic with a pseudo code. We will start by defining two model
input parameters as frac.per.model and num.models, where frac.per.
model is used for defining the fraction of the full dataset that can be used,
and num.models is used for defining how many models will be fitted from
the dataset.
T = 0.1 # param 1: K / N-average fraction of input data in each
model 10%

M = 50 # param 2: number of models

Chapter 5

[143]

•	 Logic of Mapper: Mapper will be designed for generating the samples of the
full dataset by data wrangling.
def map(k, v):
// for each input data point
 for i in 1:M
 // for each model
 m = Poisson(T)
 // num times curr point should appear in this sample
 if m > 0
 for j in 1:m
 // emit current input point proper num of times
 emit (i, v)

•	 Logic of Reducer: Reducer will take a data sample as input and fit the
random forest model over it.

def reduce(k, v):
 fit model or calculate statistic with the sample in v

Fitting random forests with RHadoop
In machine learning, fitting a model means fitting the best line into our data. Fitting
a model can fall under several types, namely, under fitting, over fitting, and normal
fitting. In case of under and over fitting, there are chances of high bias (cross
validation and training errors are high) and high variance (cross validation error is
high but training error is low) effects, which is not good. We will normally fit the
model over the datasets.

Here are the diagrams for fitting a model over datasets with three types of fitting:

•	 Under fitting: In this cross validation and training errors are high

θ θ
0 1
+ x

Size

Pr
ic

e

+

+

+
+ +

“Unde fit “High ”r ” bias

Learning Data Analytics with R and Hadoop

[144]

•	 Normal fitting: In this cross-validation and training errors are normal

θ θ θ
0 1 2
+ x + x

2

Size

Pr
ic

e
+

+

+
+ +

•	 Over fitting: In this the cross-validation error is high but training error is low

θ θ θ θ θ
0 1 2 3 4
+ x + x + x +

2 3

x
4

“Overfit” “High ”variance

+

+

+
+ +

Pr
ic

e

Size

We will fit the model over the data using the random forest technique of machine
learning. This is a type of recursive partitioning method, particularly well suited
for small and large problems. It involves an ensemble (or set) of classification (or
regression) trees that are calculated on random subsets of the data, using a subset of
randomly restricted and selected predictors for every split in each classification tree.

Chapter 5

[145]

Furthermore, the results of an ensemble of classification/regression trees have
been used to produce better predictions instead of using the results of just one
classification tree.

We will now implement our Poisson sampling strategy with RHadoop. We will start
by setting global values for our parameters:

#10% of input data to each sample on avg
frac.per.model <- 0.1
num.models <- 50

Let's check how to implement Mapper as per the specifications in the pseudo code
with RHadoop.

•	 Mapper is implemented in the the following manner:
poisson.subsample <- function(k, input) {
 # this function is used to generate a sample from the current
block of data
 generate.sample <- function(i) {
 # generate N Poisson variables
 draws <- rpois(n=nrow(input), lambda=frac.per.model)
 # compute the index vector for the corresponding rows,
 # weighted by the number of Poisson draws
 indices <- rep((1:nrow(input)), draws)
 # emit the rows; RHadoop takes care of replicating the key
appropriately
 # and rbinding the data frames from different mappers together
for the
 # reducer
 keyval(i, input[indices,])
 }

 # here is where we generate the actual sampled data
 c.keyval(lapply(1:num.models, generate.sample))
}

Since we are using R, it's tricky to fit the model with the random forest model
over the collected sample dataset.

Learning Data Analytics with R and Hadoop

[146]

•	 Reducer is implemented in the following manner:
REDUCE function
fit.trees <- function(k, v) {
 # rmr rbinds the emitted values, so v is a dataframe
 # note that do.trace=T is used to produce output to stderr to keep
the reduce task from timing out
 rf <- randomForest(formula=model.formula,
 data=v,
 na.action=na.roughfix,
 ntree=10,
 do.trace=FALSE)

 # rf is a list so wrap it in another list to ensure that only
 # one object gets emitted. this is because keyval is vectorized
 keyval(k, list(forest=rf))
}

•	 To fit the model, we need model.formula, which is as follows:
model.formula <- SalePrice ~ datasource + auctioneerID + YearMade
+ saledatenumeric + ProductSize + ProductGroupDesc.x + Enclosure
+ Hydraulics + ageAtSale + saleYear + saleMonth + saleDay +
saleWeekday + MedianModelPrice + ModelCount + MfgYear

SalePrice is defined as a response variable and the rest of them are defined
as predictor variables for the random forest model.

Random forest model with R doesn't support factor
with level more than 32.

•	 The MapReduce job can be executed using the following command:
mapreduce(input="/poisson/training.csv",

 input.format=bulldozer.input.format,

 map=poisson.subsample,

 reduce=fit.trees,

 output="/poisson/output")

The resulting trees are dumped in HDFS at /poisson/output.

Chapter 5

[147]

•	 Finally, we can load the trees, merge them, and use them to classify new test
points:

mraw.forests <- values(from.dfs("/poisson/output"))

forest <- do.call(combine, raw.forests)

Each of the 50 samples produced a random forest with 10 trees, so the final random
forest is a collection of 500 trees, fitted in a distributed fashion over a Hadoop cluster.

The full set of source files is available on the official Cloudera blog
at http://blog.cloudera.com/blog/2013/02/how-to-
resample-from-a-large-data-set-in-parallel-with-r-
on-hadoop/.

Hopefully, we have learned a scalable approach for training ensemble classifiers
or bootstrapping in a parallel fashion by using a Poisson approximation for
multinomial sampling.

Summary
In this chapter, we learned how to perform Big Data analytics with various data
driven activities over an R and Hadoop integrated environment.

In the next chapter, we will learn more about how R and Hadoop can be used to
perform machine learning techniques.

Understanding Big Data
Analysis with Machine

Learning
In this chapter, we are going to learn about different machine learning techniques
that can be used with R and Hadoop to perform Big Data analytics with the help of
the following points:

•	 Introduction to machine learning
•	 Types of machine-learning algorithms
•	 Supervised machine-learning algorithms
•	 Unsupervised machine-learning algorithms
•	 Recommendation algorithms

Introduction to machine learning
Machine learning is a branch of artificial intelligence that allows us to make our
application intelligent without being explicitly programmed. Machine learning
concepts are used to enable applications to take a decision from the available
datasets. A combination of machine learning and data mining can be used to develop
spam mail detectors, self-driven cars, speech recognition, face recognition, and
online transactional fraud-activity detection.

Understanding Big Data Analysis with Machine Learning

[150]

There are many popular organizations that are using machine-learning algorithms
to make their service or product understand the need of their users and provide
services as per their behavior. Google has its intelligent web search engine, which
provides a number one search, spam classification in Google Mail, news labeling in
Google News, and Amazon for recommender systems. There are many open source
frameworks available for developing these types of applications/frameworks, such
as R, Python, Apache Mahout, and Weka.

Types of machine-learning algorithms
There are three different types of machine-learning algorithms for intelligent system
development:

•	 Supervised machine-learning algorithms
•	 Unsupervised machine-learning algorithms
•	 Recommender systems

In this chapter, we are going to discuss well-known business problems with
classification, regression, and clustering, as well as how to perform these machine-
learning techniques over Hadoop to overcome memory issues.

If you load a dataset that won't be able to fit into your machine memories and you
try to run it, the predictive analysis will throw an error related to machine memory,
such as Error: cannot allocate vector of size 990.1 MB. The solution is to increase the
machine configuration or parallelize with commodity hardware.

Supervised machine-learning algorithms
In this section, we will be learning about supervised machine-learning algorithms.
The algorithms are as follows:

•	 Linear regression
•	 Logistic regression

Linear regression
Linear regression is mainly used for predicting and forecasting values based on
historical information. Regression is a supervised machine-learning technique to
identify the linear relationship between target variables and explanatory variables.
We can say it is used for predicting the target variable values in numeric form.

Chapter 6

[151]

In the following section, we will be learning about linear regression with R and linear
regression with R and Hadoop.

Here, the variables that are going to be predicted are considered as target variables
and the variables that are going to help predict the target variables are called
explanatory variables. With the linear relationship, we can identify the impact of a
change in explanatory variables on the target variable.

In mathematics, regression can be formulated as follows:

y = ax +e

Other formulae include:

•	 The slope of the regression line is given by:
a= (NΣxy - (Σx)(Σy)) / (NΣx2 - (Σx)2)

•	 The intercept point of regression is given by:

e = (Σy - b(Σx)) / N

Here, x and y are variables that form a dataset and N is the total numbers of values.

Suppose we have the data shown in the following table:

x y
63 3.1
64 3.6
65 3.8
66 4

If we have a new value of x, we can get the value of y with it with the help of the
regression formula.

Applications of linear regression include:

•	 Sales forecasting
•	 Predicting optimum product price
•	 Predicting the next online purchase from various sources and campaigns

Understanding Big Data Analysis with Machine Learning

[152]

Let's look at the statistical technique to implement the regression model for the
provided dataset. Assume that we have been given n number of statistical data units.

O
ut

co
m

e
va

ria
bl

e
(Y

)

Predictor Variable (X)

Linear Regression

Its formula is as follows:

Y = e0 + a0x0 + a1x1 + a2x2 +a3x3 + a4x4

Here, Y is the target variable (response variable), xi are explanatory variables, and e0
is the sum of the squared error term, which can be considered as noise. To get a more
accurate prediction, we need to reduce this error term as soon as possible with the
help of the call function.

Linear regression with R
Now we will see how to perform linear regression in R. We can use the in-built lm()
method to build a linear regression model with R.

Model <-lm(target ~ ex_var1, data=train_dataset)

It will build a regression model based on the property of the provided dataset and
store all of the variables' coefficients and model parameters used for predicting and
identifying of data pattern from the model variable values.

Chapter 6

[153]

Defining data variables
X = matrix(rnorm(2000), ncol = 10)
y = as.matrix(rnorm(200))

Bundling data variables into dataframe
train_data <- data.frame(X,y)

Training model for generating prediction
lmodel<- lm(y~ train_data $X1 + train_data $X2 + train_data $X3 +
train_data $X4 + train_data $X5 + train_data $X6 + train_data $X7 +
train_data $X8 + train_data $X9 + train_data $X10,data= train_data)

summary(lmodel)

The following are the various model parameters that can be displayed with the
preceding summary command:

•	 RSS: This is equal to ∑(yactual - y)2.
•	 Degrees of Freedom (DOF): This is used for identifying the degree of fit for

the prediction model, which should be as small as possible (logically, the
value 0 means perfect prediction).

•	 Residual standard error (RSS/DF): This is used for identifying the goodness
of fit for the prediction model, which should be as small as possible
(logically, the value 0 means perfect prediction).

•	 pr: This is the probability for a variable to be included into the model; it
should be less than 0.05 for a variable to be included.

•	 t-value: This is equal to 15.
•	 f: This is the statistic that checks whether R square is a value other than zero.

Understanding Big Data Analysis with Machine Learning

[154]

Linear regression with R and Hadoop
Assume we have a large dataset. How will we perform regression data analysis
now? In such cases, we can use R and Hadoop integration to perform parallel linear
regression by implementing Mapper and Reducer. It will divide the dataset into
chunks among the available nodes and then they will process the distributed data in
parallel. It will not fire memory issues when we run with an R and Hadoop cluster
because the large dataset is going to be distributed and processed with R among
Hadoop computation nodes. Also, keep in mind that this implemented method does
not provide higher prediction accuracy than the lm() model.

RHadoop is used here for integration of R and Hadoop, which is a trusted open
source distribution of Revolution Analytics. For more information on RHadoop,
visit https://github.com/RevolutionAnalytics/RHadoop/wiki. Among the
packages of RHadoop, here we are using only the rmr and rhdfs libraries.

Let's see how to perform regression analysis with R and Hadoop data technologies.

Defining the datasets with Big Data matrix X
X = matrix(rnorm(20000), ncol = 10)
X.index = to.dfs(cbind(1:nrow(X), X))
y = as.matrix(rnorm(2000))

Here, the Sum() function is re-usable as shown in the following code:

Function defined to be used as reducers
Sum =
 function(., YY)
 keyval(1, list(Reduce('+', YY)))

The outline of the linear regression algorithm is as follows:

1.	 Calculating the Xtx value with MapReduce job1.
2.	 Calculating the Xty value with MapReduce job2.
3.	 Deriving the coefficient values with Solve (Xtx, Xty).

Let's understand these steps one by one.

Chapter 6

[155]

The first step is to calculate the Xtx value with MapReduce job 1.

1.	 The big matrix is passed to the Mapper in chunks of complete rows. Smaller
cross-products are computed for these submatrices and passed on to a single
Reducer, which sums them together. Since we have a single key, a Combiner
is mandatory and since the matrix sum is associative and commutative, we
certainly can use it here.
XtX =
 values(

For loading hdfs data in to R
 from.dfs(

MapReduce Job to produce XT*X
 mapreduce(
 input = X.index,

Mapper – To calculate and emitting XT*X
 map =
 function(., Xi) {
 yi = y[Xi[,1],]
 Xi = Xi[,-1]
 keyval(1, list(t(Xi) %*% Xi))},

Reducer – To reduce the Mapper output by performing sum
operation over them
 reduce = Sum,
 combine = TRUE)))[[1]]

2.	 When we have a large amount of data stored in Hadoop Distributed File
System (HDFS), we need to pass its path value to the input parameters in the
MapReduce method.

3.	 In the preceding code, we saw that X is the design matrix, which has been
created with the following function:
X = matrix(rnorm(2000), ncol = 10)

Understanding Big Data Analysis with Machine Learning

[156]

4.	 Its output will look as shown in the following screenshot:

So, here all the columns will be considered as explanatory variables and their
standard errors can be calculated in a similar manner to how we calculated them
with normal linear regression.

To calculate the Xty value with MapReduce job 2 is pretty much the same as for the
vector y, which is available to the nodes according to normal scope rules.

Xty = values(

For loading hdfs data
from.dfs(

MapReduce job to produce XT * y
 mapreduce(
 input = X.index,

Mapper – To calculate and emitting XT*y
 map = function(., Xi) {
 yi = y[Xi[,1],]
 Xi = Xi[,-1]
 keyval(1, list(t(Xi) %*% yi))},

Reducer – To reducer the Mapper output by performing # sum
operation over them
 reduce = Sum,
 combine = TRUE)))[[1]]

To derive the coefficient values with solve (Xtx, Xty), use the following steps:

1.	 Finally, we just need to call the following line of code to get the coefficient
values.
solve(XtX, Xty)

Chapter 6

[157]

2.	 The output of the preceding command will be as shown in the
following screenshot:

Logistic regression
In statistics, logistic regression or logit regression is a type of probabilistic
classification model. Logistic regression is used extensively in numerous disciplines,
including the medical and social science fields. It can be binomial or multinomial.

Binary logistic regression deals with situations in which the outcome for a dependent
variable can have two possible types. Multinomial logistic regression deals with
situations where the outcome can have three or more possible types.

Logistic regression can be implemented using logistic functions, which are
listed here.

•	 To predict the log odds ratios, use the following formula:
logit(p) = β0 + β1 × x1 + β2 × x2 + ... + βn × xn

•	 The probability formula is as follows:

p = elogit(p) ⁄ 1 + elogit(p)

Understanding Big Data Analysis with Machine Learning

[158]

logit(p) is a linear function of the explanatory variable, X (x1,x2,x3..xn), which
is similar to linear regression. So, the output of this function will be in the range
0 to 1. Based on the probability score, we can set its probability range from 0 to 1.
In a majority of the cases, if the score is greater than 0.5, it will be considered as 1,
otherwise 0. Also, we can say it provides a classification boundary to classify the
outcome variable.

-

+
- -

- --
- -

-
++

+ +
+

+

+

+ + +

X1

X2

Logistic Regression

The preceding figure is of a training dataset. Based on the training dataset plot, we
can say there is one classification boundary generated by the glm model in R.

Applications of logistic regression include:

•	 Predicting the likelihood of an online purchase
•	 Detecting the presence of diabetes

Chapter 6

[159]

Logistic regression with R
To perform logistic regression with R, we will use the iris dataset and the
glm model.

#loading iris dataset
data(iris)

Setting up target variable
target <- data.frame(isSetosa=(iris$Species == 'setosa'))

Adding target to iris and creating new dataset
inputdata <- cbind(target,iris)

Defining the logistic regression formula
formula <- isSetosa ~ Sepal.Length + Sepal.Width + Petal.Length +
Petal.Width

running Logistic model via glm()
logisticModel <- glm(formula, data=inputdata, family="binomial")

Logistic regression with R and Hadoop
To perform logistic regression with R and Hadoop, we will use RHadoop with rmr2.

The outline of the logistic regression algorithm is as follows:

•	 Defining the lr.map Mapper function
•	 Defining the lr.reducer Reducer function
•	 Defining the logistic.regression MapReduce function

Let's understand them one by one.

Understanding Big Data Analysis with Machine Learning

[160]

We will first define the logistic regression function with gradient decent. Multivariate
regression can be performed by forming the nondependent variable into a matrix
data format. For factorial variables, we can translate them to binary variables for
fitting the model. This function will ask for input, iterations, dims, and alpha as
input parameters.

•	 lr.map: This stands for the logistic regression Mapper, which will compute
the contribution of subset points to the gradient.
Mapper – computes the contribution of a subset of points to the
gradient.

lr.map =
 function(., M) {
 Y = M[,1]
 X = M[,-1]
 keyval(
 1,
 Y * X *
 g(-Y * as.numeric(X %*% t(plane))))}

•	 lr.reducer: This stands for the logistic regression Reducer, which is
performing just a big sum of all the values of key 1.
Reducer – Perform sum operation over Mapper output.

lr.reduce =
 function(k, Z)
 keyval(k, t(as.matrix(apply(Z,2,sum))))

•	 logistic.regression: This will mainly define the logistic.regression
MapReduce function with the following input parameters. Calling this
function will start executing logistic regression of the MapReduce function.

°° input: This is an input dataset
°° iterations: This is the fixed number of iterations for calculating the

gradient
°° dims: This is the dimension of input variables
°° alpha: This is the learning rate

Chapter 6

[161]

Let's see how to develop the logistic regression function.

MapReduce job – Defining MapReduce function for executing logistic
regression

logistic.regression =
 function(input, iterations, dims, alpha){
 plane = t(rep(0, dims))
 g = function(z) 1/(1 + exp(-z))
 for (i in 1:iterations) {
 gradient =
 values(
 from.dfs(
 mapreduce(
 input,
 map = lr.map,
 reduce = lr.reduce,
 combine = T)))
 plane = plane + alpha * gradient }
 plane }

Let's run this logistic regression function as follows:

Loading dataset
data(foodstamp)

Storing data to hdfs
testdata <- to.dfs(as.matrix(foodstamp))

Running logistic regression with R and Hadoop
print(logistic.regression(testdata,10,3,0.05))

The output of the preceding command will be as follows:

Understanding Big Data Analysis with Machine Learning

[162]

Unsupervised machine learning
algorithm
In machine learning, unsupervised learning is used for finding the hidden structure
from the unlabeled dataset. Since the datasets are not labeled, there will be no error
while evaluating for potential solutions.

Unsupervised machine learning includes several algorithms, some of which are as
follows:

•	 Clustering
•	 Artificial neural networks
•	 Vector quantization

We will consider popular clustering algorithms here.

Clustering
Clustering is the task of grouping a set of object in such a way that similar objects
with similar characteristics are grouped in the same category, but other objects are
grouped in other categories. In clustering, the input datasets are not labeled; they
need to be labeled based on the similarity of their data structure.

In unsupervised machine learning, the classification technique performs the same
procedure to map the data to a category with the help of the provided set of input
training datasets. The corresponding procedure is known as clustering (or cluster
analysis), and involves grouping data into categories based on some measure of
inherent similarity; for example, the distance between data points.

From the following figure, we can identify clustering as grouping objects based on
their similarity:

-

+
+

+
+

++
++

+

- -

- -

+
+

+
+

++
++

+

- -

-C1

C2

C3

Unlabeled data Labeled data

Clustering

Chapter 6

[163]

There are several clustering techniques available within R libraries, such as k-means,
k-medoids, hierarchical, and density-based clustering. Among them, k-means is
widely used as the clustering algorithm in data science. This algorithm asks for a
number of clusters to be the input parameters from the user side.

Applications of clustering are as follows:

•	 Market segmentation
•	 Social network analysis
•	 Organizing computer network
•	 Astronomical data analysis

Clustering with R
We are considering the k-means method here for implementing the clustering
model over the iris input dataset, which can be achieved by just calling its
in-built R dataset – the iris data (for more information, visit http://stat.ethz.
ch/R-manual/R-devel/library/datasets/html/iris.html). Here we will see
how k-means clustering can be performed with R.

Loading iris flower dataset
data("iris")
generating clusters for iris dataset
kmeans <- kmeans(iris[, -5], 3, iter.max = 1000)

comparing iris Species with generated cluster points
Comp <- table(iris[, 5], kmeans$cluster)

Deriving clusters for small datasets is quite simple, but deriving it for huge datasets
requires the use of Hadoop for providing computation power.

Performing clustering with R and Hadoop
Since the k-means clustering algorithm is already developed in RHadoop, we
are going to use and understand it. You can make changes in their Mappers and
Reducers as per the input dataset format. As we are dealing with Hadoop, we need
to develop the Mappers and Reducers to be run on nodes in a parallel manner.

Understanding Big Data Analysis with Machine Learning

[164]

The outline of the clustering algorithm is as follows:

•	 Defining the dist.fun distance function
•	 Defining the k-means.map k-means Mapper function
•	 Defining the k-means.reduce k-means Reducer function
•	 Defining the k-means.mr k-means MapReduce function
•	 Defining input data points to be provided to the clustering algorithms

Now we will run k-means.mr (the k-means MapReduce job) by providing the
required parameters.

Let's understand them one by one.

•	 dist.fun: First, we will see the dist.fun function for calculating the
distance between a matrix of center C and a matrix of point P, which is tested.
It can produce 106 points and 102 centers in five dimensions in approximately
16 seconds.
distance calculation function
dist.fun =
 function(C, P) {
 apply(
 C,
 1,
 function(x)
 colSums((t(P) - x)^2))}

•	 k-means.map: The Mapper of the k-means MapReduce algorithm will
compute the distance between points and all the centers and return the
closest center for each point. This Mapper will run in iterations based on the
following code. With the first iteration, the cluster center will be assigned
randomly and from the next iteration, it will calculate these cluster centers
based on the minimum distance from all the points of the cluster.
k-Means Mapper
 kmeans.map =
 function(., P) {
 nearest = {

First interations- Assign random cluster centers
 if(is.null(C))
 sample(
 1:num.clusters,
 nrow(P),
 replace = T)

Chapter 6

[165]

Rest of the iterations, where the clusters are assigned # based
on the minimum distance from points
 else {
 D = dist.fun(C, P)
 nearest = max.col(-D)}}

 if(!(combine || in.memory.combine))
 keyval(nearest, P)
 else
 keyval(nearest, cbind(1, P))}

•	 k-means.reduce: The Reducer of the k-means MapReduce algorithm will
compute the column average of matrix points as key.
k-Means Reducer
kmeans.reduce = {

calculating the column average for both of the
conditions

 if (!(combine || in.memory.combine))
 function(., P)
 t(as.matrix(apply(P, 2, mean)))
 else
 function(k, P)
 keyval(
 k,
 t(as.matrix(apply(P, 2, sum))))}

•	 kmeans.mr: Defining the k-means MapReduce function involves specifying
several input parameters, which are as follows:

°° P: This denotes the input data points
°° num.clusters: This is the total number of clusters
°° num.iter: This is the total number of iterations to be processed with

datasets
°° combine: This will decide whether the Combiner should be enabled

or disabled (TRUE or FALSE)

k-Means MapReduce – for
kmeans.mr =
 function(
 P,

Understanding Big Data Analysis with Machine Learning

[166]

 num.clusters,
 num.iter,
 combine,
 in.memory.combine) {
 C = NULL
 for(i in 1:num.iter) {
 C =
 values(

Loading hdfs dataset
 from.dfs(

MapReduce job, with specification of input dataset,
Mapper and Reducer
 mapreduce(
 P,
 map = kmeans.map,
 reduce = kmeans.reduce)))
 if(combine || in.memory.combine)
 C = C[, -1]/C[, 1]
 if(nrow(C) < num.clusters) {
 C =
 rbind(
 C,
 matrix(
 rnorm(
 (num.clusters -
 nrow(C)) * nrow(C)),
 ncol = nrow(C)) %*% C) }}
 C}

•	 Defining the input data points to be provided to the clustering algorithms:
Input data points
P = do.call(
 rbind,
 rep(

 list(

Generating Matrix of
 matrix(
Generate random normalized data with sd = 10
 rnorm(10, sd = 10),
 ncol=2)),
 20)) +
 matrix(rnorm(200), ncol =2)

Chapter 6

[167]

•	 Running kmeans.mr (the k-means MapReduce job) by providing it with the
required parameters.
Running kmeans.mr Hadoop MapReduce algorithms with providing the
required input parameters

kmeans.mr(
 to.dfs(P),
 num.clusters = 12,
 num.iter = 5,
 combine = FALSE,
 in.memory.combine = FALSE)

•	 The output of the preceding command is shown in the following screenshot:

Recommendation algorithms
Recommendation is a machine-learning technique to predict what new items a user
would like based on associations with the user's previous items. Recommendations
are widely used in the field of e-commerce applications. Through this flexible data
and behavior-driven algorithms, businesses can increase conversions by helping to
ensure that relevant choices are automatically suggested to the right customers at the
right time with cross-selling or up-selling.

For example, when a customer is looking for a Samsung Galaxy S IV/S4 mobile
phone on Amazon, the store will also suggest other mobile phones similar to this
one, presented in the Customers Who Bought This Item Also Bought window.

Understanding Big Data Analysis with Machine Learning

[168]

There are two different types of recommendations:

•	 User-based recommendations: In this type, users (customers) similar to
current user (customer) are determined. Based on this user similarity, their
interested/used items can be recommended to other users. Let's learn it
through an example.

Assume there are two users named Wendell and James; both have a similar
interest because both are using an iPhone. Wendell had used two items, iPad
and iPhone, so James will be recommended to use iPad. This is user-based
recommendation.

•	 Item-based recommendations: In this type, items similar to the items that are
being currently used by a user are determined. Based on the item-similarity
score, the similar items will be presented to the users for cross-selling and
up-selling type of recommendations. Let's learn it through an example.

Chapter 6

[169]

For example, a user named Vaibhav likes and uses the following books:

•	 Apache Mahout Cookbook, Piero Giacomelli, Packt Publishing
•	 Hadoop MapReduce Cookbook, Thilina Gunarathne and Srinath Perera, Packt

Publishing
•	 Hadoop Real-World Solutions Cookbook, Brian Femiano, Jon Lentz, and Jonathan R.

Owens, Packt Publishing

•	 Big Data For Dummies, Dr. Fern Halper, Judith Hurwitz, Marcia Kaufman, and
Alan Nugent, John Wiley & Sons Publishers

Based on the preceding information, the recommender system will predict which
new books Vaibhav would like to read, as follows:

•	 Big Data Analytics with R and Hadoop, Vignesh Prajapati, Packt Publishing

Now we will see how to generate recommendations with R and Hadoop. But before
going towards the R and Hadoop combination, let us first see how to generate it with
R. This will clear the concepts to translate your generated recommender systems to
MapReduce recommendation algorithms. In case of generating recommendations
with R and Hadoop, we will use the RHadoop distribution of Revolution Analytics.

Understanding Big Data Analysis with Machine Learning

[170]

Steps to generate recommendations in R
To generate recommendations for users, we need to have datasets in a special format
that can be read by the algorithm. Here, we will use the collaborative filtering
algorithm for generating the recommendations rather than content-based algorithms.
Hence, we will need the user's rating information for the available item sets. So, the
small.csv dataset is given in the format user ID, item ID, item's ratings.

user ID, item ID, item's rating
1, 101, 5.0
1, 102, 3.0
1, 103, 2.5
2, 101, 2.0
2, 102, 2.5
2, 103, 5.0
2, 104, 2.0
3, 101, 2.0
3, 104, 4.0
3, 105, 4.5
3, 107, 5.0
4, 101, 5.0
4, 103, 3.0
4, 104, 4.5
4, 106, 4.0
5, 101, 4.0
5, 102, 3.0
5, 103, 2.0
5, 104, 4.0
5, 105, 3.5
5, 106, 4.0

The preceding code and datasets are reproduced from the book Mahout in Action, Robin
Anil, Ellen Friedman, Ted Dunning, and Sean Owen, Manning Publications and the website is
http://www.fens.me/.

Recommendations can be derived from the matrix-factorization technique as follows:

Co-occurrence matrix * scoring matrix = Recommended Results

To generate the recommenders, we will follow the given steps:

1.	 Computing the co-occurrence matrix.
2.	 Establishing the user-scoring matrix.
3.	 Generating recommendations.

Chapter 6

[171]

From the next section, we will see technical details for performing the
preceding steps.

1.	 In the first section, computing the co-occurrence matrix, we will be able to
identify the co-occurred item sets given in the dataset. In simple words, we
can call it counting the pair of items from the given dataset.
Quote plyr package
library (plyr)

Read dataset
train <-read.csv (file = "small.csv", header = FALSE)
names (train) <-c ("user", "item", "pref")

Calculated User Lists
usersUnique <-function () {
 users <-unique (train $ user)
 users [order (users)]
}

Calculation Method Product List
itemsUnique <-function () {
 items <-unique (train $ item)
 items [order (items)]
}

Derive unique User Lists
users <-usersUnique ()

Product List
items <-itemsUnique ()

Establish Product List Index
index <-function (x) which (items %in% x)
data<-ddply(train,.(user,item,pref),summarize,idx=index(item))

Co-occurrence matrix
Co-occurrence <-function (data) {
 n <-length (items)
 co <-matrix (rep (0, n * n), nrow = n)
 for (u in users) {

Understanding Big Data Analysis with Machine Learning

[172]

 idx <-index (data $ item [which(data$user == u)])
 m <-merge (idx, idx)
 for (i in 1: nrow (m)) {
 co [m$x[i], m$y[i]] = co[m$x[i], m$y[i]]+1
 }
 }
 return (co)
}

Generate co-occurrence matrix
co <-co-occurrence (data)

2.	 To establish the user-scoring matrix based on the user's rating information,
the user-item rating matrix can be generated for users.
Recommendation algorithm
recommend <-function (udata = udata, co = coMatrix, num = 0) {
 n <- length(items)

 # All of pref
 pref <- rep (0, n)
 pref[udata$idx] <-udata$pref

 # User Rating Matrix
 userx <- matrix(pref, nrow = n)

 # Scoring matrix co-occurrence matrix *
 r <- co %*% userx

 # Recommended Sort
 r[udata$idx] <-0
 idx <-order(r, decreasing = TRUE)
 topn <-data.frame (user = rep(udata$user[1], length(idx)), item
= items[idx], val = r[idx])

 # Recommended results take months before the num
 if (num> 0) {
 topn <-head (topn, num)
 }

 # Recommended results take months before the num
 if (num> 0) {
 topn <-head (topn, num)
 }

 # Back to results
 return (topn)
}

Chapter 6

[173]

3.	 Finally, the recommendations as output can be generated by the product
operations of both matrix items: co-occurrence matrix and user's scoring
matrix.

initializing dataframe for recommendations storage
recommendation<-data.frame()

Generating recommendations for all of the users
for(i in 1:length(users)){
 udata<-data[which(data$user==users[i]),]
 recommendation<-rbind(recommendation,recommend(udata,co,0))
}

Generating recommendations via Myrrix and R interface is quite easy.
For more information, refer to https://github.com/jwijffels/
Myrrix-R-interface.

Generating recommendations with
R and Hadoop
To generate recommendations with R and Hadoop, we need to develop an
algorithm that will be able to run and perform data processing in a parallel manner.
This can be implemented using Mappers and Reducers. A very interesting part of
this section is how we can use R and Hadoop together to generate recommendations
from big datasets.

So, here are the steps that are similar to generating recommendations with R, but
translating them to the Mapper and Reducer paradigms is a little tricky:

1.	 Establishing the co-occurrence matrix items.
2.	 Establishing the user scoring matrix to articles.
3.	 Generating recommendations.

Understanding Big Data Analysis with Machine Learning

[174]

We will use the same concepts as our previous operation with R to generate
recommendations with R and Hadoop. But in this case, we need to use a key-value
paradigm as it's the base of parallel operations. Therefore, every function will be
implemented by considering the key-value paradigm.

1.	 In the first section, establishment of the co-occurrence matrix items, we will
establish co-occurrence items in steps: grouped by user, locate each user-
selected items appearing alone counting, and counting in pairs.
Load rmr2 package
library (rmr2)

Input Data File
train <-read.csv (file = "small.csv", header = FALSE)
names (train) <-c ("user", "item", "pref")

Use the hadoop rmr format, hadoop is the default setting.
rmr.options (backend = 'hadoop')

The data set into HDFS
train.hdfs = to.dfs (keyval (train$user, train))

see the data from hdfs
from.dfs (train.hdfs)

The key points to note are:
°° train.mr: This is the MapReduce job's key-value paradigm

information
°° key: This is the list of items vector
°° value: This is the item combination vector

MapReduce job 1 for co-occurrence matrix items
train.mr <-mapreduce (
 train.hdfs,
 map = function (k, v) {
 keyval (k, v$item)
 }

for identification of co-occurrence items
 , Reduce = function (k, v) {
 m <-merge (v, v)
 keyval (mx, my)
 }
)

Chapter 6

[175]

The co-occurrence matrix items will be combined to count them.
To define a MapReduce job, step2.mr is used for calculating the frequency
of the combinations of items.

°° Step2.mr: This is the MapReduce job's key value paradigm
information

°° key: This is the list of items vector
°° value: This is the co-occurrence matrix dataframe value (item, item,

Freq)

MapReduce function for calculating the frequency of the
combinations of the items.
step2.mr <-mapreduce (
 train.mr,

 map = function (k, v) {
 d <-data.frame (k, v)
 d2 <-ddply (d,. (k, v), count)

 key <- d2$k
 val <- d2
 keyval(key, val)
 }
)

loading data from HDFS
from.dfs(step2.mr)

2.	 To establish the user-scoring matrix to articles, let us define the Train2.mr
MapReduce job.
MapReduce job for establish user scoring matrix to articles

train2.mr <-mapreduce (
 train.hdfs,
 map = function(k, v) {
 df <- v

key as item
 key <-df $ item

value as [item, user pref]
 val <-data.frame (item = df$item, user = df$user, pref =
df$pref)

Understanding Big Data Analysis with Machine Learning

[176]

emitting (key, value)pairs
 keyval(key, val)
 }
)

loading data from HDFS
from.dfs(train2.mr)

°° Train2.mr: This is the MapReduce job's key value paradigm
information

°° key: This is the list of items
°° value: This is the value of the user goods scoring matrix

The following is the consolidation and co-occurrence scoring matrix:

Running equi joining two data – step2.mr and train2.mr
eq.hdfs <-equijoin (
 left.input = step2.mr,
 right.input = train2.mr,
 map.left = function (k, v) {
 keyval (k, v)
 },
 map.right = function (k, v) {
 keyval (k, v)
 },
 outer = c ("left")
)

loading data from HDFS
from.dfs (eq.hdfs)

°° eq.hdfs: This is the MapReduce job's key value paradigm
information

°° key: The key here is null
°° value: This is the merged dataframe value

Chapter 6

[177]

3.	 In the section of generating recommendations, we will obtain the
recommended list of results.

MapReduce job to obtain recommended list of result from
equijoined data
cal.mr <-mapreduce (
 input = eq.hdfs,

 map = function (k, v) {
 val <-v
 na <-is.na (v$user.r)
 if (length (which(na))> 0) val <-v [-which (is.na (v $
user.r)),]
 keyval (val$kl, val)
 }
 , Reduce = function (k, v) {
 val <-ddply (v,. (kl, vl, user.r), summarize, v = freq.l *
pref.r)
 keyval (val $ kl, val)
 }
)

loading data from HDFS
from.dfs (cal.mr)

°° Cal.mr: This is the MapReduce job's key value paradigm information
°° key: This is the list of items
°° value: This is the recommended result dataframe value

Understanding Big Data Analysis with Machine Learning

[178]

By defining the result for getting the list of recommended items with
preference value, the sorting process will be applied on the
recommendation result.

MapReduce job for sorting the recommendation output
result.mr <-mapreduce (
 input = cal.mr,
 map = function (k, v) {
 keyval (v $ user.r, v)
 }
 , Reduce = function (k, v) {
 val <-ddply (v,. (user.r, vl), summarize, v = sum (v))
 val2 <-val [order (val$v, decreasing = TRUE),]
 names (val2) <-c ("user", "item", "pref")
 keyval (val2$user, val2)
 }
)
loading data from HDFS
from.dfs (result.mr)

°° result.mr: This is the MapReduce job's key value paradigm
information

°° key: This is the user ID
°° value: This is the recommended outcome dataframe value

Here, we have designed the collaborative algorithms for generating item-based
recommendation. Since we have tried to make it run on parallel nodes, we have
focused on the Mapper and Reducer. They may not be optimal in some cases, but
you can make them optimal by using the available code.

Summary
In this chapter, we learned how we can perform Big Data analytics with machine
learning with the help of R and Hadoop technologies. In the next chapter, we will
learn how to enrich datasets in R by integrating R to various external data sources.

Importing and Exporting Data
from Various DBs

In this final chapter, we are going to see how data from different sources can be
loaded into R for performing the data analytics operations. Here, we have considered
some of the popular databases that are being used as data storage, required for
performing data analytics with different applications and technologies. As we know,
performing the analytics operations with R is quite easy as compared to the other
analytics tools and again, it's free and open source. Since, R has available methods
to use customized functions via installing R packages, many database packages
are available in CRAN to perform database connection with R. Therefore, the R
programming language is becoming more and more popular due to database, as well
as operating system, independence.

We have specially designed this chapter to share knowledge of how data from
various database systems can be loaded and used into R for performing data
modeling. In this chapter, we have included several popular database examples for
performing various DB operations.

Importing and Exporting Data from Various DBs

[180]

We have covered various data sources that are popular and are used with R. They
are as follows:

•	 RData
•	 MySQL
•	 Excel
•	 MongoDB
•	 SQLite
•	 PostgreSQL
•	 Hive
•	 HBase

From the preceding diagram, we can understand that R is supported with several
database systems to perform data analytics related operations over various
databases. Since there are a large number of libraries available for R to perform the
connection with various DBs, we just need to inherit them.

Chapter 7

[181]

In the following table, the possible database systems and the related R packages are
given for easy understanding of the related R packages:

Database system name Useful R packages / function utilities
Text files Text data files such as .csv, .txt, and .r
MySQL RMySQL
Excel Xlsx
Mongo RMongo
SQLlite RSQLlite
 PostgreSQL RPostgreSQL
HDFS RHDFS
Hive RHive
HBase RHBase

As we know, each of the mentioned databases have their own importance with the
features. Each of these data sources will be described with the following points for
better understanding:

•	 Introduction
•	 Features
•	 Installation
•	 Import the data into R
•	 Data manipulation
•	 Export the data from R

In this chapter, we are going to install and interact with R packages that will be used
for various data operations in R.

Now, we will start understanding about databases and how to perform data-related
operations to forward to data analytics for all databases.

Learning about data files as database
While dealing with the data analytics activities, we need to do data importing,
loading, or exporting functionalities all the time. Sometimes the same operations
need to be iterated with R programming language. So, we can use the available R
function for performing the same data activities.

Importing and Exporting Data from Various DBs

[182]

Understanding different types of files
There are commonly four different types of data files used with R for data storage
operations. They are as follows:

•	 CSV (Comma Separated Values)
•	 Txt (with Tab Separated Values)
•	 .RDATA (R's native data format)
•	 .rda (R's native data format)

Installing R packages
To use the data file with the format specified earlier, we don't need to install extra R
packages. We just need to use the built-in functions available with R.

Importing the data into R
To perform analytics-related activities, we need to use the following functions to get
the data into R:

•	 CSV: read.csv() is intended for reading the comma separated value (CSV)
files, where the decimal point is ",". The retrieved data will be stored into
one R object, which is considered as Dataframe.
Dataframe <- read.csv("data.csv",sep=",")

•	 TXT: To retrieve the tab separated values, the read.table() function will
be used with some important parameters and the return type of this function
will be Dataframe type.
Dataframe <- read.table("data.csv", sep="\t")

•	 .RDATA: Here, the .RDATA format is used by R for storing the workspace
data for a particular time period. It is considered as image file. This will
store/retrieve all of the data available in the workspace.
load("history.RDATA")

•	 .rda: This is also R's native data format, which stores the specific data
variable as per requirement.

load("data_variables_a_and_b.rda")

Chapter 7

[183]

Exporting the data from R
To export the existing data object from R and to support data files as per
requirements, we need to use the following functions:

•	 CSV: Write the dataframe object into the csv data file via the following
command:
write.csv(mydata, "c:/mydata.csv", sep=",", row.names=FALSE)

•	 TXT: Write the data with the tab delimiters via the following command:
write.table(mydata, "c:/mydata.txt", sep="\t")

•	 .RDATA: To store the workspace data variables available to R session, use
the following command:
save.image()

•	 .rda: This function is used to store specific data objects that can be reused
later. Use the following code for saving them to the .rda files.

column vector

a <- c(1,2,3)

column vector

b <- c(2,4,6)

saving it to R (.rda) data format

save(a, b, file=" data_variables_a_and_b.rda")

Understanding MySQL
MySQL is world's most popular open source database. Many of the world's largest
and fastest growing organizations including Facebook, Google, Adobe, and Zappos
rely on MySQL databases, to save time and money powering high-volume websites,
business critical systems, and software packages.

Since both R and MySQL both are open source, they can be used for building the
interactive web analytic applications. Also simple data analytics activities can be
performed for existing web applications with this unique package.

To install MySQL on your Linux machine, you need to follow the given steps
in sequence:

•	 Install MySQL
•	 Install RMySQL

Importing and Exporting Data from Various DBs

[184]

Installing MySQL
We will see how to get MySQL installed on Linux:

// Updating the linux package list

sudo apt-get update

// Upgrading the updated packages

sudo apt-get dist-upgrade

//First, install the MySQL server and client packages:

sudo apt-get install mysql-server mysql-client

Log in to MySQL database using the following command:
mysql -u root -p

Installing RMySQL
Now, we have installed MySQL on our Linux machine. It's time to install RMySQL –
R library from CRAN via the following R commands:

to install RMySQL library

install.packages("RMySQL")

#Loading RMySQL
library(RMySQL)

After the RMySQL library is installed on R, perform MySQL database connection by
providing the user privileges as provided in MySQL administration console:

mydb = dbConnect(MySQL(), user='root', password='', dbname='sample_
table', host='localhost')

Learning to list the tables and their structure
Now, the database connection has been done successfully. To list the available
tables and their structure of data base in MySQL database, look at the following
commands. To return the available tables created under mydb database, use the
following command:
dbListTables(mydb)

To return a list of data fields created under the sample_table table, use the
following command:
dbListFields(mydb, 'sample_table')

Chapter 7

[185]

Importing the data into R
We know how to check MySQL tables and their fields. After identification of useful
data tables, we can import them in R using the following RMySQL command. To
retrieve the custom data from MySQL database as per the provided SQL query, we
need to store it in an object:

rs = dbSendQuery(mydb, "select * from sample_table")

The available data-related information can be retrieved from MySQL to R via the
fetch command as follows:

dataset = fetch(rs, n=-1)

Here, the specified parameter n = -1 is used for retrieving all pending records.

Understanding data manipulation
To perform the data operation with MySQL database, we need to fire the
SQL queries. But in case of RMySQL, we can fire commands with the
dbSendQuery function.

Creating a new table with the help of available R dataframe into MySQL database
can be done with the following command:

dbWriteTable(mydb, name='mysql_table_name', value=data.frame.name)

To insert R matrix data into the existing data table in MySQL, use the following
command:

defining data matrix

datamatrix <- matrix(1:4, 2, 2)

defining query to insert the data

query <- paste("INSERT INTO names VALUES(",datamatrix [1,1], ",",
datamatrix [1,2], ")")

command for submitting the defined SQL query dbGetQuery(con, query)

Sometimes we need to delete a MySQL table when it is no longer of use. We can fire
the following query to delete the mysql_some_table table:

dbSendQuery(mydb, 'drop table if exists mysql_some_table').

Importing and Exporting Data from Various DBs

[186]

Understanding Excel
Excel is a spreadsheet application developed by Microsoft to be run on Windows
and Mac OS, which has a similar function to R for performing statistical
computation, graphical visualization, and data modeling. Excel is provided by
Microsoft with the Microsoft Office bundle, which mainly supports .xls spreadsheet
data file format. In case, we want to read or write to Microsoft Excel spreadsheets
from within R, we can use many available R packages. But one of the popular and
working R library is xlsx.

This package programmatically provides control of the Excel files using R. The high
level API of this allows users to read a spread sheet of the .xlsx document into a
data.frame and writing data.frame to a file. This package is basically developed by
Adrian A. Dragulescu.

Installing Excel
Here, we are considering the .xls file as the data source, which can be built and
maintained with the help of Microsoft Excel 97/2000/XP/2003.

The following are the prerequisites for the xlsx packages:

•	 xlsxjars
•	 rJava

Installing xlsxX packages:

•	 Install.packages("xlsxjars")
•	 Install.packages("rJava")
•	 Install.packages("xlsx")

Importing data into R
Suppose we have created one excel file and now we want to perform the data
analytics related operations with R, this is the best package to load the excel file to be
processed within R.

es <- read.xlsx("D:/ga.xlsx",1)

The preceding command will store the excel data with sheet 1 into the es dataframe
format in R.

Chapter 7

[187]

Understanding data manipulation with
R and Excel
The following command will be used for selecting the subset of dataframe, res,
which selects the first five rows:

r <- res[1:5,]

Exporting the data to Excel
As per the defined name, the processed data with the dataframe format can be stored
as a xls file to be supported with Excel.

ress <- write.xlsx(r, "D:/ga1.xls")

Understanding MongoDB
MongoDB is a NoSQL-based distributed document data storage. This has
been specially designed for providing scalable and high performance data
storage solutions. In many scenarios, it can be used to replace traditional
relational database or key/value data storage. The biggest feature of Mongo is
its query language, which is very powerful, and its syntax is somewhat similar
to object-oriented query language.

The following are the features of MongoDB:

•	 Set-oriented storage and easy to store the object type
•	 Support for dynamic queries
•	 Full index support
•	 Rich query language
•	 Data fragments processing order to support the expansion of the cloud level
•	 BSON-based file data storage
•	 Supported with C, C++, C#, Erlang, Haskell, Java, JavaScript, Perl, PHP,

Python, Ruby, and Scala

We can use R and MongoDB together by installing the following prerequisites:

•	 MongoDB installation
•	 rmongodb installation

Importing and Exporting Data from Various DBs

[188]

Installing MongoDB
The following are the steps provided for installation of MongoDB in Ubuntu 12.04
and CentOS:

First, we will see installation steps for Ubuntu.

1.	 Configure Package Management System (APT) using the
following command:
sudo apt-key adv --keyserverhkp://keyserver.ubuntu.com:80
--recv 7F0CEB10

2.	 Create /etc/apt/sources.list.d/mongodb.list by using the
following command:
echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart
dist 10gen' | sudo tee /etc/apt/sources.list.d/mongodb.list

3.	 Now, update the package list of your OS using the following command:
sudo apt-get update

4.	 Install the latest version of MongoDB by using the following command:

apt-get install mongodb-10gen

Now, we will see the installation steps for CentOs.

1.	 Configure Package Management System (YUM).
2.	 Create /etc/yum.repos.d/mongodb.repo and use the following

configurations:
°° For a 64-bit system use the following command:

[mongodb]

name=MongoDB Repository

baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/
x86_64/

gpgcheck=0

enabled=1

°° For a 32-bit system use the following command:

[mongodb]

name=MongoDB Repository

baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/
i686/

gpgcheck=0

enabled=1

3.	 Install Packages.

Chapter 7

[189]

With the following command, install a stable version of MongoDB and the
associated tools:

yum install mongo-10gen mongo-10gen-server

Now, you have successfully installed MongoDB.

Useful commands for controlling a mongodb service

To start the mongodb service we use the following command:
sudo service mongodb start

To stop the mongodb service we use the following command:
sudo service mongodb stop

To restart the mongodb service we use the following command:
sudo service mongodb restart

To start a Mongo console we use the following command:
mongo

Mapping SQL to MongoDB
The following are the mappings of SQL terms to MongoDB terms for better
understanding of data storage:

No. SQL Term MongoDB Term

1. Database Database
2. Table Collection
3. Index Index
4. Row Document
5. Column Field
6. Joining Embedding & linking

Importing and Exporting Data from Various DBs

[190]

Mapping SQL to MongoQL
The following are the mapping of SQL statements to Mongo QL statements for the
understanding of query development/conversion:

No. SQL Statement Mongo QL Statement
1. INSERT INTO students

VALUES(1,1)
$db->students-
>insert(array("a" => 1, "b"
=> 1));

2. SELECT a, b FROM students $db->students->find(array(),
array("a" => 1, "b" => 1));

3. SELECT * FROM students
WHERE age < 15

$db->students-
>find(array("age" =>
array('$lt' => 15)));

4. UPDATE students SET a=1
WHERE b='q'

$db->students-
>update(array("b" => "q"),
array('$set' => array("a" =>
1)));

5. DELETE FROM students WHERE
name="siddharth"

$db->students-
>remove(array("name" => "
siddharth"));

Installing rmongodb
To use MongoDB within R, we need to have installed R with the rmongodb library.
We can install rmongodb from CRAN via the following command:

installing library rmongodb in R

install.packages (rmongodb)

Importing the data into R
We have learned how to install MongoDB in Ubuntu 12.04. Now, we can perform
all the necessary operations on our data. In this section, we are going to learn how
Mongo data can be handled and imported in R for data analytics activity. For loading
the library we use the following command:

loading the library of rmongodb

library (rmongodb)

Mongo connection establishment

mongo <-mongo.create ()

Chapter 7

[191]

Check whether the normal series

mongo.is.connected (mongo)

Create a BSON object cache

buf <- mongo.bson.buffer.create ()

Add element to the object buf

mongo.bson.buffer.append (buf, "name", "Echo")

Objects of the mongo.bson class are used to store BSON documents. BSON is the
form that MongoDB uses to store documents in its database. MongoDB network
traffic also uses BSON messages:

b <- mongo.bson.from.list(list(name="Fred", age=29, city="Boston"))
 iter <- mongo.bson.iterator.create(b) # b is of class "mongo.bson"
 while (mongo.bson.iterator.next(iter))
 print(mongo.bson.iterator.value(iter))

Understanding data manipulation
We will now see how Mongo data object can be operated within R:

To check whether mongo is connected or not in R.

if (mongo.is.connected(mongo)) {
 ns <- "test.people"

#Returns a fresh mongo.bson.buffer object ready to have data

#appended onto it in R.
 buf <- mongo.bson.buffer.create()
 mongo.bson.buffer.append(buf, "name", "Joe")
 criteria <- mongo.bson.from.buffer(buf)

mongo.bson.buffer objects are used to build mongo.bson objects.
 buf <- mongo.bson.buffer.create()

 mongo.bson.buffer.start.object(buf, "inc")
 mongo.bson.buffer.append(buf, "age", 1L)
 mongo.bson.buffer.finish.object(buf)
 objNew <- mongo.bson.from.buffer(buf)
 # increment the age field of the first record matching name "Joe"
 mongo.update(mongo, ns, criteria, objNew)

mongo.bson.buffer objects are used to build mongo.bson objects.
 buf <- mongo.bson.buffer.create()
 mongo.bson.buffer.append(buf, "name", "Jeff")
 criteria <- mongo.bson.from.buffer(buf)

Importing and Exporting Data from Various DBs

[192]

mongo.bson.buffer objects are used to build mongo.bson objects.
 buf <- mongo.bson.buffer.create()
 mongo.bson.buffer.append(buf, "name", "Jeff")
 mongo.bson.buffer.append(buf, "age", 27L)
 objNew <- mongo.bson.from.buffer(buf)
 # update the entire record to { name: "Jeff", age: 27 }
 # where name equals "Jeff"
 # if such a record exists; otherwise, insert this as a new reord
 mongo.update(mongo, ns, criteria, objNew,
 mongo.update.upsert)
 # do a shorthand update:
 mongo.update(mongo, ns, list(name="John"), list(name="John",
 age=25))
}

Understanding SQLite
SQLite is a relational database management system developed with C programming
language. SQLite is ACID compliant and implements most of the SQL standard.
Unlike other database systems, SQLite doesn't have a standalone process to serve
data to client applications. It's an embedded SQL database engine. SQLite system
reads and writes directly to the system disk files because it's a file-based database.
Related SQL database with multiple tables, indices, and views are contained there
and this database file format is supported as cross-platform.

Quick understanding of ACID properties of transactions:

There are a set of properties that needs to be fulfilled to perform the transactions.
They are Atomicity, Consistency, Isolation, and Durability. which are explained
as follows:

•	 Atomicity refers to the guarantee that all the tasks of the database are
performed.

•	 Consistency ensures that the database remains in a consistent manner
throughout, similar to how it was before we started.

•	 Isolation refers to the requirement that other operations cannot access or see
the data in an intermediate state during a transaction.

•	 Durability refers to the guarantee that once the user has been notified of
success, the transaction will persist, and not be undone. This means it
will survive system failure, and that the database system has checked the
integrity constraints and won't need to abort the transaction.

Chapter 7

[193]

Understanding features of SQLite
The following are the features of SQLite database that follows ACID properties:

•	 Zero configuration
•	 Cross-platform-supported disk format
•	 Faster than client-server type of database system
•	 Easy to use API

We will require the following prerequisites for using SQLite and R together:

•	 SQLite installation
•	 RSQLite installation

Installing SQLite
To install the SQLite database in Ubuntu, follow the given commands:

// install sqllite by firing the following commands

sudo apt-get purge sqlite3 sqlite3-doc libsqlite3-0

sudo apt-get autoremove

sudo apt-get install sqlite3 sqlite3-doc

Installing RSQLite
We can install RSQLite by following the given command:

installing RSQLite library from CRAN in R

Install.packages("RSQLite")

Importing the data into R
We will see how to insert the data into R with the RSQLite package.

To load an installed package, we use the following command:

#loading the installed package

library("RSQLite")

Importing and Exporting Data from Various DBs

[194]

With the following commands, you can connect to DB and list all tables from the
database:

connect to db

con <- dbConnect(SQLite(), dbname="data/first.db")

list all tables

tables <- dbListTables(con)

exclude sqlite_sequence (contains table information)

tables <- tables[tables != "sqlite_sequence"]

lDataFrames <- vector("list", length=length(tables))

create a data.frame for each table

for (i in seq(along=tables)) {

 lDataFrames[[i]] <- dbGetQuery(conn=con, statement=paste("SELECT *
 FROM '", tables[[i]], "'", sep=""))

}

Understanding data manipulation
We can manipulate the dataset using the following commands:

dbBeginTransaction(con)

rs <- dbSendQuery(con, "DELETE from candidates WHERE age > 50")

Exporting the data from Rdata(USArrests)

dbWriteTable(con, "USArrests", USArrests)

Understanding PostgreSQL
PostgreSQL is an open source object relational database management system.
PostgreSQL runs on most of the operating systems such as Linux, UNIX, and
Windows. It supports text, image, sound, and video data sources. It supports
programming technologies such as C, C++, Java, Python, Ruby, and Tcl.

Chapter 7

[195]

Understanding features of PostgreSQL
The following are the features of PostgreSQL:

•	 Complex SQL queries
•	 Fully ACID complaint
•	 SQL subselects

We need to have installed the following prerequisites for using PostgreSQL in R:

•	 Installing Postgre SQL
•	 Installing RPostgre SQL

Installing PostgreSQL
In this section, we will learn about installing PostgreSQL.

The given commands will be followed for the installation of PostgreSQL:

// updating the packages list

Sudo apt-get update

// installing postgresql

sudo apt-get install postgresql postgresql-contrib

// creating postgresql user

su – postgres createuser

Installing RPostgreSQL
We will now see how to install and use RPostgreSQL:

installing package from CRAN

install.packages(RPostgreSQL)

Importing the data into R# loading the installed package

library(RPostgreSQL)

load the PostgreSQL driver
drv <- dbDriver("PostgreSQL")

Importing and Exporting Data from Various DBs

[196]

Open a connection
con <- dbConnect(drv, dbname="oxford")

Submits a statement
rs <- dbSendQuery(con, "select * from student")

fetch all elements from the result set
fetch(rs,n=-1)

Closes the connection
dbDisconnect(con)

Frees all the resources on the driver
dbUnloadDriver(drv)

With the following code, we will learn how to operate data stored at PostgreSQL
from within R:

opendbGetQuery(con, "BEGIN TRANSACTION")
rs <- dbSendQuery(con,
"Delete * from sales as p where p.cost>10")
if(dbGetInfo(rs, what = "rowsAffected") > 250){
 warning("Rolling back transaction")
 dbRollback(con)
}else{
 dbCommit(con)
}

Exporting the data from R
In this section, we are going to learn how to load data, write the contents of the
dataframe value into the table name specified, and remove the specified table from
the database connection:

conn <- dbConnect("PostgreSQL", dbname = "wireless")
if(dbExistsTable(con, "frame_fuel")){
 dbRemoveTable(conn, "frame_fuel")
 dbWriteTable(conn, "frame_fuel", fuel.frame)
}
if(dbExistsTable(conn, "RESULTS")){
 dbWriteTable(conn, "RESULTS", results2000, append = T)
 else
 dbWriteTable(conn, "RESULTS", results2000)
}

Chapter 7

[197]

Understanding Hive
Hive is a Hadoop-based data warehousing-like framework developed by Facebook.
It allows users to fire queries in SQL, with languages like HiveQL, which are
highly abstracted to Hadoop MapReduce. This allows SQL programmers with no
MapReduce experience to use the warehouse and makes it easier to integrate with
business intelligence and visualization tools for real-time query processing.

Understanding features of Hive
The following are the features of Hive:

•	 Hibernate Query Language (HQL)
•	 Supports UDF
•	 Metadata storage
•	 Data indexing
•	 Different storage type
•	 Hadoop integration

Prerequisites for RHive are as follows:

•	 Hadoop
•	 Hive

We assume here that our readers have already configured Hadoop; else they can
learn Hadoop installation from Chapter 1, Getting Ready to Use R and Hadoop. As Hive
will be required for running RHive, we will first see how Hive can be installed.

Installing Hive
The commands to install Hive are as follows:

// Downloading the hive source from apache mirror

wget http://www.motorlogy.com/apache/hive/hive-0.11.0/hive-0.11.0.tar.gz

// For extracting the hive source

tar xzvf hive-0.11.0.tar.gz

Importing and Exporting Data from Various DBs

[198]

Setting up Hive configurations
To setup Hive configuration, we need to update the hive-site.xml file with a
few additions:

•	 Update hive-site.xml using the following commands:
<description> JDBC connect string for a JDBC metastore </
description>
</Property>

<property>
<name> javax.jdo.option.ConnectionDriverName </ name>
<value> com.mysql.jdbc.Driver </ value>
<description> Driver class name for a JDBC metastore </
description>
</Property>

<property>
<name> javax.jdo.option.ConnectionUserName </ name>
<value> hive </value>
<description> username to use against metastore database </
description>
</ Property>

<property>
<name> javax.jdo.option.ConnectionPassword </name>
<value> hive</value>
<description> password to use against metastore database </
description>
</Property>

<property>
<name> hive.metastore.warehouse.dir </ name>
<value> /user/hive/warehouse </value>
<description> location of default database for the warehouse </
description>
</Property>

•	 Update hive-log4j.properties by adding the following line:
log4j.appender.EventCounter = org.apache.hadoop.log.metrics.
EventCounter

•	 Update the environment variables by using the following command:
export $HIVE_HOME=/usr/local/ hive-0.11.0

Chapter 7

[199]

•	 In HDFS, create specific directories for Hive:
$HADOOP_HOME/bin/ hadoop fs-mkidr /tmp

$HADOOP_HOME/bin/ hadoop fs-mkidr /user/hive/warehouse

$HADOOP_HOME/bin/ hadoop fs-chmod g+w / tmp

$HADOOP_HOME/bin/ hadoop fs-chmod g+w /user/hive/warehouse

To start the hive server, the hive --service hiveserver
command needs to be called from HIVE_HOME.

Installing RHive
•	 Install the dependant library, rjava, using the following commands:

// for setting up java configuration variables

sudo R CMD javareconf

// Installing rJava package

install.packages ("rJava")

// Installing RHive package from CRAN

install.packages("RHive")

// Loading RHive library

library("RHive")

Understanding RHive operations
We will see how we can load and operate over Hive datasets in R using the
RHive library:

•	 To initialize RHive we use:
rhive.init ()

•	 To connect with the Hive server we use:
rhive.connect ("192.168.1.210")

Importing and Exporting Data from Various DBs

[200]

•	 To view all tables we use:
rhive.list.tables ()

 tab_name

1 hive_algo_t_account

2 o_account

3 r_t_account

•	 To view the table structure we use:
rhive.desc.table ('o_account');

 col_name data_type comment

1 id int

2 email string

3 create_date string

•	 To execute the HQL queries we use:
rhive.query ("select * from o_account");

•	 To close connection to the Hive server we use:

rhive.close()

Understanding HBase
Apache HBase is a distributed Big Data store for Hadoop. This allows random,
real-time, read/write access to Big Data. This is designed as a column-oriented,
data-storage model, innovated after being inspired by Google Big table.

Understanding HBase features
Following are the features for HBase:

•	 RESTful web service with XML
•	 Linear and modular scalability
•	 Strict consistent reads and writes
•	 Extensible shell
•	 Block cache and Bloom filters for real-time queries

Chapter 7

[201]

Pre-requisites for RHBase are as follows:

•	 Hadoop
•	 HBase
•	 Thrift

Here we assume that users have already configured Hadoop for their Linux machine.
If anyone wishes to know how to install Hadoop on Linux, please refer to Chapter 1,
Getting Ready to Use R and Hadoop.

Installing HBase
Following are the steps for installing HBase:

1.	 Download the tar file of HBase and extract it:
wget http://apache.cs.utah.edu/hbase/stable/hbase-0.94.11.tar.gz

tar -xzf hbase-0.94.11.tar.gz

2.	 Go to HBase installation directory and update the configuration files:
cd hbase-0.94.11/

vi conf/hbase-site.xml

3.	 Modify the configuration files:
1.	 Update hbase-env.sh.

~ Vi conf / hbase-env.sh

2.	 Set up the configuration for HBase:
 export JAVA_HOME = /usr/lib/jvm/java-6-sun

 export HBASE_HOME = /usr/local/hbase-0.94.11

 export HADOOP_INSTALL = /usr/local/hadoop

 export HBASE_CLASSPATH = /usr/local/hadoop/conf

 export HBASE_MANAGES_ZK = true

3.	 Update hbase-site.xmlzxml:
Vi conf / hbase-site.xml

Importing and Exporting Data from Various DBs

[202]

4.	 Change hbase-site.cml, which should look like the following code:
 <configuration>
 <property>
 <name> hbase.rootdir </name>
 <value> hdfs://master:9000/hbase </value>
 </Property>

 <property>
 <name>hbase.cluster.distributed </name>
 <value>true</value>
 </Property>

 <property>
 <name>dfs.replication </name>
 <value>1</value>
 </Property>

 <property>
 <name>hbase.zookeeper.quorum </name>
 <value>master</value>
 </Property>

 <property>
 <name>hbase.zookeeper.property.clientPort </name>
 <value>2181</value>
 </Property>

 <property>
 <name>hbase.zookeeper.property.dataDir </name>
 <value>/root/hadoop/hdata</​​value>
 </Property>
 </ Configuration>

If a separate zookeper setup is used, the
configuration needs to be changed.

5.	 Copy the Hadoop environment configuration files and libraries.

Cp $HADOOP_HOME/conf/hdfs-site.xml $HBASE_HOME/conf

Cp $HADOOP_HOME/hadoop-core-1.0.3.jar $HBASE_HOME/lib

Cp $HADOOP_HOME/lib/commons-configuration-1.6.jar $HBASE_
HOME/lib

Cp $HADOOP_HOME/lib/commons-collections-3.2.1.jar $HBASE_
HOME/lib

Chapter 7

[203]

Installing thrift
Following are the steps for installing thrift:

1.	 Download the thrift source from the Internet and place it to client.
We will do it with Ubuntu O.S 12.04:
get http://archive.apache.org/dist/thrift/0.8.0/thrift-0.8.0.tar.
gz

2.	 To extract the downloaded .tar.gz file, use the following command:
tar xzvf thrift-0.8.0.tar.gz

cd thrift-0.8.0/

3.	 Compile the configuration parameters:
./Configure

4.	 Install thrift:

Make

Make install

To start the HBase thrift server we need to call the
following command:
$HBASE_HOME/bin/hbase-daemon.sh start

Installing RHBase
After installing HBase , we will see how to get the RHBase library.

•	 To install rhbase we use the following command:
wget https://github.com/RevolutionAnalytics/rhbase/blob/master/
build/rhbase_1.2.0.tar.gz

•	 To install the downloaded package we use the following command:

R CMD INSTALL rhbase_1.2.0.tar.gz

Importing and Exporting Data from Various DBs

[204]

Importing the data into R
Once RHBase is installed, we can load the dataset in R from HBase with the help
of RHBase:

•	 To list all tables we use:
hb.list.tables ()

•	 To create a new table we use:
hb.new.table ("student")

•	 To display the table structure we use:
hb.describe.table("student_rhbase")

•	 To read data we use:

hb.get ('student_rhbase', 'mary')

Understanding data manipulation
Now, we will see how to operate over the dataset of HBase from within R:

•	 To create the table we use:
hb.new.table ("student_rhbase", "info")

•	 To insert the data we use:
hb.insert ("student_rhbase", list (list ("mary", "info: age",
"24")))

•	 To delete a sheet we use:

hb.delete.table ('student_rhbase')

Summary
In this chapter, we learned how various R packages that are integrated with various
database systems and their data sets can be loaded in R to perform data analytics.
Most of the popular database systems have their R packages to load the data, update,
as well as query the data to analyze them.

References
In this appendix, additional resources related to the content of all chapters
are presented.

R + Hadoop help materials
•	 Big Data university

°° Name: Big Data university
°° URL: http://bigdatauniversity.com/
°° Type: Online course
°° For: Hadoop and its components

•	 Online Coursera courses for machine learning
°° Name: Machine learning
°° URL: https://www.coursera.org/course/ml
°° Type: Online Coursera course
°° By: Dr. Andrew Ng
°° For: Hadoop and its components

•	 Online Coursera courses for introduction to Data Science
°° Name: Introduction to Data Science
°° URL: https://www.coursera.org/course/datasci
°° Type: Online Coursera course
°° By: Dr. Bill Howe
°° For: Learning data manipulation and analytics

References

[206]

•	 RHadoop
°° Name: RHadoop
°° URL: https://github.com/RevolutionAnalytics/RHadoop/
°° Type: RHadoop reference
°° For: RHadoop packages downloads

•	 RHIPE
°° Name: RHIPE
°° URL: http://www.datadr.org/
°° Type: RHIPE reference
°° For: RHIPE packages downloads

•	 HadoopStreaming
°° Name: HadoopStreaming
°° URL: http://cran.r-project.org/web/packages/

HadoopStreaming/index.html

°° Type: RHadoop package reference
°° For: HadoopStreaming package downloads

•	 R documentation
°° Name: R documentation
°° URL: http://www.rdocumentation.org/
°° Type: Online R dictionary
°° For: R documentation

•	 Revolution Analytics

°° Name: Revolution Analytics
°° URL: http://www.revolutionanalytics.com/news-events/

free-webinars/

°° Type: On-demand webinars on R and Hadoop
°° For: Importance of R and Hadoop for business applications in

large industries

Appendix

[207]

R groups
•	 Big Data Analytics using R

°° Name: Big Data Analytics using R (Facebook group)
°° URL: http://www.facebook.com/groups/434352233255448/
°° Type: Facebook knowledge sharing group

Hadoop groups
•	 Hadoop in Action

°° Name: Hadoop in Action (Facebook group)
°° URL: http://www.facebook.com/groups/haddopinaction/
°° Type: Facebook knowledge sharing and business context

•	 Hadoop
°° Name: Hadoop (Facebook group)
°° URL: http://www.facebook.com/groups/21410812368/
°° Type: Facebook knowledge sharing

•	 Big Data Analytics using R
°° Name: Hadoop Users (LinkedIn group)
°° URL: http://www.linkedin.com/groups/Hadoop-Users-988957
°° Type: LinkedIn group for building professional connections as well

as for business context

•	 Hadoop Mailing lists

°° Name: Hadoop Users (LinkedIn group)
°° URL: http://hadoop.apache.org/mailing_lists.html
°° Type: LinkedIn group for building professional connections

as well as for business context

References

[208]

R + Hadoop groups
•	 www.fens.me by Conan Z, who contributed to Chapter 6, Understanding Big

Data Analysis with Machine Learning, for recommender systems with R and
Mahout, Hadoop in this book

°° Name: Fens.me
°° URL: http://blog.fens.me/
°° Type: Collection of blogs over R, Hadoop, its components, and other

open source technologies.

Popular R contributors
•	 RStudio

°° Name: RStudio
°° URL: http://www.rstudio.com/
°° Type: Software, education, and services for the R community
°° Contribution: Rstudio IDE, plyr, Shiny, RPubs, and devtools

•	 R-Bloggers
°° Name: R-Bloggers
°° URL: http://www.r-bloggers.com/
°° Type: Software, education, and services for the R community
°° Contribution: R blogging portal

•	 Decisionstats
°° Name: Decisionstats
°° URL: http://decisionstats.com/
°° Type: Business analytics with R
°° Contribution: Business analytics

Appendix

[209]

•	 RDataMining
°° Name: RDataMining
°° URL: http://www.rdatamining.com/
°° Type: Data Mining with R
°° Contribution: Data mining with R and machine learning, rdatamining

•	 Hadley Wickham
°° Name: Hadley Wickham
°° URL: http://had.co.nz/
°° Type: Data visualization and statistics with R
°° Contribution: ggplot2, plyr, testhat, reshape2, and R notes

Popular Hadoop contributors
•	 Michael Noll, who contributed to this book for Hadoop installation steps

°° Name: Michael Noll
°° URL: http://www.michael-noll.com/
°° Type: Big Data and Hadoop
°° Contribution: Developing standard installation steps and innovative

projects in Hadoop and Big Data

•	 Revolution Analytics
°° Name: Revolution Analytics
°° URL: http://www.revolutionanalytics.com/
°° Type: Big Data analytics
°° For: Big Data analytics with R and Hadoop for big businesses

(RHadoop)

References

[210]

•	 Hortonworks
°° Name: Hortonworks
°° URL: http://hortonworks.com/
°° Type: Enterprise Hadoop Solution
°° For: 100 percent open source and enterprise grade distribution of

Hadoop, Linux, and Windows
°° Contribution: Windows support and YARN

•	 Cloudera
°° Name: Cloudera
°° URL: http://www.cloudera.com/
°° Type: Enterprise Hadoop Solution
°° For: 100 percent open source software for Big Data
°° Contribution: Sqoop

•	 Yahoo!
°° Name: Yahoo!
°° URL: http://developer.yahoo.com/hadoop/
°° Type: Enterprise Hadoop Solution
°° For: The open source software for big data
°° Contribution: Hadoop development was initiated by Yahoo! and

OOZIE

Index
Symbols
10 MapReduce Tips

URL 52
.jar file 56

A
ACID properties 192
Ambari 36
Apache Hadoop 1.0.3 21
Apache HBase 34
Apache Solr 35
Apache Sqoop 35
Apache Zookeeper 35
Application Programming Interface

(API) 16
architecture, HDFS 30
architecture, MapReduce 31
architecture, RHadoop 77
architecture, RHIPE 68
artificial neural networks 162

B
Bash command 59
Big Data analytics

performing, with machine learning 149
Big Data university

URL 205
Bulk Synchronous Parallel (BSP) 38
business analytics

MapReduce definitions, used 60

C
CDH

about 25
installing, on Ubuntu 25-27
installing, prerequisites 25

CentOS 188
classification technique 18
client 40
close function 101
Cloudera

URL 210
Cloudera Hadoop. See CDH
clustering

about 18, 162, 163
performing, with R 163
performing, with RHadoop 163-167

cmdenv option 90
combine function 96
Combiner function 42
combiner option 90
command prompt

Hadoop streaming job, executing from 98
output, exploring from 99

community support, R
increasing 17

Comprehensive R Archive Network. See
CRAN

Coursera
URL, for Data Science 205
URL, for machine learning 205

CRAN
about 16
URL 16

[212]

D
Dashboard charts 117
data

exporting, into R 183
importing, into R 182
loading, into HDFS 40
preprocessing 115

data analysis 16
data analytics

performing 115
with Hadoop 113
with R 113

data analytics problems
about 117
case study 137
stock market change frequency,

computing 128
web page categorization, exploring 118

data analytics problems, case study
data analytics, performing 141
data, preprocessing 139
data requirement, designing 138
problem, identifying 137

data analytics project life cycle
about 113, 114
data analytics, performing 115
data, preprocessing 115
data requirement, designing 114
data, visualizing 116, 117
problem, identifying 114

data attributes, Google Analytics 119
database systems

supported by R 179-181
data cleaning 16
data exploration 16
data files

about 181
data, exporting into R 183
data, importing into R 182
R package, installing 182

data files, types
CSV 182
.rda 182
.RDATA 182
Txt 182

data, Google Analytics
extracting 119, 120

data mining, techniques
classification 18
clustering 18
recommendation 19
regression 18

data modeling 18, 19
DataNode 30
data operations

performing 16, 17
data processing operations

data analysis 16
data cleaning 16
data exploration 16

data requirement
designing 114

data visualization 116, 117
dbSendQuery function 185
Decisionstats

URL 208
deserialization 44
directory operation 84
dist.fun function 164
Distributed File System (DFS) 37
Divide and Recombine technique 65
D&R analysis 62

E
Eclipse 52
entities, Hadoop MapReduce

listing 40
environment variables

setting up 66, 67, 78, 79
Excel

about 186
data, exporting to 187
data, importing into R 186
data manipulation 187
installing 186

F
file function 101
file manipulation 83
file option 90
file read/write 83

[213]

fitting, types
normal fitting 144
over fitting 144
under fitting 143

Flume 41
Fourier Transformation 128
from.dfs function 85
full distributed mode 20

G
getwd command 74
ggplot2 package

about 116
URL 116

glm model 158
Google Analytics

about 118
data attributes 119
data, extracting 119, 120

Google filesystem
reference links 29

Google MapReduce
URL 29

Gzip 42

H
Hadoop

about 13
features 28
installing 19, 20, 65
installing, on multinode cluster 23, 24
installing, over Ubuntu OS with

pseudo mode 20-23
Java concepts 44, 45
linking, with R 64
modes 20

Hadoop Distributed File System.
See HDFS 23

Hadoop, features
HDFS 28
MapReduce 28

Hadoop installation 77
Hadoop MapReduce

about 39
coding, in R 61
data, loading into HDFS 40

entities, listing 40
fundamentals 45
limitations 43
Map phase, executing 41, 42
phase execution, reducing 42, 43
problem solving ability 44
shuffling 42
sorting 42

Hadoop MapReduce example
coding 51

Hadoop MapReduce, fundamentals
Hadoop MapReduce terminologies 48
MapReduce dataflow 47
MapReduce objects 45, 46
number of Maps, deciding 46
number of Reducers, deciding 46

Hadoop MapReduce job
debugging 58
executing, steps 52-57
monitoring 58, 102

Hadoop MapReduce scripts
R function, using 101, 102

Hadoop MapReduce terminologies 48
Hadoop MRv1 20
Hadoop streaming

about 62, 87-91
Hadoop MapReduce job, monitoring 102
MapReduce application 92, 94
MapReduce application, coding 94-96
MapReduce application output,

exploring 99
MapReduce application, running 98
R function, used in Hadoop MapReduce

scripts 101
running, with R 92
URL 206

Hadoop streaming job
executing 112
executing, from command prompt 98
executing, from R 99
executing, from RStudio console 99
running 110, 111

Hadoop streaming R package
exploring 103
Hadoop streaming job, running 110, 111
hsKeyValReader function 106
hsLineReader function 107, 108
hsTableReader function 104-106

[214]

Hadoop subprojects 33-36
HBase

about 200
data, importing into R 204
data manipulation 204
features 200
installing 201, 202
RHBase, installing 203
Thrift, installing 203

HDFS
about 28, 40, 65, 69, 73, 115, 155
architecture 30
architecture, understanding by plot 31, 32
characteristics 28
components 30
data, exploring 59
data, loading 40
getwd command 74
rhcp command 74
rhdel command 74
rhget command 74
rhls command 73
rhput command 74
rwrite command 74
setwd command 74

hdfs.chmod function 83
hdfs.close function 83
HDFS, components

DataNode 30
NameNode 30
Secondary NameNode 30

hdfs.copy function 83
hdfs.defaults function 82
hdfs.delete function 83
hdfs.dircreate function 84
hdfs.file function 83
hdfs.file.info function 85
hdfs.init function 82
hdfs.ls function 84
hdfs.mkdir function 84
hdfs.move function 83
hdfs package

directory operation 84
file manipulation 83
file read/write 83
initialization 82
Utility 84

hdfs.put function 83
hdfs.read function 84
hdfs.rename function 83
hdfs.rm function 83, 84
hdfs.write function 83
Hive

about 34, 197
configuration, setting up 198, 199
features 197
installing 197
RHive, installing 199
RHive operations 199, 200

Hortonworks
URL 210

hsKeyValReader function 106
hsLineReader function 107, 108
hsTableReader function 104-106
Hypertext Transfer Protocol (HTTP) 42

I
initialization

about 73
rhinit command 73

inputformat option 90
input option 89
inputreader option 90
installation, CDH

Ubuntu 25-27
installation, Excel 186
installation, Hadoop

about 19, 20, 65
on multinode cluster 23, 24
over Ubuntu OS 20-23
prerequisites 20

installation, HBase 201, 202
installation, Hive 197
installation, MongoDB 188, 189
installation, MySQL

on Linux 184
installation, PostgreSQL 195
installation, protocol buffers 66
installation, R 14, 15, 66
installation, RHadoop 77, 79
installation, RHBase 203
installation, RHIPE 65, 67
installation, RHive 199

[215]

installation, rJava package 67
installation, rmongodb 190
installation, RMySQL

on Linux 184
installation, R package 78, 182
installation, RPostgreSQL 195, 196
installation, RSQLite 193
installation, RStudio 15
installation, SQLite 193
installation, Thrift 203
Integrated Development Environment

(IDE) 15
item-based recommendations 168

J
jar option 89
Java collection 44
Java concepts

using 44, 45
Java concurrency 45
Java Development Kit (JDK) 26
Java generics 44
Java Virtual Machine (JVM) 20, 44
JobTracker 31, 40, 68

K
Kaggle 137
keyval function 85
k-means.map function 164
k-means method 163
k-means.mr function 164, 165
k-means.reduce function 164, 165

L
linear regression

about 150-152
performing, with R 152
performing, with RHadoop 154-156

lm() model 154
logistic regression

about 150, 157, 158
performing, in RHadoop 159-161
performing, with R 159

logistic.regression MapReduce
function 159, 160

lr.map Mapper function 159, 160
lr.reducer Reducer function 159, 160

M
machine learning

about 149
Wiki URL 19

machine learning algorithms
types 150

machine learning algorithms, types
recommendation algorithms 150-169
supervised machine-learning

algorithms 150
unsupervised machine learning

algorithms 150, 162
Mahout 33
main() method 45
mapdebug option 90
Map() function 49
Mapper function 104
mapper option 90
Map phase

about 29
attributes 48
executing 41, 42

Map phase, attributes
InputFiles 48
InputFormat 48
InputSplits 49
Mapper 49
RecordReader 49

MapReduce
about 28
architecture 31
architecture, understanding by plot 31, 32
basics 37-39
components 31
Map phase 29
Reduce phase 29
rhex command 75
rhjoin command 75
rhkill command 75
rhoptions command 75
rhstatus command 75
rhwatch command 75

[216]

MapReduce application
about 92, 94
coding 94-96
output, exploring 99
running 98

MapReduce, components
JobTracker 31
TaskTracker 31

MapReduce dataflow 47
MapReduce definitions

used, for business analytics 60
mapreduce function 85
MapReduce job 1

HDFS output location, tracking 126
Mapper task status, tracking 126
metadata, tracking 125
Reducer task status, tracking 126

MapReduce job 2
HDFS output location, tracking 127
Mapper task status, tracking 126
metadata, tracking 126
Reducer task status, tracking 126

MapReduce objects
about 45, 46
Driver 45
Mapper 45
Reducer 45

Maven 52
Message Passing Interface (MPI) 37
Michael Noll

URL 209
modes, Hadoop

about 20
full distributed mode 20
pseudo mode 20
standalone mode 20

MongoDB
about 187
data, importing into R 190
data manipulation 191
features 187
installing 188, 189
rmongodb, installing 190
SQL, mapping 189

MongoQL
SQL, mapping 190

Myrrix
URL 173

MySQL
about 183
data, importing into R 185
data manipulation 185
installing, on Linux 184
RMySQL, installing 184
table, listing 184
table structure, listing 184

N
NameNode 30
normal fitting 144
number of Maps

deciding 46
number of Reducers

deciding 46
numReduceTasks option 90

O
output

exploring, from command prompt 99
exploring, from R 100
exploring, from RStudio console 100

outputformat option 90
output option 90
over fitting 144

P
parallel computing

steps 29
partitioner option 90
phase execution

reducing 42, 43
Pig 34
Plain Old Java Objects (POJO) 45
Plots for facet scales 116
Poisson sampling

about 141-143
random forest model, fitting 143-146

PostgreSQL
about 194
data, exporting from R 196
features 195

[217]

installing 195
RPostgreSQL, installing 195, 196

print() function 73, 101
problem

identifying 114
protocol buffers

installing 66
pseudo mode 20

Q
quick check package 76

R
R

about 13
clustering, performing 163
community support, increasing 17
data modeling 18, 19
data operations, performing 16, 17
features 16
Hadoop MapReduce, coding 61
Hadoop streaming job, executing from 99
installing 14, 15, 66
linear regression, performing 152
linking, with Hadoop 64
logistic regression, performing 159
output, exploring from 100
recommendation algorithms,

generating 170-173
R and Hadoop Integrated Programming

Environment. See RHIPE
random access memory (RAM) 19
random forest model

fitting, with RHadoop 143-146
R-Bloggers

URL 17, 208
R blogs 17
R books 17
rCharts package

about 116
URL 116

RClient 68
RDataMining

URL 209

R documentation
URL 206

recommendation algorithms
about 19, 150, 167-169
generating, in R 170-173
generating, in RHadoop 173-178

recommendation algorithms, types
item-based recommendations 168
user-based recommendations 168

Recommender() method 19
reducedebug option 90
Reduce() method 49
Reduce phase 29

attributes 49
Reducer method 43
reducer option 90
regression technique 18
remote procedure calls 44
Revolution Analytics 61, 154, 169

URL 206, 209
R function

used, in Hadoop MapReduce scripts 101
R groups 17
RHadoop

about 61, 76
architecture 77
clustering, performing 163-167
installing 77-79
linear regression, performing 154, 156
logistic regression, performing 159-161
quick check package 76
recommendation algorithms,

generating 173-178
reference link 206
rhbase 76
rhdfs 76
rmr 76
URL 154

RHadoop example
about 79, 80
word count, identifying 81

RHadoop function
hdfs package 82
rmr package 82, 85

[218]

RHadoop installation, prerequisites
environment variables, setting 78, 79
Hadoop installation 77
R installation 77
R packages, installing 78

RHBase
installing 203
pre-requisites 201

rhbase package 76
rhcp command 74
rhdel command 74
rhdfs package 76
rhex command 75
rhget command 74
rhinit command 73
rhinit() method 69
RHIPE

about 62, 64
architecture 68
goals 65
installing 65, 67
reference link 206

RHIPE, components
HDFS 69
JobTracker 68
RClient 68
TaskTracker 69

RHIPE function, category
HDFS 73
initialization 73
MapReduce 73

RHIPE installation, prerequisites
environment variables, setting up 66, 67
Hadoop, installing 65
protocol buffers, installing 66
R, installing 66
rJava package, installing 67

RHIPE sample program
about 69, 70
word count, identifying 71, 72

RHive
installing 199
prerequisites 197

RHive operations 199, 200
rhjoin command 75
rhkill command 75
rhls command 73

rhoptions command 75
rhput command 74
rhstatus command 75
rhwatch command 75
rhwatch() method 70
R installation 77
rJava package

installing 67
R mailing list 17
rmongodb

installing 190
rmr package

about 76
data store/retrieve 85
MapReduce 85

RMySQL
installing, on Linux 184

R package
about 16
installing 78, 182
rhbase 61
rhdfs 61
rmr 61
using 16

RPostgreSQL
installing 195, 196

RSQLite
data, importing into R 193
data manipulation 194
installing 193

RStudio
Hadoop streaming job, executing from 99
installing 15
output, exploring from 100
URL 208

rwrite command 74

S
search engine 60
Secondary NameNode 30
Secure Shell (SSH) 24
serialization 44
setwd command 74
sink function 102
sort function 104

[219]

SQL
mapping, to MongoDB 189
mapping, to MongoQL 190

SQLite
about 192
features 193
installing 193
RSQLite, installing 193

Sqoop 41
stack overflow 17
standalone mode 20
stdin function 102
stdout function 102
stock market analysis 60
stock market change

data analytics, performing 130-135
data, preprocessing 129
data requirement, designing 129
data, visualizing 136, 137
frequency, computing 128
problem, identifying 128

Sum() function 154
summary command

parameters 153
supervised machine learning algorithms

about 150
linear regression 150-152
logistic regression 150, 157, 158

system command 99
system() method 100, 132

T
TaskTracker 31, 40, 69
Thrift

installing 203
to.dfs function 85
transactions

ACID properties 192

U
Ubuntu 12.04 188
under fitting 143
unsupervised machine learning algorithms

about 150, 162
artificial neural networks 162
clustering 162, 163
vector quantization 162

user-based recommendations 168
Utility 84

V
vector quantization 162
verbose option 90

W
web page categorization

data analytics, performing 121-127
data, preprocessing 120
data requirement, designing 118
data, visualizing 128
exploring 118
problem, identifying 118

web server log processing 60
website statistics 60
write function 101

X
xlsx packages

prerequisites 186

Y
Yahoo!

URL 210

Thank you for buying
Big Data Analytics with R and Hadoop

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Hadoop Beginner's Guide
ISBN: 978-1-84951-730-0 Paperback: 398 pages

Learn how to crunch big data to extract meaning
from the data avalanche

1.	 Learn tools and techniques that let you
approach big data with relish and not fear

2.	 Shows how to build a complete infrastructure
to handle your needs as your data grows

3.	 Hands-on examples in each chapter give the big
picture while also giving direct experience

Hadoop MapReduce Cookbook
ISBN: 978-1-84951-728-7 Paperback: 300 pages

Recipes for analyzing large and complex datasets
with Hadoop MapReduce

1.	 Learn to process large and complex data sets,
starting simply, then diving in deep

2.	 Solve complex big data problems such as
classifications, finding relationships, online
marketing and recommendations

3.	 More than 50 Hadoop MapReduce recipes,
presented in a simple and straightforward
manner, with step-by-step instructions and
real world examples

Please check www.PacktPub.com for information on our titles

Hadoop Real-World Solutions
Cookbook
ISBN: 978-1-84951-912-0 Paperback: 316 pages

Realistic, simple code examples to solve problems at
scale with Hadoop and related technologies

1.	 Solutions to common problems when working
in the Hadoop environment

2.	 Recipes for (un)loading data, analytics, and
troubleshooting

3.	 In-depth code examples demonstrating various
analytic models, analytic solutions, and
common best practices

Hadoop Operations and Cluster
Management Cookbook
ISBN: 978-1-78216-516-3 Paperback: 368 pages

Over 60 recipes showing you how to design, configure,
manage, monitor, and tune a Hadoop cluster

1.	 Hands-on recipes to configure a Hadoop cluster
from bare metal hardware nodes

2.	 Practical and in depth explanation of cluster
management commands

3.	 Easy-to-understand recipes for securing and
monitoring a Hadoop cluster, and design
considerations

4.	 Recipes showing you how to tune the
performance of a Hadoop cluster

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Ready to Use R
and Hadoop
	Installing R
	Installing RStudio
	Understanding the features of
R language
	Using R packages
	Performing data operations
	Increasing community support
	Performing data modeling in R

	Installing Hadoop
	Understanding different Hadoop modes
	Understanding Hadoop installation steps
	Installing Hadoop on Linux, Ubuntu flavor
(single node cluster)
	Installing Hadoop on Linux, Ubuntu flavor (multinode cluster)
	Installing Cloudera Hadoop on Ubuntu

	Understanding Hadoop features
	Understanding HDFS
	Understanding the characteristics of HDFS

	Understanding MapReduce

	Learning the HDFS and MapReduce architecture
	Understanding the HDFS architecture
	Understanding HDFS components

	Understanding the MapReduce architecture
	Understanding MapReduce components

	Understanding the HDFS and MapReduce architecture by plot

	Understanding Hadoop subprojects
	Summary

	Chapter 2: Writing Hadoop
MapReduce Programs
	Understanding the basics of MapReduce
	Introducing Hadoop MapReduce
	Listing Hadoop MapReduce entities
	Understanding the Hadoop MapReduce scenario
	Loading data into HDFS
	Executing the Map phase
	Shuffling and sorting
	Reducing phase execution

	Understanding the limitations of MapReduce
	Understanding Hadoop's ability to solve problems
	Understanding the different Java concepts used in Hadoop programming

	Understanding the Hadoop MapReduce fundamentals
	Understanding MapReduce objects
	Deciding the number of Maps in MapReduce
	Deciding the number of Reducers in MapReduce
	Understanding MapReduce dataflow
	Taking a closer look at Hadoop MapReduce terminologies

	Writing a Hadoop MapReduce example
	Understanding the steps to run a
MapReduce job
	Learning to monitor and debug a Hadoop MapReduce job
	Exploring HDFS data

	Understanding several possible MapReduce definitions to solve business problems

	Learning the different ways to write Hadoop MapReduce in R
	Learning RHadoop
	Learning RHIPE
	Learning Hadoop streaming

	Summary

	Chapter 3: Integrating R and Hadoop
	Introducing RHIPE
	Installing RHIPE
	Installing Hadoop
	Installing R
	Installing protocol buffers
	Environment variables
	The rJava package installation
	Installing RHIPE

	Understanding the architecture of RHIPE
	Understanding RHIPE samples
	RHIPE sample program (Map only)
	Word count

	Understanding the RHIPE function reference
	Initialization
	HDFS
	MapReduce

	Introducing RHadoop
	Understanding the architecture of RHadoop
	Installing RHadoop
	Understanding RHadoop examples
	Word count

	Understanding the RHadoop function reference
	The hdfs package
	The rmr package

	Summary

	Chapter 4: Using Hadoop Streaming with R
	Understanding the basics of
Hadoop streaming
	Understanding how to run Hadoop streaming with R
	Understanding a MapReduce application
	Understanding how to code a MapReduce application
	Understanding how to run a MapReduce application
	Executing a Hadoop streaming job from the command prompt
	Executing the Hadoop streaming job from R or an RStudio console

	Understanding how to explore the output of MapReduce application
	Exploring an output from the command prompt
	Exploring an output from R or an RStudio console

	Understanding basic R functions used in Hadoop MapReduce scripts
	Monitoring the Hadoop MapReduce job

	Exploring the HadoopStreaming
R package
	Understanding the hsTableReader function
	Understanding the hsKeyValReader function
	Understanding the hsLineReader function
	Running a Hadoop streaming job
	Executing the Hadoop streaming job

	Summary

	Chapter 5: Learning Data Analytics
with R and Hadoop
	Understanding the data analytics project life cycle
	Identifying the problem
	Designing data requirement
	Preprocessing data
	Performing analytics over data
	Visualizing data

	Understanding data analytics problems
	Exploring web pages categorization
	Identifying the problem
	Designing data requirement
	Preprocessing data
	Performing analytics over data
	Visualizing data

	Computing the frequency of stock market change
	Identifying the problem
	Designing data requirement
	Preprocessing data
	Performing analytics over data
	Visualizing data

	Predicting the sale price of blue book for bulldozers (case study)
	Identifying the problem
	Designing data requirement
	Preprocessing data
	Performing analytics over data
	Understanding Poisson-approximation resampling

	Summary

	Chapter 6: Understanding Big Data Analysis with Machine Learning
	Introduction to machine learning
	Types of machine-learning algorithms

	Supervised machine-learning algorithms
	Linear regression
	Linear regression with R
	Linear regression with R and Hadoop

	Logistic regression
	Logistic regression with R
	Logistic regression with R and Hadoop

	Unsupervised machine learning algorithm
	Clustering
	Clustering with R
	Performing clustering with R and Hadoop

	Recommendation algorithms
	Steps to generate recommendations in R
	Generating recommendations with
R and Hadoop

	Summary

	Chapter 7: Importing and Exporting Data from Various DBs
	Learning about data files as database
	Understanding different types of files
	Installing R packages
	Importing the data into R
	Exporting the data from R

	Understanding MySQL
	Installing MySQL
	Installing RMySQL
	Learning to list the tables and their structure
	Importing the data into R
	Understanding data manipulation

	Understanding Excel
	Installing Excel
	Importing data into R
	Exporting the data to Excel

	Understanding MongoDB
	Installing MongoDB
	Mapping SQL to MongoDB
	Mapping SQL to MongoQL

	Installing rmongodb
	Importing the data into R
	Understanding data manipulation

	Understanding SQLite
	Understanding features of SQLite
	Installing SQLite
	Installing RSQLite
	Importing the data into R
	Understanding data manipulation

	Understanding PostgreSQL
	Understanding features of PostgreSQL
	Installing PostgreSQL
	Installing RPostgreSQL
	Exporting the data from R

	Understanding Hive
	Understanding features of Hive
	Installing Hive
	Setting up Hive configurations

	Installing RHive
	Understanding RHive operations

	Understanding HBase
	Understanding HBase features
	Installing HBase
	Installing Thrift
	Installing RHBase
	Importing the data into R
	Understanding data manipulation

	Summary

	Appendix: References
	R + Hadoop help materials
	R groups
	Hadoop groups
	R + Hadoop groups
	Popular R contributors
	Popular Hadoop contributors

	Index

