
ptg

ptg

Jay Blanchard

Applied jQuery
DEVELOP AND DESIGN

ptg

Applied jQuery: Develop and Design

Jay Blanchard

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Jay Blanchard

Editor: Rebecca Gulick
Development and Copy Editor: Anne Marie Walker
Technical Reviewer: Jesse R. Castro
Production Coordinator: Myrna Vladic
Compositor: Danielle Foster
Proofreader: Patricia Pane
Indexer: Valerie Haynes-Perry
Cover design: Aren Straiger
Interior design: Mimi Heft

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-77256-5
ISBN 10: 0-321-77256-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

ptg

To Mom, who taught me there was magic in books,

and to Dad, who taught me there was magic in me.

ptg

IV APPLIED jQUERY: DEVELOP AND DESIGN

Projects like this are not possible without the support and understanding of a lot of
people, something I really didn’t understand when first embarking on the journey
to create a book. Saying “thank you” isn’t nearly enough, but I hope that you all
understand how much I appreciate you!

Even with the blender of life roaring around us, Connie Kay, Kaitlyn, Brittany,
Zach, Karla, and Morgan provided more love and support than you can imagine.
I love you all!

To Rebecca Gulick, thank you for believing in me and helping a dream to come true!
To Anne Marie Walker, enough cannot be said about your gentle firmness,

guidance, and subtle humor. I am eternally grateful to you!
To Jesse Castro, thanks for keeping me on the straight and narrow. Your insight,

technical abilities, and encouragement blow me away!
To Larry Ullman, thanks for being the Ford Prefect to my Arthur Dent and guid-

ing me through the galaxy! I kept my towel on my desk the whole time!
To Francis Govers, the twists and turns in my life are made all the more bear-

able by knowing that you are just a phone call or an e-mail away. Best friends don’t
get any better!

To the folks who have made up the teams of developers that I have worked with
day in and day out, thank you for making me a better programmer and a better
person! Your willingness to look over my shoulder and teach me something new
is treasured beyond measure.

To the jQuery community, you are an amazing group of people, and I am hon-
ored to share electrons with you!

ACKNOWLEDGMENTS

ptg

CONTENTS V

Introduction . viii

Welcome to jQuery . xi

CHAPTER 1 INTRODUCING JQUERY . XIV

Making jQuery Work . 2

Working with the DOM. 6

Learning a Few jQuery Tips . 9
Selecting Elements Specifically . 9

Making Quick Work of DOM Traversal. 10

Troubleshooting with Firebug . 10

Packing Up Your Code. 11

Using Return False .15

Fiddling with jQuery Code . 16

Combining jQuery with Other Code . 18
Starting with HTML .18

Styling Web Pages with CSS. .18

Using PHP and MySQL .18

Progressive Enhancement . 19

Planning Design and Interaction . 23

Wrapping Up . 23

CHAPTER 2 WORKING WITH EVENTS .24

Using the Photographer’s Exchange Web site. .26

Making Navigation Graceful. 27
Creating and Calling Modal Windows . 27

Binding Events to Other Elements .34
Building an Image Carousel . 34

Creating Sprite-based Navigation . 50

Wrapping Up . 57

CHAPTER 3 MAKING FORMS POP .58

Leveraging Form Events . 60
Focusing on a Form Input. 60

Validating Email Addresses . 62

Making Sure an Input Is Complete . 66

Tackling Uploads .69
Performing Client-side Validation. 69

CONTENTS

ptg

VI APPLIED jQUERY: DEVELOP AND DESIGN

Developing Server-side Validation. 72

Uploading Files. .74

Wrapping Up .89

CHAPTER 4 BEING EFFECTIVE WITH AJAX . 90

Using AJAX for Validation .92
Building the PHP Registration and Validation File . 92

Setting Up the jQuery Validation and Registration Functions 100

Logging in the User . 105

Using AJAX to Update Content. 108
Getting Content Based on the Current User . 108

Loading Content Based on Request . 110

Loading Scripts Dynamically . 112

Using jQuery’s AJAX Extras . 116

Using JSON . 126

Securing AJAX Requests. .134
Preventing Form Submission . 135

Using Cookies to Identify Users . 139

Cleansing User-supplied Data . 141

Transmitting Data Securely . 144

Wrapping Up .145

CHAPTER 5 APPLYING JQUERY WIDGETS. .146

Using the jQuery UI Widgets .148
Customizing the jQuery UI. 148

Including jQuery UI Widgets . 152

Using jQuery Plugins . 171
Beefing Up Your Apps with Plugins . 172

Pumping Up Your Sites. 188

Rolling Your Own Plugins . 200

Wrapping Up . 203

CHAPTER 6 CREATING APPLICATION INTERFACES . 204

Establishing the Foundation . 206
Creating the HTML. 207

Applying the CSS .209

Making the Interface Resizable . 214

ptg

CONTENTS VII

Improving the Application Interface . 217
Creating Better Sprites . 217

Loading Content with AJAX. 226

Configuring Additional Enhancements . 235

Wrapping up . 247

Index. 248

ptg

VIII APPLIED jQUERY: DEVELOP AND DESIGN

As Web designers, you are painstakingly compelled to grab Web surfers’ attention
as quickly as possible and then keep them on your site to absorb the content. In
addition to the product, service, or information that you are providing, the site
must be visually attractive and offer stimulating (and valuable) interaction. The
jQuery library is the main ingredient for providing the icing on your Web-site cake.
If applied well, the effects of jQuery will convince visitors and application users to
click around and sample all of your content.

The trick is learning how to combine jQuery with other markup and languages
effectively. You must gain knowledge in a wide range of disciplines, like HTML
(HyperText Markup Language) and CSS (Cascading Style Sheets), to know how
to properly mix in the right amount of jQuery. The goal of this book is to give you
the knowledge to bring the HTML, CSS, and jQuery ingredients together to create
compelling interactivity to your Web sites and applications.

Throughout the book, I’ll also show you ways to use PHP, a popular server-
side scripting language, and MySQL, a relational database product, to enhance
your overall development and supercharge your applications. Both technologies
translate easily to other Web development languages.

WHAT IS JQUERY?

Announced in 2006 by its creator, John Resig, jQuery quickly gained popularity and
support as a new way to use JavaScript to interact with HTML and CSS. jQuery’s
simple selectors mimicked CSS selectors, making the library familiar and easy
to learn for designers and developers alike. The jQuery library erased the worry
that Web developers had suffered through when trying to create interactive sites
across a wide range of browsers by handling most browser compatibility issues
behind the scenes.

Topping off those two features is the shortened syntax used by jQuery. The fol-
lowing example shows how you would select an element based on its id attribute
using jQuery:

$(‘#foo’);

INTRODUCTION

ptg

INTRODUCTION IX

The jQuery selector is much shorter as opposed to the same example in old-
school JavaScript:

document.getElementByID(‘foo’);

It’s no wonder that the Web-development community embraced jQuery’s “write
less, do more” mantra. Couple the simplicity of jQuery with its ability to support
complex animations and achieve stupendous effects, and you get a JavaScript library
that is flexible and capable of empowering you to provide your Web site visitors
with an outstanding interactive experience.

WHO THIS BOOK IS FOR

This book is aimed at beginning to intermediate Web developers, but it doesn’t
matter where you are in your journey as a designer or developer. You should find
examples in this book that will help you to bring your Web pages and applications to
life with jQuery. It helps if you have a basic knowledge of HTML, CSS, JavaScript, and
jQuery, but it is not necessary because the examples are fully baked and ready to go.

WHAT I USED

As of this writing, jQuery 1.5 had been released and is used for all of the examples
in the book. You can download it at www.jquery.com. It is also available on the
book’s Web site at www.appliedjquery.com.

HTML, CSS, and JavaScript files are all plain-text files that you can create and
edit in any plain-text editor.

Examples were all tested in Firefox 3 and Internet Explorer 8, with an occasional
peek in Safari and Google Chrome.

WHERE TO FIND THE CODE

All of the code examples for the book are available from the Applied jQuery Web
site at www.appliedjquery.com/downloads. There you can download a Zip file con-
taining all of the examples, graphics, and other collateral needed to follow along.

The examples are arranged by chapter within the Zip file and include all of the
necessary jQuery files to make the examples work right out of the box.

www.jquery.com
www.appliedjquery.com
www.appliedjquery.com/downloads

ptg

X APPLIED jQUERY: DEVELOP AND DESIGN

However, even though all of the files are available for download, I encourage
you to type out each example as you progress through the book. Taking a hands-on
approach will help you to learn how all of the technologies fit together and will
reinforce the concepts in your brain.

LET’S GET STARTED

It’s time for you to jump right in and get started learning how to use jQuery. In the
first chapter I’ll give you some good rules and tools to get you headed in the right
direction for sweetening your Web development efforts with jQuery.

ptg

i

WELCOME TO
jQUERY

ptg

XII APPLIED jQUERY: DEVELOP AND DESIGN

WELCOME TO jQUERY

jQuery is one of the most popular JavaScript libraries in use today because it lets you

build JavaScript Web pages and Web applications quickly and easily, accomplishing in a

single line of code something that would have required dozens of lines of JavaScript code.

Grab yourself a computer and the handful of tools outlined below, and then dig into the

following six chapters.

jQUERY

jQuery, which is free to

download and use, comes

in the form of a single .js

file that you link to from

your Web page, and your

code accesses the library

by calling various jQuery

functions. Go to jquery.

com and download the

jQuery library.

jQUERY UI

Next, you’ll want to

download the jQuery UI

library from jQueryUI.com.

This will equip you with

some core interaction

plugins as well as many

UI widgets that I’ll discuss

later in the book.

TEXT EDITOR

You’ll be doing some

scripting, so get yourself a

good text editor. Windows

users typically opt for

Microsoft Notepad or

Notepad++, while Mac

users often rely on BBEdit

from Bare Bones Software.

ptg

BROWSER

Chances are you’ve

already got a standards-

compliant browser

installed. Popular options

are the latest versions

of Microsoft Internet

Explorer, Mozilla Firefox,

Apple Safari, Google

Chrome, and Opera.

TROUBLESHOOTER

I rely heavily on the

Firebug Web development

tool for troubleshooting.

Go to http://getfirebug.

com and get a version

that’s specific to your

browser. It’s 100% free

and open source, and

you’ll be grateful you’ve

got it installed when

something goes wrong.

TESTING

ENVIRONMENT

Rather than using an

actual hosted Web site

to test your jQuery

creations, use a testing

environment that’s local

on your own computer.

I use XAMPP, which you

can download from

http://apachefriends.org.

WELCOME TO jQUERY XIII

http://getfirebug.com
http://getfirebug.com
http://apachefriends.org

ptg

1

INTRODUCING
jQUERY

ptg

Rich, interactive Web sites that use semantic

markup and unobtrusive technologies like Cas-

cading Style Sheets (CSS) and JavaScript are becoming the

de facto standard in Web development. Designers and developers

are looking for new and better ways to bring their creations to life,

and libraries like jQuery make this goal easily attainable.

To get started properly with jQuery, you need to equip yourself

with the appropriate tools and concepts. So, I’ve gathered those

tools for you and will help you to learn how to use them.

This chapter will give you a firm grasp of the basics of jQuery and

the tools that will make working with jQuery straightforward. Also

included are some tips for getting the most out of jQuery. But first

things first; let’s start with a “Hello World” example jQuery style.

ptg

2 CHAPTER 1 INTRODUCING jQUERY

The strength of the jQuery library is its ability to interact with elements in your
Web pages that you are already familiar with. Markup tags, class declarations, and
attribute information in your Web pages can be easily connected to jQuery by using
the simple concept of selectors.

A jQuery selector will wrap an element or set of elements into an object. Once
you have created the jQuery object, you can effectively apply a multitude of jQuery
methods to that object to create animations, send information to and from the
server, or perform object manipulation.

No book on programming is worth its salt if it doesn’t have a “Hello World!”
example. To illustrate the power and flexibility of jQuery’s selectors, let’s create a

“Hello World!” example.

1. Start by establishing the basic markup for the HTML page:

<!DOCTYPE>

<html lang=”en”>

 <head>

 <meta charset=”utf-8” />

 <title>Hello World - jQuery Style</title>

2. Be sure to include the jQuery source file. Without this file none of the
jQuery code will operate:

 <script type=”text/javascript”
 p src=”jquery-1.5.min.js”></script>

3. Open a script tag to give the jQuery code a place to live within the page:

 <script type=”text/javascript”>

NOTE: The Hello World code is the only code example not available in

the download from the book’s Web site. The reason is that I think it

is very important that you type this one in yourself. Comments are also

included in the example.

MAKING jQUERY WORK

ptg

MAKING jQUERY WORK 3

4. The jQuery functions that you are creating need to be available to run after
the Web page has finished loading all of its elements. To accomplish this,
you wrap the jQuery code in a document ready function. Just as it implies,
the code wrapped in the function becomes available to run when the Web
document is ready:

 $(document).ready(function() {

5. Create the first selector. This selector will get the markup element in the
page having an id attribute equal to first. All id attributes are selected
in jQuery (and CSS) by prepending the hash (#) sign to the information
contained within the id attribute. You’ll follow the selector with jQuery’s
html method by chaining the html method to the selector. This method
will place the markup <h1>Hello World!</h1> into the selected element:

 /* write ‘Hello World! to the first div */

 $(‘#first’).html(‘<h1>Hello World!</h1>’);

Chaining is the term used to describe applying one or more methods to
jQuery objects. Chaining gives you a wide variety of possibilities to combine
methods to create unique interactions for your Web-site visitors.

6. For this example, you’ll create one additional method that connects, or
binds, an event handler to a selector to create an action. The event handler
will accept an action and perform additional jQuery functions to other
selected elements. Start this portion of the example by binding jQuery’s
click handler to an element with an id of link:

 /* a clickable ‘Hello World!’ example */

 $(‘#link’).click(function() {

The click method exposes a handler function that allows you to build a
string of actions that will be triggered by the click method.

7. Set up a selector for the element with an id of greeting and apply the html
method to it:

 $(‘#greeting’).html(‘<h1>Hello Again!</h1>’);

ptg

4 CHAPTER 1 INTRODUCING jQUERY

8. Close out the jQuery code with the proper braces, brackets, and script tags:

 });

 });

 </script>

Pay close attention to braces and brackets when you create jQuery code. It
is critically important that each opening bracket or brace have a matching
closing bracket or brace.

9. Finish up the head section of the markup and open the body of the Web page:

 </head>

 <body>

10. Create an HTML div with an id of first. The initial jQuery selector that
you created previously will interact with this element, adding the HTML
markup that was specified between the div tags:

 <div id=”first”></div>

11. Create another HTML div with an id of second. You did not write any selec-
tors for this element; it is just being used as a container for other elements:

 <div id=”second”>

12. Create an anchor tag and give it an id of link. You wrote jQuery code earlier
that will handle the link when it is clicked by a user:

 Click Me!

13. Create a span element with an id of greeting. When the link is clicked, the
selector for greeting will apply the HTML markup you specified between
the span tags:

14. Complete the page by closing out the markup tags properly:

 </div>

 </body>

</html>

ptg

MAKING jQUERY WORK 5

15. Save the file as hello_world.html and load it into your Web browser. If you
have been diligent with your typing, you will be rewarded with a Web page
identical to the one shown in Figure 1.1.

This example is just a small taste of how you can connect jQuery to elements
in your Web pages to provide information and interactivity. The example also
demonstrates how you can add elements to your Web pages using jQuery.

To work with jQuery effectively, you need to know how to work with all of the
elements in a Web page and how they are assembled into a document.

A document?
That is absolutely correct: Web pages are documents that are intended for

display in Web browsers. Because Web pages are documents, they follow some of
the same rules that paper documents follow, and those rules are provided by the
master document—the Document Object Model (DOM).

FIGURE 1.1 The “Hello World!”

message appears when the

page loads, and the “Hello

Again!” message appears

when the link is clicked.

ptg

6 CHAPTER 1 INTRODUCING jQUERY

At the heart of all of your Web pages is an API (Application Programming Interface)
that describes everything on the page. It is the DOM. The DOM provides informa-
tion for each element on the page, including styles associated with elements. The
information in the DOM is stored in a tree-like structure.

Several DOM inspector applications are available either as stand-alone appli-
cations or as add-ins to many popular Web browsers. Figure 1.2 shows the DOM
inspector available with Firebug.

FIGURE 1.2 Examining the

DOM using Firebug with

Firefox.

WORKING WITH THE DOM

ptg

WORKING WITH THE DOM 7

The DOM API is what allows languages like JavaScript and libraries like jQuery
to interact with elements in your Web pages. You can use libraries like jQuery to
virtually climb up and down the DOM tree to locate, add, remove, and modify ele-
ments. Because you’ll be using jQuery to interact with the DOM, including adding
and removing elements from it, you need to become familiar with how the DOM
is constructed. You don’t need to become an expert on the DOM, but you should
know enough about the DOM to recognize what is going on when you manipulate
it with jQuery.

Knowing the DOM becomes critically important when you start working with
jQuery’s parent and child type selectors. You must understand the relationship
between the elements in the DOM so that you can effectively manipulate those
elements. Consider the following HTML markup:

<div id=”information”>

</div>

To know how to travel up and down the DOM tree, you must know what the
relationships are between the elements. Figure 1.3 shows how those relationships
are defined.

FIGURE 1.3 An outline of the

relationships between the

elements in the list.

ptg

8 CHAPTER 1 INTRODUCING jQUERY

LINE BREAKS AND COMMENTS

Because JavaScript allows you to continue code through line breaks, jQuery

will, too. This means that you can spread chained jQuery methods over sev-

eral lines. Spreading lengthy chains over multiple lines makes the jQuery

methods visually easier to follow and troubleshoot. Quite often you’ll see

jQuery chains similar to the following example:

var nextImage = $(‘img[src=”bar.jpg”]’) // define the
p starting point
 .closest(‘li’) // travel up to the closest list item
 .next() // move to the next list item
 .find(‘img’) // find the image tag in the next list item
 .attr(‘src’); // grab the source attribute of the found
 p image tag

I cannot stress enough the importance of commenting your code well.

Although I won’t be commenting a lot of the code in the book for space rea-

sons, you can expect to see a lot of commentary within the code samples on

the Web site. My personal style is to use the double slash at the end of a line

when the comment is quick and use larger comment blocks (beginning with

/* and ending with */) when I need to be more descriptive.

// is a short comment

/* this comment may span multiple lines and can be very
p descriptive */

Armed with this knowledge, you can traverse the DOM elements for this list.
Given that you know the image source in the first list item, you can retrieve the
source attribute from the second image in the list easily, like this:

var nextImage = $(‘img[src=”bar.jpg”]’) // define the starting point
 .closest(‘li’) // travel up to the closest list item
 .next() // move to the next list item
 .find(‘img’) // find the image tag in the next list item
 .attr(‘src’); // grab the sounrce attribute of the found
 p image tag

The variable nextImage now contains the value murkle.jpg.

ptg

LEARNING A FEW jQUERY TIPS 9

As I use and continue to learn more about the jQuery library, I’ve accumulated
some good rules of thumb, including being specific about jQuery selectors, cach-
ing selectors, and packing up code to make it more efficient. These and other tips
provided here will make your code more effective, provide you with some good
tools, and shorten your development time.

SELECTING ELEMENTS SPECIFICALLY

To find the elements that you want to act on, jQuery has to traverse the DOM tree.
Depending on the length and complexity of a page, the DOM can be quite large.
Using grossly formed selectors can slow performance and lead to frustration.

jQuery reads selectors right to left, so if you have a selector like this:

$(“div ul li a”);

jQuery will gather all the anchors first, determine if they are within list items, and
then find out if the list item is contained within an unordered list that is contained
within a <div>.

Whew! It would be better to give one group of these items a class or an id
attribute that will allow you to more directly identify one or more of the elements
involved. For instance, the anchor tags in this group can be navigation elements
and given a class of navigation ().
That will allow you to shorten the selector to $(“.navigation”). As an added
bonus, the element can be more easily referred to and styled in CSS!

TIP: Thanks go out to the very supportive jQuery community for

the tips included in this section. You can learn a lot by participating

in the jQuery forums at http://forum.jquery.com. Forum participants are

always willing to lend a hand to help you solve your jQuery and JavaScript

problems.

LEARNING A FEW jQUERY TIPS

http://forum.jquery.com

ptg

10 CHAPTER 1 INTRODUCING jQUERY

MAKING QUICK WORK OF DOM TRAVERSAL

Sometimes, you might need to upgrade a poorly planned older site or application
that was developed by someone else. The selector mentioned in the previous sec-
tion, $(“div ul li a”), might have to be used repeatedly to achieve the results
that you are trying to apply with jQuery. If that is the case, you should cache the
selector so that you only need to traverse the DOM once for that selector:

var myNavLinks = $(“div ul li a”); // perform the traversal and
p stores it

$(myNavLinks) // the new selector doesn’t have to traverse the
p tree again

Caching becomes a valuable performance tool when you want to manipulate
dozens or maybe even hundreds of table rows and cells.

TROUBLESHOOTING WITH FIREBUG

Available for nearly every browser, Firebug is the leading tool for debugging and
profiling JavaScript. It should definitely be in your Web development toolbox.

Firebug allows you to carry out several tasks, including watching your code “in
action” to see how it behaves when events are triggered on your Web pages. For
instance, in Figure 1.4 a link has been clicked. If you look closely, you can see that
several lines of HTML have been highlighted in yellow. Those lines are the portion
of the HTML affected by the clicked link.

One of Firebug’s handier features is its ability to identify JavaScript (and therefore
jQuery) errors accurately, allowing you to quickly troubleshoot and correct problems.

I’ll use some of Firebug’s features throughout the book. To talk about and dem-
onstrate all the features Firebug has to offer would take an entire book!

TIP: Firebug is a free download from http://getfirebug.com.

http://getfirebug.com

ptg

LEARNING A FEW jQUERY TIPS 11

PACKING UP YOUR CODE

While you are working on writing your code, it helps to use lots of white space
and comments. All of the comments and white space take up room, so it is best
to pack up your code when you get ready to move your code into production. You
may have noticed that the official jQuery site, as well as plugin developers, offer
scripts in two versions: a normal version and a minified version. The minified
version strips out most of the white space and comments. This ensures that your
Web site is delivered more efficiently.

Several tools are available for packing up your code. One of my favorites is a
freebie provided by Google, the Google Closure Compiler (http://code.google.com/
closure/compiler). Google’s Closure Compiler provides a quick method for minifying
your code and offers some additional advantages like checking for illegal JavaScript.

FIGURE 1.4 Using Firebug, you

can examine jQuery’s actions.

http://code.google.com/closure/compiler
http://code.google.com/closure/compiler

ptg

12 CHAPTER 1 INTRODUCING jQUERY

For fun, let’s pack some code in the file spritenav.js, which you will use later in
the book. With white space and comments, the code looks like this:

/*

 * NAME: SpriteNav(jQuery)

 * AUTHOR: Jay Blanchard

 * DATE: 2011-01-10

 * BUSINESS RULE: <if applicable>

 *

 * REVISION: a20110110jb

 * STATUS: open

 * USAGE: call from web interface page

 *

 * REVISION HISTORY

 *

 * a20110110jb - create CSS and XHTML for initial testing layout

 *

 */

$(document).ready(function() {

$(function() {

 /* set original values */

 $(“#spriteNav span”).css(“opacity”, “0”);

 $(“#spriteNav span.selected”).css(“opacity”, “1”);

 /* how do we hover? let me count the ways... */

 $(“#spriteNav span”).hover(function() {

 if($(this).attr(“class”).length == 0) {

 $(this).stop().animate({

ptg

LEARNING A FEW jQUERY TIPS 13

 opacity: 1

 }, 75); // end mousein

 } else {

 $(this).css(“opacity”, “1”); // end mousein

 }; //end if

 }, function(){

 if($(this).attr(“class”).length == 0) {

 $(this).stop().animate({

 opacity: 0

 }, 250); // end mouseout

 } else {

 $(this).css(“opacity”, “1”); // end mouseout

 }; //end if

}); // end hover function

 /* click me! click me! */

 $(“#spriteNav span”).click(function() {

 /* we clicked, so remove the selected class from all */

 $(“#spriteNav span”).removeClass(“selected”);

 /* then add it to the selected one */

 $(this).addClass(“selected”);

 /* then fade out the previously selected item */

 /* be specific about the ones to be faded out */

 $(“#spriteNav span:not(.selected)”).stop().animate({

 opacity: 0

 }, 500);

 }); // end click function

 }); // end function

}); // end document ready function

ptg

14 CHAPTER 1 INTRODUCING jQUERY

In Figure 1.5 you can see the side-by-side comparison of the code before and
after packing. After packing the code with the Google Closure Compiler, it becomes:

$(document).ready(function(){$(function(){$(“#spriteNav span”).css
p (“opacity”,”0”);$(“#spriteNav span.selected”).css(“opacity”,
p ”1”);$(“#spriteNav span”).hover(function(){if($(this).attr
p (“class”).length==0){$(this).stop().animate({opacity:1},75)}
p else{$(this).css(“opacity”,”1”)}},function(){if($(this).
p attr(“class”).length==0){$(this).stop().animate({opacity:0},
p 250)}else{$(this).css(“opacity”,”1”)}});$(“#spriteNav span”).
p click(function(){$(“#spriteNav span”).removeClass(“selected”);
p $(this).addClass(“selected”);$(“#spriteNav span:not(.selected)”).
p stop().animate({opacity:0},500)})})});

FIGURE 1.5 The code before

and then after packing, which

also reveals warnings and

errors that are encountered

by the Closure Compiler.

ptg

LEARNING A FEW jQUERY TIPS 15

Reduced to 40 percent of its original size (1360 bytes originally; 567 bytes after
minifying), the code is very compact.

Although this is a good example of the gains to be made while minifying jQuery
code, you really don’t need to minify small files. If you are using a number of small
files, it is best to combine them and then run them through the reduction process.
If you plan to minify your files, be sure to keep one copy that you use for editing
with all the white space and comments intact, and then minify when you are ready
to use the file on a production Web site or application.

USING RETURN FALSE

Anyone who has done any amount of JavaScript programming, including program-
ming with jQuery, has run into return false;. For the most part, many have used
it improperly. Let’s look at an example, an HTML anchor tag link:

<div>Click Here!</div>

Typically, you might apply something similar to the following jQuery to handle
the anchor tag:

$(“div a”).click(function() {

 var link = $(this).attr(“href”);

 $(“#content”).load(link);

 return false;

});

In this example you want to be able to click the link and have that link not
perform as it normally would; you want it to just load the information from the
link into the element with an id of content. So, you insert return false; into
the function. It works! But do you really know how?

Because return false works so well, you may not realize when it trips you up
later on. The return false function first calls preventDefault(); and then it
calls stopPropogation(). The function stopPropogation() stops the click event in
this case from bubbling up the DOM, which may prevent subsequent click events
from working on the ancestors you may add later. You’ll end up scratching your
head a lot when your seemingly perfect code fails to do what you ask of it with no
errors lurking about to give you a clue as to what happened.

ptg

16 CHAPTER 1 INTRODUCING jQUERY

More often than not what you should use is preventDefault(), as shown in
the following highlighted code:

$(“div a”).click(function(e) {

 var link = $(this).attr(“href”);

 $(“#content”).load(link);

 e.preventDefault();

});

Take a few minutes to become familiar with the other related functions,
stopPropogation() and stopImmediatePropogation(), because you may find
them handy and revealing!

FIDDLING WITH jQUERY CODE

One of the most useful and coolest tools I’ve seen in many years is a Web application
called jsFiddle (http://jsFiddle.net). Developed by Piotr Zalewa as “a playground
for Web developers,” jsFiddle is a great Web site where you can combine HTML
and CSS while experimenting on that code with jQuery (Figure 1.6). The tool sup-
ports several different versions of jQuery and is an excellent troubleshooting tool.

Using the jsFiddle Web site is a great way to share code with other developers
for discussion, troubleshooting, or bragging rights. The Web site also allows you
to include the latest jQuery UI (user interface) code in your experiments.

http://jsFiddle.net

ptg

LEARNING A FEW jQUERY TIPS 17

FIGURE 1.6 Using jsFiddle, you

can test a jQuery code snippet.

ptg

18 CHAPTER 1 INTRODUCING jQUERY

Throughout the book, you’ll be using several technologies to bring your Web
applications to life. To start, you’ll use HTML, CSS, and JavaScript, and then mix
in PHP and MySQL to support further interaction.

STARTING WITH HTML

HTML is what you’ll use to start all of your Web pages. Use of the latest version of
HTML, HTML5, is on the rise, and examples in the book use it where appropriate.
Because HTML5 is still in development, browser support is limited. I recommend
plenty of cross-browser testing when using HTML5.

jQuery can select HTML DOM elements easily. For instance, if you have a form
input element:

<input name=”username” type=”text” size=”48” />

you can use the jQuery selector $(‘input[name=”username”]’) to interact with
the element.

STYLING WEB PAGES WITH CSS

CSS can be tricky territory because different browsers provide different levels
of support for the properties that CSS has to offer. Cross-browser testing is still
required to make sure that what displays in one also displays in another. It is very
important to understand that it is OK if your sites do not look exactly the same
from browser to browser.

jQuery will support the latest and greatest CSS version, CSS3, and all of its
properties, but make sure that you test in many browsers because that is the only
way you can determine if what you see is acceptable to you.

USING PHP AND MYSQL

As one of the most popular server-side languages on the Web, PHP has made its mark
on the technology you know and use every day. For the examples and projects in
this book, you’ll be using PHP not only for supporting asynchronous data requests
to the server (AJAX), but also for shortening your development time with jQuery.

You will couple PHP with the MySQL database to support and enhance your
jQuery projects.

Keep in mind that you can use any number of languages and database products
with jQuery in the ways that I will present in the book—the choice is totally up to you.

COMBINING jQUERY
WITH OTHER CODE

ptg

PROGRESSIVE ENHANCEMENT 19

In 2003, Steve Champeon, speaking at the very popular SXSW Interactive conference
in Austin, Texas, coined the term progressive enhancement. The concept arrived
at just about the same time as some earlier JavaScript libraries.

The process behind progressive enhancement is to first develop your markup,
then add style to that markup (CSS), and finally bring into play enhanced interac-
tion via JavaScript.

In the good old days of Web development, designers and coders were stuck with
a paradigm called graceful degradation. Everyone designed their sites for the latest
browsers using the latest technologies and then “fixed” their pages by inserting
hacks or removing JavaScript functionality so that they would gracefully degrade
and be usable by older, less-capable browsers or in situations where the user might
have JavaScript disabled. Developers attempted to perform browser detection using
JavaScript so that they could deliver flashy interaction in every browser available.
It was tiresome and frustrating. Steve Champeon’s concept changed all of that.

There is a better way to describe progressive enhancement. In his 2008
article, “Understanding Progressive Enhancement” (www.alistapart.com/articles/
understandingprogressiveenhancement), on the A List Apart Web site, Aaron
Gustafson painted my favorite picture of what progressive enhancement is when
he wrote, “If you’re a candy fan, think of it as a Peanut M&M: Start with your
content peanut, marked up in rich, semantic (X)HTML. Coat that content with a
layer of rich, creamy CSS. Finally, add JavaScript as the hard candy shell to make a
wonderfully tasty treat (and keep it from melting in your hands).”

Let’s examine a quick example of progressive enhancement. Here is a portion
of 1-1.html (available in the code download at www.appliedjquery.com in the folder
chap1/1-1.html):

<body>

 <div id=”header”><h2>Progressive Enhancement Example</h2></div>

 <div id=”clear”></div>

 <div id=”leftContent”>

 New Content

 Google

 </div>

 <div id=”rightContent”></div>

</body>

PROGRESSIVE ENHANCEMENT

www.alistapart.com/articles/understandingprogressiveenhancement
www.alistapart.com/articles/understandingprogressiveenhancement
www.appliedjquery.com

ptg

20 CHAPTER 1 INTRODUCING jQUERY

The markup is pretty standard. Adding some basic CSS produces what you
see in Figure 1.7.

I’ve also produced the HTML and CSS for a second page called 1-2.html, which
is in the folder chap1/1-2.html. If you click the link for New Content, that page
will load normally (Figure 1.8). The only change made, other than adding some
content for this example, is in the CSS that causes the content to be displayed in
a burnt orange box:

#rightContent {

 width: 75%;

 margin-left: 20px;

 padding-top: 10px;

 padding-left: 10px;

 background-color: #FFCC66;

 vertical-align: top;

 float: left;

}

FIGURE 1.7 The basic progres-

sive enhancement page with

HTML and CSS only.

FIGURE 1.8 The result of

clicking the New Content

link in 1-2.html.

ptg

PROGRESSIVE ENHANCEMENT 21

The site works perfectly, even though it is rather bland. Let’s add just a bit of
jQuery without touching any of the current markup.

1. Include the jQuery library by placing a tag in the <head> section of 1-1.html:

<head>

 <meta http-equiv=”Content-Type” content=”text/html;
 p charset=ISO-8859-1” />

 <title>Progressive Enhancement Example 1-1</title>

 <script type=”text/javascript” src=”../inc/jQuery/8

jquery-1.5.min.js"></script>

2. Add a code block also within the <head> tags, although it is not necessary
to do so, as you will see in later examples:

<script type=”text/javascript”>

$(document).ready(function(e) {

 $(“#anchor”).click(function() {

 $(“#rightContent”).load(“1-2.html #rightContent > p”);

 e.preventDefault();

 });

});

</script>

Basically, the code specifies, Anytime the element identified as anchor is
clicked, load the paragraphs from 1-2.html file’s rightContent area into 1-1.
html file’s content area.

ptg

22 CHAPTER 1 INTRODUCING jQUERY

Now when you click the New Content link, the page does not reload and the
content appears as you expect, without the yucky background color (Figure 1.9).

Adding jQuery without using inline JavaScript tags is known as unobtrusive
JavaScript and adheres to the principles of progressive enhancement. None of the
HTML tags had to be changed, and if JavaScript is disabled, the pages will continue
to work as designed. No more embedding JavaScript calls within the HTML tags!

In addition, the CSS here is unobtrusive, too. There are no style attributes
as part of the HTML tags, but jQuery does give you the ability to change styling
on the fly by giving you ways to add and remove classes and directly manipulate
the CSS of every element on the page. You’ll be using these functions frequently
throughout the book.

FIGURE 1.9 The content from

the second page appears with-

out the distracting background

color.

ptg

WRAPPING UP 23

Any good Web application begins on paper, perhaps with a few basic sketches.
By the end of the book, you’ll have the ability to greatly enhance your sites with
jQuery, so planning is especially important. You don’t want to just throw jQuery
code willy-nilly into your Web pages without a plan, or soon you’ll have interaction
overload. So many page elements will change and move on the screen that you’ll
get your visitor’s attention, but not in the ways that you want to gain that attention.

Creating a storyboard is a great way to plan how you will guide the visitor through
your site. Drawing a storyboard doesn’t require any special skill. You can use sticky
notes, sketches, flowcharts, or even the UML (Unified Modeling Language) to
show how potential interactions behave and pages connect to each other. Be sure
to ask lots of “what ifs.” What if the viewer clicks here? What if the mouse scrolls
over this section of the page? What if the total is over $100? What if you put your
spinning, flaming logo right in the center of the page?

Asking questions like these and creating a basic layout of the site will open
your eyes to how your visitors will see and interact with your Web pages. It will
also give you some ideas for how you can build more jQuery widgets that add
value to your sites.

WRAPPING UP

In this chapter, you learned about the jQuery JavaScript library, how to write the
proper syntax for jQuery, and how jQuery selectors are like CSS selectors. You learned
how jQuery interacts with the DOM and how you can use jQuery to traverse the
DOM. You gained knowledge of tools like Firebug, jsFiddle, and the Google Closure
Compiler to help you troubleshoot, test, and make your jQuery scripts ready for
use on live Web sites and applications. Finally, you learned how to combine jQuery
with HTML, CSS, and other languages using Progressive Enhancement techniques
to keep all of your code and scripts compartmentalized for easy maintenance and
to let site visitors with less-capable browsers use your content with restriction.

Now that you are armed with some good tools and an understanding of the
jQuery basics, it is time to jump right in. To learn how jQuery can interact with the
browser and events associated with the browser, just turn the page!

PLANNING DESIGN
AND INTERACTION

ptg

2

WORKING WITH
EVENTS

ptg

The bread and butter of jQuery is its ability to inter-

act with all kinds of browser and physical events,

including mouse movement, form interaction, and keyboard

events. You can take control of these events using jQuery to provide

your Web-site visitors with a much richer interactive experience.

By binding events such as a mouse click or a keypress to text, links,

images, and other DOM elements, you can call into action myriad

functions from animation to AJAX. Functions can be combined

to create complex chain reactions, a very cool thing.

In this chapter I’ll show you how to gain control over many of these

events while creating a fictional Web site called Photographer’s

Exchange. You will combine the events to create effects that will

make your Web audience sit up and take notice. Other events are

very subtle and will add flavor to your Web applications.

ptg

26 CHAPTER 2 WORKING WITH EVENTS

You will design the Photographer’s Exchange Web site to allow photographers to
show off their pictures and techniques. Users will be able to upload pictures and
edit information about those pictures. Additionally, users will be able to submit
articles about photography. Visitors will be able to search the site using different
criteria. The front page of the site will showcase featured photographs and articles
from photographers. Figure 2.1 shows the basic layout of the site ready for editing.

FIGURE 2.1 The front page

of Photographer’s Exchange.

The text is used as a place-

holder for development you

will add later.

NOTE: All of the code in this book is available as a download from

the book’s Web site at www.appliedjquery.com/download.

USING THE PHOTOGRAPHER’S
EXCHANGE WEB SITE

www.appliedjquery.com/download

ptg

MAKING NAVIGATION GRACEFUL 27

If you want to apply the principles of progressive enhancement—as discussed in
Chapter 1—to your site, you need to make your navigation as graceful as possible.
The easiest way to do this is to fully form your links as if JavaScript, and therefore
jQuery, is not available for your visitors.

Open the chap2/2-1.php file. You’ll find an unordered HTML list containing
three links:

<a href=”search.php” rel=”searchWindow” class=”modal”
p id="search">Search

<a href="register.php" rel="registerWindow" class="modal"
p id="register">Register

<a href="login.php" rel="loginWindow" class="modal"
p id="login">Login

Each link works properly in the absence of JavaScript. Clicking on any of them
causes the respective page to be loaded into the browser.

This set of links will be used to call modal windows into the browser.

CREATING AND CALLING MODAL WINDOWS

Modal windows are a clever way for users to interact with Web sites and applica-
tions. They provide smooth transitions by placing content “above” the current Web
page and can give users information, as well as receive information from users
either in forms or a confirmation dialog. Once the modal window is closed, users
return to the same content in the Web browser that they were viewing previously.

Each modal window is used to perform a specific action in the site: search,
register, or login. You do not have to make any modifications to the HTML for the
links; all you have to do is add the proper jQuery.

1. Create a jQuery statement that selects all of the anchor tags that have a
class of modal:

$(‘a.modal’).click(function() {

NOTE: To save time and space in this book, I did not create the additional

Web pages. The content for each modal window, which is contained in

1-1.php, can be placed in separate pages if you are concerned that users

will not have JavaScript available.

MAKING NAVIGATION GRACEFUL

ptg

28 CHAPTER 2 WORKING WITH EVENTS

You have now handed over control of the click event to jQuery or have
bound jQuery’s click event to the anchor tag. This binding allows jQuery
to handle the click event and any functions assigned to that event.

The remainder of the function decides which modal window to open, where
to place the window, and how to close the modal window. Additionally, the
function places a semitransparent “shade” over the entire site to make the
modal window stand out. You can find the complete code in chap2/inc/jqpe.js
under the section commented /* modal windows */.

2. Store the value of the rel attribute from the currently clicked item in a
variable that will be used later in the function:

 var modalID = $(this).attr(‘rel’);

3. Fade in the modal window that you selected and add a link that allows you
to close the modal window. A graphic element (close_button.png) is used
to make the close button look nice:

 $(‘#’ + modalID).fadeIn().prepend(‘<a href=”#”
 p class=”close”><img src="grfx/close_button.png"
 p class=”close_button” title="Close Window"alt=
 p "Close" />');

In the file chap2/inc/modal.css, the margins and padding were defined for
each of the modal windows. To get them to center on the screen, you need
to account for the extra space created by the padding and margins so that
the proper offset can be applied. In this case there is a 20-pixel margin and
20 pixels of padding surrounding each modal window. That means that you
must add 80 pixels to the height and width. With the height and width set,
you then divide by 2 to get the proper margin.

4. Assign the horizontal and vertical margin calculated values to the variables
modalMarginTop and modalMarginLeft:

 var modalMarginTop = ($(‘#’ + modalID).height() + 80) / 2;

 var modalMarginLeft = ($(‘#’ + modalID).width() + 80) / 2;

ptg

MAKING NAVIGATION GRACEFUL 29

5. Now add the margin information to the modal window’s CSS to center it:

 $(‘#’ + modalID).css({

 ‘margin-top’ : -modalMarginTop,

 ‘margin-left’ : -modalMarginLeft

 });

Figure 2.2 shows a model of the modal box and how much it must be offset
to the top and left of the browser window to center the box.

If you don’t calculate where the center of the box should go, the upper-
left corner of the box will be centered in the browser window, as shown
in Figure 2.3.

FIGURE 2.2 The modal win-

dow box, including padding

and margins. The top-left

corner of the modal window

is located at 50 percent of the

window height and width to

begin. Setting the top and

left margins with negative

numbers moves the modal box

to the center of the browser

window.

0, 0

move -240 pixels

move -290 pixels
500 x 400 modal div with
20 pixels of padding and
20 pixels of margin.

Overall, the modal box is
580 pixels by 480 pixels.

ptg

30 CHAPTER 2 WORKING WITH EVENTS

SIZING UP ANIMATIONS

When creating the modal window, you invoked the very first animation

using the jQuery method fadeIn(). jQuery has a number of built-in ani-

mation methods, including fadeIn and slideDown as well as the animate

method that allows you to create custom animations.

What is an animation?

In jQuery an animation is the act of moving an element from one CSS state

to another CSS state smoothly. Animation can only be used on CSS rules

that have numerical properties. jQuery uses a set of algorithms to calculate

each of the points from the start of one state to the end of another state. A

simple example is opacity.

If an element is invisible, its opacity is 0. To make the element fully visible,

you set its opacity to 1. Depending on the length of time assigned to the

transition, jQuery will calculate discrete steps needed to make the element

appear to fade in (or out), moving opacity from 0 to 1 or vice versa.

jQuery also supports queues so that you can combine animations to create

complex movements and changes.

The jQuery user interface (UI) extends jQuery basic animation events and

adds several additional effect methods, including color animations.

FIGURE 2.3 The modal box

without calculating where

the center of the box should

go. The top-left corner of the

modal box is at 0, 0 for the

browser window’s 50 percent

height and width.

ptg

MAKING NAVIGATION GRACEFUL 31

CREATING A SHADED BACKGROUND

The last order of business for opening the modal window is creating a shaded
background. The shade is actually a semitransparent div through which you can
still see the Web site. It is a very cool effect and helps users to understand that
they are still on your site but that their attention should be focused on the content
highlighted for them. You’ll use a similar version of the see-through div for other
widgets in the Web site.

1. Append a new div to the body to make the shade:

 $(‘body’).append(‘<div id=”modalShade”></div>’);

2. Animate the shaded background to partial opacity to make it somewhat
transparent:

 $(‘#modalShade’).css(‘opacity’, 0.7).fadeIn();

3. Close the click function with the return false; method to keep the link
from trying to load another page into the browser.

 return false;

});

Once complete, the jQuery code opens the modal window in the center of the
browser window with a shaded background that allows users to see the Web page
beneath it (Figure 2.4).

FIGURE 2.4 The modal window for registration is

opened and is properly centered with the shaded,

see-through background.

ptg

32 CHAPTER 2 WORKING WITH EVENTS

CONTROLLING THE FUTURE WITH LIVE() AND DELEGATE()

jQuery provides two methods for binding events to elements created now or

in the future: live and delegate. Both save you the additional work of add-

ing new event bindings as you add new elements dynamically. The primary

difference between the two is that live does not support DOM traversal,

whereas delegate will support binding of events to specific DOM elements.

To use live, you must use it immediately after a selector to bind to an event,

just as you did in the code for closing the modal window:

$(‘a.close, #modalShade’).live(‘click’, function() {...

On the other hand, delegate can be used as follows:

$(‘ul#myList’).delegate(‘li’, ‘click’, function() {...

This binds the click event to each of the list items () now and in the

future. If you append more list items to the unordered list, they will all have

the click function bound to them.

Don’t worry about handling form information or processing that information
right now. I’ll cover form handling and processing in Chapter 3, “Making Forms
Pop” and Chapter 4, “Being Effective with AJAX.”

CLOSING THE MODAL WINDOW

Users must be able to close the window and get rid of the shade, so you need to
give users a way to get back to the Web site.

1. Start the close function by binding the close graphic and modal shade to
a jQuery click method:

$(‘a.close, #modalShade’).live(‘click’, function() {

Neither of these elements existed in the DOM (see Chapter 1 for a short
discussion of the DOM) originally, so you have to use a special jQuery func-
tion, live, to bind the click to these elements.

ptg

MAKING NAVIGATION GRACEFUL 33

2. Determine which modal window to close by getting the id of the parent
of a.close:

 var thisModalID = $(‘a.close’).parent().attr(‘id’);

3. Now fade out the modal window and the shade. When the fade-out is
complete, use the callback function fadeOut provides to remove the div
that held the shade and the link that was prepended to the modal window:

 $(‘#modalShade, #’+thisModalID).fadeOut(function() {

 $(‘#modalShade, a.close’).remove();

 });

 return false;

});

In simple terms a callback is a block of executable code that is passed as an
argument to another function. The block of code in the callback will run
when the original function is complete. You issue a callback to the fadeOut
function as highlighted:

 $(‘#modalShade, #’+thisModalID).fadeOut(function() {

 $(‘#modalShade, a.close’).remove();

 });

The fade-out completes before issuing the callback to remove the #modal-
Shade and a.close element from the DOM.

Combining multiple jQuery methods in this way makes a click on a link a pretty
powerful event. Can you bind the click event, or any other event, to elements
that are not links? Of course you can, and you already have. Look at the following
line again:

$(‘a.close, #modalShade’).live(‘click’, function() {

The highlighted value is the id for the div that held the shade, which is also
bound to the live click function. This allows users to click anywhere on the
shade to fade out the modal window and perform the other items in the function.
Binding to nonlink-type elements is common when using jQuery.

ptg

34 CHAPTER 2 WORKING WITH EVENTS

jQuery gives you the flexibility to bind events to any element available in the DOM.
This gives you the capability to set up highly interactive user interfaces. Creating
a truly fun and intuitive user experience is easier than ever because you are not
limiting your users to just clicking a link or a button on your Web site.

The Photographer’s Exchange Web site needs a way to feature members’ photo-
graphs. A simple photo carousel will provide an excellent method of showcasing the
members’ talents while allowing you, as the developer, to flex your creative muscles.

BUILDING AN IMAGE CAROUSEL

Let’s add a simple version of a photo carousel to the site now.
The concept for the carousel is very simple and is based on an unordered list of

thumbnail images. You can see this list added to the site in chap2/2-2.php:

<div id=”carouselContainer”>

 <div id=”carouselOuter”>

 <div id=”scrollLeft”></div>

 <div id=”carouselInner”>

 <ul id=”carouselUL”>

 </div>

 <div id=”scrollRight”></div>

 </div>

</div>

BINDING EVENTS TO
OTHER ELEMENTS

ptg

BINDING EVENTS TO OTHER ELEMENTS 35

Now that you have a list of images, you need to add the following carousel features:

� Automatic scrolling.

� Scrolling that stops when a mouse cursor hovers over any portion of the
carousel.

� Scrolling that continues when the mouse cursor is not hovering over any
portion of the carousel.

� Highlighting an image when the mouse cursor hovers over a thumbnail
of that image.

� Controlling manual scrolling.

� Displaying a larger version of a picture when its respective thumbnail is clicked.

Before you can start adding these features, you need to create the container for
the carousel using CSS. Let’s cover that first.

SETTING UP THE CAROUSEL CSS

To make the carousel effect work well, it must have a solid container. The container
will be defined by the CSS along with the markup that you created earlier.

1. Set up the #carouselInner rule to allow only a certain number of thumbnails
to be visible at any one time:

#carouselInner {

 float: left;

 width: 510px;

 overflow: hidden;

 background: #000000;

}

The#carouselInner rule sets up a visible area of 510 pixels. Anything outside
of the element assigned to this rule will not be visible. The 510-pixel area
is calculated by adding the widths of three thumbnails (160 pixels each)
plus 10 pixels for each thumbnail. The additional pixels allow for padding
around each image.

ptg

36 CHAPTER 2 WORKING WITH EVENTS

2. Create a left margin that allows two images to be hidden off to the left of the
carousel. Setting this margin is the most important part of the #carouselUL
rule. Having two images to the left of the carousel ensures that the scrolling
will happen smoothly. Make sure that the whole carousel is wide enough to
hold the number of thumbnails you plan to display. In this case #carouselUL
is designed to hold a maximum of 50 thumbnails:

#carouselUL {

 position: relative;

 list-style-type: none;

 left: -340px;

 margin: 0px;

 padding: 0px;

 width: 8500px;

 padding-bottom: 10px;

}

3. Now set the height and width of the list items:

#carouselUL li{

 float: left;

 width: 160px;

 height: 128px;

 padding: 0px;

 background: #000000;

 margin-top: 10px;

 margin-bottom: 10px;

 margin-left: 5px;

 margin-right: 5px;

 text-align: center;

}

ptg

BINDING EVENTS TO OTHER ELEMENTS 37

Figure 2.5 gives you an idea of how list items will be moved. As the carousel
scrolls to the left, the first list item is moved to the end of the list while the item is
invisible. The reverse happens (the last list item is moved to the first spot) when
the carousel scrolls to the right. The user gets the impression that the images are
on a carousel going around and around.

Once the style information has been defined, you can begin working on adding
the features to the carousel using jQuery.

ADDING AUTOMATIC SCROLLING

It is time for you to start adding the features defined for the carousel. You’ll first
create a function that automatically scrolls the carousel. Create a file called carousel.
js and save it in the chap2/inc folder.

1. Create the function using the function keyword and call the function
autoCarousel. Then set the variable itemWidth equal to the width of one of
the list items in the carousel and add 10 to it to make space for the padding:

function autoCarousel() {

 var itemWidth = $(‘#carouselUL li’).outerWidth() + 10;

FIGURE 2.5 The visible and

invisible portions of the

carousel. You can also see how

the images will move to make

the carousel “infinite.” The

thumbnails will start over at

the beginning of the list when

the last one is displayed.

Invisible Scroll Direction Invisible

Visible Portion

NOTE: There is much more to the CSS (chap4/css/carousel.css) for the

carousel, but it is mostly decorative or setting up space for the arrows

that will be used for manual control of the carousel. Additionally, the style

information for the modal window to display the larger pictures is defined.

ptg

38 CHAPTER 2 WORKING WITH EVENTS

2. Determine how far to the left the carousel needs to move. Recall that the
left margin of the CSS was set to -340 originally, so the moveFactor will
be -510. Assign the results of that calculation to the variable moveFactor:

 var moveFactor = parseInt($(‘#carouselUL’).css(‘left’))
 p - itemWidth;

3. Now the fun really begins! Bind the animate method to the unordered list
identified by #carouselUL. Then the list of images is moved to the left so that
the images’ left margins are the same as the moveFactor. Add the duration
of slow and easing transition of linear for tighter control of the animation:

 $(‘#carouselUL’).animate(

 {‘left’ : moveFactor}, ‘slow’, ‘linear’,
 p function(){

4. Move the first list item to the end of the list, after the last list item. This line
of code, contained in the animation’s callback function, contains the secret
to making the carousel infinite:

 $(“#carouselUL li:last”).after($(“#carouselUL
 p li:first”));

By moving the list item and changing the order of the HTML list as a whole,
you can make the pictures appear to keep going around the carousel.

TIP: Easing, in jQuery terms, tells an animation how fast

to move at different points during the animation’s progress.

jQuery includes two default easing methods: linear and swing. Linear

moves the animation steadily from point A to point B with no speed

change. Swing moves the animation slowly at first, faster near its midpoint,

and then slows down as it reaches its end. Both of these easing methods

will help to smooth animations, making them less jerky. You can create

some cool effects by using George Smith’s jQuery Easing Plugin. The plugin

makes dozens of additional easing types available to use in your jQuery

applications. The plugin is available from the GSGD Web site at

http://gsgd.co.uk/sandbox/jquery/easing.

http://gsgd.co.uk/sandbox/jquery/easing

ptg

BINDING EVENTS TO OTHER ELEMENTS 39

5. Close out the function by resetting the left margin back to its original value
and closing all of the brackets and braces:

 $(‘#carouselUL’).css({‘left’ : ‘-340px’});

 });

 };

If you don’t reset the left margin, the carousel will continue to scroll to the
left, and eventually the pictures will be out of sight.

6. Call the autoCarousel function by placing it in a setInterval function.
Give the setInterval method an identifier by assigning it to a variable. Set
the interval to 2000 milliseconds (2 seconds):

var moveCarousel = setInterval(autoCarousel, 2000);

Now you can load the page. You’ll see that the carousel starts automatically
and pauses for 2 seconds between each animation.

7. Use the very next line of code to make all the thumbnails and the arrow
graphics appear to be faded:

$(‘.carThumb, #scrollLeft, #scrollRight’).css({opacity: 0.5});

You’ll take advantage of the opacity being set to a faded state when you
create the hover functions.

ADDING THE HOVER FUNCTIONS

You’ll bind the hover function to the thumbnail images identified by the class of
carThumb as well as the divs containing the arrows that will be used to manually
control the scrolling of the carousel. Three actions are required for the hover function:

� Stop the scrolling when a mouse cursor hovers over any portion of the carousel.

� Highlight the image when the mouse cursor hovers over a thumbnail.

� Continue scrolling when the mouse cursor is not hovering over any portion
of the carousel.

ptg

40 CHAPTER 2 WORKING WITH EVENTS

1. Bind the hover function to the class carThumb and elements with an id of
scrollLeft and scrollRight:

$(‘.carThumb, #scrollLeft, #scrollRight’).hover(function() {

The hover function consists of two sections, one for mouseover and one for
mouseout. The jQuery hover method combines this functionality to give
you a tremendous amount of flexibility.

2. Bind the jQuery stop and animate methods for the mouseover portion of
the function to elements represented by $(this). The stop makes sure that
the current animation will quit when you move the mouse away or perform
some other action. Without stop, the animations would continue to queue
up and run, and that is not desirable for the hover function:

 $(this).stop().animate({

 opacity: 1

 }, 75);

The animation makes the image fade to full opacity very quickly (75 mil-
liseconds). This gives the appearance of the image being highlighted and
fulfills one of the requirements. The cursor is hovered over a thumbnail in
Figure 2.6, making it appear to be brighter than the thumbnails adjacent to it.

FIGURE 2.6 The mouse cursor

over one of the images in the

carousel. The image has been

faded to full opacity, and the

carousel has stopped scrolling.

ptg

BINDING EVENTS TO OTHER ELEMENTS 41

3. Stop the scrolling animation of the carousel by clearing the setInter-
val function. Identify the interval to be cleared by passing the identifier
moveCarousel to the clearInterval function:

 clearInterval(moveCarousel);

4. Add the code to fade the image in the mouseout portion of the hover function:

 }, function() {

 $(this).stop().animate({

 opacity: 0.5

 }, 250);

The mouseout side of the jQuery hover function reverses the fade of the
opacity and does so more slowly (250 milliseconds) just for effect. Note that
you did not apply any easing to either side of the hover function. Easing will
work here, but the times for the movement to either full or half opacity are
so fast that most easing methods would hardly be noticed.

5. Restart the carousel’s automatic scrolling by calling the setInterval func-
tion in the last line of the mouseout side of the hover function:

 moveCarousel = setInterval(autoCarousel, 2000);

});

The requirements for the carousel are being met pretty quickly. Next, you’ll
give the Web-site visitors a way to control the scrolling of the carousel manually.

CONTROLLING MANUAL SCROLLING

Web-site visitors need the ability to manually scroll the carousel so they can look
for specific images. Adding manual control is fairly simple, even though the move-
ment of the carousel may seem backwards compared to the image that is clicked.
In other words, clicking the right arrow moves the carousel to the left, and clicking
the left arrow moves the carousel to the right.

ptg

42 CHAPTER 2 WORKING WITH EVENTS

A portion of the functionality for manual control was completed for the auto-
matic scroll function autoCarousel (the following highlighted code). All that you
need to do is wrap the code in a function that binds a click function to the element
identified as scrollRight:

$(‘#scrollRight’).click(function(){

 var itemWidth = $(‘#carouselUL li’).outerWidth() + 10;

 var moveFactor = parseInt($(‘#carouselUL’).css(‘left’)) - itemWidth;

 $(‘#carouselUL’).animate(

 {‘left’ : moveFactor}, ‘slow’, ‘linear’, function(){

 $(“#carouselUL li:last”).after($(“#carouselUL li:first”));

 $(‘#carouselUL’).css({‘left’ : ‘-340px’});

 });

});

If you’ve been really observant, you’ll notice that this click event is bound
to an arrow image that points to the right but moves the carousel to the left. As
mentioned earlier, the movement might seem a little backwards for these functions,
but there is a very good reason.

Visitors to Web sites have been conditioned by actions that they have performed
for most of their lives. One of the most prominent of these conditions is turning
the page of a book or a newspaper. This action requires you to grasp a section
of the page on your right and move it to the left. It seems quite natural that this
movement will reveal new content the way you expect it to. The same goes for the
carousel. Clicking on the right moves the carousel to the left and feels very natural.
You can test this by making a couple of changes to the function.

Moving the carousel to the right requires only a couple of changes.

1. Make a copy of the function that was used to set up manual control when
clicking on the right arrow, and paste the newly copied code below that
function.

ptg

BINDING EVENTS TO OTHER ELEMENTS 43

2. Change the first line of the function to bind the click function to the
scrollLeft selector:

$(‘#scrollLeft’).click(function(){

3. Change the calculation assigned to the moveFactor variable to add the
itemWidth instead of subtracting it:

 var itemWidth = $(‘#carouselUL li’).outerWidth() + 10;

 var moveFactor = parseInt($(‘#carouselUL’).css(‘left’)) +
 p itemWidth;

The distance moved by the carousel is the same as it was before; it is just
moving in a different direction. This difference in direction is accomplished
by animating the move from -340 pixels left to -170 pixels left (the carousel
moves from -340 pixels left to -510 pixels left when animating to the left):

4. Create the function that binds the animate method to the carousel:

 $(‘#carouselUL’).animate(

 {‘left’ : moveFactor}, ‘slow’, ‘linear’, function(){

5. Move the last list item to a place before the first list item:

 $(“#carouselUL li:first”).before($(“#carouselUL
 p li:last”));

Making this move is the opposite of the action that was performed before
to reorder the image list and makes the carousel “infinite” in the opposite
direction if the user continues to manually select the scrollLeft option.

6. Reset the left margin to its original location with the last line of code to
complete the requirement for manual control of the carousel:

 $(‘#carouselUL’).css({‘left’ : ‘-340px’});

 });

});

ptg

44 CHAPTER 2 WORKING WITH EVENTS

To understand the movement, Figure 2.7 illustrates the normal left margin
of the carousel at -340 pixels. The margin gets moved to the right or left
temporarily as needed by the carousel click functions. This gives the
animation method a “go-to” location.

You need to add one more requirement to complete the carousel, and it is a
huge one (excuse the pun). The carousel needs a method to display larger images.

ZOOMING IN ON LARGER IMAGES

When site visitors spot a thumbnail that they would like to get a better look at,
you do not want them to just squint at the thumbnails and try to imagine them as
larger images. By applying some CSS and jQuery, it is easy to give users a way to
view larger pictures by clicking a thumbnail.

1. Using a technique similar to the creation of modal windows with form
elements, create a div just before the closing body tag in chap2/2-2.php:

<div id=”photoModal” class=”photoModal”></div>

FIGURE 2.7 The relationship

between the standard left

margin for the carousel, -340

pixels left, and the margins

that get set temporarily to

support the animation.

typical left margin of the carousel -340 pixels

margin gets set to -510 pixels to
give the animation a place to
move to when scrolling to the left

margin gets set to -170 pixels,
giving the animation a place to
move to when scrolling to the right

NOTE: The style rule for the container that holds

the arrows is included in chap2/css/carousel.css.

ptg

BINDING EVENTS TO OTHER ELEMENTS 45

2. Add the style rules for photoModal to chap2/css/carousel.css:

.photoModal {

 display: none;

 background: #FFFFFF;

 color: #000000;

 border: 20px solid #FFFFFF;

 float: left;

 font-size: 1.2em;

 position: fixed;

 width: auto;

 height: auto;

 top: 50%;

 left: 50%;

 z-index: 200;

}

It is important that you include a height and width property (highlighted)
in the rule because these properties ensure that the image loaded into the
div will fill the div properly and support the calculation that centers the
picture within the browser window.

Next, you’ll add the additional functions to handle the large images to the file
you created earlier, chap2/inc/carousel.js. The first addition should be a function
that loads all of the larger images into hidden divs having a class of photoHolder. It
is necessary to load the images this way because jQuery cannot measure the height
and width of something that is not yet loaded. Without the facility to measure
elements not yet in the DOM, loading each image when the thumbnail is clicked
may give you erratic results.

1. Bind the thumbnails with a class of carThumb to the each method to begin
the function:

$(‘.carThumb’).each(function(){

ptg

46 CHAPTER 2 WORKING WITH EVENTS

2. Extract the image’s path and name information based on the source of the
thumbnail. For example, the first line assigns photos/thumb_ka1.jpg to the
variable photoInfo:

 var photoInfo = $(this).attr(“src”);

3. Split the thumbnail path information apart at the forward slash:

 var photoPathArr = photoInfo.split(‘/’);

The split creates an array called photoPathArr. This array contains two pieces
of information; photos contained in photoPathArr[0] and thumb_ka1.jpg
in photoPathArr[1].

4. Concatenate a forward slash to photos (contained in photoPathArr[0]). The
forward slash is needed to truly represent the path for the images:

 var photoPath = photoPathArr[0]+’/’;

5. Perform another split to get the actual name of the full-sized image:

 var photoInfoArr = photoInfo.split(‘_’);

The name of the full-sized image will be contained in photoInfoArr[1].

6. Reassemble the two pieces to provide the path to the full-sized image like
photos/ka1.jpg:

 var photoSrc = photoPath+photoInfoArr[1];

Note that manipulating text as you just did occurs frequently in jQuery
(and other programming languages). As a matter of fact, you’ll see similar
text manipulation later in this function when you bind the click event to
the thumbnails. As your skills grow, you’ll be able to write functions that
will process text manipulations like this quickly, and more important, as
snippets of code that are reusable.

7. Define the images by creating a new image with the $(‘’) selector
and bind the image to the load function:

 $(‘’).load(function(){

ptg

BINDING EVENTS TO OTHER ELEMENTS 47

8. Append a div to the body of the HTML document to hold the full-sized image:

 $(‘body’).append(‘<div class=”photoHolder”><a
 p href="'+photoSrc+'"</div>');

9. Set the CSS display property to none for each of the elements assigned the
class photoHolder. This is to make sure that each newly added element is
invisible to the Web-site visitor:

 $(‘.photoHolder’).css(‘display’,’none’);

10. Give the new $(‘’) its source information:

 }).attr(‘src’, photoSrc);

});

As the each function loops through the unordered list of images, each
full-sized image will be placed into its respective element and hidden away
from the user.

For the click function that will be bound to the thumbnails, you will go through
the same text-manipulation steps that were performed for the image-loading
function. The steps are repeated again because the load and click functions are
discrete from each other and cannot access each other’s variables.

1. Bind the elements having a class of carThumb to jQuery’s click method:

$(‘.carThumb’).click(function() {

2. Step through the text-manipulation steps to get the path and full-sized
image name:

 var photoInfo = $(this).attr(“src”);

 var photoPathArr = photoInfo.split(‘/’);

 var photoPath = photoPathArr[0]+’/’;

 var photoInfoArr = photoInfo.split(‘_’);

3. Create an image tag for the full-sized photograph:

 var photoImgTag = ‘<img src=”’+photoPath+photoInfoArr[1]+’”
 p id="currentPhoto" />';

ptg

48 CHAPTER 2 WORKING WITH EVENTS

4. Get the name of the modal window to be used from the rel attribute of
the thumbnail:

 var modalID = $(this).attr(‘rel’);

5. Place the image tag into the modal window:

 $(‘#’ + modalID).html(photoImgTag);

6. Apply the fade to the photoModal to make it appear in the browser window.
Additionally, append a button that allows visitors to close the window to
the modal window:

 $(‘#’ + modalID).fadeIn(‘slow’, ‘swing’).append(‘<div
 p class="photoNote"><img
 p src="grfx/photoClose.jpg" class="closeX"
 p title=”Close Photo” alt="Close" /></div>');

7. Load the current height of the HTML body into the variable bodyHeight:

 var bodyHeight = $(‘body’).height();

 $(‘#currentPhoto’).css(‘height’, (bodyHeight - 200));

The bodyHeight variable is then used to set the total height of the enlarged
image. Doing this will keep the enlarged image within the boundaries of
the browser window, preventing the site visitor from having to scroll up
and down to see the full image. The height applied to the enlarged image
is 200 pixels less than the total height of the browser window, which will
also allow for a nice-looking border around the picture.

TIP: Name items carefully so that their information is reusable

in ways that will shorten your code and allow you to write more

efficient functions. Prefixing the photograph’s name with “thumb_” in this

case will give you all the information you need to create the proper path

for retrieving the full-sized images. The function for uploading photos (in

Chapter 3) will name the thumbnails and full-sized images for you.

ptg

BINDING EVENTS TO OTHER ELEMENTS 49

8. Use the same calculation that centered the modal windows earlier to center
the current modal window:

 var modalMarginTop = ($(‘#’ + modalID).height() + 40) / 2;

 var modalMarginLeft = ($(‘#’ + modalID).width() + 40) / 2;

 $(‘#’ + modalID).css({

 ‘margin-top’ : -modalMarginTop,

 ‘margin-left’ : -modalMarginLeft

 });

9. Close out the function by adding the see-through shade to the background
to make the photograph stand out:

 $(‘body’).append(‘<div id=”carouselShade”></div>’);

 $(‘#carouselShade’).css(‘opacity’, 0.7).fadeIn();

 return false;

});

Clicking a thumbnail now reveals a larger photograph centered in the
browser window (Figure 2.8).

FIGURE 2.8 The finished product. A

larger version of a thumbnail photo has

been loaded into the browser window for

all to enjoy.

ptg

50 CHAPTER 2 WORKING WITH EVENTS

The function to close the modal window containing the photograph is the same
function that was created in the section “Creating and Calling Modal Windows.”

Binding events to elements is an exciting tool for making your Web applications
come to life. The ability to combine jQuery events, such as click, hover, fade, and
animate, provides a wealth of opportunities to create highly interactive experiences
for your Web-site visitors.

One of the most popular interactive opportunities to come along has its roots
in old-school game design—using sprites.

CREATING SPRITE-BASED NAVIGATION

Video games have been all the rage for the past 30 or so years, and anyone who
has played early versions of games, such as Mario Brothers or Legend of Zelda, has
played a game that used sprites as its basis for animation.

Simply put, a sprite is a graphic that describes multiple items, each item being
at a specific location within the graphic. Each of the items in the sprite can be
accessed by its location relative to a certain point in the sprite. Typically, the top-
left corner (often described as 0, 0) of the sprite is the point used as the reference
to each item’s relative location.

The CSS layout is extremely important to the success of sprite-based navigation.
The style sheet rules hold all of the location information for the items contained in
the sprite. Figure 2.9 shows the sprite used on the Photographer’s Exchange site.
This sprite consists of six items divided into two rows of three items each. The rows
and columns are only used to keep the items in the sprite organized; elements can
be anywhere you want them to be in a sprite. This sprite will be used for popping
up several of the site’s modal dialog windows.

The mainNav.jpg sprite (located in the chap2/grfx folder in the Web site’s code)
is divided into two categories. The first category contains the items in their natural
state with no hover. The second category (the second line of items) is the group
that shows a user has hovered over them with a mouse cursor.

FIGURE 2.9 The primary

navigation sprite is pretty

basic, but you can achieve

spectacular results with the

technique.

ptg

BINDING EVENTS TO OTHER ELEMENTS 51

Determining the measurements of the sprite is critical. You’ll use this measure-
ment information in the CSS to define the location of items. Obtain the width of
each column (for instance, the Search column) and the height of each row. Figure
2.10 illustrates the measurements for the navigation sprite .

Note that the columns may have different widths; the height is consistent from
row to row and must be for the animation effect to work properly.

DEFINING THE MARKUP

The HTML markup for the navigation is quite simple, consisting of an unordered
HTML list in chap2/2-2.php. Each list item contains an anchor tag and a span tag:

<ul id=”spriteNav”>

 <a href=”search.php” rel=”searchWindow” class=”modal”
 p id="search">Search

 <a href="register.php" rel="registerWindow" class="modal"
 p id="register">Register

 <a href="login.php" rel="loginWindow" class="modal"
 p id="login">Login

Although the markup is incredibly simple, the CSS is much more involved but
not complicated. Each of the image’s states must be described in the style sheet.
These states also include the location information for each image.

FIGURE 2.10 The measure-

ment for the sprite mainNav.

jpg. This sprite is arranged in

rows and columns, making

identification of sprite ele-

ments very easy.

0, 0

–30 px

100 px115 px 85 px

NOTE: In a sprite intended to be used as navigation on the side

of the page (vertically), the column widths must be consistent from

column to column but the heights may differ.

ptg

52 CHAPTER 2 WORKING WITH EVENTS

CREATING CSS FOR SPRITES

Let’s dig into the CSS (chap2/css/spritenav.css) now. First up in the style sheet is
the basic housekeeping.

1. Define the height of the sprite in the spriteNav rule:

#spriteNav {

 height: 30px;

 list-style: none;

 margin: 0;

 padding: 0;

}

2. Set each list item to float left so that each item will be side by side:

#spriteNav li {

 float: left;

}

3. Define the background image for the list item anchor tags:

#spriteNav li a {

 background: url(../grfx/mainNav.jpg) no-repeat;

 display: block;

 height: 30px;

 position: relative;

}

4. Now define the background image for the span tags nested in each list item
anchor tag:

#spriteNav li a span {

 background: url(../grfx/mainNav.jpg) no-repeat;

 display: block;

 position: absolute;

ptg

BINDING EVENTS TO OTHER ELEMENTS 53

 top: 0;

 left: 0;

 height: 30px;

 width: 100%;

}

The sprite is set as the background image for both the anchor links and the
spans. This is the basis for how the whole highlighting effect works as you fade
from one sprite to the other:

Each column of items must have a width and a position. The position is defined
with x and y coordinates. Because you are working with the first row of items, the
y-axis will be 0 for each item. The x-axis for each item is defined as the total width
of all of the items that precede the one the mouse cursor is currently hovering over.

Look at Figure 2.10 again. In the sprite, the Search item in the top row has starting
coordinates of 0 for the x-axis and 0 for the y-axis. The Search is 100 pixels wide,
so the Register item still has a 0 y-axis, but the x-axis is -100 pixels. The Register
item is 115 pixels wide, so the x-axis value for the Login item is the width of the
Search item plus the width of the Register item, -215 pixels.

1. Define each list element’s width and background-position:

#spriteNav li a#search {

 width: 100px;

}

#spriteNav li a#register {

 width: 110px;

 background-position: -100px 0px;

}

#spriteNav li a#login {

 width: 90px;

 background-position: -215px 0px;

}

ptg

54 CHAPTER 2 WORKING WITH EVENTS

LOCATION, LOCATION, LOCATION!

The sprite in the example is very organized, having rows and columns to

define and contain items in a logical fashion. However, this level of organiza-

tion is not really necessary.

You can lay out the items anywhere in the sprite. All you need to know is the

location of each item based on its offset from the coordinates 0, 0. With that

information, you can create the CSS rules to handle the position details.

Armed with this knowledge, you can set up sprites for all sorts of uses,

sometimes combining many small items in one large sprite. A larger sprite

containing several items may preserve bandwidth, both in download size

and reducing the number of server requests required for getting a number

of small individual images.

2. Now define each span element’s background-position:

#spriteNav li a#search span {

 background-position: 0px -30px;

}

#spriteNav li a#register span {

 background-position: -100px -30px;

}

#spriteNav li a#login span {

 background-position: -215px -30px;

}

Why use negative numbers? Imagine that each list element is a box and that
the upper-left corner of that box is defined by the coordinates 0, 0. To get each
item of the sprite to line up with the left edge of its list item, the sprite item must
be offset to the left by the appropriate number of pixels.

For the sprite items in the second row, the sprite is not only offset to the left,
it is offset upwards the necessary amount in a similar fashion.

Now that the CSS is properly defined, you can turn your attention to creating
the jQuery that will animate the transformations of the sprite.

ptg

BINDING EVENTS TO OTHER ELEMENTS 55

ADDING JQUERY ANIMATION

You could just use the HTML and CSS to create an immediate change from one
sprite item to another, but what fun would that be? It’s time to add some jQuery
to give a smooth animated effect to the sprite’s transitions.

1. Create the function and start by making sure that the spriteNav spans are
set to default states:

$(function() {

 $(“#spriteNav span”).css(“opacity”, “0”);

 $(“#spriteNav span”).text(‘’);

Note that the span element is made invisible by reducing its opacity to 0.
The span elements contain the sprite items that will be shown when the
mouse cursor hovers over the span.

2. Bind the span elements to the jQuery hover method and set up the mouseover
and mouseout portions of the function:

 $(“#spriteNav span”).hover(function() {

 $(this).stop().animate({

 opacity: 1

 }, 100);

 }, function(){

 $(this).stop().animate({

 opacity: 0

 }, 500);

 });

});

ptg

56 CHAPTER 2 WORKING WITH EVENTS

You’ve seen the hover effect before as part of the requirement for the carou-
sel. The difference here is that the hover method fades in the portion of the
sprite that is described by #spriteNav span. Under normal circumstances,
the span is totally transparent, allowing you to see the sprite item described
by #spriteNav li. When the mouse cursor enters the span’s space, the
opacity of the sprite element is animated to being fully visible. Figure 2.11
shows the hover effect, but I encourage you to load the code into a browser
to get a full appreciation of the animation.

In Chapter 6, “Creating Application Interfaces,” I’ll show you how to create a
more complicated interaction and animation with sprites.

FIGURE 2.11 The span has

gained full visibility through

the animation of the sprite’s

opacity.

ptg

WRAPPING UP 57

This chapter was packed with action based on binding Web-page elements to events
such as click or hover. Once bound to an event, jQuery can perform any number of
methods based on those events, including animation or appending new elements
to the DOM. You moved smoothly from using a single event to combining events
and methods to create widgets like modal windows, the infinite image carousel, and
interactive sprite-based navigation.

This chapter has given you a solid baseline for using and combining events, but
there are many more events you will want to explore as well. Let’s take your jQuery
development skills to the next level while exploring events you can use with forms.

WRAPPING UP

ptg

3

MAKING
FORMS POP

ptg

Visitors to your Web site are not limited to inter-

acting with basic events like clicks and hovers.

You may want to give your users ways to provide information

via fill-in-the-blank style forms. As a guardian of accurate data,

you want to ensure that your users give you appropriate infor-

mation by guiding them through the form-completion process

(validation). As a designer, you want the form to be intuitive and

easy to use. As a developer, you want to use the tools and events

made available to you by jQuery to help your inner data guardian

and designer create effective, high-quality forms.

In this chapter you’ll work with the forms that have been devel-

oped for the Photographer’s Exchange Web site and add jQuery’s

form events to enhance user interaction while validating the data

the user is providing.

ptg

60 CHAPTER 3 MAKING FORMS POP

At first glance, the five events that jQuery exposes for form methods (blur, change,
select, focus, and submit) seem to be rather paltry. Although the list appears
short, combining these methods with other jQuery functions will yield a wide
range of functionality.

To help guide your visitors along, you’ll want to give them hints (or outright
directions) on the next action you expect them to do. To keep Web-site users from
just assuming they should enter information into a form, you can place the focus
directly into the form element they should fill out first.

FOCUSING ON A FORM INPUT

One of the shortest and handiest jQuery methods is the focus function. Using
this jQuery method, you can place the cursor right into the form element that you
would like the user to fill out.

To use the focus function, it helps to know about the tabindex attribute of
HTML elements, including anchor tags, form elements, and buttons. The tabindex
defines the order (beginning with the lowest numbered item with a tabindex value)
in which these elements should be selected based on clicking the Tab key on the
computer’s keyboard. You can set a tabindex value manually in each item like this:

<input type=”text” name=”penewuser” size=”24” tabindex=”0” />

In many circumstances, you’ll have only one form per page, which will allow
you to use the shortest form of the function:

$(‘input[tabindex=”0”]’).focus();

The selector chooses the form input that has a tabindex of 0 and places the
cursor in that field.

This is simple enough, but what if there are multiple forms? That is the case
in chap3/3-1.php of the Photographer’s Exchange Web site. The three forms that
users are expected to use the most are contained in hidden elements in the primary
page of the site. Under normal circumstances, the first tabindex would likely be
the first input in the first form. So how will you place the cursor into the first input
of the form that is displayed?

Open jqpe.js and look for the comment /* focus on the first form element
*/. The next few lines contain the function that you’ll use to identify the first input
item in any of the forms that are opened in modal windows.

LEVERAGING FORM EVENTS

ptg

LEVERAGING FORM EVENTS 61

The opening move of the function is to look for all of the visible form inputs
and start a loop through them:

$(‘:input:visible’).each(function(i,e){

Because the forms start out with their CSS display property set to none, only
the currently visible form elements will be looped through. The form becomes
visible when its modal window is opened.

The each method contains a couple of extra variables: One identifies which
form element is being worked with. The other is an iterator or counter that begins
with 0. If you set an alert that fires on each loop (alert(i+’ ‘+e);), it will show
the counter and the form input object. Figure 3.1 shows the alert.

The only line in the function assigns each visible form element’s tabindex
attribute a value, beginning with 1000:

 $(e).attr(1000, i);

});

The tabindex value is set high enough to avoid any other existing tabindex
values that may exist in the Web page. When you apply the focus method to the
form, you’ll know that the cursor will end up in the first element of the form that
you are currently displaying.

Once the visible form has properly assigned tabindex values, you can then use
the focus method to place the cursor in the first input field:

$(‘input[tabindex=”1000”]’).focus();

FIGURE 3.1 jQuery locates

the first HTML Input Element

object after the user clicks the

Login element.

ptg

62 CHAPTER 3 MAKING FORMS POP

Thefocus method as you have used it here actually causes the cursor to be placed
on a certain element. You can also trigger an event when a user places focus on an
element by tabbing to the element or selecting that element with a mouse click.

Now that you are focused, let’s tackle something a little more challenging,
validating email addresses with jQuery.

VALIDATING EMAIL ADDRESSES

Open chap3/3-1.php in your favorite text editor and locate the div with an id of
registerForm. Within that form, you will find a line of HTML that describes the
input for an email address:

<label class=”label” for=”email”>Email: </label><input type=”text”
p name="email" id="email" size="48" />please
p enter a valid email address

The HTML error span is hidden normally, using a CSS rule (chap3/css/modal.css):

.error {

 display: none;

 color: #FF0000;

 font-size: 0.7em;

 margin: 0px 0px 0px 5px;

}

If there is an error performing basic email validation, the error span will be
displayed by changing its display properties in the jQuery function designed to
test the email address entered into the form.

Basic form validation does not use AJAX (I’ll show you how to use AJAX to
validate certain form elements in Chapter 4, “Being Effective with AJAX”). To get
started with the jQuery email validation:

1. Open the chap3/inc/jqpe.js file. You will begin creating this function before
the closing brackets of the document ready function wrapper.

ptg

LEVERAGING FORM EVENTS 63

CONQUERING REGULAR EXPRESSIONS

You will find that there are many ways to use regular expressions to test and

validate data entered into forms and used in functions. Discussing regular

expressions in depth is beyond the scope of this book, so I’ll recommend

some good resources for finding and learning about regular expressions:

� http://www.webreference.com/js/column5 offers an effective tutorial that

focuses on using regular expressions with JavaScript.

� https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Regular_

Expressions is the definitive guide to JavaScript regular expressions for

use in Web browsers.

� http://regexpal.com provides an online tool that helps you to correctly

write regular expressions by providing you with visual clues. Enter a test

string and then write the regular expression to match the string.

2. Bind the blur method to the email input:

$(‘#email’).blur(function() {

The blur method is engaged when tabbing or clicking away from the input
element, causing the input to lose focus.

When the blur occurs, you’ll need to employ a way to validate the email.
One of the most powerful ways of performing a validation is by using a
programming construct called a regular expression. I can hear the screams
of horror now! The shrieking! The wailing!

However, once you understand regular expressions, there is really nothing
to be afraid of. Regular expressions are a flexible way to match strings of
text and are perfectly suited for performing the kind of matching needed
to validate an email address. The regular expression used here breaks down
quite easily.

http://www.webreference.com/js/column5
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Regular_Expressions
https://developer.mozilla.org/en/Core_JavaScript_1.5_Guide/Regular_Expressions
http://regexpal.com

ptg

64 CHAPTER 3 MAKING FORMS POP

3. Insert the regular expression designed to be a match for most email addresses
and store that expression in the variable regexEmail:

 var regexEmail = /^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+
 p \.[a-zA-Z]{2,4}$/;

The first portion of the regular expression /^[a-zA-Z0-9._-]+ states that
what is being matched should begin with alphanumeric characters and that
the alphabetic characters can be either lowercase or uppercase. Periods,
underscores, and hyphens are also allowed. The + sign indicates that this
statement should match the preceding characters one or more times.

After the initial characters, there must be an @ sign, otherwise known as at.

After the at sign another set of alphanumeric characters, [a-zA-Z0-9.-]+,
is allowed, along with periods and hyphens only. Next, a period, \., should
exist to separate the domain and subdomain.

The regular expression ends with [a-zA-Z]{2,4}$. This indicates that the
last portion of the item being matched must have only letters and can be
from two to four characters in length. This is perfect for matching currently
available Web domains.

4. Put the value of the form input element in the variable inputEmail:

 var inputEmail = $(this).val();

5. Now let’s test the value typed into the form against the regular expression
using JavaScript’s test method:

 var resultEmail = regexEmail.test(inputEmail);

The test method returns true if the email address is valid or false if the
address is invalid. This allows you to use a conditional test to determine if
the error message should be displayed.

6. Create a conditional statement that will use the result of the regular expres-
sion test to determine whether or not the error message should be displayed
for the user:

 if(!resultEmail){

ptg

LEVERAGING FORM EVENTS 65

The exclamation point here essentially specifies: If the condition of the
variable is not true, the test has failed.

7. If the test has failed, display the error next to this element (#email) by
changing its CSS display properties:

 $(this).next(‘.error’).css(‘display’, ‘inline’);

8. If the test has succeeded, either the first time the user enters the informa-
tion or when the user goes back and corrects the information, set the CSS
display property of the error so that it does not show:

 } else {

 $(this).next(‘.error’).css(‘display’, ‘none’);

 }

9. Close out the jQuery email validation function with the proper braces and
brackets:

});

When an incorrectly formatted email is entered, the error span is displayed
when the blur event occurs, taking focus away from the email input area.
The result is shown in Figure 3.2.

FIGURE 3.2 The user has left a

space in the name. This is not

valid when matched against

the regular expression used for

validating email addresses.

ptg

66 CHAPTER 3 MAKING FORMS POP

If you look closely at the code in chap3/3-1.php, you’ll notice that there is more
than one span element assigned the class error. Why don’t all of these spans
become visible when there is an error present? The answer lies in the method used
in the conditional statement of the function. Look again at this line:

$(this).next(‘.error’).css(‘display’, ‘inline’);

The trick is in the .next() method. The jQuery object $(this) represents the
object with an id of #email. One sibling of #email is #error. If you type the HTML
in a hierarchical fashion, you can see the relationship more clearly:

<form name=”register” id=”registerForm” action=”inc/peregister.php”
p method="post">

 /* other form elements */

 <label class=”label” for=”email”>Email: </label>

 <input type=”text” name=”email” id=”email” size=”48” />

 please enter a valid email address

 /* more form elements */

</form>

Each highlighted element is the child of the form element and a sibling to all
of the elements at the same level within the markup. The next sibling for #email
is just the error span immediately following it in the code. Using the next method
will cause only this error span’s properties to change so that it becomes visible.

Now let’s combine the form change method with the next method to turn off
an error once the form password field is filled in.

MAKING SURE AN INPUT IS COMPLETE

Making sure that a form field is not blank before submission is the most basic
method of form input validation. There are several methods for creating func-
tions that ensure that a field in an HTML form is filled out. You can force users to
use certain characters with a regular expression, or you can make sure that the
password meets a minimum length requirement.

ptg

LEVERAGING FORM EVENTS 67

For the Photographer’s Exchange Web site, the requirement is only that the
password field not be left blank. The warning is displayed when the form is loaded,
as shown in Figure 3.3.

1. Open chap3/inc/jqpe.js and begin by creating the function before the closing
bracket of the document ready wrapper:

$(function() {

2. Get the length of the value contained in the form element having an id of
penewpass. Store that length in a variable called passwordLength:

 var passwordLength = $(‘#penewpass’).val().length;

3. The first item in the code tests the length of the password field’s value. If
that length is zero, you display the warning:

 if(passwordLength == 0){

 $(‘#penewpass’).next(‘.error’).css(‘display’,
 p ‘inline’);

FIGURE 3.3 The user is warned

against leaving the password

field blank.

ptg

68 CHAPTER 3 MAKING FORMS POP

4. Set up the jQuery code to look for a change event occurring in the password
input field. If a change occurs, the CSS method sets the error’s display to
none, which causes the warning message to disappear:

 $(‘#penewpass’).change(function() {

 $(this).next(‘.error’).css(‘display’, ‘none’);

 });

5. Close out the braces and brackets for the function properly:

 }

});

Even though you are performing a lot of client-side data validation, you should
always cleanse user-supplied data properly by removing potentially harmful syntax
or even code statements entered into forms once that data reaches the server. Let’s
look at some of those cleansing techniques next as users are given a way to upload
pictures to the Photographer’s Exchange Web site.

ptg

TACKLING UPLOADS 69

As you may already know, you cannot use AJAX to upload files. Preventing a client-
side technology like AJAX from performing file uploads closes a potentially large
security hole.

So how do you allow users to upload files to your Web site? In this section you’ll
learn a surefire (and secure) way to perform file uploads using an HTML iframe
element and PHP while keeping the smooth interactivity you expect from jQuery.

To make the upload process effective and safe, you’ll combine jQuery with PHP.
Making sure that users upload the proper files is the first priority. The upload form
that you’ll use is in the file chap3/3-4.php and is illustrated in Figure 3.4.

PERFORMING CLIENT-SIDE VALIDATION

Because the site is for photographers, file uploads will be limited to JPGs, JPEGs (Joint
Photographic Experts Group), and PNGs (Portable Network Graphics). These file
types are especially suitable for digital photography. If the user selects any other
file type, the upload form needs to prompt the user with a reminder. The HTML
contains a hidden error span that will be shown if the file type selected is not correct:

<label class=”label” for=”pUpload1”>Select File: </label><input
p type="file" name="pUpload[]" id="pUpload1" value="" size="48"
p />extension must be jpg, jpeg or png

FIGURE 3.4 The file upload

form where site users will

be able to upload up to five

pictures at a time.

TACKLING UPLOADS

ptg

70 CHAPTER 3 MAKING FORMS POP

This is similar to the error messages applied in earlier forms. Place the jQuery
code to catch the error in a file called pePhotoUp.js, which you will save in the
chap3/inc folder.

1. Start the function by selecting the upload form’s inputs and binding them
to the each method:

$(‘input[name*=”pUpload”]’).each(function(){

The selector used is called an attribute selector. Attribute selectors allow
you to specify one or more attributes and their respective values to filter a
group of elements. Here the selector wraps all inputs whose name begins
with pUpload.

2. Bind the inputs to the change method so that any change in the input field
can be captured to trigger the balance of the function:

 $(this).change(function(){

3. Set up a regular expression to test for the proper file-extension text. The
function will then get the value of the changed input and test that value
against the regular expression:

 var regexPhotoExt = /\.(jpg|jpeg|png)$/i;

 var photoName = $(this).val();

 var resultPhoto = regexPhotoExt.test(photoName);

Let’s dissect the regular expression used here. Working from right to left
the i signifies that the test is case-insensitive. The dollar sign ($) ensures
that the test is for the end of the string being tested. The meat of the expres-
sion (jpg|jpeg|png) is an array of three strings that are acceptable as a file
extension. The period (escaped by a backslash) indicates that a successful
test string will begin with a period. File extensions .jpg, .jpeg, or .png will
pass the test.

ptg

TACKLING UPLOADS 71

4. Create the conditional check that reveals or hides the error message:

 if(!resultPhoto){

 $(this).next(‘.error’).css(‘display’, ‘inline’);

 } else {

 $(this).next(‘.error’).css(‘display’, ‘none’);

 }

 });

});

If the user chooses a file with an extension that does not match one of the
values in the regular expression array, an error will be displayed, as shown
in Figure 3.5.

Life would be easy for designers and developers if all they had to do was provide
a warning message to a Web-site visitor when that visitor tries to do something
that the designer or developer doesn’t want the visitor to do. The reality is that
you must also validate the information when it gets to the server because some
of your visitors may try to submit data or upload files that can do harm to your
servers, or even worse, transmit virus-laden files to your other Web-site visitors.
You’ll learn how to validate that information next.

NOTE: A word of warning: Providing the user with a visual prompt

does not actually prevent the file from being uploaded!

FIGURE 3.5 The error message

that users will see if they

choose a file with an improper

file extension.

ptg

72 CHAPTER 3 MAKING FORMS POP

DEVELOPING SERVER-SIDE VALIDATION

Server-side validation in the Photographer’s Exchange Web site is handled by a
few lines of the PHP code during the file upload process. Let’s isolate those lines
to see how the validation is performed before moving on to creating the image
upload function.

Locate the photoUpload.php file in the chap3/inc folder of the Photographer’s
Exchange Web site and open it. The file contains several different functions, but
the focus in this section will be on the code used to validate uploaded files.

Find the comment /* set up the file for validation */. The next few
lines following this comment are the key to making sure that the file being uploaded
is what it is supposed to be—an image file.

PHP sets up a temporary filename for the uploaded file. This temporary name
is used by PHP to refer to the file until the upload is complete. The real name of
the file is also available. These two names are saved to variables to make them
easier to use:

 $tmpName = $_FILES[“pUpload”][“tmp_name”][$key];

 $photoName = $_FILES[“pUpload”][“name”][$key];

You’ll see a familiar sight in the next line. The code is for the regular expres-
sion used for client-side validation; it is used because you should always validate
user-supplied data, and jQuery did not prevent the user from clicking the Upload
button even though an improper file type was chosen:

$regexFileExt = “/\.(jpg|jpeg|png)$/i”;

The PHP function preg_match provides the same testing capability as JavaScript’s
test method:

 if(preg_match($regexFileExt, $photoName)){

NOTE: PHP code will be used for all of the server-side processes in this

book, but you can easily replicate these functions in any language.

ptg

TACKLING UPLOADS 73

This level of testing may be good enough for some developers, but you really
want to be safe. One way of adding an additional layer of testing in PHP is to use
a function that will read the first few bytes of a file to determine the file’s actual
type. That function is exif_imagetype.

The exif_imagetype function can return over a dozen different constants, like
IMAGETYPE_JPEG, when a test is valid. Users are allowed only two different file types
on Photographer’s Exchange (jpg and jpeg are the same from a binary standpoint),
so two constants are placed into an array that will be used when testing:

 $arrEXIFType = array(IMAGETYPE_JPEG, IMAGETYPE_PNG);

The temporary file $tmpName is tested by the function exif_imagetype. Then the
PHP function checks to see if the constant returned is in the array $arrEXIFType.
If the constant matches one of the values in the array, the file upload is allowed
to proceed:

 if(in_array(exif_imagetype($tmpName), $arrEXIFType)){

 // perform the file upload

Now that the files can be validated properly, it is time to turn your attention to
actually making the upload happen.

TIP: If you are using PHP, make sure that your version of PHP

includes the EXIF (Exchange Image Information) extension. You

will need that extension to use the EXIF functions.

NOTE: The exif_imagetype returns the constant FALSE when the test fails.

ptg

74 CHAPTER 3 MAKING FORMS POP

UPLOADING FILES

Because AJAX cannot be used to upload files, you’ll learn how to employ some
jQuery magic to give the application the ability to move files from the user’s com-
puter to the Web site’s server.

Normally, an upload form calls on the script that will process the file upload
directly. Once the upload has been processed by the server, another Web page is
loaded. Figure 3.6 shows how the process begins with the form in a browser. The
form sends the data to a script (in this case the PHP upload script) on the server
for processing before redirecting the user to a new Web page.

FIGURE 3.6 The path of a

normal file upload begins on

one Web page and ends on

another Web page after the

upload is processed.

ptg

TACKLING UPLOADS 75

The new upload function uses a temporary and hidden HTML iframe that is
called into existence by the jQuery function. Beginning the same way from a typical
file upload form, the jQuery process then opens the iframe (shown for clarity in
Figure 3.7) into which the PHP upload script is targeted. When the upload script
is complete, the iframe is removed by the jQuery process and a modal window is
presented to let the user know that the process has completed.

FIGURE 3.7 This screen reveals

the magic behind the jQuery

upload process. An iframe is

temporarily created to hold the

file-upload processing script.

ptg

76 CHAPTER 3 MAKING FORMS POP

SCRIPTING THE UPLOAD

The entire file upload process requires two parts, the PHP code that processes the
uploaded files on the server side and the jQuery code that will be used on the client
side by the Web browser. You’ll create the client-side jQuery first.

1. Open the jQuery file chap3/inc/pePhotoUp.js in which you created the
client-side file extension validation. Start the upload function immediately
after the closing brackets for the file extension validation function. Bind
the jQuery submit method to the upload form:

$(function(){

 $(‘#uploadForm’).submit(function(){

2. Set up an iframe and append it to the Web-page’s body. Set the iframe’s
display property to none; the user will never see it:

 var iframeName = (‘iframeUpload’);

 var iframeTemp = $(‘<iframe name=”’+iframeName+’”
 p src=”about:blank” />');

 iframeTemp.css('display', 'none');

 $('body').append(iframeTemp);

Now that the iframe is ready to use, the submit function provides the proper
attributes to target the iframe with the PHP upload script. This is where
the upload occurs.

3. Set up the attributes for the submit function to pass to the iframe:

 $(this).attr({

 action: ‘inc/photoUpload.php’,

 method: ‘post’,

 enctype: ‘multipart/form-data’,

 encoding: ‘multipart/form-data’,

 target: iframeName

 });

The image files are now uploaded to the server.

ptg

TACKLING UPLOADS 77

Let’s put the finishing touches on the client-side portion of the file upload
process. You do this by letting the user know the process has completed and per-
forming some housecleaning duties, clearing the form and removing the iframe.

CREATING CALLBACK-STYLE FUNCTIONALITY

The last part of the jQuery upload script is placed into a short (1 second) setTimeout
function. The timeout (you can experiment with the length of time allowed)
allows several functions to take place without presenting jarring transitions to
the Web-site visitor.

1. Create the setTimeout function:

setTimeout(function(){

2. Remove the temporary iframe, because it is no longer needed:

 iframeTemp.remove();

3. Create a small function that will determine the length of the text in the
input fields. The length information will be placed into the inputLength
variable for use later in the file upload function:

 inputLength = 0;

 $(‘input[name*=”pUpload”]’).each(function() {

 inputLength += $(this).val().length;

 });

You do not want to display the confirmation modal if the Upload button is
accidentally clicked with no data in the input fields. To prevent accidental
confirmation, a test is performed to make sure that inputLength is greater
than zero.

4. Open a conditional statement that will check the value of the inputLength
variable:

 if(0 < inputLength){

ptg

78 CHAPTER 3 MAKING FORMS POP

5. If the inputLength is greater than zero, append a div to the body that con-
tains the confirmation message:

 $(‘body’).append(‘<div id=”ty” class=”thankyouModal”>
 p <h3>Thank You! Your upload is complete...
 p </h3></div>');

6. To ensure that the modal will be displayed in the center of the browser
window, get the height and width of the div and then add the extra margin
and padding width to it. This technique was used in Chapter 2 to center
modal windows and photos from the carousel:

 var modalMarginTop = ($(‘#ty’).height() + 60) / 2;

 var modalMarginLeft = ($(‘#ty’).width() + 60) / 2;

 $(‘#ty’).css({

 ‘margin-top’ : -modalMarginTop,

 ‘margin-left’ : -modalMarginLeft

 });

7. Fade in the confirmation message (Figure 3.8) so that the user knows the
process has completed:

 $(‘.thankyouModal’).fadeIn(‘slow’, function(){

FIGURE 3.8 The visitor receives

confirmation that the process

has completed.

ptg

TACKLING UPLOADS 79

8. Clear the input fields so that the form is clean and ready to use again:

 $(‘input[name*=”pUpload”]’).val(‘’);

9. Fade out the confirmation message slowly to give the site visitor a visual
sense of action:

 $(this).fadeOut(1500, function() {

10. Remove the confirmation modal from the DOM:

 $(this).remove();

11. Make sure that all of the curly braces and parentheses are matched up and
closed properly for the conditional statement:

 });

 });

 };

The time in milliseconds (1000 milliseconds equals 1 second) for the setTimeout
function is placed prior to closing the function and then is followed by the
remainder of the closing braces, parentheses, and semicolons:

}, 1000);});});});

When can the photos be displayed properly as full-sized images and as thumb-
nails? Let’s turn to the PHP script that processes the uploaded files, chap3/inc/
photoUpload.php.

NOTE: The message that is provided to the user in the file upload

form only confirms that the process is complete. It does not confirm

that the files have been sent to the server, nor does it report back

errors. There are many ways to make this process much more robust.

For example, you could modify the script to provide error messages or use

AJAX to poll the directory that the files should be in.

TIP: A good integrated development environment (IDE) editor

will have bracket and parentheses matching built in.

ptg

80 CHAPTER 3 MAKING FORMS POP

PROCESSING THE UPLOADED FILES

The PHP photo upload script does much more than just upload the files and vali-
date them to ensure that your users are not sending malicious files to reside on
your server. The script places the full-sized photos in the correct directory, creates
properly sized thumbnails, and places data into the database corresponding to the
files that are uploaded.

1. Create the connection to the MySQL database:

if(!$dbc = mysql_connect(‘localhost’, ‘username’, ‘password’)){

 echo mysql_error() . “\n”;

 exit();

}

2. You’ll store all of the photos and thumbnails in a directory called (I racked
my imagination over this) photos. The path to the directory is chap3/photos/.
Assign that path to the $photoPath variable:

$photoPath = “../photos/”;

3. Begin a loop to upload each image file and check if there is an upload error
of any type. Files with errors will be ignored, but I strongly encourage you
to look into methods for handling the errors and presenting information
back to the user:

foreach($_FILES[“pUpload”][“error”] as $key => $error) {

 if ($error == UPLOAD_ERR_OK) {

NOTE: You will have to set up this connection with the server, user, and

password information particular to your installation. Scripts for set-

ting up various tables required by this application are in the chap3/sql

directory of the code download available from www.appliedjquery.com.

www.appliedjquery.com

ptg

TACKLING UPLOADS 81

4. Add the next section of code, the validation code, which was explained
earlier in this chapter:

 $tmpName = $_FILES[“pUpload”][“tmp_name”][$key];

 $photoName = $_FILES[“pUpload”][“name”][$key];

 $regexFileExt = “/\.(jpg|jpeg|png)$/i”;

 if(preg_match($regexFileExt, $photoName)){

 $arrEXIFType = array(IMAGETYPE_JPEG, IMAGETYPE_PNG);

 if(in_array(exif_imagetype($tmpName), $arrEXIFType)){

5. Concatenate the photo’s proposed path to the name that will actually refer
to the image file, and then move the new image into its permanent direc-
tory file on the server:

 $newPhoto = $photoPath.$photoName;

 move_uploaded_file($tmpName, $newPhoto);

At this point, the images have been uploaded, validated, named, and moved.

6. Transform the full-sized images into thumbnails that can be used in car-
ousels and pages to allow users to edit information about the photos. Start
by creating a path and name for the thumbnail:

 $newPhotoThumbnail =
 p $photoPath.’thumb_’.$photoName;

7. Call the createThumbnail function (you will create the function in the sec-
tion “Creating thumbnails” later in this chapter) and send the appropriate
arguments to the function—the name of the full-sized photo, the name of
the thumbnail that will be created, and the maximum width and height of
the thumbnail:

 createThumbnail($newPhoto,
 p $newPhotoThumbnail, 160, 128);

 }

 }

Before discussing the thumbnail creation function, let’s finish this portion of
the script, saving the data to the database.

ptg

82 CHAPTER 3 MAKING FORMS POP

SAVING IMAGE DATA

The photographers using the Web site will want to save and share information about
their photographs with other users visiting the Web site. If you have run the SQL
scripts to set up the database table for the photos, the table allows for some basic
information about each photo: the image name, the name of the thumbnail, the
user name of the person who uploaded the photo, and notes about the photograph.

During the upload process, three pieces of information are immediately avail-
able with which to populate the table.

The SQL query to insert the image information is divided over several lines to
increase readability and aid in troubleshooting when necessary. The query informa-
tion should follow the file upload processing function in chap3/inc/photoUpload.php.

1. Declare the insert along with the database and table name:

 $photoInsert = “INSERT INTO `photoex`.`pephoto` “;

2. Declare the names of the columns that data will be entered into in the
database table:

 $photoInsert .= “(`imgName`,`imgThumb`,`username`) “;

3. Insert into the table each of the values from the upload process:

 $photoInsert .= “VALUES(“;

 $photoInsert .= “’”.$photoName.”’, “;

 $photoInsert .= “’thumb_”.$photoName.”’, “;

 $photoInsert .= “’’ “;

 $photoInsert .= “)”;

NOTE: The user name is not really available at this point because reg-

istration and login has not been completed. These functions will be

completed in Chapter 4, “Being Effective with AJAX.” You’ll want to

modify SQL code after completing that chapter to account for the additions.

ptg

TACKLING UPLOADS 83

4. Close out the query and call PHP’s mysql_query function to execute the query:

 if(!($peInsert = mysql_query($photoInsert, $dbc))){

If there is an error with the query, several variables are printed out to the
screen so that you can quickly and effectively troubleshoot the problem.
Under normal circumstances, you would not want to reveal this informa-
tion to your users. Instead, you would give the user a meaningful error
message and log the results of the error variables so that you can examine
them behind the scenes as part of the debugging process.

5. Set up the PHP variables that will provide troubleshooting information to
you if something goes wrong with the database insert:

 echo $photoInsert;

 echo mysql_error();

 echo mysql_errno();

 exit();

6. Close out the PHP file upload function with the appropriate closing brackets:

 }

 }

}

With the photos safely uploaded and the data recorded in the database, the
site is coming along well. One other addition you need to make is to ensure that
thumbnails are created properly so they will work in the carousel included in the
site earlier. Thumbnails will also be displayed in a tabular format when needed.

CREATING THUMBNAILS

In Chapter 2 you created an infinite carousel to display image thumbnails. To create
thumbnails from all of the images uploaded, you’ll use the PHP function described here.

When configuring the carousel, you determined that each image used could
be no more than 160 pixels wide or 128 pixels tall. You need to send this informa-
tion to the function along with a couple of other arguments. You’ll use this line of
code in the file upload function to call the thumbnail creation method into action:

createThumbnail($newPhoto, $newPhotoThumbnail, 160, 128);

ptg

84 CHAPTER 3 MAKING FORMS POP

The following arguments are sent to the function:

� The name of the new photo in the variable $newPhoto.

� The name that you want the thumbnail to have in the variable
$newPhotoThumbnail.

� The maximum width for the thumbnail in pixels.

� The maximum height for the thumbnail in pixels.

Keep in mind that the function will create any size thumbnail; all you need to do
is change the last two arguments. As you will see, the function will calculate either
the width or height as needed to make sure that the thumbnail is proportionally
sized. Figure 3.9 shows a thumbnail created by the process and how it retains its
proportions compared to the original.

Let’s dig in and create the PHP function in chap3/inc/photoUpload.php that
will generate thumbnails from your images.

FIGURE 3.9 Comparing the

full-sized original with its

much smaller thumbnail.

cameras.jpg
800 pixels x 533 pixels

thumb_cameras.jpg
160 pixels x 106 pixels

ptg

TACKLING UPLOADS 85

1. Start by declaring the function and its arguments:

function createThumbnail($name, $filename, $newWidth, $newHeight){

2. Place the image’s name into an array by exploding the variable. Using the
example’s name for the image, cameras.jpg, use the explode method to
create an array ($arrPhotoName) with two entries, cameras and jpg. Use the
next line to place jpg into the variable $fileExtPosition:

 $arrPhotoName = explode(‘.’,$name);

 $fileExtPosition = count($arrPhotoName) - 1;

PHP’s explode method takes two arguments, one for the separator and one
for the item to be exploded. The separator in this case is a period.

3. Depending on the image type (based on the file’s extension), you call the
appropriate PHP function to create a working image in the proper format.
This working image will be used instead of the original image. Working
with a copy of the image helps to ensure that nothing is done to destroy or
ruin the original image:

 if (preg_match(‘/(jpg|jpeg)/i’,
 p $arrPhotoName[$fileExtPosition])){

 $workingImg = imagecreatefromjpeg($name);

 } elseif (preg_match(‘/(png)/i’,
 p $arrPhotoName[$fileExtPosition])){

 $workingImg = imagecreatefrompng($name);

 }

Note that regular expressions were used again. You must be getting used
to them by now.

TIP: The functions used to manipulate images in PHP for this

function are supplied by the GD library, just one of the image

manipulation libraries available for PHP. Make sure that your version

of PHP is compiled with the GD library if you want to use the image

manipulation functions used here.

ptg

86 CHAPTER 3 MAKING FORMS POP

4. Now the real fun of this function can begin. You need to get the width and
height of the working image first. The following calculations will determine
the new height and width for the thumbnail:

 $oldX = imagesx($workingImg); // width

 $oldY = imagesy($workingImg); // height

5. If the width of the working image is greater than its height, set the width to
160 pixels and calculate the number of pixels to make the height proportional:

 if ($oldX > $oldY) {

 $thumbW = $newWidth;

 $thumbH = ($oldY * $newWidth) / $oldX;

 }

6. If the height of the working image is greater than its width, set the height
of the thumbnail to 128 pixels and calculate the number of pixels to make
the width proportional:

 if ($oldX < $oldY) {

 $thumbW = ($oldX * $newHeight) / $oldY;

 $thumbH = $newHeight;

 }

7. For square images, you can set the height and width to the maximum height
used in the carousel:

 if($oldX == $oldY) {

 $thumbW = $newHeight;

 $thumbH = $newHeight;

 }

ptg

TACKLING UPLOADS 87

8. Use PHP’s ImageCreateTrueColor function and pass it the newly determined
width and height for the thumbnail:

 $newThumbnail = ImageCreateTrueColor($thumbW,$thumbH);

The thumbnail is now created.

9. Resample the image to retain the quality of the thumbnail; you’ll use PHP’s
imagecopyresampled to accomplish this. You must supply several arguments
to this function for it to work properly:

� The destination image resource ($newThumbnail).

� The source image resource ($workingImage).

� The x and y coordinates of the destination point. This tells the resam-
pling function which point to work from on the destination image. In
this case it is the top-left corner of the image.

� The x and y coordinates of the source point. This tells the resampling
function which point to work from in the source image. It starts in the
top-left corner.

� The destination width and height.

� The source width and height.

 imagecopyresampled($newThumbnail, $workingImg, 0, 0, 0, 0,
 p $thumbW, $thumbH, $oldX, $oldY);

NOTE: The thumbnail creation function has been designed for

simplicity’s sake. The function works well with images that are

typically proportioned within the maximum size ranges for the

carousel. As image width and height values approach each other,

but before the image becomes square, these simple algorithms will

not keep the thumbnails within the maximum height and width

range designed for the carousel. The way to correct this is to look at

the calculated height and width of the thumbnail and adjust either the

height or width again if either measurement falls outside of the range.

ptg

88 CHAPTER 3 MAKING FORMS POP

10. After resampling has occurred, move the image to its permanent home in
the file structure of the Web site by outputting the file to the proper loca-
tion. If the image is a png, you use PHP’s imagepng to perform this action;
if not, use imagejpeg:

 if (preg_match(“/(png)/i”, $arrPhotoName[$fileExtPosition])) {

 imagepng($newThumbnail, $filename);

 } else {

 imagejpeg($newThumbnail, $filename);

 }

11. Destroy the resources to free up memory on the server:

 imagedestroy($newThumbnail);

 imagedestroy($workingImg);

}

Thumbnail creation is complete! By combining the jQuery upload process
with PHP, you have created an effective way to allow users to upload files to your
site. At the same time, you gain techniques for manipulating the files to suit your
purposes and keep your server safe from harm.

Take the time now to upload some pictures and make changes to some of the
form functions to get a good feel for how all of this works together. While you are
doing this, think about ways that you can modify and improve this functionality
for use in your forms.

ptg

WRAPPING UP 89

WRAPPING UP

In this chapter you gained a firm grasp of working with forms and the data in those
forms. You were introduced to methods such as employing regular expressions for
validating data with jQuery in a form without a round trip to the server. Along the
way you learned a couple of ways to provide meaningful user messages to the users
of your forms. You also learned how to use jQuery (without AJAX) to upload files
to your server via a hidden iframe element, along with methods of confirming the
types of files you will allow your users to upload.

Just when you thought it was safe to get out of the form pool, you’ll next learn how
to use jQuery’s AJAX methods. In Chapter 4, jQuery’s AJAX functions are covered in
depth to give you ways to improve and enhance your forms, and improve the user’s
experience by dynamically and smoothly loading content. Roll up your sleeves!

ptg

4

BEING EFFECTIVE
WITH AJAX

ptg

AJAX, one of the hottest technology combina-

tions to enter the Web development landscape

in years, has fueled a surge in interactive Web design with

its ability to load new content into an existing DOM structure.

jQuery simplifies using AJAX with several shorthand methods

for the basic AJAX methods. For most developers and designers,

these shorthand methods will be all that they ever need to use.

The jQuery AJAX shorthand methods post, get, and load are

featured in this chapter. jQuery also provides a robust feature set,

including callbacks, for developers who want to customize their

AJAX calls to provide richer interactive experiences. I’ll show you

how to use several of jQuery’s AJAX features to enhance Web sites

and applications. Let’s start by completing the form validation

that you started in Chapter 3.

ptg

92 CHAPTER 4 BEING EFFECTIVE WITH AJAX

USING AJAX FOR VALIDATION

Simply put, AJAX (Asynchronous JavaScript and XML) lets you use JavaScript to
send and receive information from the server asynchronously without page redi-
rection or refreshes. You can use AJAX to grab information and update the Web
page that your user is currently viewing with that information. Complex requests
can be made to databases operating in the background.

When new users register to use the Web site, they need to have unique user
names. Their user name will be associated with other information, such as photos
they upload or articles they write. It will be the key that lets them update informa-
tion about the photos they submit.

Make sure that you first set up the database for the Web site by running the SQL
file chap4/sql/peuser.sql on your database. Running this script in MySQL or any
other database platform will create the Web-site’s database, a user for that database,
and the table that will be used to store Web-site visitor registration information.
You can then start building the PHP file that will respond to the actions the AJAX
functions will request.

BUILDING THE PHP REGISTRATION AND VALIDATION FILE

Photographers who want to share their images and perhaps write articles on
photography will need a way to register information with the site that will allow
them to log in and gain access to site features not accessible to nonregistered users.

You can create an interaction for this that will appear very slick to the user. With
jQuery’s AJAX functionality, you can avoid page reloads or redirections to other
pages (Figure 4.1). The AJAX engine will send the requests to the PHP scripts on
the server without disruption to the user experience.

Using PHP and jQuery, you’ll create the functions that will support the regis-
tration interaction.

1. Open a new text file and save it as chap4/inc/peRegister.php.

NOTE: If you’d like to use the PHP file provided in the download, feel free

to skip ahead to “Setting Up the jQuery Validation and Registration Func-

tions” section. Be sure to edit the PHP file with the proper user name,

password, and host name for the database connection to match what

you have set up on your database server.

ptg

USING AJAX FOR VALIDATION 93

2. Set up the database connection for the PHP function, including a method
for returning errors if no connection can be made:

if(!$dbc = mysql_connect(‘servername’, ‘username’, ‘password’)){

 echo mysql_error() . “\n”;

 exit();

}

Contained in this PHP file are three actions: one to complete registration,
one to validate the user name, and a method to allow registered users to
log in. The proper function will be called based on the name of the form
used in the AJAX function.

3. Use PHP’s switch method to determine which form is submitted and set
up the first case for the registration form:

switch($_POST[‘formName’]) {

 case ‘register’:

FIGURE 4.1

The difference between a

typical HTTP request and the

XMLHttpRequest utilized by

jQuery’s AJAX methods.

HTTP Request

HTML

jQuery call XMLHTTPRequest

HTML XML
JSON

Server data

Typical Web Request
(causes page reload)

AJAX Web Request with jQuery
(request occurs asynchronously

without page reload)W
E

B
 B

R
O

W
S

E
R

W
E

B
S

E
R

V
E

R

ptg

94 CHAPTER 4 BEING EFFECTIVE WITH AJAX

4. Check to see if the user name and password are set:

 if(isset($_POST[‘penewuser’]) &&
 p isset($_POST[‘penewpass’])) {

5. If the user name and password are set, use the data from the form to complete
a SQL statement that will insert the new user’s information into the database:

 $peuserInsert = “INSERT INTO `photoex`.`peuser` “;

 $peuserInsert .= “(`username`, `userpass`,
 p `userfirst`, `userlast`, `useremail`";

6. Because users can choose a number of photographic interests when they
register, you must set up a loop to handle the check boxes that are selected
in the registration form:

 if(isset($_POST[‘interests’])){

7. The loop used here counts the number of interests selected and properly
formats the SQL statement to name those interests. Insert commas in the
correct place, and close the initial statement with a closing parenthesis:

 $peuserInsert .= “,”;

 for($i = 0; $i < count($_POST[‘interests’]);
 p $i++){

 if($i == (count($_POST[‘interests’])
 p - 1)){

 $peuserInsert .=
 p “`”.$_POST[‘interests’][$i].”`”;

 } else {

 $peuserInsert .=
 p “`”.$_POST[‘interests’][$i].”`, ";

 }

 }

 }

 $peuserInsert .=")";

ptg

USING AJAX FOR VALIDATION 95

8. Place the values from the registration form into the SQL statement in the
correct order:

 $peuserInsert .= “VALUES (“;

 $peuserInsert .= “’”.$_POST[‘penewuser’].”’, “;

 $peuserInsert .= “’”.$_POST[‘penewpass’].”’, “;

 $peuserInsert .= “’”.$_POST[‘pefirstname’].”’, “;

 $peuserInsert .= “’”.$_POST[‘pelastname’].”’, “;

 $peuserInsert .= “’”.$_POST[‘email’].”’ “;

9. Inserting the correct values includes looping through any interests selected
in the form and inserting the value “yes” for those interests:

 if(isset($_POST[‘interests’])){

 $peuserInsert .= “,”;

 for($i = 0; $i < count($_POST
 p [‘interests’]); $i++){

 if($i == (count($_POST[‘interests’])
 p - 1)){

 $peuserInsert .= “’yes’”;

 } else {

 $peuserInsert .= “’yes’, “;

 }

 }

 }

10. Close the SQL statement properly:

 $peuserInsert .=”)”;

If you were to print out the resulting SQL statement contained in the vari-
able $peuserInsert, it would look something like this:

INSERT INTO `photoex`.`peuser`(`username`, `userpass`,
p `userfirst`, `userlast`, `useremail`,`landscape`,
p `astronomy`,`wildlife`) VALUES (‘Bob.Johnson’,’ph0t0man’,
p ’Bob’,’Johnson’,’photoman@gmail.com’,’yes’,’yes’,’yes’,’yes’)

ptg

96 CHAPTER 4 BEING EFFECTIVE WITH AJAX

11. Use the PHP function mysql_query to insert the data into the database, and
the user will be registered:

 if(!($peuInsert = mysql_query($peuserInsert,
 p $dbc))){

 echo mysql_errno();

 exit();

 }

CHECKING THE USER NAME FOR AVAILABILITY

Because the new user will typically fill out the user name first, the password and
user name will not be set, so the else statement will be invoked. This is the PHP
code that checks the user name to see if it exists in the database.

1. Create a SQL query that selects the user name typed into the registration
form from the user database:

 } else {

 $peCheckUser = “SELECT `username` “;

 $peCheckUser .= “FROM `photoex`.`peuser` “;

 $peCheckUser .= “WHERE `username` =
 p ‘”.$_POST[‘penewuser’].”’ “;

 if(!($peuCheck = mysql_query($peCheckUser, $dbc))){

 echo mysql_errno();

 exit();

 }

If the name the user entered into the registration form is already in the
database, the query will return a row count of 1. If the name is not in the
database, the row count is 0.

2. Assign the count of the number of rows returned by the query to the database:

 $userCount = mysql_num_rows($peuCheck);

ptg

USING AJAX FOR VALIDATION 97

3. Echo the count value to be returned by the AJAX function for use by jQuery to
determine if the user should enter a new user name in the registration form:

 echo $userCount;

 }

4. Complete the case statement for the registration form:

break;

CREATING THE PHP FOR USER LOGIN

After registering, the user can log in to the site and begin uploading photos and
writing articles. Let’s complete the login section of the PHP file.

1. Set up the case statement for the login code:

case ‘login’:

2. Check to see if the user name and password are set:

 if(isset($_POST[‘pename’]) && isset($_POST[‘pepass’])){

3. If they are set, send a query to the database with the user name and pass-
word information:

 $peLoginQ = “SELECT `username`, `userpass` “;

 $peLoginQ .= “FROM `photoex`.`peuser` “;

 $peLoginQ .= “WHERE `username` = ‘”.$_POST[‘pename’].”’ “;

 $peLoginQ .= “AND `userpass` = ‘”.$_POST[‘pepass’].”’ “;

 if(!($peLogin = mysql_query($peLoginQ, $dbc))){

 echo mysql_errno();

 exit();

 }

NOTE: You should always make sure that data visitors enter into

forms is cleansed by checking the data rigorously before submitting

it to the database.

ptg

98 CHAPTER 4 BEING EFFECTIVE WITH AJAX

4. Set the variable $loginCount to the number of rows returned from the data-
base query. If the user name and password are correct, this value will be 1:

 $loginCount = mysql_num_rows($peLogin);

Next, you’ll set up a cookie depending on the user’s preference. A cookie is a
small file that is placed on the visitor’s computer that contains information
relevant to a particular Web site. If the user wants to be remembered on
the computer accessing the site, the user can select the check box shown
in Figure 4.2.

5. If the login attempt is good, determine what information should be stored
in the cookie:

 if(1 == $loginCount){

6. Set up a cookie containing the user’s name to expire one year from the cur-
rent date if the “remember me” check box was selected:

 if(isset($_POST[‘remember’])){

 $peCookieValue = $_POST[‘pename’];

 $peCookieExpire = time()+(60*60*24*365);

 $domain = ($_SERVER[‘HTTP_HOST’] !=
 p ‘localhost’) ? $_SERVER['HTTP_HOST'] :
 p false;

FIGURE 4.2 The check box a

user can click to be remem-

bered. The user will not have

to log in again until the cookie

associated with this action

expires or is removed from

the computer.

ptg

USING AJAX FOR VALIDATION 99

The math for the time() function sets the expiration date for one year from
the current date expressed in seconds, 31,536,000. A year is usually sufficient
time for any cookie designed to remember the user. The information in the
$domain variable ensures that the cookie will work on a localhost as well as
any other proper domain.

7. Create the cookie and echo the $loginCount for AJAX to use:

 setcookie(‘photoex’, $peCookieValue,
 p $peCookieExpire,

'/', $domain, false);

 echo $loginCount;

8. Set a cookie to expire when the browser closes if the user has not selected
the remember option:

 } else {

 $peCookieValue = $_POST[‘pename’];

 $peCookieExpire = 0;

 $domain = ($_SERVER[‘HTTP_HOST’] !=
 p ‘localhost’) ? $_SERVER['HTTP_HOST'] :
 p false;

 setcookie('photoex', $peCookieValue,
 p $peCookieExpire,

'/', $domain, false);

 echo $loginCount;

 }

ptg

100 CHAPTER 4 BEING EFFECTIVE WITH AJAX

9. Echo out the login count if the user name and password are not set. The
value should be 0:

 } else {

 echo $loginCount;

 }

}

break;

With the PHP file ready to go, it is time to build the jQuery AJAX functions.

SETTING UP THE JQUERY VALIDATION AND

REGISTRATION FUNCTIONS

Checking the new user name should be as seamless as possible for the registrant.
The form should provide immediate feedback to users and prompt them to make
changes to their information prior to the form being submitted. The form input
(in chap4/4-1.php) element for the user name will be bound to the blur method:

<label class=”labelLong” for=”penewuser”>Please choose a user name:
p </label><input type="text" name="penewuser" id="penewuser”
p size=”24” />name taken, please choose
p another

1. Bind the form input for the user name to jQuery’s blur method:

$(‘#penewuser’).blur(function() {

2. Capture the value of the user name in the newName variable:

 var newName = $(this).val();

Next, you’ll validate with the post method.

NOTE: For more on PHP and how to use it effectively with MySQL,

check out Larry Ullman’s book, PHP 6 and MySQL 5 for Dynamic Web

Sites: Visual QuickPro Guide (Peachpit, 2008).

ptg

USING AJAX FOR VALIDATION 101

1. Call the post method with the URL of the PHP script, data representing the
name of the form that is being filled out, and the newName variable:

 $.post(‘inc/peRegister.php’, {

 formName: ‘register’,

 penewuser: newName

Note that the data passed by the post method is in name: value pairs. The
value in each pair is quoted when sending the raw data. Variables such as
newName do not need the quotes.

The results of calling the inc/peRegister.php script will automatically be
stored for later processing in the data variable.

2. Define the callback for the post function and pass the data variable to the
function, so that the results can be processed:

 }, function(data){

The PHP function returns only the row count based on the query that was
used to see if the user name was in the database.

3. Set up a variable to hold the information returned in the data variable:

 var usernameCount = data;

4. Create a conditional statement that will display or hide the error message
based on the data returned by the AJAX method. You’ll recognize most of
this conditional statement because it is similar to how validation error
messages were delivered in Chapter 3:

 if(1 == usernameCount){

 $(‘#penewuser’).next(‘.error’).css(‘display’,
 p ‘inline’);

 } else {

 $(‘#penewuser’).next(‘.error’).css(‘display’,
 p ‘none’);

 }

ptg

102 CHAPTER 4 BEING EFFECTIVE WITH AJAX

5. Close out the post function by citing the data type you expect the server-
side function to return:

 }, ‘html’);

});

If the PHP function returns a 1, the error span is displayed, as illustrated
in Figure 4.3.

The registration function needs to submit the user’s data or let the user know
if there are still errors with the submission. If there are errors, the user needs to
be prompted to fix the registration.

1. Start the registration function by binding the registration form to the
submit method:

$(‘#registerForm’).submit(function(e) {

The variable e holds information about the event object, in this case the
submit event.

2. Because you will be using AJAX to submit the form, you do not want the
submit event to perform as it normally would. To stop that from happening,
you set the event to preventDefault:

 e.preventDefault();

FIGURE 4.3 The user name

FrankFarklestein is already in

use by someone else. Who

knew there were two of them?

ptg

USING AJAX FOR VALIDATION 103

3. Serialize the form data. The serializing creates a text string with standard
URL-encoded notation. For most forms, this notation is in the form of
key=value pairs:

 var formData = $(this).serialize();

4. Now you can invoke the jQuery AJAX post method by providing the URL
to post to and the serialized form data, and setting up a callback function:

 $.post(‘inc/peRegister.php’, formData, function(data) {

The PHP code will return 0 if the query to add the user is successful. If not,
it will return a higher number, indicating that the user could not be added.

5. Store the information returned by the AJAX function in the mysqlErrorNum
variable:

 var mysqlErrorNum = data;

If an error is returned, you’ll want to provide users with a prompt to let
them know that they need to correct the information. The information is
provided in a modal window as you have done before. Figure 4.4 shows the
modal window that you will set up next.

6. Test the value of the variable mysqlErrorNum to set up a conditional statement:

 if(mysqlErrorNum > 0){

FIGURE 4.4 The modal prompt letting

users know that they need to correct their

registration information. In the back-

ground you can see that the user name is

already taken; this must be changed.

ptg

104 CHAPTER 4 BEING EFFECTIVE WITH AJAX

7. If mysqlErrorNum is greater than 0, append a modal window to the body
of the Web page:

 $(‘body’).append(‘<div id=”re”
 p class=”errorModal”><h3>There is an error with
 p your registration</h3><p>Please correct your
 p information and re-submit...</div>');

8. Calculate and apply the margins for the new modal window just as you
did before:

 var modalMarginTop = ($(‘#re’).height() + 60) / 2;

 var modalMarginLeft = ($(‘#re’).width() + 60) / 2;

 $(‘#re’).css({

 ‘margin-top’ : -modalMarginTop,

 ‘margin-left’ : -modalMarginLeft

 });

9. Add the code that will fade in the modal window:

 $(‘#re’).fadeIn().prepend(‘<a href=”#”
 p class="close_error"><img src=
 p "grfx/close_button.png" class="close_button"
 p title="Close Window" alt="Close" />');

10. Provide a method to close the modal window containing the error warning:

 $(‘a.close_error’).live(‘click’, function() {

 $(‘#re’).fadeOut(function() {

 $(‘a.close_error, #re’).remove();

 });

 });

ptg

USING AJAX FOR VALIDATION 105

11. If no error was returned, fade out the registration window and clear the form:

 } else {

 $(‘#registerWindow, #modalShade’).
 p fadeOut(function() {

 $(‘#registerForm input[input*=”pe”]’).val(‘’);

 });

 }

12. Close the post method by providing the data type that you expect the PHP
function to return:

 }, ‘html’);

});

LOGGING IN THE USER

The last step you need to do in the validation procedures is to give users a way to
log in to their account.

The jQuery for the login function is nearly a duplicate of the registration, so
I’ll present it in its entirety:

$(‘#loginForm’).submit(function(e){

 e.preventDefault();

 var formData = $(this).serialize();

 $.post(‘inc/peRegister.php’, formData, function(data) {

 var returnValue = data;

 if(1 == returnValue){

 $(‘#loginWindow, #modalShade’).fadeOut(function() {

 $(‘#loginForm input[name*=”pe”]’).val(‘’);

 window.location = “4-2.php”;

 });

ptg

106 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 } else {

 $(‘body’).append(‘<div id=”li” class=”errorModal”>
 p <h3>There is an error with your login</h3><p>Please
 p try again...</div>');

 var modalMarginTop = ($('#li').height() + 60) / 2;

 var modalMarginLeft = ($('#li').width() + 60) / 2;

 $('#li').css({

 'margin-top' : -modalMarginTop,

 'margin-left' : -modalMarginLeft

 });

 $('#li').fadeIn().prepend('<a href="#"
 p class="close_error"><img src="grfx/close_button.png"
 p class="close_button" title="Close Window"
 p alt="Close" />');

 $('a.close_error').live('click', function() {

 $('#li').fadeOut(function() {

 $('a.close_error, #li').remove();

 });

 });

 }

 }, 'html');

});

ptg

USING AJAX FOR VALIDATION 107

If the login is successful, the browser loads chap4/4-2.php (Figure 4.5), the
user’s account page.

Now that you are comfortable with basic jQuery AJAX, let’s move on to using
the jQuery AJAX functions to update content in the browser.

FIGURE 4.5 The user’s account

page is displayed on a success-

ful login.

ptg

108 CHAPTER 4 BEING EFFECTIVE WITH AJAX

In many cases, you’ll want to use various jQuery AJAX functions to update visible
Web-site content. Some content updates may be based on the user information
for the current user, other updates may be based on requests performed by any
user, such as information based on a search performed by the Web-site visitor.

Let’s look at some techniques for using jQuery’s AJAX methods to update content.

GETTING CONTENT BASED ON THE CURRENT USER

If you have been developing Web sites even for the shortest period of time, you
are likely aware of query strings in the URL. Unless Web-site developers are using
methods to hide the strings, you may have seen something similar to this:

http://www.website.com/?user=me&date=today

Everything past the question mark is a query string that can be used in a GET
request to the server. Each item is set up in a name=value pair, which can be easily
parsed by scripting languages like jQuery and PHP.

GET requests are not limited to the URL. You can use GET as a form method or
in AJAX. jQuery provides a shorthand method call for making this kind of request
to the server, and conveniently, it is called get.

1. Open chap4/4-2.php to set up a get function to retrieve the current user’s
pictures into the Web browser. Rather than storing the jQuery code in a
different file and including it, let’s use a slightly different technique that is
very valuable when small jQuery scripts are used.

2. Locate the closing </body> tag. Just before that tag, the jQuery AJAX get
method will be set up to retrieve the user’s pictures. Begin by inserting the
script tag:

<script type=”text/javascript”>

NOTE: Most forms utilize the POST method to request data from the

server, but URLs are limited to the GET method. Most Web developers

follow the rule of using GET when only retrieving data and using POST

when sending data to the server that will invoke a change on the server.

USING AJAX TO UPDATE CONTENT

http://www.website.com/?user=me&date=today

ptg

USING AJAX TO UPDATE CONTENT 109

3. Open the function by making sure that the document (the current Web
page DOM information) is completely loaded:

 $(document).ready(function() {

4. The first critical step in making sure that you get the right information from
the database is to assign the value of the cookie set during login to a variable
that can be used by jQuery. The information in the cookie is the user’s name:

 var cookieUser = ‘<?php echo $_COOKIE[‘photoex’];?>’;

5. As stated earlier, the get method relies on name=value pairs to do its work
properly. Make sure that the get request sends the cookie data to the server
as a name=value pair:

 $.get(‘inc/userPhoto.php’, {photoUser: cookieUser},
 p function(data){

6. Load the information returned into the div with an id of myPhotos:

 $(‘#myPhotos’).html(data);

7. Close the get function with the data type that is expected to be returned
from the PHP script. Once closed, set the closing </script> tag (the </body>
tag is shown only for reference):

 }, ‘html’);

 });

</script>

</body>

8. Before you can get the photos from the database, you need to create the
photo table. So, run the pephoto.sql file located in the chap4/sql folder of
the code download. The SQL file will also insert default data for the photos
located in the chap4/photos folder.

In the PHP file chap4/inc/userPhoto.php, the SQL query uses the informa-
tion contained in the photoUser variable:

$getImg = “SELECT `imgName`,`imgThumb` “;

$getImg .= “FROM `photoex`.`pephoto` “;

$getImg .= “WHERE `username` = ‘”.$_GET[‘photoUser’].”’ “;

ptg

110 CHAPTER 4 BEING EFFECTIVE WITH AJAX

The user’s photographs are retrieved and placed into a table for viewing.
The results are illustrated in Figure 4.6.

Combining user data with the get method is very effective for pages where
data unique to the user must be displayed. What about content that is not unique
to the user? The get method has a cool little brother called load.

LOADING CONTENT BASED ON REQUEST

Of the jQuery AJAX shorthand methods, load is the simplest and easiest method
for retrieving information from the server. It is especially useful if you want to call
on new information that does not need data passed to it like you would do with the
get or post methods. The syntax for load is short and sweet as well:

$(‘a[href=”writeNew”]’).click(function(e){

 e.preventDefault();

 $(‘#newArticle’).load(‘inc/userWrite.php’);

});

FIGURE 4.6 The user’s photo-

graphs in tabular form.

ptg

USING AJAX TO UPDATE CONTENT 111

Clicking on the Write link (Figure 4.7) invokes the load function, causing chap4/
inc/userWrite.php to be loaded into the div with an id of newArticle.

There is one other really neat feature that load offers: You can use it to bring
in just portions of other pages. For instance, to bring in a div with an id of part1
from another page, the syntax is as follows:

$(‘#newArticle’).load(‘inc/anotherPage.html #part1’);

Having the option of loading page portions can give you a great deal of design
and organizational flexibility.

Not every Web site can use every AJAX feature that jQuery offers, so you’ll leave
the Photographer’s Exchange Web site behind at this point. You’ll develop stand-
alone examples to demonstrate some of the other features and events available
in jQuery’s AJAX library.

FIGURE 4.7 The form has

been loaded into the page

so that the user can write a

new article.

NOTE: In Chapter 6, “Creating Application Interfaces,” you’ll use an

example in which several widgets will be contained in one file that will

be called by load as needed to complete the interface.

ptg

112 CHAPTER 4 BEING EFFECTIVE WITH AJAX

LOADING SCRIPTS DYNAMICALLY

There are some cases in which you will need to load JavaScript or jQuery scripts
just for one-time use in your Web pages and applications. jQuery provides a special
AJAX shorthand method to do just that, getScript.

For this example, you’ll use the code contained in chap3/dvdCollection, which
is a small personal Web site designed to be used as a catalog of all the DVD and
Blu-ray Discs that you own.

From time to time, you’ll want to know just how many DVD and Blu-ray Discs
you have, but it isn’t really necessary to load the script that performs the counts
and displays the result every time you use the site. jQuery’s getScript method is
the perfect remedy for loading scripts that you’ll use infrequently.

1. Set up a script called dvdcount.js and place it in the inc directory of the
DVD collection site. This is the script that getScript will load when called
upon to do so.

2. Include the document ready functionality:

$(document).ready(function(){

3. Each movie is contained in a div with a class of dvd. Assign the count of
those div’s to the variable totalCount:

 var totalCount = $(‘.dvd’).length;

4. Use jQuery’s :contains selector to help count the types of discs in the
collection. The :contains selector is very handy for finding elements
containing a specific string. Here it is used to find the text “DVD” or “Blu-
ray” in the h3 element:

 var dvdCount = $(‘h3:contains(“DVD”)’).length;

 var brCount = $(‘h3:contains(“Blu-ray”)’).length;

5. Set up the modal window to show the user the information. This is the same
technique used in Chapter 2 and Chapter 3, so I won’t cover each step in detail:

 var movieModal = ‘<div class=”movieModal”>Total Movies:
 p '+totalCount+'
DVD: '+dvdCount+'
Blu-ray:
 p '+brCount+'</div>';

ptg

USING AJAX TO UPDATE CONTENT 113

 $('body').append(movieModal);

 var modalMarginTop = ($('.movieModal').height() + 40) / 2;

 var modalMarginLeft = ($('.movieModal').width() + 40) / 2;

 $('.movieModal').css({

 'margin-top' : -modalMarginTop,

 'margin-left' : -modalMarginLeft

 });

The modal will only pop up for a moment before fading out:

 $(‘.movieModal’).fadeIn(‘slow’, function(){

 $(this).fadeOut(2500, function() {

 $(this).remove();

 });

 });

});

The main page for the DVD catalog site is chap4/dvdCollection/4-5.php. Let’s
take a moment to set it up.

1. Enter the information for the header:

<!DOCTYPE html>

<html lang=”en”>

 <head>

 <meta charset=”utf-8”>

 <title>DVD Collection Catalog</title>

 <link rel=”stylesheet” href=”css/dvd.css”
 p type=”text/css” />

ptg

114 CHAPTER 4 BEING EFFECTIVE WITH AJAX

2. Include the jQuery file so that all of the interactions will run properly:

 <script type=”text/javascript”
 p src=”inc/jquery-1.5.min.js"></script>

 </head>

3. Set up the body next:

 <body>

 <h2>DVD Collection Catalog</h2>

 <div class=”menuContainer”>

4. Set up the menu section carefully, because you’ll use these elements to
call other scripts:

 <ul class=”menu”>

 <li id=”add”>Add

 <li id=”summary”>Summary

 </div>

5. Set up the div that will house the content of the page:

 <div class=”content”></div>

6. Create the section containing the jQuery scripts you’ll use to load informa-
tion into the page along with the function that loads chap4/dvdCollection/
inc/getdvd.php. The PHP is called by the jQuery load method to get the
information about the DVD collection:

 <script type=”text/javascript”>

 $(document).ready(function(){

 $(‘.content’).load(‘inc/getdvd.php’);

ptg

USING AJAX TO UPDATE CONTENT 115

7. Bind the click method to the list item with an id of summary. This will call
getScript to run the jQuery script created earlier, dvdcount.js:

 $(‘#summary’).click(function() {

 $.getScript(‘inc/dvdcount.js’);

 });

 });

</script>

8. Close out the HTML:

 </body>

</html>

Clicking the Summary element on the Web page causes the dvdcount.js script to
be loaded and run, showing the modal window complete with counts (Figure 4.8).
The modal window then slowly fades away.

FIGURE 4.8 Clicking on the

Summary element loads and

runs the dvdcount.js script.

ptg

116 CHAPTER 4 BEING EFFECTIVE WITH AJAX

You will find many cases where loading and running scripts on the fly will
enhance your Web sites and applications.

Next, you’ll turn your attention to many of jQuery’s AJAX extras and learn how
to apply them practically.

USING JQUERY’S AJAX EXTRAS

In addition to the shorthand methods, jQuery provides many useful methods and
helpers to give you ways to use AJAX efficiently. These methods range from low-
level interfaces to global event handlers, all of which, when applied properly, will
make your programs and Web sites more effective.

Let’s look at these extras, starting with the low-level interfaces.

WORKING WITH LOW-LEVEL INTERFACES

jQuery’s low-level AJAX interfaces provide the most detailed approach to AJAX
functions. This kind of detail makes the low-level interfaces quite flexible but
introduces additional complexity due to all of the options available.

One way to combat the complexity of having an extensive choice of options
is to use a method to set up options that do not change frequently. Take a look at
the simplest of the low-level interfaces, ajaxSetup:

$.ajaxSetup({

 url: ajaxProcessing.php,

 type: ‘POST’

});

TheajaxSetup method allows you to provide options that will be used with every
AJAX request. You can set all of the AJAX options available (over 25 of them!) using
ajaxSetup. This is very convenient if you need to make repeated AJAX requests to
the same URL or use the same password each time you make a request. In many
cases, developers will put all of their server-side AJAX handlers in the same file
on the server. Using ajaxSetup shortens their AJAX calls, including the shorthand
methods. Given the current example of ajaxSetup, your post method could be
configured like this:

$.post({ data: formData });

ptg

USING AJAX TO UPDATE CONTENT 117

The only thing you need to supply to the post function is the data to be handled
by ajaxProcessing.php. One advantage of using the ajaxSetup method is that you can
override any of the ajaxSetup options in the individual AJAX calls that you make.

The low-level interface that you will see in use most is the straight ajax method.
It is the function that is wrapped by the shorthand methods and is at the very
heart of all of jQuery’s AJAX calls. The ajax method is capable of accepting all of
the options that can be used with jQuery’s AJAX requests. Perhaps the best way to
understand the low-level AJAX method is to compare it to one of the shorthand
methods you used earlier. Here is the post method that you used to check to make
sure the user name was available:

$.post(‘inc/peRegister.php’, {

 formName: ‘register’,

 penewuser: newName

}, function(data){

 var usernameCount = data;

 if(1 == usernameCount){

 $(‘#penewuser’).next(‘.error’).css(‘display’, ‘inline’);

 } else {

 $(‘#penewuser’).next(‘.error’).css(‘display’, ‘none’);

 }

}, ‘html’);

Here is the same request using jQuery’s low-level ajax method:

$.ajax({

 type: ‘POST’,

 url: ‘inc/peRegister.php’,

 data: ‘formName=register&penewuser=’+newName+’’,

 success: function(data){

 var usernameCount = data;

 if(1 == usernameCount){

ptg

118 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 $(‘#penewuser’).next(‘.error’).css(‘display’, ‘inline’);

 } else {

 $(‘#penewuser’).next(‘.error’).css(‘display’, ‘none’);

 }

 },

 dataType: ‘html’

});

The differences are fairly obvious, such as declaring the method that AJAX
should use to convey the information to the server (type: ‘POST’), specifying
the way that raw data is formatted (data: ‘formName=register&penewuser=

’+newName+’’,) and ensuring that the success method is implicitly defined
(success: function(data){…).

Take a tour of jQuery’s ajax API at http://api.jquery.com/jQuery.ajax to see all
of the options available for use with this method.

Now that you can send information to the server and receive information back
from your server-side processes, you need to make sure that your users are informed
that an AJAX action is taking place. jQuery provides several helper functions that
make it easy for you to do just that.

TRIGGERING EVENTS BEFORE AND AFTER THE AJAX CALL

In many cases, your jQuery AJAX functions will happen so quickly that users may
not even know that their actions achieved the desired result. In other cases, the
AJAX process may be lengthy and require that users wait for results. jQuery pro-
vides four methods that you can use to keep users informed: ajaxStart, ajaxSend,
ajaxComplete, and ajaxStop.

It is important to understand that there is an order to these four functions. You
can call any number of AJAX processes during any given event. For this reason, you
may want to know not only when the first AJAX function starts, but also when
each subsequent AJAX method gets called and completes. Then you may want
to register that all of the AJAX calls have completed. If you imagine jQuery AJAX
events as a stack of items as in Figure 4.9, you’ll see how the jQuery AJAX engine
defines the order of the events and their calls.

http://api.jquery.com/jQuery.ajax

ptg

USING AJAX TO UPDATE CONTENT 119

Let’s take a close look at how to use the ajaxStart and ajaxStop methods by
giving users a visual queue during a data- and file-submission event in the DVD
Collection Catalog.

1. Open chap4/4-6.php.

In 4-6.php you will see a form (Figure 4.10 on the next page) that accepts
user input and provides a method for uploading a file. This combination is
not unusual, but it will require that you pay careful attention when writing
the PHP and jQuery to handle the data transfer and file upload.

A
JA

X
C

O
N

T
R

O
L

L
E

R

jQuery AJAX Send

jQuery AJAX Start

jQuery AJAX Request

jQuery AJAX Request

jQuery AJAX Request

jQuery AJAX Stop

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Start

jQuery AJAX Send

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Send

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Send

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Send

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Stop

FIGURE 4.9 The initial jQuery

events are stacked up by the

developer and then ordered

and processed by jQuery’s

AJAX engine.

ptg

120 CHAPTER 4 BEING EFFECTIVE WITH AJAX

Two PHP scripts will handle the data supplied in the form: one for the
movie cover art upload (not really AJAX, remember?) and one for the data
input into the form.

2. Create a file called chap4/dvdCollection/inc/dvdcover.php to set up the
image upload first.

3. Set up the path for the cover art:

$coverPath = “../cover_art/”;

4. Make sure that the file is submitted properly and has no errors:

if ($_FILES[“movieCover”][“error”] == UPLOAD_ERR_OK) {

5. Set up the variables to hold the information about the uploaded file (this is
the same technique that you used for file uploads in Chapter 3):

 $tmpName = $_FILES[“movieCover”][“tmp_name”];

 $coverName = $_FILES[“movieCover”][“name”];

6. Create the regular expression used to check the file extension of the
uploaded file:

 $regexFileExt = “/\.(jpg|jpeg|png)$/i”;

FIGURE 4.10 The form that

users will fill out to add movies

to their personal database.

ptg

USING AJAX TO UPDATE CONTENT 121

7. Test the file extension to see if it matches one allowed by the regular expression:

 if(preg_match($regexFileExt, $coverName)){

8. Check the file again by making sure it really is the right kind of file accord-
ing to its first few bytes:

 $arrEXIFType = array(IMAGETYPE_JPEG, IMAGETYPE_PNG);

 if(in_array(exif_imagetype($tmpName), $arrEXIFType)){

9. Set up the file’s new name and path, and place them into the variable
$newCover:

 $newCover = $coverPath.$coverName;

10. Move the properly named file to its permanent directory:

 move_uploaded_file($tmpName, $newCover);

 }

 }

}

Now that you’ve completed the PHP script for the file upload, you can create
the PHP script that will be called by the jQuery AJAX post method to update the
database.

1. Create a file called postdvd.php and store it in the chap4/dvdCollection/
inc folder.

Only two actions are contained in postdvd.php: one to connect to the
database and one to run the query that will perform the database update.

2. Set up the database connection first (be sure to use the user name and
password that you have set up for your database):

if(!$dbc = mysql_connect(‘localhost’, ‘username’, ‘password’)){

 echo mysql_error() . “\n”;

 exit();

}

ptg

122 CHAPTER 4 BEING EFFECTIVE WITH AJAX

3. Introduce a little sleep timer to slow down the process. This will allow the
animated loading graphic to be displayed by ajaxStart in the jQuery func-
tion that will be created (typically, the database operation is very fast—so
fast that the user may not realize that something has occurred.):

sleep(2);

4. Create the SQL query that will accept the values from the AJAX post method
to update the database with:

$insertMovie = “INSERT INTO `dvdcollection`.`dvd` “;

$insertMovie .= “(`name`,`genre`,`format`,`description`,
p `cover`) “;

$insertMovie .= “VALUES(“;

$insertMovie .= “’”.$_POST[‘movieName’].”’,”;

$insertMovie .= “’”.$_POST[‘movieGenre’].”’,”;

$insertMovie .= “’”.$_POST[‘movieFormat’].”’,”;

$insertMovie .= “’”.$_POST[‘movieDescription’].”’,”;

$insertMovie .= “’cover_art/”.$_POST[‘movieCover’].”’ “;

$insertMovie .= “)”;

5. Call the mysql_query function to run the SQL query:

if(!($movieInfo = mysql_query($insertMovie, $dbc))){

 echo mysql_error();

 echo mysql_errno();

 exit();

}

NOTE: Make sure that you run the SQL chap4/dvdCollection/sql/

create_collection_table.sql script in your database platform to set up

and populate the table for the DVD collection.

ptg

USING AJAX TO UPDATE CONTENT 123

With the PHP scripts complete, you can now turn your attention to the jQuery
functions. All of the jQuery functions will be placed into the file inc/movieUp.js.

1. Start the file by defining the ajaxStart method:

$(‘body’).ajaxStart(function(){

The ajaxStart function will be called as soon as an AJAX request is made.
The method can be bound to any element available in the DOM and is
bound to the body element for use here. You can define any processes that
you want within the ajaxStart method.

2. For this file and data upload, create a modal pop-up window to give the
users a visual clue that something is occurring:

 var waitingModal = ‘<div class=”waitingModal”>
 p </div>';

 $('body').append(waitingModal);

 var modalMarginTop = ($(‘.waitingModal’).height() + 40) / 2;

 var modalMarginLeft = ($(‘.waitingModal’).width() + 40) / 2;

 $(‘.waitingModal’).css({

 ‘margin-top’ : -modalMarginTop,

 ‘margin-left’ : -modalMarginLeft

 });

 $(‘.waitingModal’).fadeIn(‘slow’);

});

The technique used to create the modal window is no different than what
you have used previously in the book.

3. Bind the ajaxStop method to the body element (remember that methods
like ajaxStart and ajaxStop can be bound to any element). When the AJAX
request is complete, you’ll want to clear the form and remove the modal
from view so that the user knows the process is finished:

$(‘body’).ajaxStop(function(){

ptg

124 CHAPTER 4 BEING EFFECTIVE WITH AJAX

4. Clear the form elements so that the user can use the form to add another
movie. Just like using ajaxStart, you can define any process within the
ajaxStop function:

 $(‘#addMovie input[name*=”movie”]’).val(‘’);

 $(‘#addMovie textarea’).val(‘’);

Be very specific with your jQuery selectors when choosing which form
elements to clear. For example, using just $(‘#addMovie input’) will also
clear the form’s buttons, and that would confuse the user.

5. Fade away the modal indicator and remove it from the DOM. This is the last
part of the process defined in the ajaxStop method:

 $(‘.waitingModal’).fadeOut(‘slow’, function(){

 $(this).remove();

 });

});

6. Begin the form handler by binding the form addMovie to the submit method:

$(‘#addMovie’).submit(function(){

7. Upload the image using the iframe method that was defined in Chapter 3:

 var iframeName = (‘iframeUpload’);

 var iframeTemp = $(‘<iframe name=”’+iframeName+’”
 p src=”about:blank” />');

 iframeTemp.css('display', 'none');

 $('body').append(iframeTemp);

 $(this).attr({

 action: ‘inc/dvdcover.php’,

 method: ‘post’,

 enctype: ‘multipart/form-data’,

 encoding: ‘multipart/form-data’,

 target: iframeName

 });

ptg

USING AJAX TO UPDATE CONTENT 125

8. Once the image upload is complete, remove the iframe from the DOM:

 setTimeout(function(){

 iframeTemp.remove();

 }, 1000);

9. Prepare the data to be used in the post method. Because information in a
textarea cannot be serialized with normal jQuery methods, create a text
string that sets up the textarea value as if it were serialized by making the
information a name=value pair:

 var coverData = ‘&movieCover=’ +
 p $(‘input[name=”movieCover”]’).val();

10. Serialize the remainder of the form data:

 var formData = $(this).serialize();

11. Once the form data has been processed by the serialize function, concat-
enate the two strings together in the uploadData variable:

 var uploadData = formData + coverData;

12. Call the jQuery AJAX shorthand method post to upload the data:

 $.post(‘inc/postdvd.php’, uploadData);

});

When the movie data form is submitted, the jQuery AJAX engine will see
that there is a post occurring during the process, triggering the ajaxStart
method. Figure 4.11 shows the modal loading indicator called by ajaxStart.

Once the post process has completed, the ajaxStop method is triggered,
causing the modal waiting indicator to fade out.

Now that you have learned to handle AJAX calls and the data they return, you
need to learn how to handle one of the Web’s fastest-growing data types, JSON.

TIP: If you need animated graphics to indicate to your users

that something is occurring in the background, check out

www.ajaxload.info. There you can generate several different animated

graphics in a wide array of colors.

FIGURE 4.11 The ajaxStart
method has called the waiting

indicator.

www.ajaxload.info

ptg

126 CHAPTER 4 BEING EFFECTIVE WITH AJAX

USING JSON

JSON (JavaScript Object Notation) has become a popular and lightweight way to
transmit data packages for various uses over the Internet. In many ways, JSON is
more popular than XML for delivering data quickly and efficiently. JSON data can
be easily used with the jQuery AJAX shorthand method especially designed to
handle the JSON data type, getJSON.

So what exactly is JSON?
To understand JSON, you need a little lesson in JavaScript’s object literal nota-

tion. Object literal notation is an explicit way of creating an object and is the most
robust way of setting up a JavaScript object. Here is an example:

var person = {

 name: “Jay”,

 occupation: “developer”,

 stats: [“blonde”, “blue”, “fair”],

 walk: function (){alert(this.name+ ‘is walking’);}

};

The person object has been literally defined as name: value pairs, including a
nested array (stats) and a method to make the object walk. It is a very tidy way to
describe an object.

The following commands interact with the person object:

person.walk(); //alerts ‘Jay is walking’

alert(person.stats[1]); // alerts ‘blue’

JSON is a subset of the object literal notation, essentially the name: value pairs
that describe an object. A JSON array can contain multiple objects. The key to
being successful with JSON is making sure that it is well-formed. JSON must have
matching numbers of opening and closing brackets and curly braces (the braces
must be in the correct order); the names and values in the name : value pairs must
be quoted properly; and commas must separate each name: value pair.

ptg

USING AJAX TO UPDATE CONTENT 127

To illustrate this, look at the JSON for the person object:

var myJSONobject = {“person”:[{

 “name”:”Jay”,

 “occupation”:”developer”,

 “stats”:[{

 “hair”:”blonde”,

 “eyes”:”blue”,

 “skin”:”fair”

 }]

 }]

};

It’s important to note that the JSON object does not contain any methods or
functions that can be executed. JSON specifically excludes these from the notation
because JSON is only meant to be a vehicle for transmitting data.

SETTING UP A JSON REQUEST

Twitter has undoubtedly become one of the most popular social media outlets
since the dawn of the Internet. Twitter has made an API available for those who
want to extend the use of Twitter to their own Web pages and applications. One
of the most popular uses of the Twitter API is to include recent tweets in personal
Web sites and blogs.

Taking advantage of the API can be as simple or as complex as you want it to be.
Let’s build a simple widget to obtain your last ten tweets for inclusion in a Web page.

The tweet data is returned from Twitter in the JSONP format. JSONP is known
as “JSON with Padding.” Under normal circumstances, you cannot make AJAX
requests outside of the domain the request originates from (Figure 4.12 on the
next page). JSONP relies on a JavaScript quirk: <script> elements are allowed to
make those cross-domain requests.

ptg

128 CHAPTER 4 BEING EFFECTIVE WITH AJAX

To make this work, the JSON must be returned in a function. Using the JSON
object created earlier, the JSONP would look like this:

myJSONfunction({“person”:[{“name”:”Jay”, “occupation”:”developer”,
p "stats":[{"hair":"blonde","eyes":"blue","skin":"fair"}]}]});

If it looks like gibberish to you now, don’t worry; as you walk through the
function being built to get JSON data from Twitter, it will become much clearer.

Let’s build the entire file, including CSS, from scratch.

FIGURE 4.12 The only way

you can make a cross-domain

request is with JSONP.

Typical AJAX Request
(not allowed cross-domain)

JSONP AJAX Request
(allowed cross-domain)

ptg

USING AJAX TO UPDATE CONTENT 129

1. Create a file called 4-7.php in the chap4 folder.

2. Set up the DOCTYPE and include the basic head, title, and character set
declarations:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
 p charset=utf-8” />

 <title>Twitter Widget</title>

3. Provide a reference to the jQuery source that you will be using. Make sure
that the path is correct; in this case the path is inc/jquery-1.5.2.min.js:

 <script type=”text/javascript”
 p src=”inc/jquery-1.5.min.js”></script>

4. Create the style information for the Twitter widget:

 <style type=”text/css”>

 body {

 background-color: #FFFFCC;

 }

 #tw {

 position: relative;

 width: 350px;

 left: 50%;

 margin-left: -175px;

 }

 .tweet {

 font-family: “Lucida Grande”,”Arial Unicode MS”,
 p sans-serif;

 width: 350px;

ptg

130 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 background-color: #99FFCC;

 padding: 5px;

 border-right: 2px solid #66CC99;

 border-bottom: 3px solid #66CC99;

 margin-bottom: 2px;

 }

 </style>

5. Close out the head section of the page:

 </head>

The body section for the widget is very simple: Add a div with an id of tw to
which the tweets will be appended:

 <body>

 <div id=”tw”></div>

The jQuery script to get the tweets is very short but requires that you pay atten-
tion to detail. You will make the names and hash tags clickable so that they have
the same functionality they have on the Twitter Web site. Any links included in a
tweet will also be clickable, opening a new browser window to show the information.

1. Start the jQuery function by opening a script tag and inserting the document-
ready function:

 <script type=”text/javascript”>

 $(document).ready(function() {

2. Create the URL to access Twitter and store the URL in the variable twitterURL:

 var twitterURL ='http://twitter.com/statuses/
 p user_timeline.json?screen_name=
 p YOUR_TWITTER_USER_NAME&count=10&callback=?';

Be sure to replace YOUR_TWITTER_USER_NAME with your actual Twitter user
name. It is very important to make sure that the URL is formatted with
the query string (name=value pairs) that will be used by getJSON during

ptg

USING AJAX TO UPDATE CONTENT 131

the request. Send three options to Twitter: your Twitter screen_name, the
count of the number of tweets to return, and most important, the callback.
It is the callback option that lets Twitter know that you expect the return
data to be JSONP.

3. Once the URL is formed, open the getJSON request method by sending the
URL and defining the getJSON callback option:

 $.getJSON(twitterURL, function(data){

4. The JSONP has been returned from Twitter at this point. Set up a loop
through the data contained in the function. Treat the data as members of
an array called item:

 $.each(data, function(i, item){

5. Contain the tweet in a name: value pair with the name of text. Assign this
item to the variable tweetText:

 var tweetText = item.text;

6. Use regular expressions to locate URLs, @ tags, and hash(#) tags in the
tweet so that you can give each the proper treatment. Look for URL’s first:

 tweetText = tweetText.replace
 p (/http:\/\/\S+/g, ‘<a href="$&"
 p target="_blank">$&');

The regular expression /http:\/\/\S+/g matches text beginning with
http:// and ending in a space, which would typically indicate a URL. The
/g (global) says to match all URLs in the string contained in tweetText. The
URLs are turned into links by replacing the URL with an anchor tag contain-
ing the URL as both the href and the text of the link. In JavaScript the $&
property contains the last item matched by a regular expression. Because
the URL was the last item matched, it can be replaced into an anchor tag
by using the $& property.

NOTE: The callback option for the query string is not the

same as the callback for the getJSON request.

ptg

132 CHAPTER 4 BEING EFFECTIVE WITH AJAX

7. Twitter prefixes user names with the @ symbol. So, search tweetText for
words beginning with the @ symbol:

 tweetText = tweetText.replace(/(@)(\w+)/g,
 p ‘ $1<a href="http://twitter.com/$2"
 p target="_blank">$2');

Here, the regular expression /(@)(\w+)/g indicates that all words begin-
ning with the @ symbol are replaced by the appropriate anchor tag to open
a browser window for users’ tweets. The $1 and $2 contain the information
matched in each parenthesis, which is used to include those matches in
the replacement text.

8. Turn your attention to the hash tags now and use a technique similar to
the one you used for replacing the @ symbol:

 tweetText = tweetText.replace(/(#)(\w+)/g,
 p ‘ $1<a href="http://search.twitter.com/
 p search?q=%23$2" target="_blank">$2
 p ');

9. Once the tweetText has been completely manipulated to insert all of the
anchor tags, place it into a div. Then append the new div to the existing
div (id=”tw”) that was set up as part of the original content for the page:

 $(“#tw”).append(‘<div class="tweet">
 p '+tweetText+'</div>');

10. Close out the jQuery function and HTML tags for the page:

 });

 });

 });

 </script>

 </body>

</html>

ptg

USING AJAX TO UPDATE CONTENT 133

11. Upload the page to a server, and load the page into a browser. You should
achieve the results that you see in Figure 4.13.

With all of the data traveling back and forth between clients and servers,
including servers not under your control, it is only natural to be concerned about
the security of the information that you and your Web-site visitors send in AJAX
requests. Let’s address those concerns next.

FIGURE 4.13 The Twitter

widget retrieves the last

few posts that you made.

ptg

134 CHAPTER 4 BEING EFFECTIVE WITH AJAX

One of the vexing problems with Web sites and applications is that users will either
inadvertently or purposely submit data through your Web site that can cause
harm to your databases and servers. It is important that you take as many steps
as possible to guard against the input and transmission of bad or malformed data.

Several of these steps have been covered already, including using regular
expressions to guide the user to input the right kind of data and making sure that
cookies are set uniquely for each Web visitor. As an older, and much wiser, men-
tor said to me, “Locking the gate in this way only keeps the honest people from
climbing the fence.”

Even with regular expressions in place for form fields, you cannot stop the
transmission of the data because the form can still be submitted. So, what are
some of the measures you can take to prevent users from submitting potentially
harmful data?

� Prevent form submission by “graying” out the Submit button on forms
until all of the regular expression rules for each form field have been met.

� Use cookies to uniquely identify the user (more precisely, the user’s com-
puter) based on registration information and check cookie data against a
database during transmission of user-supplied data.

� Clean user-supplied data when it arrives at the back-end process to make
sure the data doesn’t contain harmful statements or characters.

� Transmit the data over a secure connection (HTTPS [HyperText Transfer
Protocol Secure]) to prevent outsiders from “sniffing” information traveling
from and to the Web browser.

These techniques should be used in conjunction with each other to present the
safest experience for the user and the Web-site owner. Let’s walk through some
of these techniques.

NOTE: For more information on HTTPS, visit the Electronic Frontier

Foundation’s Web site at www.eff.org/https-everywhere.

SECURING AJAX REQUESTS

www.eff.org/https-everywhere

ptg

SECURING AJAX REQUESTS 135

PREVENTING FORM SUBMISSION

Let’s return to the Photographer’s Exchange Web site and make some changes to
the HTML file containing the registration form as well as the jQuery script that
supports the form.

1. Open chap4/4-2.php and locate the section of the script where jQuery scripts
are included. You’ll find these include declarations between the head tags.

2. Change the following highlighted line to point to the updated jqpe.js file:

<script type=”text/javascript”
p src=”inc/jquery-1.5.min.js”></script>

<script type=”text/javascript”
p src=”inc/jquery.ez-bg-resize.js”></script>

<script type=”text/javascript”
p src=”inc/spritenav.js”></script>

<script type=”text/javascript”
p src=”inc/carousel.js”></script>

<script type=”text/javascript”
p src=”inc/jqpe.js”></script>

<script type=”text/javascript”
p src=”inc/peAjax.js”></script>

After the change, the line will look like this:

<script type=”text/javascript”
p src=”inc/jqpeUpdated.js”></script>

3. Save the file as chap4/4-8.php.

4. Open chap4/inc/jqpe.js and save it as chap4/inc/jqpeUpdated.js. Add the
code for the error count function. Start by initializing the $submitErrors
variable:

var submitErrors = 0;

5. Declare a function called errorCount:

function errorCount(errors) {

ptg

136 CHAPTER 4 BEING EFFECTIVE WITH AJAX

6. Set the argument variable errors to be equal to the submitErrors variable:

 errors = submitErrors;

7. If the error count is zero, you want to enable the submit button. So, remove
the disabled attribute from the button. Use the jQuery attribute selectors
to select the proper button:

 if(0 == errors){

 $(‘input[type=”submit”][value=”Register”]’).
 p removeAttr('disabled');

8. If the error count is not zero, the submit button will be disabled. Use the
same selector syntax and add the disabled attribute to the button:

 } else {

 $(‘input[type=”submit”][value=”Register”]’).
 p attr('disabled','disabled');

 }

9. Close out the function :

}

Once the function is in place, you’ll need to make some changes to the password
and email validation functions that were created previously.

1. In jqpeUpdated.js locate the password validation function that begins with
the comment /*make sure password is not blank */. Insert the two
new lines of code highlighted here:

/* make sure that password is not blank */

 $(function() {

 var passwordLength = $(‘#penewpass’).val().length;

 if(passwordLength == 0){

 $(‘#penewpass’).next(‘.error’).css(‘display’,
 p ‘inline’);

 errorCount(submitErrors++);

 $(‘#penewpass’).change(function() {

ptg

SECURING AJAX REQUESTS 137

 $(this).next(‘.error’).css(‘display’, ‘none’);

 errorCount(submitErrors--);

 });

 }

 });

If the password is blank (having a length of zero), the errorCount function
is called and the submitErrors variable is incremented by a count of one.

errorCount(submitErrors++);

After a password has been entered, the error is cleared and the error count
can be reduced by decrementing submitErrors:

errorCount(submitErrors--);

2. Locate the email validation function. It begins with the comment /* validate
e-mail address in register form */. Add the same calls to the errorCount
function where indicated by the following highlights:

/* validate e-mail address in register form */

 $(function(){

 var emailLength = $(‘#email’).val().length;

 if(emailLength == 0){

 $(‘#email’).next(‘.error’).css(‘display’,
 p ‘inline’);

 errorCount(submitErrors++);

 $(‘#email’).change(function() {

 var regexEmail = /^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+
 p \.[a-zA-Z]{2,4}$/;

 var inputEmail = $(this).val();

 var resultEmail = regexEmail.test(inputEmail);

 if(resultEmail){

 $(this).next('.error').css('display', 'none');

 errorCount(submitErrors--);

ptg

138 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 }

 });

 }

});

When the page first loads, submitErrors gets incremented twice—once
by each of the validation functions. The total error count prior to the form
being filled out is two. Because the submitErrors has a value of two, the
submit button is disabled, as illustrated in Figure 4.14.

As each function is cleared of its error, the submitErrors variable is decre-
mented until it finally attains a value of zero. When the value of submitErrors
is zero, the errorCount function removes the disabled attribute from the
submit button and the form can be submitted normally.

This technique can be applied to any number of form fields that you need to
validate, but it really isn’t enough to prevent malicious users from trying to hack
your site. Let’s take a look at another technique you can add to your Web-site
application model, giving each user cookies.

FIGURE 4.14 The Register

button is grayed out. It is not

available to the user until all

errors are cleared.

ptg

SECURING AJAX REQUESTS 139

USING COOKIES TO IDENTIFY USERS

Giving users cookies sounds very pleasant. But it really means that you want to
identify users to make sure they are allowed to use the forms and data on your Web
site. What you don’t want to do is put sensitive information into cookies. Cookies
can be stolen, read, and used.

Personally, I’m not a big fan of “remember me cookies” because the longer it
takes a cookie to expire, the longer the potentially malicious user has to grab and use
information in the cookie. I’d rather cookies expire when the user closes the browser.
This would reduce the chance that someone could log in to the user’s computer
and visit the same sites to gain information or copy the cookies to another location.

What should you store in the cookie? One technique that you can employ that is
very effective is storing a unique token in the cookie that can be matched to the user
during the user’s current session. Let’s modify the Photographer’s Exchange login
process to store a token in the user’s database record. The token will be changed
each time the user logs in to the site, and you will use the token to retrieve other
data about the user as needed.

1. Open chap4/inc/peRegister.php and locate the section that starts with the
comment /* if the login is good */. You will insert new code to create
and save the token into the newly created database column.

2. The first line that you need to add creates a unique value to tokenize. Con-
catenate the user name contained in $_POST[‘pename’] with a time stamp
from PHP’s time function. PHP’s time function returns the time in seconds
since January 1, 1970. Store that in the variable $tokenValue, as shown in
the following highlighted line:

/* if the login is good */

if(1 == $loginCount){

 if(isset($_POST[‘remember’])){

 $tokenValue = $_POST[‘pename’].time(“now”);

3. Modify the information to be stored in $peCookieValue by hashing the
$tokenValue with an MD5 (Message Digest Algorithm) hash:

 $peCookieValue = hash(‘md5’, $tokenValue);

 $peCookieExpire = time()+(60*60*24*365);

ptg

140 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 $domain = ($_SERVER[‘HTTP_HOST’] != ‘localhost’) ?
 p $_SERVER['HTTP_HOST'] : false;

 setcookie('photoex', $peCookieValue, $peCookieExpire, '/',
 p $domain, false);

 echo $loginCount;

} else {

The MD5 hash algorithm is a cryptographic hash that takes a string and
converts it to a 32-bit hexadecimal number. The hexadecimal number is
typically very unique and is made more so here by the use of the time func-
tion combined with the user’s name.

4. Make the same modifications in the section of the code where no “remember
me” value is set:

 $tokenValue = $_POST[‘pename’].time(“now”);

 $peCookieValue = hash(‘md5’, $tokenValue);

 $peCookieExpire = 0;

 $domain = ($_SERVER[‘HTTP_HOST’] != ‘localhost’) ?
 p $_SERVER['HTTP_HOST'] : false;

 setcookie('photoex', $peCookieValue, $peCookieExpire, '/',
 p $domain, false);

 echo $loginCount;

5. Add the code that will update the database with the new value:

 $updateUser = “UPDATE `photoex`.`peuser` “;

 $updateUser .= “SET `token` = ‘”.$peCookieValue.”’ “;

 $updateUser .= “WHERE `username` = ‘”.$_POST[‘pename’].”’ “;

 if(!($updateData = mysql_query($updateUser, $dbc))){

 echo mysql_errno();

 exit();

 }

ptg

SECURING AJAX REQUESTS 141

6. Open chap4/4-8.php and log in to the site with a known good user name and
password. The cookie will be set with the token, and the token information
will be set in the database. You can use your browser’s built-in cookie viewer
(for Figure 4.15, I used Tools > Page Info > Security > View Cookies in the
Firefox browser) to examine the value stored in the cookie.

Using the value of the token, you can retrieve needed information about the
user so that the data can be entered into forms or the appropriate photographs can
be displayed. Next, let’s take a look at cleaning up user-supplied data.

CLEANSING USER-SUPPLIED DATA

One additional step that you can take to make sure that user-supplied data is safe
once it reaches the server is to use your client-side scripting language to ensure
that the data is handled safely and securely.

A less than savory visitor may visit your site and copy your visible Web pages
and functions. Once copied, modifications can be made to your jQuery scripts to
remove some of the controls (regular expressions for instance) that you have placed
around data. Your first line of defense against that is to replicate those controls in
your server-side scripts.

1. Using email validations as an example, open peRegister.php (chap4/inc/
peRegister.php) to modify it.

FIGURE 4.15 The content

of the cookie is circled and

would-be cookie thieves

are foiled!

ptg

142 CHAPTER 4 BEING EFFECTIVE WITH AJAX

2. Locate the section of the code that begins with the comment /* if the
registration form has a valid username & password insert the data

*/ and supply this regular expression:

$regexEmail = ‘/^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$/’;

This is the same regular expression used in the jQuery function to validate
email addresses into the registration form.

3. Test the value posted against the regular expression with PHP’s preg_match
function:

preg_match($regexEmail, $_POST[‘email’], $match);

4. The test result, a 1 if there is a match or a 0 if there isn’t a match, is placed
into the variable $match that is declared in the preg_match function. Use
this result to modify the $_POST[‘email’] variable:

 if(1 == $match){

 $_POST[‘email’] = $_POST[‘email’];

 } else {

 $_POST[‘email’] = ‘E-MAIL ADDRESS NOT VALID’;

 }

The data from the $_POST[‘email’] variable is used in the SQL query that
inserts the data into the database.

Many languages, such as PHP, include specific functions for data cleansing.
Let’s take a look at two PHP functions that you can use to clean up data before it is
entered into a database: htmlspecialchars() and mysql_real_escape_string().

Cleaning up information submitted in HTML format is a simple matter of
wrapping the data in PHP’s htmlspecialchars function. Given a form like this:

<form name=”search” action=”inc/search.php” method=”post”>

 <label class=”label” for=”pesearch”>Search For: </label>

 <input type=”text” name=”pesearch” id=”pesearch” size=”64” />

 <label class=”label”> </label>

 <input type=”submit” value=”Search” />

ptg

SECURING AJAX REQUESTS 143

 <input type=”reset” value=”Clear” />

</form>

The PHP htmlspecialchars function replaces certain characters and returns:

<form name="search" action="inc/search.php"
p method="post"><label class="label"
p for="pesearch">Search For: </label><input
p type="text" name="pesearch"
p id="pesearch" size="64" /><br
p /><label class="label">&nbsp;<
p /label><input type="submit"
p value="Search" /><input type="reset"
p value="Clear" /></form>

The following characters have been changed:

� Ampersand (&) becomes ‘&’

� Double quote (“) becomes ‘"’

� Single quote (‘) becomes ‘'’

� The less than bracket (<) becomes ‘<’

� The greater than bracket (>) becomes ‘>’

Using PHP’s htmlspecialchars function makes user-supplied HTML data
much safer to use in your Web sites and databases. PHP does provide a function
to reverse the effect, which is htmlspecialchars_decode().

Also just as simple is preventing possible SQL injection attacks by using PHP’s
mysql_real_escape_string function. This function works by escaping certain
characters in any string. A malicious visitor may try to enter a SQL query into a
form field in hopes that it will be executed. Look at the following example in which
the visitor is trying to attempt to gain admin rights to the database by changing
the database admin password. The hacker has also assumed some common words
to try to determine table names:

UPDATE `user` SET `pwd`=’gotcha!’ WHERE `uid`=’’ OR `uid` LIKE
p ‘%admin%’; --

ptg

144 CHAPTER 4 BEING EFFECTIVE WITH AJAX

If this SQL query was entered into the user name field, you could keep it from
running by using mysql_real_escape_string:

$_POST[‘username’] = mysql_real_escape_string($_POST[‘username’]);

This sets the value of $_POST[‘username’] to:

UPDATE `user` SET `pwd`=\’gotcha!\’ WHERE `uid`=\’\’ or `uid` like
p \’%admin%\’; --

Because the query is properly handled and certain characters are escaped, it is
inserted into the database and will do no harm.

One other technique that you can use is securing the transmission of data
between the client and the server. Let’s focus on that next.

TRANSMITTING DATA SECURELY

Another option that you can consider is getting a security certificate for your site
or application and then putting your site into an HTTPS security protocol. This is
very useful because data traveling between the client and server cannot be read
by potential attackers as easily, but it can be costly.

All of the Web site data is encrypted according to keys provided by the security
certificate. The Web-site information is transmitted back and forth in a Secure
Sockets Layer (SSL). The SSL is a cryptographic communications protocol for the
Web. Once the data reaches either end of the transmission, it is decrypted properly
for use. If you have used a Web site where the URL begins with https:// or you
have seen the lock icon on your Web browser, you have used a Web site protected
in this manner. Many financial institutions and business Web sites use HTTPS to
ensure that their data travels securely.

TIP: You can learn more about HTTPS and SSL at the Electronic

Frontier Foundation’s Web site at www.eff.org/https-everywhere.

www.eff.org/https-everywhere

ptg

WRAPPING UP 145

In this chapter, you learned how to combine jQuery AJAX shorthand methods
like .get(), .post() and .load() with server-side scripting to add responsiveness to
your HTML forms. Included in this chapter were methods for getting a response
back from the server that you could process with jQuery to change page content
or provide meaningful messages to your Web site visitors.

You were also introduced to the jQuery low-level AJAX methods that are used for
more complex interactions with Web servers. Finally, you learned about JavaScript
Object Notation (JSON) and how jQuery’s JSON methods can be used to retrieve
data from services like Twitter or Flickr for use on the Web sites that you will build.

If the first taste of a jQuery widget has left you hungry for more, you’re in luck!
Chapter 5, “Applying jQuery Widgets,” explores widgets of all shapes and sizes,
including several from the jQuery UI project. In addition to widgets from the jQuery
UI project, you’ll also learn about using plugins that others have developed and
how to roll (and publish) your own plugins to share with others. Read on, Macduff!

WRAPPING UP

ptg

5

APPLYING jQUERY
WIDGETS

ptg

jQuery is so easily extended with functionality

that jQuery designers and developers have written

hundreds of extensions (plugins) ranging from the incred-

ibly simple and useful to the extremely complex and specialized.

The jQuery UI (User Interface) library, a group of core plugins for

interaction, widgets, and visual effects, continues to be developed

as a separate branch of jQuery. Using the jQuery UI library will

make your programming life much easier and provide you with

the tools to add advanced features to your Web sites and applica-

tions effectively.

In this chapter, you’ll learn about some very useful widgets from

the jQuery UI, as well as some of the most effective and cool plugins

made popular by the designer and developer community. In addi-

tion, I’ll walk you through the steps to create your own plugins.

ptg

148 CHAPTER 5 APPLYING jQUERY WIDGETS

The jQuery UI is a complete library package to make interactive widgets come to life.
A widget is a stand-alone package or tool that adds certain functionality—such as
tabs or calendars from which you can pick dates—to your Web interfaces.

As an added bonus, you can download preconfigured styles, complete with
images and icons, from the jQuery UI Web-site gallery (www.jqueryui.com). You
can also roll your own CSS with the jQuery UI ThemeRoller, as shown in Figure 5.1.

CUSTOMIZING THE JQUERY UI

The jQuery UI ThemeRoller (available at http://jqueryui.com/themeroller) gives
you the option of setting the CSS rules for the style sheet that will be downloaded
with the jQuery UI library. The CSS rules set in the ThemeRoller are used to give
the jQuery UI widgets the information they need to be visually integrated with
your Web site.

FIGURE 5.1 A portion of the

ThemeRoller options available

for configuring a custom style

sheet to use with the jQuery

UI widgets.

NOTE: Widgets are the components of the jQuery UI, whereas plugins is

the term for developer-created and maintained widgets.

USING THE jQUERY UI WIDGETS

www.jqueryui.com
http://jqueryui.com/themeroller

ptg

USING THE jQUERY UI WIDGETS 149

Once you have picked a color palette for your Web site or application, it is easy
to transfer that color palette and style information to the jQuery UI ThemeRoller
(Figure 5.2). You can provide rules for the font settings, colors, and many of the
individual elements that make up a jQuery UI widget. As you make the changes to
each of the style rules in the ThemeRoller, the elements on the ThemeRoller page are
updated automatically so that you can see the results of those changes immediately.

Once you have all of your style information set, you need to download the
customized theme. When you click the Download theme button, you can select
the jQuery UI widgets you want to include in your download. Some of the widgets
that you can choose include:

� Accordion. Provides a widget with sliding content areas and is designed to
provide a lot of content in a fixed space.

� Autocomplete. Attempts to predict words or phrases based on the input
by a user.

� Dialog. Gives the developer a way to create interactive dialog boxes.

� Tabs. Provides a way to transform content containers into an interface
resembling tabbed folders.

FIGURE 5.2 The jQuery UI

ThemeRoller changes the

styles of the elements as the

information is entered into

the ThemeRoller widget.

ptg

150 CHAPTER 5 APPLYING jQUERY WIDGETS

Be sure to take the time to read about and familiarize yourself with all of the
widgets available from the jQuery UI Web site.

For now, download all of the widgets included in the jQuery UI library. In the
future you can select just the widgets that you need for a particular project. Once
you have configured the CSS theme to your liking, click Download. Your custom-
ized jQuery UI package will be presented to you as a compressed archive file in the
ZIP format. Save the archive file to your hard drive.

Let’s look at how to include the jQuery UI library in your HTML files next.

REFERENCING JQUERY UI FILES IN HTML FILES

When the archive file is safely on your hard drive, you can extract the files. It is
important to note that the jQuery UI library contains lots of extra files that are not
needed for your Web site, so do not transfer them to your Web server. Figure 5.3
shows how I organize files for the most basic Web sites; highlighted are the files
that you’ll need from the jQuery UI download.

For the version of jQuery UI used in the Web site that will be developed in
this chapter, I copied the images directory of the jQuery UI library download
(and everything in it) and the jQuery UI CSS file jquery-ui-1.8.12.custom.css and
then pasted them into the chap5/css/ui folder. The jQuery UI JavaScript file
jquery-ui-1.8.12.custom.min.js is copied and pasted into the chap5/inc/jQuery
folder. This will make the jQuery UI library files available to the Web site.

The jQuery UI files are then referenced properly in the HTML files that will use
the jQuery UI widgets. Let’s take it step by step and create a baseline file that will
be added to as the chapter progresses.

1. Create a file called 5-0.php and save it in the chap5 folder.

FIGURE 5.3 The location of the

jQuery files and how they are

referenced in the HTML files.

ptg

USING THE jQUERY UI WIDGETS 151

2. Create the basic HTML layout for the site:

<!DOCTYPE html>

<html>

3. Create the opening head tag and include the basic character type and title
of the page:

 <head>

 <meta http-equiv=”Content-Type”
 p content=”text/html; charset=UTF-8” />

 <title>The Lodge at Mystic Forrest</title>

4. Reference the Web site’s CSS and jQuery UI CSS files first:

 <link type=”text/css” rel=”stylesheet”
 p href=”css/lamf.css” />

 <link type=”text/css” rel=”stylesheet”
 p href=”css/ui/jquery-ui-1.8.12.custom.css" />

5. Load the jQuery and jQuery UI source files (take note of the order; the basic
jQuery source must be loaded first):

 <script type=”text/javascript” src=”inc/jQuery/jquery
 p -1.5.min.js"></script>

 <script type="text/javascript"
 p src="inc/jQuery/jquery-ui-1.8.12.custom.min.js">
 p </script>

6. Provide a set of script tags and the document ready wrapper. You will
include other jQuery calls in this wrapper:

 <script type=”text/javascript”>

 $(document).ready(function() {

 });

 </script>

ptg

152 CHAPTER 5 APPLYING jQUERY WIDGETS

7. Provide the remainder of the tags to complete the basic HTML layout.

 </head>

 <body>

 </body>

</html>

With the jQuery UI in place, you can start adding some of the cool widgets that
the jQuery UI provides for your Web site.

INCLUDING JQUERY UI WIDGETS

The jQuery UI widgets are well designed and easy to configure. In fact, the widgets
are so well-designed that in some cases there is very little jQuery code to apply
to your interfaces. Typically, you only have to call the widget and add the options
required for your site.

It is more important that you apply the correct HTML markup when using the
jQuery UI widgets. A good example of applying the proper markup is when you
decide to build a tabbed interface. So, you’ll do that next.

CREATING TABBED INTERFACES

One of the easiest ways to present content or multipart forms to Web-site visitors
is with a tabbed interface. People are familiar with the concept of tabs as file fold-
ers, so navigating a Web site using tabs seems very natural. Web designers have
been creating tabbed interfaces for years using complex CSS and JavaScript. The
jQuery UI Tabs widget removes the complexity and adds some extremely flexible
features for creating tabbed interfaces.

1. Open the basic file chap5/5-0.php and save it as chap5/5-1.php to set up the
markup for the tabbed interface. In the body tag add a div for the header:

<body>

 <div id=”header”></div>

2. Set up a div for the content area of the page:

 <div id=”content”>

ptg

USING THE jQUERY UI WIDGETS 153

The tabs are defined by an unordered list. It is important that the anchor
tags be preceded with a hash mark (highlighted) because the links will be
used to reference any div added later:

 <div id=”contentTabs”>

 Welcome to the
 p lodge...

 Play with us...

 Stay with us...

3. Set up a div for each tab and make sure that the id for each div matches
the text entered into the anchor tags from the previous unordered list:

 <div id=”welcome”>

 <h2>Mystic Forrest welcomes you...</h2>

 </div>

 <div id=”play”>

 <h2>Things to do...</h2>

 </div>

 <div id=”stay”>

 <h2>Make a reservation...</h2>

 </div>

You can place almost any content that you want to in each div, as you will
see when other jQuery UI widgets are added to the site.

4. Close out the div tags:

 </div>

 </div>

</body>

All that is left to do is add a bit of jQuery to turn your markup into tabs.

ptg

154 CHAPTER 5 APPLYING jQUERY WIDGETS

5. In the head section of your markup add the highlighted code in the docu-
ment ready wrapper:

<script type=”text/javascript”>

 $(document).ready(function() {

 $(‘#contentTabs’).tabs();

 });

</script>

The jQuery UI takes care of manipulating the CSS for markup and browser
events, turning your ordinary unordered list into a tabbed interface (Fig-
ure 5.4). By just following a few simple steps, the jQuery UI library eliminates
hours of complex and tedious work.

That’s it. One line of jQuery code with the proper supporting files and markup
has transformed your ordinary Web site into an interactive masterpiece, and it
was all made possible by the jQuery UI package.

FIGURE 5.4 The browser

window before and after the

addition of the jQuery UI Tabs

widget.

BEFORE

AFTER

ptg

USING THE jQUERY UI WIDGETS 155

The Tabs widget has many options available, including the ability to load
content via AJAX. With the proper options set, you can even allow site visitors to
rearrange the order of the tabs to suit their preferences.

Let’s spice things up by giving users a way to select dates in forms.

ADDING CALENDARS TO FORMS

Instead of relying on site visitors to input dates correctly or having to write complex
algorithms to parse dates entered by site visitors, it would be much easier if you
had a tool that would allow users to select the dates they need to enter into forms.
The jQuery UI provides just such a tool—the Datepicker.

Let’s add a simple form to the “Stay with us” tab on the site that you are work-
ing on. This form gathers just enough information for the Web-site’s owner to
respond to site visitors about possible reservations at the site owner’s small hotel.

1. Save a copy of the file you just completed, chap5/5-1.php as chap5/5-2.php.

2. Locate the div with an id of stay. Insert the following markup for a simple form:

<form name=”reservationForm” method=”post”>

 <label class=”formLabel” for=”arrivalDate”>Arrival Date:
 p </label><input type="text" id="arrivalDate" />

 <label class="formLabel" for="departureDate">Departure
 p Date:</label><input type="text" id="departureDate"
 p />

 <label class="formLabel" for="visitorName">Visitor Name:
 p </label><input type="text" id="visitorName" />

 <label class="formLabel" for="phoneArea">Phone Number:
 p </label>

 <input type="text" id="phoneArea" size="3" />

 <input type="text" id="phoneExchange" size="3" />

 <input type="text" id="phoneNumber" size="4" />

 <label class="formLabel"> </label><button
 p type="submit">Request Reservation</button>

 <label class="formLabel"> </label><button
 p type="reset">Reset Form</button>

</form>

ptg

156 CHAPTER 5 APPLYING jQUERY WIDGETS

The jQuery code to handle both dates (arrivalDate and departureDate) is
slightly more complex than the jQuery code for the tabs. Because the owner
of the hotel only wants people to inquire about dates today or in the future,
you need to set up the Datepicker with its minDate option. Then you’ll need
to employ Datepicker’s onSelect option to set up the departure calendar so
that only dates beyond the arrival date are available for selection.

3. Start the Datepicker function by binding the Datepicker to the form element
that has an id of arrivalDate:

$(‘#arrivalDate’).datepicker({

In many cases, options are passed to jQuery UI widgets and the plugins
that you will learn about later in the form of an object. As you learned in
Chapter 4, JavaScript objects are specified in object literal notation, in other
words name: value pairs.

4. You do not want dates in the past to be available for the user to select. So, set
theminDate option to 0 to set the earliest selectable date to today (Figure 5.5):

 minDate: 0,

Once a date has been selected for the arrival, you can use the onSelect option
of the Datepicker to create a date value that occurs beyond the arrival date.
The site owner does not want the visitor to be able to select a departure
date that occurs before the arrival date.

5. Open the onSelect option and pass the selected date in the dateText variable:

 onSelect: function(dateText) {

6. Begin the calculation of a proper departure date by converting the dateText
variable to a real date with JavaScript’s Date function:

 var depart = new Date(dateText);

7. Set the date contained in the depart variable to one day greater than the
value it currently holds (which happens to be the arrival date despite what
it is called):

 depart.setDate(depart.getDate()+1);

ptg

USING THE jQUERY UI WIDGETS 157

8. Bind the datepicker to the form input element with an id of departureDate
and set the minDate option to the new potential departure date:

 $(‘#departureDate’).datepicker({

 minDate: depart

 });

9. Close up the function with the appropriate braces and parentheses:

 }

});

Once complete, the departure date is set to be a minimum date of the day
after the arrival date (Figure 5.6).

As with other jQuery UI widgets, the Datepicker provides a wide array of options
for customizing the widget, including animations, the ability to show multiple
months at once, and the capability to localize the calendar to certain regions with
the proper language choice in place.

After the Datepicker is added to the form and configured with the options that
you desire, you can submit the form using AJAX. Let’s set that up next and use the
jQuery UI Dialog widget to give site visitors a chance to confirm their submission.

FIGURE 5.5 Users cannot click

a date earlier than today, pro-

vided that today is July 19, 2011,

in this case.

FIGURE 5.6 The Datepicker’s

minimum departure date

is one day greater than the

arrival date.

ptg

158 CHAPTER 5 APPLYING jQUERY WIDGETS

ESTABLISHING A “DIALOG” WITH VISITORS

Part of the interaction that you can establish with users of your Web site or appli-
cation is provided in the form of dialog boxes. You can use dialog boxes to inform
or warn your users. You can also use them to gather additional information from
users, even if that information is as simple as confirming a form submission.

The jQuery UI Dialog widget is very flexible and offers a number of options
for customization. Let’s set up a dialog box to confirm submission of the reserva-
tion request. There are several pieces to setting up even a simple dialog box; they
include HTML, PHP, and jQuery. To provide the interaction, you’ll set up each of
the pieces, beginning with the HTML, next.

1. Open chap5/5-2.php and save a copy of it as chap5/5-3.php.

2. Prior to the closing body tag in the HTML, add the following lines of markup
to establish the markup for the dialog box:

<div id=”dialog” title=”Verify Submission”>

 <p>Are you sure you wish to inquire about these dates?</p>

</div>

Because this will be a simple confirmation dialog box, the HTML is very
simple. The title attribute in the div tag will be used for the title of the
dialog box, whereas the content of the div will be used in the body of the
dialog box.

3. Run the SQL file chap5/sql/lodge.sql (available in the code download) on
your database package to set up the database and create the table that will
hold the reservation requests.

Now that the HTML markup is complete and the database table is estab-
lished, you can turn your attention to creating the PHP code for handling
the reservation inquiry.

ptg

USING THE jQUERY UI WIDGETS 159

4. Create chap5/inc/reserve.php and set up the connection to the database. Be
sure to use the correct user name and password for the database connection:

if(!$dbc = mysql_connect(‘localhost’, ‘username’, ‘password’)){

 echo ‘error connecting to the database(‘.mysql_errno().’):
 p '.mysql_error() . "\n";

 exit();

}

5. Add a sleep function to the process. The sleep function will cause the
program to hesitate for the defined time before performing the next line
of code (the requirement of adding a sleep statement will become clear in
the section “Informing users with a Progressbar”). Set it up for 2 seconds:

sleep(2);

6. Create the SQL statement that will be used to place the information from
an AJAX post request into the reserverequests table:

$reserveIN = “INSERT INTO `lamf`.`reserverequests` “;

$reserveIN .= “(`arrival`, `departure`, `guest`, `phone`) “;

$reserveIN .= “VALUES (“;

$reserveIN .= “’”.mysql_real_escape_string($_POST
p [‘arrivalDate’]).”’, “;

$reserveIN .= “’”.mysql_real_escape_string($_POST
p [‘departureDate’]).”’, “;

$reserveIN .= “’”.mysql_real_escape_string($_POST
p [‘visitorName’]).”’, “;

$reserveIN .= “’”.mysql_real_escape_string($_POST
p [‘phoneArea’]).’-’.mysql_real_escape_string($_POST
p [‘phoneExchange’]).’-’.mysql_real_escape_string($_POST
p [‘phoneNumber’]).”’ “;

$reserveIN .= “)”;

ptg

160 CHAPTER 5 APPLYING jQUERY WIDGETS

7. Run the SQL statement on the database and report any errors:

if(!($reservation = mysql_query($reserveIN, $dbc))){

 echo mysql_errno();

 exit();

}

For this form, the AJAX process does not need or expect any return from
the database, so no information is returned from the query other than any
error that may occur. This completes the PHP, leaving you free to move on
to the jQuery script.

The jQuery script has two functions, one bound to the form’s Submit button
that will call the dialog function and the dialog function itself.

1. Open chap5/5-3.php and locate the document ready function in the head
section of the HTML.

2. Start the dialog process by binding a submit method to the reservation form:

$(‘#reservationForm’).submit(function(e){

3. Call the jQuery UI Dialog open method on the HTML markup you created
earlier in this exercise:

 $(‘#dialog’).dialog(‘open’);

4. Apply the preventDefault method to the submit event and close the function:

 e.preventDefault();

});

5. For usage in this site, add one other dialog method bound to the div ele-
ment you created in the HTML earlier:

$(‘#dialog’).dialog({

6. Add the autoOpen option first. By setting this option to false, you keep the
dialog box from opening until the dialog open method is called:

 autoOpen: false,

ptg

USING THE jQUERY UI WIDGETS 161

7. Set the width of the dialog box:

 width: 325,

8. Set the modal option to true if you want the dialog box to have the proper-
ties that a modal window has (a shaded background through which you can
see other content but helps the user to focus on the interaction at hand):

 modal: true,

9. Set the resizable option to false. For the dialog box to be used in this
situation there is no need to make it resizable:

 resizable: false,

Next, you need to create the buttons for the dialog box. In the dialog box
the question, “Are you sure you wish to inquire about these dates?” is pre-
sented to the user. The possible answers are YES or NO. Each button will
fire its own functions.

10. Create the first button, the YES button:

 buttons: {

 “YES”: function() {

11. The jQuery UI Dialog buttons have callback functions available to them.
So, within the callback, serialize the form and use jQuery’s AJAX post
method to send the serialized data to the PHP handler script chap5/inc/
reserve.php that you created earlier:

 var formData = $(‘#reservationForm’).serialize();

 $.post(‘inc/reserve.php’, formData);

Because there is no data to be returned from the post method, there is no
callback assigned to the AJAX function.

12. Clear the text inputs of the form to give users an indication that something
has happened:

 $(‘#reservationForm input[type=”text”]’).val(‘’);

ptg

162 CHAPTER 5 APPLYING jQUERY WIDGETS

13. Call the dialog close method on the dialog box after the YES button has
been clicked and the AJAX call has been performed:

 $(this).dialog(“close”);

14. For the NO button on the dialog box, there isn’t any functionality required,
so close the dialog box:

 }, “NO”: function() {

 $(this).dialog(“close”);

 }

15. Add the closing brackets for the dialog function:

 }

});

16. Navigate to the “Stay with us” tab, fill out the form, and then click Submit.
The jQuery UI Dialog widget box pops up and offers you the option of
submitting the dates (Figure 5.7).

The interaction provided by the jQuery UI Dialog widget works well, but it could
leave users wondering if anything occurred. The data was removed from the form
very abruptly, and the dialog box disappeared. Users might be more comforted if
they see and perceive that an action is taking place. And that sounds like a perfect
job for the jQuery UI Progressbar!

FIGURE 5.7 The jQuery UI

dialog box is set up to act as

a confirmation interaction.

ptg

USING THE jQUERY UI WIDGETS 163

INFORMING USERS WITH A PROGRESSBAR

Using a jQuery UI Progressbar widget to give users a visual cue that a process is
occurring can be as simple or as complex as you want to make it. In some cases,
you can simply just display an animated Progressbar to indicate to users that an
action is occurring. In other instances, you can set up a complex interaction with the
jQuery UI Progressbar widget that will allow it to accept incremental information
from certain operations that you can then use to move the bar from left to right.

AJAX requests do not return the kind of incremental information that you
would need to perform this movement, because AJAX requests are asynchronous.
You can either guess at the incremental values (not recommended), or you can
find other ways to use the jQuery UI Progressbar widget to get the desired result.

One way to use the jQuery UI Progressbar widget is having it display an animated
image to indicate action. That is the method you’ll use here.

You’ll show the jQuery UI Progressbar in a modal window using techniques
that you learned earlier. Once confirmation about submitting the date informa-
tion is received, the Progressbar will be invoked in the ajaxStart function. After
the AJAX request has completed, the Progressbar will fade out and then disappear.

1. To configure the CSS for the jQuery UI Progressbar and modal window, open
chap5/css/lamf.css and insert the shade property:

#progressShade {

2. Hide the shade initially by setting its display property to none:

 display: none;

NOTE: AJAX does not typically return any information to the

browser until the XMLHttpRequest is complete (refer to Chapter 4).

You can force the browser to return incremental information via the

AJAX request, but it is a very complex process and in some cases may

cause the user’s browser to “lock up” until the request is complete.

ptg

164 CHAPTER 5 APPLYING jQUERY WIDGETS

3. Set the color and position of the shade:

 background: #323232;

 position: fixed;

 left: 0;

 top: 0;

4. Configure the height and width along with the z-index of the shade:

 width: 100%;

 height: 100%;

 z-index: 100;

}

5. Set up the CSS rules for the element that will hold the jQuery UI Progressbar widget:

#progressbar {

6. Hide the Progressbar until it is needed:

 display: none;

7. Configure the position, height, and width:

 position: fixed;

 height: 12px;

 width: 200px;

8. Set the correct margin and position data to center the jQuery UI Progressbar
widget on the browser window:

 margin: auto;

 top: 50%;

 left: 50%;

9. Set the z-index to a number high enough to ensure that it will appear on
top of every other element:

 z-index: 200;

}

ptg

USING THE jQUERY UI WIDGETS 165

Now you need to prepare the jQuery to display the jQuery UI Progressbar widget.

1. Save a copy of chap5/5-3.php as chap5/5-4.php.

2. Bind ajaxStart to the body:

$(‘body’).ajaxStart(function() {

3. Using the same techniques demonstrated earlier in the book for setting up
modal windows, add the modal window code into the ajaxStart function.

 $(‘body’).append(‘<div id=”progressbar”></div>
 p <div id="progressShade"></div>');

 var modalMarginTop = ($('#progressbar').height()) / 2;

 var modalMarginLeft = ($('#progressbar').width()) / 2;

 $('#progressbar').css({

 'margin-top' : -modalMarginTop,

 'margin-left' : -modalMarginLeft

 });

 $('#progressShade').css('opacity', '0.4');

4. Call the jQuery UI Progressbar widget within the ajaxStart function:

 $(“#progressbar”).progressbar({

5. Initialize the Progressbar’s value option to 100. This means that the bar will be
fully extended from left to right in the space that it occupies on the Web page:

 value: 100

 });

6. Fade in the Progressbar with the animated image, giving the appearance
that an action is occurring:

 $(‘#progressbar, #progressShade’).fadeIn(250);

});

ptg

166 CHAPTER 5 APPLYING jQUERY WIDGETS

7. Remove the jQuery UI Progressbar widget during the ajaxStop function
after the AJAX request is completed:

$(‘body’).ajaxStop(function() {

 $(‘#progressbar, #progressShade’).fadeOut(400, function(){

 $(‘#progressbar, #progressShade’).remove();

 });

});

Under normal circumstances, the AJAX request and response cycle that drives
the appearance and removal of the jQuery UI Progressbar widget in the Web site
would happen so quickly that the Progressbar would barely have time to appear
before it faded away. This is the reason the sleep function was placed into the PHP
file in the section “Establishing a ‘dialog’ with visitors.” The sleep function pads
the request with a small amount of time that gives the Progressbar a longer screen
life. Figure 5.8 shows the Progressbar in action.

Giving users visual clues in the manner that the jQuery UI Progressbar widget
does is a valuable method for keeping Web-site visitors engaged. Web application

FIGURE 5.8 The jQuery UI

Progressbar widget indicates

to users that a process is

running.

ptg

USING THE jQUERY UI WIDGETS 167

users appreciate knowing that they have some amount of control over their inter-
action with the application.

Another method that you can use to keep users engaged is the jQuery UI Auto-
complete widget. Let’s look at a way to use that widget next.

COMPLETING FIELDS AUTOMATICALLY

Blind searches where the user enters information into a form and clicks a button to
await the results are nearly history on the Internet today. Many Web sites, includ-
ing large sites like Google, are opting to provide users with immediate suggestions
based on what users type into an input field.

The jQuery UI Autocomplete widget gives you the power to accomplish imme-
diate suggestion functionality easily. Let’s add this widget to the Web site next.

1. Open chap5/5-4.php and save a copy of it as chap5/5-5.php. Locate the HTML
markup for the second tab. That markup is in the div with an id of play.

2. Set up the only markup needed to support the jQuery UI Autocomplete
widget, a form input box:

<div id=”play”>

 <h2>Things to do...</h2>

 <div id=”widget”>

 <label for=”attractions”>Attractions: </label>

 <input type=”text” id=”attractions” size=”32” />

 </div>

3. Set up a div to hold the results of the search:

 <div id=”attractionInfo”></div>

</div>

You’ll create the jQuery script for the Autocomplete widget in a separate
file called chap5/inc/jQuery/attractions.js.

4. Make sure you include the following line to reference that file in the head
section of 5-5.php:

<script type=”text/javascript”
p src=”inc/jQuery/attractions.js”></script>

ptg

168 CHAPTER 5 APPLYING jQUERY WIDGETS

5. To configure the jQuery script file, chap5/inc/jQuery/attractions.js, build
an array of attractions:

$(function(){

 var attractions = [

 “Admiral Nimitz Museum - Fredericksburg”,

 “Aquarena Springs Nature Center - San Marcos”,

 “Canyon Lake - Sattler”,

 “Dinosaur Flats - Startzville”,

 “Enchanted Rock - Fredericksburg”,

 “Gruene Hall - New Braunfels”,

 “Guadalupe River State Park - Spring Branch”,

 “Live Oak Disc Golf Course - Live Oak”,

 “Longhorn Caverns - Boerne”,

 “Lost Maples State Park - Vanderpool”,

 “National Museum of the Pacific War - Fredericksburg”,

 “Wonder World - San Marcos”

];

6. Bind the autocomplete method to the input text box that was created earlier:

 $(‘#attractions’).autocomplete({

7. Provide the Autocomplete widget with a reference to the source of the data
to be used to perform the job of presenting immediate suggestions to the
user. The source here is the array that was completed, called attractions:

 source: attractions,

8. Place the text for the selected item, returned in ui.item, into the variable
selectedAttraction:

 select: function(event, ui) {

 var selectedAttraction = ui.item.value;

ptg

USING THE jQUERY UI WIDGETS 169

9. Split the selectedAttraction variable into an array using the JavaScript
split method. The first word of the array, arrayAttractName, is used to
identify the element in chap5/inc/attractionInfo.php that will be retrieved:

 var arrayAttractionName =
 p selectedAttraction.split(‘ ‘);

10. Load the information about the attraction into the element having the id
of attractionInfo:

 $(‘#attractionInfo’).load(‘inc/attractionInfo.php
 p #'+arrayAttractionName[0]);

 }

 });

});

The progression of the jQuery UI Autocomplete widget is shown in Figure 5.9.

FIGURE 5.9 As a user starts

to type in a search term, the

suggested search terms are

returned by Autocomplete.

ptg

170 CHAPTER 5 APPLYING jQUERY WIDGETS

The core widgets of the jQuery UI library really do provide a lot of additional
functionality in a small and easily usable package. However, these widgets only
scratch the surface of what is available to you as a designer or developer for adding
interaction via jQuery to your Web applications.

Let’s continue to examine widgets that you can add to your sites that are avail-
able from other developers just like you.

NOTE: The file containing the information about the attractions,

chap5/inc/attractionInfo.php, was created with only a couple of

attractions for demonstration purposes.

ptg

USING JQUERY PLUGINS 171USING jQUERY PLUGINS 171

As mentioned previously, the development community embraced and extended
jQuery by adding, and continuing to add, hundreds of plugins. Members of the
community make these plugins available for other designers and developers in the
community to use in their own sites and applications, and the plugins are usually
free of any charges or royalties.

The jQuery team acknowledges this effort and has included space on its Web
site at http://plugins.jquery.com to feature these plugins. On the Web site you can
find listings for plugins from AJAX to widgets.

Sorting through these plugins to determine some of the most useful was quite
a trick due to the sheer volume of plugins available. In the end, I chose several
plugins that you’ll be able to put to work quickly and easily in your Web applica-
tions and on your Web sites:

� Tablesorter. Gives you the capability to add sorting functions to any ordi-
nary HTML table.

� TinyTips. A tool tip generator that allows you to add further information
to almost any element.

� gMap. Makes interacting with Google’s map API straightforward and provides
you with a wide range of options to give you the ability to deliver extensive
information to your Web-site visitors via maps.

� jqPlot. A powerful plugin that will give you the power to present complex
data to your visitors in plot and graph form.

NOTE: Developers who provide plugins put a lot of hard work and time

into making their products easy to use and free of charge for the Web-site

designer and developer community. To support the developers and the

continued development of their plugins, I encourage you to donate

to these people who help to simplify your job, and mine. (Many plugin

Web sites have links on them that allow you to donate to the developer.)

USING jQUERY PLUGINS

http://plugins.jquery.com

ptg

172 CHAPTER 5 APPLYING jQUERY WIDGETS

BEEFING UP YOUR APPS WITH PLUGINS

When developing Web sites and applications, you’ll turn to certain tools over and
over again to accomplish specific effects or provide particular kinds of content.
The jQuery plugins discussed in the following sections fit that bill. In addition to
providing easy access to certain kinds of content, these jQuery plugins are simple
to use and add value to the content that you present to your Web-site visitors.

One of the actions that computer users have always appreciated is the ability to
sort a data-filled table by one or more columns. Sorting tables helps users to make
sense of the data and provides them a way to mine the data for trends.

You can extend this action to your Web-based tables by adding the jQuery
Tablesorter plugin.

SORTING TABLE RECORDS

Christian Bach’s Tablesorter plugin (available from http://tablesorter.com/docs) is
the most efficient plugin available for adding sort capabilities to any HTML table.
So, let’s incorporate it into the lodge Web site.

In the lodge example, the owner wants to see and respond to all of the reserva-
tion requests. Because these requests come in with different dates that might not
be in order, the lodge owner needs to be able to sort the records and respond to
the requests that will come up first.

1. Open chap5/5-5.php and save a copy of it as chap5/5-6.php.

2. Start writing the PHP that will get the list of reservation requests, begin-
ning with the database connection (make sure you use the username and
password you have set up for your database):

<?php

if(!$dbc = mysql_connect(‘localhost’, username, ‘password’)){

 echo mysql_error() . “\n”;

 exit();

}

3. Add the very simple query to get the data from the table:

$getRequests = “SELECT `arrival`,`departure`,`guest`,`phone` “;

$getRequests .= “FROM `lamf`.`reserverequests` “;

http://tablesorter.com/docs

ptg

USING jQUERY PLUGINS 173

$getRequests .= “WHERE `response` = ‘’ “;

if(!($requests = mysql_query($getRequests, $dbc))){

 echo mysql_errno();

 exit();

}

?>

The PHP will retrieve all of the reservation requests records from the database.

4. Create the HTML section of the page, including the Tablesorter CSS file. Make
sure that the Tablesorter plugin script is included after the basic jQuery file:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
 p charset=UTF-8” />

 <title>The Lodge at Mystic Forrest</title>

 <link type=”text/css” rel=”stylesheet”
 p href=”css/lamf.css” />

 <link type=”text/css” rel=”stylesheet”
 p href=”css/ui/jquery-ui-1.8.12.custom.css" />

 <link type=”text/css” rel=”stylesheet”
 p href="css/tablesorter/style.css" />

 <script type=”text/javascript” src=”inc/jQuery/jquery
 p -1.5.min.js"></script>

 <script type=”text/javascript”
 p src=”inc/jQuery/jquery-ui-1.8.12.custom.min.js">
 p </script>

 <script type=”text/javascript”
 p src="inc/jQuery/jquery.tablesorter.min.js">
 p </script>

ptg

174 CHAPTER 5 APPLYING jQUERY WIDGETS

5. Bind the Tablesorter method to a table with an id of requests:

 <script type=”text/javascript”>

 $(document).ready(function() {

 $(‘#requests’).tablesorter({

The jQuery Tablesorter plugin has a number of options available, but only
one is called here. The Responded column in the table doesn’t need to
be sortable. Columns are counted left to right beginning with zero; the
Responded column is number four.

6. Set the Responded column’s sorter property to false:

 headers: {4:{sorter: false}}

 });

7. Close out the script.

 });

 </script>

 </head>

The function is now ready to perform.

8. Create the body of the HTML markup. Call a PHP script from within the
HTML to set up the table to be sorted:

 <body>

 <div id=”header”></div>

 <div id=”content”>

 <h2>Reservation Requests</h2>

9. Create a conditional check in the PHP section to test if there is data in the
table; if not, the PHP code will return a message that there is no data avail-
able so that the user doesn’t perceive that there might be something wrong
with this application:

 <?php

 if(0 != mysql_num_rows($requests)){

ptg

USING jQUERY PLUGINS 175

10. If there is data, begin the HTML table output. Make sure that the table has
an id of requests (that is the id the tablesorter method is bound to in
this example) and give it a class of tablesorter to enable CSS styling:

 echo ‘<table id=”requests” class=”tablesorter”>’;

11. The jQuery Tablesorter plugin requires that the table have both a properly
formed thead section and tbody section. Set up the thead section with the
proper column names:

 echo ‘<thead>’;

 echo ‘<tr><th>Arrival Date</th><th>Departure
 p Date</th><th>Guest Name</th><th>Guest
 p Phone</th><th>Responded</th></tr>';

 echo '</thead>';

12. Turn your attention to the tbody section. Set up the PHP to loop through all
of the records and place the information into the proper table cells:

 echo ‘<tbody>’;

 while($pendingRequest =
 p mysql_fetch_array($requests)){

 echo ‘<tr class=”even”>’;

 echo ‘<td>’.$pendingRequest[‘arrival’].
 p ’</td>’;

 echo ‘<td>’.$pendingRequest[‘departure’].
 p ’</td>’;

 echo ‘<td>’.$pendingRequest[‘guest’].’</td>’;

 echo ‘<td>’.$pendingRequest[‘phone’].’</td>’;

 echo ‘<td><input type=”checkbox”
 p name=”response[]” /></td>';

 echo '</tr>';

 }

13. Close out the tbody section and table:

 echo ‘</tbody>’;

 echo ‘</table>’;

ptg

176 CHAPTER 5 APPLYING jQUERY WIDGETS

14. Provide a message to the user if there is no data returned by the query:

 } else {

 echo ‘<p>There are no pending reservation
 p requests</p>’;

 }

?>

15. Put the rest of the HTML tags into place. Figure 5.10 shows the completed
table.

 </div>

 </body>

</html>

The records are sorted in the order in which they were input into the database.
In this table four columns, Arrival Date, Departure Date, Guest Name, and

Guest Phone, are sortable. Figure 5.11 shows the sorting action that occurs when
you click on the header for Arrival Date.

No matter how simple or complex your tables may be, the Tablesorter plugin
will provide you with many options to ensure that your Web-site users can sort
data to their heart’s content.

Another way of providing additional information is supplying a tool tip when
the mouse hovers over an element in your HTML page. Let’s add a tool-tip plugin
to the site that will provide additional information about the tabs.

NOTE: I purposely omitted how users can remove a record from being

displayed in the table by selecting the check box in the column Responded.

A good exercise would be to add the jQuery change event to the check

boxes and use jQuery’s AJAX functionality to mark that record as responded

to. Then users will only have to view the records they need to respond to.

ptg

USING jQUERY PLUGINS 177

FIGURE 5.10 The freshly

loaded table with the data

unsorted.

FIGURE 5.11 The first column

is ordered from earliest arrival

date to latest arrival date.

ptg

178 CHAPTER 5 APPLYING jQUERY WIDGETS

PROVIDING BITE-SIZED INFORMATION

Tool tips, such as the one shown in Figure 5.12, can be a great way to present your
Web-site visitors with additional information about a link or a word on a Web page.

The jQuery TinyTips plugin (available at www.mikemerritt.me/blog/jquery-
plugin-tinytips-1-1 and authored by Mike Merritt) is a small, easy-to-use, and
extremely flexible plugin that will give you the option of presenting pictures as
well as text in pop-up style tool tips. Let’s try it!

1. Open chap5/5-6.php and save a copy of it as chap5/5-7.php. Insert the
source references for the TinyTips CSS and jQuery script files in the head
section (highlighted):

<link type=”text/css” rel=”stylesheet” href=”css/lamf.css” />

<link type=”text/css” rel=”stylesheet”
p href=”css/ui/jquery-ui-1.8.12.custom.css" />

<link type=”text/css” rel=”stylesheet”
p href=”css/tinyTips/tinyTips.css” />

<script type=”text/javascript”
p src=”inc/jQuery/jquery-1.5.min.js"></script>

<script type="text/javascript"
p src="inc/jQuery/jquery-ui-1.8.12.custom.min.js"></script>

FIGURE 5.12 A TinyTip provides

more information about a tab

on the lodge’s Web site.

www.mikemerritt.me/blog/jquery-plugin-tinytips-1-1
www.mikemerritt.me/blog/jquery-plugin-tinytips-1-1

ptg

USING jQUERY PLUGINS 179

<script type="text/javascript"
p src="inc/jQuery/attractions.js"></script>

<script type=”text/javascript”
p src="inc/jQuery/jquery.tinyTips.js"></script>

2. Locate the $(document).ready(function() {… section of the code between
the head tags and include the following jQuery to set up the TinyTips:

$(‘a.tinyTip’).tinyTips(‘yellow’, ‘title’);

You are binding the anchor tags with a class of tinyTip to the tinyTips
method. The properties in the tinyTips method are (in order) the CSS
styles to use and the element attribute that will be displayed in the tool tip.

3. To create TinyTips on a couple of the tabs on the lodge’s Web site, include
the class tinyTip and add a title attribute to the HTML markup for the tabs:

 p Welcome to the lodge...

 <a href="#play" class=”tinyTip” title=”Find Area
 p Attractions”>Play with us...

 <a href="#stay" class=”tinyTip” title=”Make a
 p Reservation Request">Stay with us...

Be sure to visit the TinyTips plugin Web site for other options and ways to use
TinyTips in your Web sites and applications.

While you’re adding more information for the lodge site visitors, it would make
sense to provide them with map information, which many business Web sites do.
Due to the popularity of featuring map data on Web sites, Google has provided an
API that you can use to interact with its map application. The next jQuery plugin,
gMap, gives you the tools that you need to use the Google Maps API easily and
effectively in your Web sites.

ptg

180 CHAPTER 5 APPLYING jQUERY WIDGETS

PUTTING BUSINESS ON THE MAP

The number of Web sites that use the Google Maps API to display maps of various
types is staggering. Web sites use maps to provide directions, highlight all of their
locations, and even guide players in live, interactive games.

There is only one problem: The Google Maps API can be a bear to use, espe-
cially when all a designer wants to do is include a map to show the location of a
retailer or service.

Cedric Kastner eliminated the complexity with his jQuery plugin for Google
maps, which he called gMap (download it from http://gmap.nurtext.de). The only
requirement for using gMap, other than including the proper files in your markup,
is that you have an account with Google so that you can sign up for a Google Maps
API key. You can sign up for the key at http://code.google.com/intl/en-US/apis/
maps/signup.html.

Let’s put the lodge’s location on the map.

1. Save a copy of chap5/5-7.php as chap5/5-8.php. Make sure you include the
gMap plugin source file in the head section of chap5/5-8.php, just as you
did with the plugin files you used earlier.

2. Include the following script reference using your Google Maps API key in
the head section (add this before the reference to the gMap script):

<script type=”text/javascript”
p src="http://maps.google.com/maps?file=api&v=2&
p key=YOUR_API_KEY_GOES_HERE”></script>

3. Add the following style rules and properties in your CSS file chap5/css/
lamf.css. These properties will be used to define the container for the map:

#lodgeMap {

 position: relative;

4. Define a height and width for the element used to hold the map:

 width: 700px;

 height: 450px;

http://gmap.nurtext.de
http://code.google.com/intl/en-US/apis/maps/signup.html
http://code.google.com/intl/en-US/apis/maps/signup.html

ptg

USING jQUERY PLUGINS 181

5. Center the element that holds the map on the screen:

 margin-left: -350px;

 left: 50%;

}

6. Add the jQuery code for the gMap plugin to the document ready wrapper
in the head section of the HTML file, chap5/5-8.php. Bind the gMap plugin
to the element that will hold the map:

<script type=”text/javascript”>

 $(document).ready(function(){

 $(‘#lodgeMap’).gMap({

7. Set your gMap options. Place a marker at a certain latitude and longitude:

 markers: [{

 latitude: 29.871266,

 longitude: -98.237708

 }],

8. Pass the type of map and zoom level to the gMap plugin:

 maptype: G_PHYSICAL_MAP,

 zoom: 12

 });

 });

</script>

ptg

182 CHAPTER 5 APPLYING jQUERY WIDGETS

The maptype: G_PHYSICAL_MAP option provides a terrain view on the map
(Figure 5.13).

9. Add the element to hold the map somewhere in the HTML body:

<div id=”lodgeMap”></div>

10. Load the page.

The jQuery gMap plugin presents the map centered on the location entered
complete with a marker and zoomed in at such a level as to provide some
detail about the terrain to users. Again, be sure to check the gMap Web site
for many more options that were not demonstrated here.

Plotting points on a map and plotting information in a chart are easy when
using jQuery plugins. To make data reporting more intuitive, it is often desirable
to present that information graphically as bar or pie charts, or along plot and trend
lines. The next plugin, jqPlot, provides a thorough library for providing these types
of charts to your Web-application users.

FIGURE 5.13 The marker

created by the gMap plugin

shows the lodge’s location

on an island.

ptg

USING jQUERY PLUGINS 183

PLOTTING AND CHARTING DATA

Up to this point, the plugins have been fairly simple to use. Chris Leonello’s jqPlot
plugin is no different (available at www.jqplot.com) in its simplicity. What is dif-
ferent is the volume of options available to you for creating and customizing many
types of graphs and charts. This kind of flexibility comes at a price: You must be
meticulous in how you set up the display and data details when using this plugin.

In this example, you’ll create a bar chart (Figure 5.14) to show the lodge owner
the number of reservation requests per month that come through the Web site.
You’ll add the chart to the page where the lodge owner sees the reservation requests
that need to be processed.

Start the exercise by modifying the site’s CSS file.

1. Open chap5/css/lamf.css and add a height and width property to the CSS
selector requestChart. This selector will be connected to the element in
the HTML where the chart is to be displayed:

#requestChart {

 width: 800px;

 height: 350px;

}

FIGURE 5.14 jqPlot is used to

set up a horizontal bar chart

of reservation requests per

month.

www.jqplot.com

ptg

184 CHAPTER 5 APPLYING jQUERY WIDGETS

To retrieve the data from the database and format the data properly for use
by the jQuery jqPlot plugin, the PHP must be crafted very carefully. jqPlot
expects a label (in the form of a numerical index value) and a value to be
plotted on the chart in pairs using JavaScript Object Notation (JSON):

[0,1],[0,2],[0,3],[0,4],[6,5],[2,6],[3,7],[0,8],[1,9],[0,10],
p [0,11],[1,12]

The first number in each pair represents the value to be plotted. The second
value is the plot index (in this case matched to a month of the year).

The PHP request to the MySQL database will use the same connection that
was created earlier; let’s look at the code you’ll add to the PHP section of
the page.

2. Save a copy of chap5/5-8.php as chap5/5-9.php. This is the file you will add
the additional PHP and jQuery code to for displaying the bar graph.

3. Declare a variable in the PHP section of 5-9.php that will hold the plot data
from the database immediately after the database query is done:

$ra = ‘’;

4. Create an array called requestArray that will be used to index the database
request:

$requestArray = array(1,2,3,4,5,6,7,8,9,10,11,12);

5. Loop through the $requestArray and start making requests to the database
based on the $requestArray:

for($i = 0; $i < count($requestArray); $i++){

 $getReservationsByMonth = “SELECT count(*) as reqCount
 p FROM `lamf`.`reserverequests` WHERE SUBSTRING
 p (`arrival`, 1, 2) = ".$requestArray[$i];

TIP: Many jQuery plugins use data configured as JSON based on

its being a subset of JavaScript’s object literal notation. This helps

to keep notation consistent from plugin to plugin and helps the developer

avoid having to learn different formats for passing information to plugins.

ptg

USING jQUERY PLUGINS 185

6. Run the query. The query returns any errors that occur:

 if(!($requestsMonth =
 p mysql_query($getReservationsByMonth, $dbc))){

 echo mysql_errno();

 exit();

 }

7. To make sure that the JSON array string is formatted properly, insert a
comma between each bracketed pair of values. If the value of $i is less than
11 (December), insert the comma (highlighted):

 if($i < 11){

 $ra .= ‘[‘. mysql_result($requestsMonth, 0)
 p .’,’. ($i+1) . '],’;

PHP’s mysql_result returns the first item (the count of requests made in
the given month) from the query $requestsMonth. Because the index of
the $requestArray is actually one less than the actual numerical index of
the month (remember that PHP array indexes start with zero), you add 1 to
that value to make sure the months line up properly.

8. Eliminate the possibility of putting a comma after the pair if the month is
December ($i == 11):

 } else {

 $ra .= ‘[‘. mysql_result($requestsMonth, 0)
 p .’,’. ($i+1) . ']';

 }

}

Now that the PHP is outputting the proper data format, you can focus your
attention on inserting the right files to be referenced in the head section of
the HTML. The jqPlot plugin has several optional add-ons, and depending
on the chart you expect to display, you may have to include any number
of these add-ons.

ptg

186 CHAPTER 5 APPLYING jQUERY WIDGETS

9. Make sure that you reference jqPlot’s CSS style sheet:

<link type=”text/css” rel=”stylesheet” href=”css/jqPlot/
p jquery.jqplot.css" />

10. For bar charts, a couple of the jqPlot add-ons are needed. The first add-on
is not required for Microsoft’s Internet Explorer 9 but is needed for earlier
versions of Internet Explorer. The add-on is called within a CSS conditional
comment (all add-ons are included after the base file for jqPlot):

<script type=”text/javascript”
p src="inc/jQuery/jquery.jqplot.min.js"></script>

<!--[if lt IE 9]><script type=”text/javascript”
p src="inc/jQuery/excanvas.min.js"></script><![endif]-->

11. For bar charts and charts where text will be used along either axis of
the chart, you must reference the jqplot.barRenderer.min.js and jqplot.
categoryAxisRenderer.min.js files:

<script type=”text/javascript”
p src="inc/jQuery/jqplot.barRenderer.min.js"></script>

<script type="text/javascript"
p src="inc/jQuery/jqplot.categoryAxisRenderer.min.js">
p </script>

12. Write the jQuery to display the chart. Enable jqPlot’s add-ons:

$.jqplot.config.enablePlugins = true;

13. Get the data from the PHP function and insert it into the JavaScript vari-
able line1:

line1 = [<?php echo $ra; ?>];

14. Call the jqplot function. Bind the function to the element where the chart
will be displayed and provide the data contained in the variable line1:

$.jqplot(‘requestChart’, [line1], {

ptg

USING jQUERY PLUGINS 187

15. Declare the $.jqplot.BarRenderer add-on as part of the seriesDefaults
option. This is done in order to display a bar chart:

 seriesDefaults: {

 renderer: $.jqplot.BarRenderer,

jqPlot now knows the chart renderer add-on that will be used.

16. Set the options for the renderer, a barDirection of horizontal and a
barMargin of 10:

 rendererOptions: {

 barDirection: ‘horizontal’,

 barMargin: 5

 }

 },

The barMargin option sets the spacing between the bars. Figure 5.15 shows
bars with a zero margin; the overlap doesn’t look good.

Next you’ll set up the details for each axis of the chart, beginning with the
y-axis. The y-axis will show the Month names.

17. Set the renderer for the y-axis:

 axes: {

 yaxis: {

 renderer: $.jqplot.CategoryAxisRenderer,

18. Provide the information for the ticks option, in this case the names of
the months:

 ticks: [‘January’, ‘February’, ‘March’,
 p ‘April’, 'May', 'June', 'July',
 p 'August', 'September', 'October',
 p 'November', 'December']

 },

FIGURE 5.15 A margin of zero

causes each bar to fill up the

available space and may make

the chart hard to read.

ptg

188 CHAPTER 5 APPLYING jQUERY WIDGETS

19. Provide the information for the x-axis of the chart. The lodge owner believes
he’ll get about 100 requests via his Web site per month. Configure the x-axis
to start with a minimum of zero requests and a maximum of 100 requests:

 xaxis: {min: 0, max: 100, numberTicks:11}

 }

 });

20.Designate 11 ticks along the x-axis to display ten evenly proportioned
columns (Figure 5.16).

If you need to create complex dashboards—displaying charts and graphs of
various types—to report on various elements of your enterprise and want to do it
effectively, you need look no further than the jqPlot jQuery plugin. With the wide
range of charts available and the number of options available, you’ll be able to
locate the perfect elements to display your data.

Hundreds of very practical plugins are available for use in your Web sites and
Web applications. However, there is also another group of jQuery plugins that
may not be as practical but are fun to use. Let’s have a look at some of those next.

PUMPING UP YOUR SITES

For some jQuery plugins, there is a fine line between what is practical and what is
cool. Searching the Internet will reveal many jQuery plugins on the bleeding edge of
the technology envelope. These kinds of plugins may provide advanced animation
techniques that do not work across all browsers or intense data manipulation that
prevent the browser from working effectively. Some of these advanced plugins are
not viable for everyday use, and many of these progressive plugins are still in the
experimental stages, making them unstable.

The plugins you’ll use in this section are first-rate and are high-quality enough
to be used in your Web sites day in and day out. As with most jQuery plugins, they
are easy to incorporate into your designs.

Up first is a way to provide information about the weather at the lodge to visi-
tors of the lodge’s Web site.

FIGURE 5.16 Each tick mark

is incremented by ten, with a

maximum of 100 along the

x-axis of the chart.

ptg

USING jQUERY PLUGINS 189

PREDICTING THE WEATHER

The zWeatherFeed jQuery plugin (www.zazar.net/developers/zweatherfeed) makes it
very easy to include weather information from Yahoo on your Web site (Figure 5.17).
Let’s add the zWeatherFeed jQuery plugin to the lodge Web site.

1. Open chap5/5-7.php and save it as chap5/5-10.php. Include the reference to
the zWeatherFeed CSS and jQuery scripts in the head section of chap5/5-10.
php (highlighted):

<link type=”text/css” rel=”stylesheet” href=”css/lamf.css” />

<link type=”text/css” rel=”stylesheet”
p href=”css/ui/jquery-ui-1.8.12.custom.css" />

<link type="text/css" rel="stylesheet"
p href="css/tinyTips/tinyTips.css" />

<link type=”text/css” rel=”stylesheet”
p href="css/weatherfeed/jquery.zweatherfeed.css" />

FIGURE 5.17 The current

weather conditions for

the lodge.

www.zazar.net/developers/zweatherfeed

ptg

190 CHAPTER 5 APPLYING jQUERY WIDGETS

<script type=”text/javascript” src=”inc/jQuery/jquery
p -1.5.min.js"></script>

<script type="text/javascript" src="inc/jQuery/jquery-ui
p -1.8.12.custom.min.js"></script>

<script type="text/javascript"
p src="inc/jQuery/attractions.js"></script>

<script type="text/javascript"
p src="inc/jQuery/jquery.tinyTips.js"></script>

<script type=”text/javascript”
p src="inc/jQuery/jquery.zweatherfeed.min.js"></script>

2. Include the following jQuery script in the document ready function section
of your jQuery code:

$(‘#weather’).weatherfeed(

 [‘USTX0207’],

 {unit: ‘f’}

);

The code binds the weatherfeed method to an element with the id of weather,
for example, <div id=”weather”></div>. The options for the weatherfeed
method included here are the RSS (Really Simple Syndication) location code
and the units of measurement that you want to use, Fahrenheit in this case.

To obtain the RSS location code, go to http://weather.yahoo.com and enter the
location information. As shown in Figure 5.18, hover your mouse cursor over the
RSS icon to see the URL in the status bar of your browser. You will find the location
code in that URL, which you can then place into your jQuery weatherfeed function.

NOTE: Be sure to read and understand Yahoo’s terms of

use policy on weather information.

http://weather.yahoo.com

ptg

USING jQUERY PLUGINS 191

Because you are providing more information about the lodge to Web-site visitors,
most likely you’ll want to provide some pictures of the lodge and the surrounding
area. A fun way to provide pictures is to use a plugin that will allow visitors to zoom
in and view details of the pictures more closely.

ZOOMING IN ON PICTURES

A popular effect on many shopping and photographic Web sites gives users the
ability to mouse over and zoom in on an image. Raff Cecco’s Cloud Zoom plugin
(available at www.professorcloud.com/mainsite/cloud-zoom.htm) is the perfect
tool to achieve this effect with jQuery.

1. Open chap5/5-0.php and save it as chap5/5-11.php.

FIGURE 5.18 Finding the RSS

location code.

www.professorcloud.com/mainsite/cloud-zoom.htm

ptg

192 CHAPTER 5 APPLYING jQUERY WIDGETS

2. Include the reference to the Cloud Zoom CSS file and jQuery files in the
head section of the HTML file (highlighted):

<link rel=”stylesheet” href=”css/primary.css” type=”text/css” />

<link rel=”stylesheet” href=”css/cloudZoom/cloud-zoom.css”
p type="text/css" />

<script type=”text/javascript” src=”inc/jQuery/jquery
p -1.5.min.js"></script>

<script type=”text/javascript” src=”inc/jQuery/cloud
p -zoom.1.0.2.min.js"></script>

3. Set up a container to hold the photo:

<div class=”bigPhoto”>

4. Add the anchor and image tags that reference the large and small photos:

<a href=’images/lodge_hummingbirds.jpg’ class=’cloud-zoom’
p id=’zoom1’ rel=”position: ‘inside’, smoothMove: 4,
p adjustX: -1, adjustY:-4”>

 <img src=”images/lodge_hummingbirds_small.jpg” alt=’’
 p title="Hummingbirds at the Lodge" border="0" />

One of the nifty things about this plugin is that you don’t have to add any
jQuery code to your page. All of the options (highlighted) for the Cloud
Zoom plugin are specified in the rel attribute of the anchor tag.

5. Close the container that will hold the photo:

</div>

6. Center the photo container by adding a CSS rule to chap5/css/lamf.css:

.bigPhoto {

 position: relative;

 width: 800px;

 margin: auto;

}

ptg

USING jQUERY PLUGINS 193

The zoom effect (Figure 5.19) is achieved by having two copies of the image:
a small image that is displayed normally and a larger image that will be called
by the Cloud Zoom plugin. The larger image (images/lodge_hummingbirds.jpg
in this case) is referenced in the anchor tag, and the thumbnail (images/lodge_
hummingbirds_small.jpg) is contained within the image tag.

The options specified for this instance of the Cloud Zoom include position:
‘inside’, which tells the Cloud Zoom plugin to show the zoomed image inside the

thumbnail. The option smoothMove: 4 sets up an easing method for the cursor to
give the enlarged picture movement a fluid effect. The options adjustX: -1 and
adjustY:-4 fine-tune the location of the zoomed image in relation to the thumbnail.

Many other options are available for the jQuery Cloud Zoom plugin that will
give you great creative flexibility when you use the plugin in your Web sites.

Another way that you can work with images on your Web sites and applications
is to add a background image that resizes with the browser. Let’s look at that next.

FIGURE 5.19 The large image

is called into the space where

the original picture is. Moving

the cursor allows users to view

various portions of the picture

more closely.

ptg

194 CHAPTER 5 APPLYING jQUERY WIDGETS

RESIZING A BACKGROUND IMAGE WITH THE BROWSER

For years, Web designers and developers have been looking for ways to improve
the backgrounds that their Web sites appear against. Scaling background images is
tough to do, especially when you anticipate that the browser window’s size might
be changed. The jQuery Easy Background Resize plugin solves that problem. In
fact, you’ll find you’ll be looking for ways to use background images in all of your
Web sites and applications.

The background resizing plugin combined with one of your images can deliver
a subtle (like the gradient background in Figure 5.20) or powerful impact to your
Web sites and applications. It is by far one of the niftiest plugins you can add to
your Web sites.

Developed by J.P. Given, the jQuery Easy Background Resize (available at http://
johnpatrickgiven.com/jquery/background-resize) allows you to place a background
image on your site and have that background image resize with the browser.

Let’s add this plugin to the lodge Web site.

1. Open chap5/5-10.php and save it as chap5/5-13.php.

FIGURE 5.20 A gradient-filled

background image that is

perfectly suited for layering

a Web site or application on.

http://johnpatrickgiven.com/jquery/background-resize
http://johnpatrickgiven.com/jquery/background-resize

ptg

USING jQUERY PLUGINS 195

2. Insert the line that includes the plugin in the head section of the HTML file:

<script type=”text/javascript” src=”inc/jQuery/jquery.ez-bg
p -resize.js"></script>

3. Bind the ezBgResize method to the body tag of the HTML, and designate
the path to the image that you want to use as the background:

$(“body”).ezBgResize({

 img : “grfx/lodge_gradient_background.jpg”

});

4. Load the page into the browser (Figure 5.21) and resize it to see the effect.
That’s all there is to it!

FIGURE 5.21 The gradient

background has been applied

to the body of the Web site.

The gradient will expand and

contract as needed when the

browser is resized.

ptg

196 CHAPTER 5 APPLYING jQUERY WIDGETS

Once you watch the jQuery Easy Resize plugin in action, you will undoubtedly
figure out many creative ways to apply it to your sites and applications. For example,
Figure 5.22 shows that the gradient background has been replaced by the picture
of the hummingbirds that was used earlier.

Now that you’ve made the background spicier, you can add a little plugin to
the foreground that will turn some heads.

FIGURE 5.22 A view of the

lodge Web site using an image

of hummingbirds as the

background. This illustrates

how easy it is to layer other

graphics and Web elements

on top of the image.

ptg

USING jQUERY PLUGINS 197

CURLING UP WITH A GOOD WEB SITE

The design of the current lodge site is not as up to date as it could be. The lodge
owner wants to let site visitors know that a new Web-site design is coming soon
without interfering with the existing site.

In essence, you will be “turning the page” to a new site. A jQuery plugin that
supports the concept of turning the page (Figure 5.23) is the jQuery Sexy Curls
plugin. The information revealed “behind” the curled page is a preview of the new
Web site to come.

FIGURE 5.23

The page-curl effect.

ptg

198 CHAPTER 5 APPLYING jQUERY WIDGETS

Elliot Kember’s Sexy Curls jQuery plugin (available at http://elliottkember.com/
sexy_curls.html) is the ideal plugin to use to create the page-curling effect. Let’s
include it in the site now.

1. Create a copy of chap5/5-13.php and save it as chap5/5-14.php. Make sure
that the needed CSS and jQuery files are included in the head section of
chap5/5-14.php:

<link type=”text/css” rel=”stylesheet” href=”css/lamf.css” />

<link type=”text/css” rel=”stylesheet”
p href=”css/ui/jquery-ui-1.8.12.custom.css" />

<link type="text/css" rel="stylesheet"
p href="css/tinyTips/tinyTips.css" />

<link type=”text/css” rel=”stylesheet”
p href=”css/turn/turn.css” />

<link type=”text/css” rel=”stylesheet”
p href="css/weatherfeed/jquery.zweatherfeed.css" />

<script type="text/javascript" src="inc/jQuery/jquery
p -1.5.min.js"></script>

<script type="text/javascript" src="inc/jQuery/jquery-ui
p -1.8.12.custom.min.js"></script>

<script type="text/javascript"
p src="inc/jQuery/attractions.js"></script>

<script type="text/javascript"
p src="inc/jQuery/jquery.tinyTips.js"></script>

<script type=”text/javascript”
p src=”inc/jQuery/turn.js”></script>

<script type=”text/javascript”
p src="inc/jQuery/jquery.zweatherfeed.min.js"></script>

The page curl image is stored in the same folder as the turn.css file, chap5/
css/turn.

http://elliottkember.com/sexy_curls.html
http://elliottkember.com/sexy_curls.html

ptg

USING jQUERY PLUGINS 199

2. Add the image tag that holds the “hidden” information prior to the closing
body tag:

3. Add the jQuery code into the document ready wrapper to bind the fold
method to the element that will be shown behind the page curl:

$(‘#foldGraphic’).fold();

In this case, the element that is bound to the fold method is an image.

The jQuery Sexy Curls plugin is one of the few plugins that I’ve encountered
where developers must open the plugin (located in the folder chap5/inc/
jQuery/turn.js) to set the options.

4. Open the plugin and locate the section of the code that begins with the com-
ment //default awesomeness. (Mr. Kember has a great sense of humor!)
The next several lines are the options you can set for the plugin. For this
example, the options set are the location of the image used to make the
page turn and the starting and maximum measurements:

turnImage: ‘css/turn/fold.png’,
p // The triangle-shaped fold image

maxHeight: 450, // The maximum height. Duh.

startingWidth: 40, // The height and width

startingHeight: 40, // with which to start
p (these should probably be camelCase, d’oh.)

In addition, the autoCurl function is set to true so that when you mouse
over the small curl image, the effect will run:

autoCurl: true // If this is set to true, the fold
p will curl/uncurl on mouseover/mouseout.

5. Load the page into your Web browser and test-drive the curl.

Now that you have installed and configured a number of plugins, you may want
to try your hand at developing your own plugins. In the next section, I’ll show you
how to lay out the basics so that you can make your own jQuery plugins.

ptg

200 CHAPTER 5 APPLYING jQUERY WIDGETS

Creating your own plugins can be very rewarding, and it’s not difficult to do. Let’s
write a very basic plugin and put it to use on the lodge Web site.

1. Create a file called jquery.colorText.js and save it in the chap5/inc/jQuery
folder. Start the plugin by declaring a function:

(function($){

To ensure that you can keep using the familiar dollar sign within your plu-
gin and keep your plugin from colliding with other JavaScript libraries, the
plugin framework maps jQuery to the dollar sign. The mapping of jQuery
to the self-executing function occurs in the last line of the plugin, (jQuery).
This creates a self-executing function called a closure.

2. Add a new function property to the jQuery fn (known as effin) object. The
name of the property will be the name of your plugin. For the colorText
plugin, the user will be able to pass options to the function, so declare that
as the argument for the function:

 $.fn.colorText = function(options) {

3. Declare the defaults for each of the options that you will allow the user to
declare for the colorText plugin:

 var defaults = {

 ‘color’ : ‘#000000’,

 ‘backgroundColor’ : ‘#FFFFFF’

 };

The default settings can be extended by passing a JavaScript object literal
when the user binds the colorText element to an element. The method that
jQuery uses to merge the default options with the passed object literals is
the extend method.

NOTE: Closures can be complex to understand, but it boils down to

keeping local variables for a function alive after the function has been

returned. There are volumes of information on closures on the Internet

if you’re interested in learning more about closures.

ROLLING YOUR OWN PLUGINS

ptg

ROLLING YOUR OWN PLUGINS 201

The first argument of the extend method is known as the target object.
The target object is the object that will be modified when extend is called.

4. Keep the target object blank in this case so that the properties of the defaults
and options are preserved. Assign the extend method to the opt variable:

 var opt = $.extend({}, defaults, options);

5. To keep the plugin chainable with other jQuery methods, return the this
object while continuing to act on it with methods in your plugin:

 return this.each(function(){

 $this = $(this);

6. Insert the actions that the colorText plugin will perform on the element
that is bound to the plugin. In this case, the CSS is being modified (this is
not the cleverest plugin in the world) to set the text color and background
color of the element bound to the plugin:

 $this.css({

7. Because the default settings and optional settings were merged with the
extend method, you can retrieve the values for each property from the
object literal stored in opt, like this:

 ‘color’: opt.color,

 ‘backgroundColor’: opt.backgroundColor

 });

 });

 };

8. Close out the simple colorText plugin with the proper brackets, and then
pass the jQuery object to the plugin:

})(jQuery);

The plugin is now ready to use.

1. Copy chap5/5-14.php and save it as chap5/5-15.php.

ptg

202 CHAPTER 5 APPLYING jQUERY WIDGETS

2. Insert the script tag that references the source of colorText plugin, just as
you’ve done with all of the other plugins:

 <script type=”text/javascript”
 p src="inc/jQuery/jquery.colorText.js"></script>

3. Bind the colorText plugin to the h2 element. Insert different values for the
color and backgroundColor properties to get a feel for how the plugin works:

 $(‘h2’).colorText({

 ‘color’: ‘#FFCC33’,

 ‘backgroundColor’: ‘#006600’

 });

The h2 elements are header elements in each of the tabs of the lodge’s Web site.
Load 5-15.php into your browser to see the results shown in Figure 5.24.

This colorText plugin is a simple example of how to structure a jQuery plugin.
You can apply these basic principles to any plugin that you want to create in jQuery.
Now that you’ve incorporated a number of jQuery widgets and plugins into the
lodge Web site, you’ve learned how to start creating your own jQuery to share.

FIGURE 5.24 The result of

applying the colorText plugin

to elements in the HTML page.

ptg

WRAPPING UP 203

This chapter was chockfull of jQuery widgets (from the official jQuery UI library)
that you can use to enhance your visitor’s interactions with your Web site. These
widgets include the Datepicker, Progressbar, and Dialog boxes. All you need to do is
include the jQuery UI library file and call each of the widgets, typically with one or
two lines of script, in order to make them available in your Web pages and applications.

Next, your eyes were opened to the world-wide widget farm known as jQuery
plugins. Developers from across the globe develop and support their own exten-
sions to the jQuery library to provide interactive widgets from tablesorters and
tooltips to picture zoomers and graph plotters.

Finally, you learned how to create your own extensions for the jQuery library
and gained a template that you can use to support your own library of plugins that
you can keep or share with the rest of the world.

In the next chapter, you’ll apply all of the skills and tools that you have learned
up to this point in the book to create a Web application interface that resembles
software instead of a Web site. Let’s forge on!

WRAPPING UP

ptg

6

CREATING
APPLICATION
INTERFACES

ptg

The jQuery library makes creating potent, inter-

active, Web application interfaces easier by

providing methods and functions that excel at supporting the

synergy required to turn dull, lifeless, Web application interfaces

into full-featured, user-centric powerhouses that can help you to

make Web applications interfaces that are intuitive and fun to use.

In this chapter, you’ll learn how to apply techniques you have

learned in previous chapters along with other jQuery, HTML,

and CSS techniques to create a solid foundation for a Web-based

application interface. You’ll start with the basic markup and style

information in detail and add to that as the interface is developed.

Along the way you’ll learn about advanced techniques for using

sprites and AJAX to breathe life into the interface.

ptg

206 CHAPTER 6 CREATING APPLICATION INTERFACES

The first step you need to complete for any Web application is to establish the
requirements for the application followed by defining a data model. Once those
items are complete, you can begin defining the layout for each of the user interfaces
required for the application.

When designing the layouts, you must always keep the Web application users in
mind. Navigation items must be logically grouped, and content must be consistent.
The user should be able to find elements easily while relying on their intuition to
guide them. For example, you might have a main navigation component along the
top of the interface. When the main item is clicked, secondary navigation is loaded
that reflects the choice the user initially makes. The choices must make sense for
the user while supporting the actions required by the application.

Once you’ve decided on the layouts, you can then establish some baseline
HTML markup and CSS. The interface that you’ll build in this chapter is very basic:
Primary navigation will be located at the top of the browser window, secondary
navigation will be along the left side of the window, and the primary content will
be displayed in a large area on the right (Figure 6.1).

FIGURE 6.1 The basic layout

for the Web application

interface.

Primary navigation

Secondary navigation Content area

Footer

ESTABLISHING THE FOUNDATION

ptg

ESTABLISHING THE FOUNDATION 207

The basic layout is completed by providing an area in the browser window for
a footer where you can display additional purpose-driven content.

The primary goal for this layout is to keep every element visible on the browser
to avoid scrolling. Scrolling will be allowed as necessary, but only within the con-
tainer that holds more content than can be displayed within that element.

With a layout plan in hand, you’ll begin by creating the baseline markup for
the project next.

CREATING THE HTML

The HTML markup creates the bedrock on which the rest of the interface will stand.
You will define the containers that will hold the content and navigation elements,
which will be enhanced by the CSS and jQuery.

After you define the basic HTML markup, you won’t have to modify it much
except to add declarations for additional jQuery and CSS functions. In keeping
with earlier markup layouts, the HTML for the application interface will be very
simple. Let’s get started.

1. Create a file called 6-1.php and save it in the chap6 folder. Open the HTML
with the DOCTYPE declaration (in this case the declaration is for HTML5):

<!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
 p charset=UTF-8" />

2. Apply the no-cache directives to prevent caching of the application’s content.
For Web applications, it is desirable that none of the data is cached (held
in temporary storage):

 <meta http-equiv=”pragma” content=”no-cache” />

 <meta http-equiv=”cache-control”
 p content=”no-cache” />

ptg

208 CHAPTER 6 CREATING APPLICATION INTERFACES

3. Declare the title of the application:

 <title>jQuery Application Interface</title>

4. Create the declarations for the CSS and jQuery/JavaScript files, starting with
the style sheet you will create:

 <link rel=”stylesheet” href=”css/interface.css”
 p type="text/css" />

 <link type="text/css" rel="stylesheet"
 p href="css/ui/jquery-ui-1.8.12.custom.css" />

 <script type="text/javascript"
 p src="inc/jQuery/jquery-1.5.min.js"></script>

 <script type="text/javascript"
 p src="inc/jQuery/jquery-ui-1.8.12.custom.min.
 p js"></script>

 </head>

The standard jQuery file as well as the CSS and JavaScript file for the jQuery
UI are included in the base markup, so you won’t have to worry about add-
ing them later.

5. Add the elements that will hold the navigation and content for the applica-
tion interface:

 <body>

 <div id=”mainNavBar”></div>

 <div id=”content1”>

 <div id=”contentArea1”>

 <!-- nav items -->

 </div>

 </div>

 <div id=”content2”>

 <div id=”contentArea2”>

 <!-- content items -->

ptg

ESTABLISHING THE FOUNDATION 209

 </div>

 </div>

 <div id=”footer”></div>

 </body>

 </html>

The markup contained in the body of the HTML is very simple and easy to
read. Each element is clearly declared, and comments make the markup
easy to understand.

Next, you’ll add some style to the basic HTML markup.

APPLYING THE CSS

The style sheet for your application interface defines the properties for the areas
where you’ll display content. You need to clearly describe these areas so that the
CSS can be effectively applied to your markup.

Let’s get the basic CSS properties in place and also include some additional
properties that will add borders to each area for visual guidance. After the design
is complete, you can remove the borders.

1. Create a file in your text editor called interface.css, save it in the chap6/css
folder, and then establish the overall layout:

body, html {

 height:100%;

 margin: 0px auto;

 overflow-y: hidden ! important;

 overflow-x: auto ! important;

}

NOTE: The CSS property ! important is always applied to the markup regard-

less of any other CSS entry that may attempt to override the property.

CSS is read from top to bottom, and a CSS property marked as ! important

will always be applied no matter where it appears in the CSS document.

ptg

210 CHAPTER 6 CREATING APPLICATION INTERFACES

body {

 margin: 0px;

 font-family: Tahoma, Arial, Helvetica, sans-serif;

 font-size: 11px;

 background-color: #000000;

}

The CSS rules established here ensure that the document body is as tall
as the browser window will allow and set all margins to 0. All overflow
will be hidden, and no scroll bars will appear on the main body of the
interface document. Finally, the background is declared to be black using
hexadecimal notation.

2. Set the :focus pseudo selector to have no outline, which will prevent out-
lines from appearing around clickable items:

:focus {

 outline: 0;

}

3. Set up the container for the secondary navigation. There are two parts, the
outer container and the inner container. Declare the outer container first:

#content1 {

 width: 20%;

 height: 80%;

 background-color: transparent;

NOTE: A word of caution here; you should never turn off the outline on the

:focus element in public Web sites because the element aids in making

your Web pages more accessible. If you need your Web applications to

be accessible to people using screen readers, you should omit this :focus

CSS rule from the CSS document.

ptg

ESTABLISHING THE FOUNDATION 211

 vertical-align: bottom;

 float: left;

 margin: 5px 5px 0px 10px;

 position: relative;

 bottom: 0px;

}

#contentArea1 {

 position: relative;

 padding: 10px;

}

The outer container #content1 is designed to hold the navigation items
that will appear along the left side of the interface. Because the applica-
tion interface is designed to be fluid (all elements resize with the screen to
remain proportional), percentages are used to configure height and width.

4. Construct the CSS to hold the main content with an outer container:

#content2 {

 position: relative;

 width: 77%;

 height: 80%;

 background-color: transparent;

 vertical-align: top;

 float: left;

 margin: 5px 5px 0px 0px;

}

ptg

212 CHAPTER 6 CREATING APPLICATION INTERFACES

5. Create the inner container for the main content area, and set the overflow
property to auto. The inner container will have a scroll bar appear when
the content is longer than the outer container will allow:

#contentArea2 {

 position: relative;

 padding: 10px;

 overflow: auto;

}

6. Declare the space for the primary navigation area, including an image that
will be used as the background for the navigation:

#mainNavBar {

 height: 75px;

 background-image: url(‘../grfx/large_gray_gradient.png’);

 background-repeat: repeat-x;

 padding: 0px 0px 0px 25px;

}

7. Create the rule and properties for the footer section:

#footer {

 position: absolute;

 bottom: 0px;

 height: 75px;

 width: 99%;

 margin: 5px 5px 0px 5px;

}

The footer is aligned to the bottom of the browser window so that the win-
dow resizing function, which you’ll create later in the chapter, can account
for the known fixed space created by the footer element.

ptg

ESTABLISHING THE FOUNDATION 213

8. Create the last portion of the CSS style sheet, which contains the rules for
the borders that will provide visual guides while the interface is developed:

#content1, #content2, #footer {

 border: 1px dashed #FFFF00;

}

#contentArea1, #contentArea2 {

 border: 1px dashed #00FF00;

}

After the interface is complete, you can remove these rules.

The base CSS is not complex, yet it is needed to achieve the layout and inter-
activity necessary for the application interface.

With the basic CSS and HTML created, you can load chap6/6-1.php into a
browser (Figure 6.2). You should see the yellow borders (outer containers) and green
borders (inner containers) for each of the major areas of the application interface.

FIGURE 6.2 The primary and

secondary navigation areas

along with the content and

footer areas have been created

and are ready for modification.

ptg

214 CHAPTER 6 CREATING APPLICATION INTERFACES

Notice that some of the navigation and content areas overlap slightly. You’ll
correct that overlap when you add the jQuery resize function in the next section.

MAKING THE INTERFACE RESIZABLE

For an application interface, it is important that every element be in the proper
place at the proper size, not only when the browser is opened, but also when a
user decides to resize the browser window. Using jQuery’s resize method allows
you to accomplish this subtle but important task.

To make sure that the elements are the proper size when the browser window
is initially opened, you’ll need to know the total height of the window once open.
Then you can apply the appropriate heights to the content container elements.

In this exercise, you’ll create the jQuery functions to automatically apply the
proper heights to all of the container elements based on the size of the browser
window when it is opened. Then you’ll create the jQuery function that resizes the
container elements when the browser window size is changed by the user.

1. Create a new file called interface.js and save it in the chap6/inc/jQuery
folder. Then create the document ready wrapper function:

$(document).ready(function() {

2. Use jQuery’s height method to get the height of the browser window, and
place that information in a variable called windowHeight:

 var windowHeight = $(window).height();

3. Set the height of both content outer containers and both content inner
containers. The height of the outer containers needs to take into account
the height of the mainNavBar (75 pixels) element plus the footer element
(75 pixels). Add an additional 25 pixels for padding :

 $(“#content1”).height(windowHeight - 175 + “px”);

 $(“#contentArea1”).height(windowHeight - 205 + “px”);

 $(“#content2”).height(windowHeight - 175 + “px”);

 $(“#contentArea2”).height(windowHeight - 205 + “px”);

ptg

ESTABLISHING THE FOUNDATION 215

Make sure that the inner containers, contentArea1 and contentArea2,
have their total height set so that they stay inside the outer containers by
subtracting an additional 30 pixels from the height of the inner containers.

Next, you’ll create a jQuery resize function to ensure that the content areas
are resized when the browser window size is changed. The same functions
that are used to set the content container’s size when the browser is opened
are used during the resize event, too.

4. Bind the browser window to jQuery’s resize function:

 $(window).resize(function() {

5. Copy and paste the functions previously used to set the content container
heights, and then close the resize function with the appropriate brackets:

 var windowHeight = $(window).height();

 $(“#content1”).height(windowHeight - 175 + “px”);

 $(“#contentArea1”).height(windowHeight - 205 + “px”);

 $(“#content2”).height(windowHeight - 175 + “px”);

 $(“#contentArea2”).height(windowHeight - 205 + “px”);

 });

6. Close out the document ready function:

});

Now you are ready to include interface.js in the HTML declarations.

7. Make a copy of chap6/6-1.php, save it as chap6/6-2.php, and place a script
tag to call the source of chap6/ inc/jQuery/interface.js in the head section
of the HTML:

<script type=”text/javascript”
p src=”inc/jQuery/interface.js”></script>

ptg

216 CHAPTER 6 CREATING APPLICATION INTERFACES

8. Open chap6/6-2.php in a browser window. You’ll see that the content areas
no longer overlap the footer section of the page (Figure 6.3). Resize the
browser window to observe the content areas resizing properly.

The basic layout is complete and ready for further development as your Web
application interface. Let’s start that development by including a robust sprite
element as the primary navigation for the application.

FIGURE 6.3 The content areas

overlap the footer element

prior to applying the jQuery

function that processes the

sizes of the content areas.

NOTE: If you try to make the browser window really small, and for all

practical purposes unusable, the content areas will begin to overlap

each other again because there is no place for them to go within the

space allotted by the browser.

ptg

IMPROVING THE APPLICATION INTERFACE 217

After the basic framework has been established for the Web application interface,
you can start to apply the jQuery functions and widgets that will create a rich
interactive experience for the application users.

You’ll apply some of the techniques that you learned in earlier chapters, includ-
ing working with events and using the jQuery UI widgets. These techniques and
widgets will lend intuitive user interaction to your application while using the effi-
ciency provided by the jQuery library to enable your applications to run smoothly.

To start, let’s take the simple sprite navigation technique you learned in Chap-
ter 2 and ramp up the technique’s capabilities to make it operate differently, but
more effectively, in a Web software application.

CREATING BETTER SPRITES

The interaction of the sprite you worked with previously in Chapter 2 was fairly
simple: Hover over an element and it changes. Move the cursor away from the
element and it reverts back to its normal appearance. For the Web application
interface you are creating in this chapter, the interaction needs to be a bit more
complex. Not only will the sprite need to reflect the hover states, but it will also
need to reflect a third status (selected) for the area of the application that the user
has chosen to work in.

Therefore, you’ll need to configure a sprite image with three rows (Figure 6.4).
You can find this image in the download files in chap6/grfx/main_nav.png.

When the mouse cursor hovers over an item in the sprite, the icon will turn
yellow and then fade back to gray when the cursor is removed from that icon. This
is the same action that occurs with the sprite created previously. The twist is that
a selected item does not change when the cursor is hovered over it, and a clicked
sprite item will gain the state of selected, turning the icon white.

FIGURE 6.4 The sprite to

be used in the Web appli-

cation interface.

IMPROVING THE
APPLICATION INTERFACE

ptg

218 CHAPTER 6 CREATING APPLICATION INTERFACES

There are two critical aspects to making the sprite react as you want it to, the
CSS and the jQuery. After you have the CSS and jQuery code in place, you’ll add
the sprite to the HTML. Let’s create the CSS first.

STYLING THE SPRITE

Critical to making the sprite work properly is styling the container for the sprite in the
page and making sure that each element of the sprite has been defined within the CSS.

1. Create a CSS file called spritenav.css in the folder chap6/css/spritenav, and
set up the first property that will set the height for the sprite. The rule will
also have a property to remove default styling from the unordered list that
will be used for the sprite:

 #spriteNav {

 height: 75px;

 list-style: none;

 margin: 0;

 padding: 0;

 }

2. Make sure that all of the list items float to the left so that they will line up
next to each other:

 #spriteNav li {

 float: left;

 }

3. Style the anchor tags within the sprite container. The background image
for the anchor tags is the graphic that defines the sprite:

 #spriteNav li a {

 background: url(../../grfx/main_nav.png) no-repeat;

 display: block;

 height: 75px;

 position: relative;

 }

ptg

IMPROVING THE APPLICATION INTERFACE 219

4. Add the styling for the sprite’s span elements. The span elements are the
image items in the sprite that appear when the cursor is positioned over the
element for hover. The background image for the spans is the same sprite
graphic that was used for the anchor elements, chap6/grfx/main_nav.jpg:

 #spriteNav li a span {

 background: url(../../grfx/main_nav.png) no-repeat;

 display: block;

 position: absolute;

 top: 0;

 left: 0;

 height: 75px;

 width: 100%;

 }

5. Set up the starting base width and background-position for each item.
Each navigation item in the sprite must have a starting width and location.
Because the starting position is the top row of the sprite, the y coordinate
for each item is 0px. All of the sprite items are 100 pixels wide:

 #spriteNav li a#users {

 width: 100px;

 }

 #spriteNav li a#notes {

 width: 100px;

 background-position: -100px 0px;

 }

 #spriteNav li a#stats {

 width: 100px;

 background-position: -200px 0px;

 }

 #spriteNav li a#processes {

ptg

220 CHAPTER 6 CREATING APPLICATION INTERFACES

 width: 100px;

 background-position: -300px 0px;

 }

 #spriteNav li a#security {

 width: 100px;

 background-position: -400px 0px;

 }

6. Add the next set of style rules to define the position of the sprite items for
the span elements. The span elements provide the hover effect. The sprite
items are in the second row of the sprite, so the y coordinate for these has
to be -75px:

 #spriteNav li a#users span {

 background-position: 0px -75px;

 }

 #spriteNav li a#notes span {

 background-position: -100px -75px;

 }

 #spriteNav li a#stats span {

 background-position: -200px -75px;

 }

 #spriteNav li a#processes span {

 background-position: -300px -75px;

 }

 #spriteNav li a#security span {

 background-position: -400px -75px;

 }

ptg

IMPROVING THE APPLICATION INTERFACE 221

7. Prepare the last row of sprite items—the images to be shown when an item
is selected—with a y coordinate of -150px:

 #spriteNav li a#users span.selected {

 background-position: 0px -150px;

 }

 #spriteNav li a#notes span.selected {

 background-position: -100px -150px;

 }

 #spriteNav li a#stats span.selected {

 background-position: -200px -150px;

 }

 #spriteNav li a#processes span.selected {

 background-position: -300px -150px;

 }

 #spriteNav li a#security span.selected {

 background-position: -400px -150px;

 text-decoration: none;

 }

The styling for the sprite-based navigation is now complete. It’s time to turn
your attention to the jQuery that will add flair to the sprite.

CREATING THE SPRITE INTERACTION

The jQuery code for the sprite is defined by two functions, one to handle the hover
operations and another to handle the clicked or selected sprite item.

1. Create a file named spreitenav.js in the folder chap6/inc/jQuery and establish
the document ready function:

$(document).ready(function() {

ptg

222 CHAPTER 6 CREATING APPLICATION INTERFACES

2. Wrap both the hover function and click function into a singular function
call to relate them to each other:

 $(function() {

It is not necessary to take this additional step, but it pays great dividends
where code organization is concerned.

3. Set up default values for the visibility of the span and spanselected elements:

 $(“#spriteNav span”).css(“opacity”, “0”);

 $(“#spriteNav span.selected”).css(“opacity”, “1”);

4. Begin the hover function by binding the hover method to the #spritenav
span element:

 $(“#spriteNav span”).hover(function() {

5. Create a conditional to test to see if the span element currently hovered
over has a CSS class attribute defined for it. If there is no CSS class defined,
apply the jQuery animation to fade in the yellow sprite item for this element:

 if($(this).attr(“class”).length == 0) {

 $(this).stop().animate({

 opacity: 1

 }, 75);

6. Set the element’s opacity to 1, fully visible, if there is a CSS class attached
to the element that the mouse cursor is over:

 } else {

 $(this).css(“opacity”, “1”); // end mousein

 };

The mouseover portion of the hover method is now fully defined, so you’ll
move on to the mouseout section of the hover event.

7. Make the fade-out last a little longer by setting the timing of the fade to
250 milliseconds if the element does not have a CSS class attached to it:

ptg

IMPROVING THE APPLICATION INTERFACE 223

 }, function(){

 if($(this).attr(“class”).length == 0) {

 $(this).stop().animate({

 opacity: 0

 }, 250);

8. Leave the item fully visible regardless of the mouse cursor position if there
is a class attached to the element. The class indicates that this item is the
currently selected element:

 } else {

 $(this).css(“opacity”, “1”); // end mouseout

 };

9. Close out the hover method with the proper closing brackets and braces:

 }); // end hover function

10. Begin defining the click function by binding jQuery’s click method to
the #spritenav span element:

 $(“#spriteNav span”).click(function() {

11. Remove the selected class from all of the #spritenav elements first, making
the current element the only selected element:

 $(“#spriteNav span”).removeClass(“selected”);

12. Use the jQuery addClass method to add the selected class to this element:

 $(this).addClass(“selected”);

13. Fade all of the #spritenav elements that do not have the selected class to
the state that colors them gray:

 $(“#spriteNav span:not(.selected)”).stop().animate({

 opacity: 0

 }, 0);

This will turn the previously selected item back to its gray or nonselected
or hovered state.

ptg

224 CHAPTER 6 CREATING APPLICATION INTERFACES

14. Add the appropriate closing brackets and braces:

 });

 });

});

Now that the CSS and jQuery are in place to provide functionality to the sprite,
all you have left to do is to add the markup that will place your sprite into the
application interface.

ADDING THE SPRITE TO THE INTERFACE

You’ve done a lot of prep work to get to the point where you can begin adding
functionality to the Web application interface. You can rely on the HTML markup
and CSS that you constructed earlier to act as a guide for placing new elements
into the Web application interface.

1. Make a copy of chap6/6-2.php and save it in the chap6 folder as 6-3.php.

2. Add the declarations that will link your spritenav.css and spritenav.js to the
head section of your new file’s HTML markup as highlighted here:

<link rel=”stylesheet” href=”css/interface.css”
p type=”text/css” />

<link rel=”stylesheet” href=”css/spritenav/spritenav.css”
p type="text/css" />

<link type=”text/css” rel=”stylesheet” href=”css/ui/jquery-ui
p -1.8.12.custom.css" />

<script type="text/javascript"
p src="inc/jQuery/jquery-1.5.min.js"></script>

<script type="text/javascript"
p src="inc/jQuery/jquery-ui-1.8.12.custom.min.js"></script>

<script type="text/javascript"
p src="inc/jQuery/interface.js"></script>

<script type=”text/javascript”
p src=”inc/jQuery/spritenav.js”></script>

ptg

IMPROVING THE APPLICATION INTERFACE 225

3. Locate the div element with an id of mainNavBar and place the unordered
list within that element:

<div id=”mainNavBar”>

 <ul id=”spriteNav”>

4. Set a default element to have the selected class like this (optional):

5. Make sure that you have a list element for each sprite item:

</div>

The sprite navigation is complete and ready to test.

6. Load chap6/6-3.php into your browser to see the navigation (Figure 6.5).

The application interface is starting to take shape with the primary navigation in
place. You’ll no longer need to make changes to the basic layout that you defined in
chap6/6-3.php. All of the changes to be made from this point on are made in files—
the CSS and jQuery files—that will load content into the interface from other files.

Next, you’ll learn how to have the primary navigation load the secondary
navigation items and primary content.

FIGURE 6.5 Users is the

selected item while the mouse

cursor is hovered over the

Processes item.

ptg

226 CHAPTER 6 CREATING APPLICATION INTERFACES

LOADING CONTENT WITH AJAX

It is easy to target content areas of the Web application interface using jQuery
selectors. Once an area is targeted, it is quite simple to use one of jQuery’s AJAX
methods to call external content into the interface.

You are not limited on the content that you can load into these content areas.
Content that you create, as well as jQuery plugins and jQuery UI widgets, are all
available to be included into the application interface.

You can also load content into multiple areas at the same time. For instance,
with one click event you can load content into the secondary navigation area
while other content is loaded into the primary content area.

Let’s look at a technique for loading a jQuery UI Accordion widget into the
navigation area first.

INCLUDING JQUERY UI WIDGETS

A popular widget for displaying a lot of content in a small space is the jQuery UI
Accordion widget. The accordion takes up a fixed amount of space, and sliding
windows of content are made available by clicking on the headers of the accordion.
Figure 6.6 shows a jQuery UI accordion with three sections and shows the content
in section Content C.

You’ll use a jQuery UI Accordion widget to facilitate secondary navigation. Let’s
prepare that widget and then add the call from the primary navigation that will
open the accordion.

FIGURE 6.6 Clicking on any

one of the headers will reveal

the content in an accordion by

sliding the content and header

either up or down as needed.

ptg

IMPROVING THE APPLICATION INTERFACE 227

1. Create a new page called users.php in chap6/inc/nav. This folder is where
all of the secondary navigation files will be stored.

2. Add the following jQuery to bind the jQuery UI accordion method to the
element with an id of accordion:

<script type=”text/javascript”>

 $(document).ready(function() {

 $(‘#accordion’).accordion();

 });

</script>

3. Create the div that will hold the accordion element:

<div id=”accordion”>

4. Add a title and the content for each section of the accordion. Note that the
title is contained in a header (h3) tag:

 <h3>Manage Users</h3>

 <div>

 Add User

 Edit User

 </div>

 <h3>Manage Roles</h3>

 <div>

 Add Role

 Edit Role

 </div>

ptg

228 CHAPTER 6 CREATING APPLICATION INTERFACES

5. Add the last accordion section and close out the accordion element:

 <h3>Manage Groups</h3>

 <div>

 Add Group

 Edit Group

 </div>

</div>

The jQuery UI library, including the CSS that comes with the library, handles
the details of creating the accordion and managing the animation; all that is left
to do is to add the jQuery code to load the accordion into the interface.

Rather than creating a new file to create the jQuery code for loading items
into the application interface, you’ll add the code to the script file created earlier,
chap6/inc/jQuery/interface.js.

1. Open the interface.js file and prepare to add code after the window resize
function that was placed in the file earlier.

2. In the first line, bind the click function to the primary navigation element
contained in a #spritenav list item anchor tag:

$(‘#spriteNav li a’).click(function(){

3. Get the value of the id attribute of the item that was clicked and place it in
the variable clicked:

 var clicked = $(this).attr(‘id’);

If you’re smart about the way you name files, you can use attribute values,
like the id attribute in the previous line of code, to aid in creating singular
functions that will work over a wide range of events. In this case, the navi-
gation file to be loaded is called users.php. That means that the filename
relates well to the item clicked.

ptg

IMPROVING THE APPLICATION INTERFACE 229

4. Create a variable called loadNav to hold the filename and path of the file
to be loaded. Note that the variable clicked is used to complete the text
for the path:

 var loadNav = ‘inc/nav/’ + clicked + ‘.php’;

5. Finish the function by using the jQuery AJAX shorthand method load to
get the accordion into contentArea1:

 $(‘#contentArea1’).load(loadNav);

});

Figure 6.7 reveals the results of your hard work. The jQuery UI Accordion widget
is loaded into the secondary navigation area and is ready to use.

It is important to note that you did not have to modify the primary interface
because the jQuery UI script file and CSS were already included. Additionally, the
technique of binding the UI widget within the file where it is used is the best way
to avoid complicated script files.

Additional jQuery will be used in loaded files because it’s a better way to
organize the application. Keeping the jQuery code isolated within separate files
where needed helps to compartmentalize functions for use where they are called
instead of having all functions loaded into the interface all the time. Load time is
reduced and issues in the code are more easily tracked. The application interface
becomes easier to extend as well because new code can be placed into the modules
extending the application.

FIGURE 6.7 The jQuery UI

Accordion widget is ready

to perform as the second-

ary navigation element

for the Web application

interface.

ptg

230 CHAPTER 6 CREATING APPLICATION INTERFACES

LOADING MULTIPLE ITEMS SIMULTANEOUSLY

With jQuery it is easy to extend functions so that they are capable of processing
multiple events at the same time. To demonstrate this capability, you’ll create a
small form that will be loaded into the primary content area at the same time as
the jQuery UI Accordion widget is loaded into the secondary navigation area of
the Web application interface.

1. Create a form called users_search.php and save it in the chap6/inc/content
folder.

2. Add the HTML markup for a small form:

<form action=”#” method=”post” id=”search_form”>

 <fieldset>

 <label>First Name</label><input type=”text”
 p name=”first_name” id="first_name" />

 <label>Last Name</label><input type="text"
 p name="last_name" id="last_name" />

 <label></label><input type="submit" name="search"
 p id="search" value="Search" />

 </fieldset>

</form>

3. Extend the click function defined in the previous section (chap6/inc/jQuery/
interface.js) by adding two lines, one line to define the path and filename
to be loaded and the other for the load method that applies to the new file:

$(‘#spriteNav li a’).click(function(){

 var clicked = $(this).attr(‘id’);

 var loadNav = ‘inc/nav/’ + clicked + ‘.php’;

 var loadContent = ‘inc/content/’ + clicked + ‘_search.php’;

 $(‘#contentArea1’).load(loadNav);

 $(“#contentArea2”).load(loadContent);

});

ptg

IMPROVING THE APPLICATION INTERFACE 231

Figure 6.8 shows the result of clicking the Users icon in the primary navigation
area. The form is loaded into the primary content area, and the jQuery UI Accordion
widget appears in the secondary navigation area.

As you can imagine, loading content from various sources into the content areas
of a Web application interface is not complex as long as you plan well and keep your
code organized. Even large amounts of content are easy to display in the interface.

HANDLING LARGE AMOUNTS OF CONTENT

When you have forms with multiple segments or tabular data that extends for hun-
dreds of rows, it is best to keep that information displayed within the Web applica-
tion interface without having to scroll the entire content of the window. Scrolling

FIGURE 6.8 Multiple items

have been processed by the

load method and placed into

various portions of the Web

application interface.

ptg

232 CHAPTER 6 CREATING APPLICATION INTERFACES

the entire window would move the navigation elements and content identifying
headers out of view and possibly confuse users or at the very least cause users to
scroll up and down to discern certain information about the data. Any pertinent
footer would not be immediately visible, and users might never scroll down far
enough to get the information from that element.

That is not to say that you shouldn’t build interfaces that cause the entire con-
tent window to scroll. If you do allow this in a design element, you need to make
sure that there is a way to identify the content and data regardless of where the
user has scrolled to. Most designers will do this by including content identifica-
tion immediately adjacent to the content or by repeating the column headers for
tables every few rows.

The CSS that you constructed for the Web application interface provides
the proper structure to keep your content available without losing the ability to
display the primary and secondary navigation areas as well as the footer should
it contain any content.

A large form is available in the download package called users_add.php that
you can use to test your interface. The form is located in the chap6/inc/content
folder and contains some jQuery functions, including the jQuery UI Tabs widget.

To load the form into the content area, you’ll need to modify the users.php file
that you created earlier in chap6/inc/nav.

1. Open the users.php file and add the following (highlighted) jQuery code:

$(document).ready(function() {

 $(‘#accordion’).accordion();

 $(‘#addUser’).click(function(event) {

 event.preventDefault();

 $(‘#contentArea2’).load(‘inc/content/users_add.php’);

 });

});

The element identified by addUser is bound to the jQuery click method to
load the form inc/content/users_add.php into contentArea2.

ptg

IMPROVING THE APPLICATION INTERFACE 233

2. Reload 6-4.php into your browser and click the Users icon.

3. When the jQuery UI Accordion widget loads, you can then click Add User.
The tabbed form should appear in the content area (Figure 6.9).

FIGURE 6.9 The form loaded

into the Web application

interface.

ptg

234 CHAPTER 6 CREATING APPLICATION INTERFACES

Content that would normally extend beyond the bottom of the browser window
is now contained within the bounds of the content area. That area of the interface
will gain a scroll bar when needed. Figure 6.10 shows the appearance of a scroll bar
when the Security tab is clicked due to the amount of content contained on that tab.

Now that you have the basic Web application interface configured and you are
able to load content into various areas easily, let’s look at some additional features
that will enhance the Web application interface.

FIGURE 6.10 The scroll bar

appears automatically because

the content exceeds the size

of the screen area that it has

been positioned in.

<div id=”contentArea2”>

ptg

IMPROVING THE APPLICATION INTERFACE 235

CONFIGURING ADDITIONAL ENHANCEMENTS

Because you are building a Web application, you’ll need to pay attention to how
your users are interacting with your application. Are they using the right-click
mouse function? Are they clicking the back button instead of using navigation
elements? Do you want to limit or modify the user’s ability to access the built-in
functionality provided by the browser? With the answers to these questions in
hand, you can apply some jQuery techniques to accomplish these enhancements.

DISABLING THE RIGHT-CLICK CONTEXT MENU

Many of the action items available from the context menu (Figure 6.11) activated
by a right-click of the mouse button are not applicable in a Web-based application.
Therefore, you can choose to disable the context menu from appearing when the
mouse is right-clicked by a user. With jQuery, you only need to apply a short bit
of code to accomplish this.

Open the jQuery script file that you created earlier, interface.js (located in
chap6/inc/jQuery), and insert the following code before the closing brackets of
the document ready wrapper function:

$(document).bind(“contextmenu”,function(e){

 e.preventDefault();

});

The jQuery snippet binds the contextmenu event to the document and then
applies the preventDefault handler to the context menu. This will keep the context
menu from popping up when the right mouse button is clicked.

As you might have guessed, some jQuery context menu plugins are also available.
These plugins allow you to create custom context menus for your Web applica-
tions. Check out my favorite jQuery context menu plugin at http://abeautifulsite.
net/blog/2008/09/jquery-context-menu-plugin. Let’s add a custom context menu
to one of the interface elements.

1. Open interface.js in the chap6/inc/jQuery folder and place comments
around the code that you created to disable the right-click context menu:

/*$(document).bind(“contextmenu”,function(e){

 e.preventDefault();

});*/

FIGURE 6.11 The standard con-

text menu in Mozilla’s Firefox

Web browser. The options

would not be very helpful in

most Web-based applications.

http://abeautifulsite.net/blog/2008/09/jquery-context-menu-plugin
http://abeautifulsite.net/blog/2008/09/jquery-context-menu-plugin

ptg

236 CHAPTER 6 CREATING APPLICATION INTERFACES

After you have added the comment, you can save the file. The right-click is
now available again; it will be needed for the custom context menu.

2. Open 6-3.php and save a copy as 6-4.php in the chap6 folder. You could add
the code to 6-3.php, but for consistency sake (and a backup of your original
work) making a copy is the prudent route to take.

3. Add the source calls for the jQuery Context Menu CSS and jQuery files to
the head section of chap6/6-4.php (highlighted):

<link rel=”stylesheet” href=”css/interface.css”
p type=”text/css” />

<link rel=”stylesheet” href=”css/spritenav/spritenav.css”
p type=”text/css” />

<link type="text/css" rel="stylesheet"
p href="css/ui/jquery-ui-1.8.12.custom.css" />

<link type=”text/css” rel=”stylesheet”
p href="css/contextmenu/jquery.contextMenu.css" />

<script type=”text/javascript” src=”inc/jQuery/jquery
p -1.5.min.js"></script>

<script type="text/javascript" src="inc/jQuery/jquery-ui
p -1.8.12.custom.min.js"></script>

<script type="text/javascript"
p src="inc/jQuery/interface.js"></script>

<script type="text/javascript"
p src="inc/jQuery/spritenav.js"></script>

<script type=”text/javascript”
p src="inc/jQuery/jquery.ContextMenu.js"></script>

NOTE: The jQuery Context Menu plugin comes with a folder called

images. It is very important that you put this folder into the same folder

where you place the jquery.contextMenu.css file.

ptg

IMPROVING THE APPLICATION INTERFACE 237

4. Create a file called notes.php and save it in the chap6/inc/nav folder.

5. Add the jQuery code to the notes.php file for the jQuery UI Accordion widget:

<script type=”text/javascript”>

 $(document).ready(function() {

 $(‘#accordion’).accordion();

6. Bind the click method to the addNotes element:

 $(‘#addNotes’).click(function(event) {

 event.preventDefault();

7. Define the jQuery AJAX load function to retrieve the proper file, and then
close the script section of the file:

 $(‘#contentArea2’).load(‘inc/content/notes_add.php’);

 });

 });

</script>

8. Build the HTML markup for the navigation accordion:

<div id=”accordion”>

 <h3>Manage Notes</h3>

 <div>

 Add Note

 Edit Note

 </div>

</div>

Because of the work that you did constructing a solid sprite-based navigation
function in interface.js, you can now load chap6/6-4.php into your browser and
click on Notes to make note.php appear in the left content area of the interface.

ptg

238 CHAPTER 6 CREATING APPLICATION INTERFACES

With this working, you can set your sites on creating content that will feature the
jQuery Context Menu plugin.

1. Create a file called notes_add.php in the chap6/inc/content folder.

2. Enter the jQuery code to bind the contextMenu to the noteBody element:

<script type=”text/javascript”>

 $(document).ready(function() {

 $(“#noteBody”).contextMenu({

3. Assign the id notesContext to the menu option of the jQuery Context Menu
plugin, and then close out the script tags:

 menu: ‘notesContext’

 });

 });

</script>

4. Create an HTML form for the content of notes_add.php:

<form action=”#” method=”post” id=”search_form”>

 <fieldset>

 <label>Note Title</label><input type=”text”
 p name=”noteTitle” id="noteTitle" size="64" />

 <label>Content</label><textarea name="noteBody"
 p id="noteBody" cols="64" rows="16"></textarea>

 <label></label><input type="submit" name="saveNote"
 p id="saveNote" value="Save Note" />

 </fieldset>

</form>

ptg

IMPROVING THE APPLICATION INTERFACE 239

5. Build an unordered HTML list to contain each of the items to display in
your custom context menu:

<ul id=”notesContext” class=”contextMenu”>

 <li class=”edit”>

 Edit

 <li class=”cut separator”>

 Cut

 <li class=”copy”>

 Copy

 <li class=”paste”>

 Paste

 <li class=”delete”>

 Delete

 <li class=”quit separator”>

 Quit

6. Reload chap6/6-4.php into your Web browser and click Notes to load the
Manage Notes menu.

7. Click Add Note to see the notes interface appear in the primary content
area of the interface.

ptg

240 CHAPTER 6 CREATING APPLICATION INTERFACES

Because you bound the custom context menu to the noteBody element, you
can now right-click in the text area of the interface to see the custom context
menu (Figure 6.12).

Because the jQuery Custom Context Menu is built on a basic unordered HTML
list, you can easily bind functionality to all of the elements in the list. The CSS for
the jQuery Custom Context Menu is easy to understand and a breeze to extend with
additional icons to support any action that you would like to add to the menu. You
can declare and assign custom context menus to any of your interfaces.

A more vexing issue than the context menu is the often troublesome back button.
Dealing with the back button, and consequently browser history, is an important
factor in developing Web application interfaces.

FIGURE 6.12 The new jQuery

Custom Context Menu widget

is displayed on the Web appli-

cation interface.

ptg

IMPROVING THE APPLICATION INTERFACE 241

HANDLING THE BACK BUTTON

If you want to be a pro at creating Web applications, you must take into account
the browser’s back button and the way that the browser manages history. The back
button is a Web-browser feature that cannot be disabled, so it is best to incorporate
how you will handle the browser’s history and how users will operate the back
button while planning your Web application.

Rather than dealing with the back button from scratch, a better solution is
to turn directly to a jQuery plugin, the Back Button and Query (BBQ) Library by
developer “Cowboy” Ben Alman. The plugin is available at http://benalman.com/
projects/jquery-bbq-plugin and is a small but very effective plugin that allows you
to control the browser history in your Web application. The jQuery BBQ plugin
also allows you to set bookmarks for “pages” within your Web application should
you choose to allow that feature.

Because of the flexibility of the BBQ plugin, it gives the developer a wide array
of options for guiding the user through a Web application’s history. The jQuery
BBQ plugin will give you the power to manage the history of multiple widgets on
a page (e.g., you can control the history of an accordion used for navigation and
a tabbed interface used for data entry at the same time). More important, when
the BBQ plugin is used correctly, it allows you to leave the back button enabled in
your Web application interfaces.

Because there are many ways to apply the jQuery BBQ plugin, I encourage you
to visit Ben’s Web site, read the documentation, and view the examples. Then
download the plugin and build some small-scale examples to get a feel for how
the plugin works and the options that BBQ provides. Once you do that, you’ll be
ready to apply the jQuery BBQ plugin to some of your bigger Web application
interface projects.

One last item you need to attend to when developing Web application interfaces
is to give users of your application helpful hints.

PROVIDING CONTEXTUAL HELP

When you are designing complex Web application interfaces, you should provide
documentation, either printed or online, for your users. The documentation is
intended to guide them through the process of using the application. All too often
you’ll hear people cry, “I don’t need to read the instructions!” and users will dive
into using the application guided by little more than their intuition.

http://benalman.com/projects/jquery-bbq-plugin
http://benalman.com/projects/jquery-bbq-plugin

ptg

242 CHAPTER 6 CREATING APPLICATION INTERFACES

As the Web application developer, you can give visitors using the application
graceful hints when the application may not be quite as intuitive as they (or you)
think it is. To do this, you can provide contextual help.

The contextual help function provides users with more information when they
hover their mouse cursor over elements that have been assigned a particular class
and attribute (Figure 6.13). The contextual help window appears only when the
mouse cursor lingers over the element to avoid driving users crazy with too much
information and too many pop-ups.

To set up the contextual help function, you need to set up the CSS first. Open
the CSS file you created earlier, interface.css, which is located in the chap6/css
folder. Add the following two CSS rules at the end of the file:

.contextHelp {

 cursor: help;

 position: relative;

}

.contextHelpWrapper {

 width: 175px;

 padding: 10px;

FIGURE 6.13 Hovering above

an element on the Web

application interface displays

a contextual help box.

ptg

IMPROVING THE APPLICATION INTERFACE 243

 border: 4px solid #0066CC;

 background-color: #FFFFCC;

 color: #000000;

 position: absolute;

 top: 20px;

 display: none;

 font-weight: bold;

 font-size: 9pt;

 z-index: 10000;

}

The CSS rules change the cursor to alert a user that contextual help is available
for an element and style the contextual help box.

Let’s create the jQuery function to support the contextual help interface.

1. Open the interface.js file you created earlier in the chap6/inc/jQuery folder
to add the contextual help function.

2. Attach the mouseover and mouseout events to the contextHelp class selector
using the delegate method:

$(‘body’).delegate(‘.contextHelp’, ‘mouseover mouseout’,
p function(event){

Thedelegate method is used here to ensure that the contextual help function
is available for all elements with the proper class, even if those elements do
not yet exist in the DOM. For instance, when you load an interface element
that has the contextHelp class by clicking a link, the delegate method
ensures that the element gets attached to the contextual help function.

3. Test to see if the mouseover event has occurred:

 if(event.type == ‘mouseover’){

ptg

244 CHAPTER 6 CREATING APPLICATION INTERFACES

4. Get the title information from the element and store it in the variable
this.helpText:

 this.helpText = $(this).attr(‘title’);

5. Append a div to the current element, which has a class of contextHelp:

 $(this).append(‘<div class=”contextHelpWrapper”>’ +
 p this.helpText + '</div>');

The div is set up to contain the text from the title attribute. This text is
the contextual help information that will be displayed to the user.

6. Remove the title to thwart the normal behavior:

 $(this).removeAttr(‘title’);

Under normal circumstances, the browser will show a title attribute as
a small tool tip.

7. Place the width of the element that has a class of contextHelp into the
variable helpWidth:

 var helpWidth = $(this).width();

The width information will be used to set up where the contextual help is
displayed in relation to the current element.

8. Apply the CSS to define the left edge of the contextual help box based on
the variable helpWidth:

 $(‘.contextHelpWrapper’).css({left:helpWidth-25});

9. Create a function to hold the fadeIn method for the contextual help element:

 function helpDisplay() {

 $(‘.contextHelpWrapper’).fadeIn(400);

 }

The helpDisplay function will be used by JavaScript’s setTimeout method
to delay the appearance of the contextual help element.

ptg

IMPROVING THE APPLICATION INTERFACE 245

10. Set up the setTimeout method to call the helpDisplay function and delay
the visibility by 1250 milliseconds:

 setTimeout(helpDisplay, 1250);

11. Test to see if the mouseout method has been invoked:

 } else if (event.type == ‘mouseout’) {

12. Restore the title attribute to the contextHelp element so that it can be
used again:

 $(this).attr(‘title’, this.helpText);

13. Make the contextual help element disappear by using jQuery’s fadeOut
method:

 $(‘.contextHelpWrapper’).fadeOut(100);

14. Remove the contextual help box and close out the function with the proper
braces and brackets:

 $(‘.contextHelpWrapper’).remove();

 };

});

To use the contextual help function, you apply the contextHelp class along
with a title attribute to any element for which you want to display a helpful
tip. Look at these two markup examples:

<label class=”contextHelp” title=”Make sure to use a strong
p password”>Password</label>

<a href=”#” class=”contextHelp” title=”Add, edit and manage
p application users”>

ptg

246 CHAPTER 6 CREATING APPLICATION INTERFACES

The class attribute is the hook for the jQuery function, whereas the title
attribute contains the text that will be displayed to the user (Figure 6.14).

You can adjust the position of contextual help boxes and delay timing to suit
your tastes and use in your Web applications and Web sites.

FIGURE 6.14 The contextual

help function is attached to

a form element to prompt

the user to provide a strong

password.

ptg

WRAPPING UP 247

WRAPPING UP

The Web application interface has provided you with many additional jQuery
techniques to apply to your Web sites and Web-based applications. You can also
apply the tools provided earlier in the book to create exciting interactivity for your
clients when they are using your applications and Web sites.

In this chapter, you learned how to combine all of your jQuery knowledge into
a package that will serve the needs of a highly interactive Web application. You
applied jQuery UI widgets and developer plugins, along with hand-crafted jQuery
scripts, to create an attractive and useful Web-application template.

Be sure to visit the book’s Web site at www.appliedjquery.com for additional
examples, articles, plugins, and much, much more about Applied jQuery.

NOTE: There are so many more functions and interfaces that you can

create for the Web application interface. Use the foundation provided in

this chapter to experiment with jQuery events, widgets, and plugins.

The interface is far from complete, which will give you many oppor-

tunities to apply what you have learned and to learn more about the

wonderful world of jQuery.

www.appliedjquery.com

ptg

222444888 INDEX

SYMBOLS
$ (dollar sign), using with plugins, 200
) (parenthesis), using to close code, 4
// (double slash), using with

comments, 8
/* (slash-asterisk), using with

comments, 8
} (brace), using to close code, 4

A
Accordion widget

features of, 149
using, 226–229

account page, displaying, 107
actions, examining with Firebug, 11
addClass method, using with

sprites, 223
addMovie form, binding to submit

method, 124
AJAX (Asynchronous JavaScript and

XML), 92. See also JavaScript
handling volume of content,

231–234
including jQuery UI widgets,

226–229
loading multiple items, 230–231

AJAX calls, triggering events for,
118–125

AJAX content updates
basing on request, 110–111
basing on user, 108–110
loading scripts, 112–116

AJAX extras
ajaxSetup low-level interface, 116
JSON (JavaScript Object Notation),

126–133
low-level interfaces, 116–117
triggering events, 118–126

ajax method, using, 117–118
AJAX methods

getScript, 112–116
HTTP request, 93
load, 110–111
post, 103
XMLHttpRequest, 93

AJAX requests
cleansing user-supplied data,

141–144
cookies for identifying users,

139–141
versus JSONP AJAX requests, 128
MD5 hash, 139–140
preventing form submission,

135–138
providing options for, 116
securing, 134
transmitting data securely, 144

AJAX validation
callback for post function, 101
check boxes, 94
connection for PHP function, 93
cookie setup, 98–100
data variable, 101
else statement, 96–97
error message, 101–102
inserting user’s information, 94
logging in users, 105–107
modal window, 104
mysql_query PHP function, 96
mysqlErrorNum variable, 103–104
newName variable, 101
password, 94
PHP for user login, 97–100
PHP registration, 92–100
PHP’s switch method, 93–94
registration form, 94–95
registration function, 102–105
SQL statement, 94–95
user name, 94
user name and blur method, 100
user-name availability, 96–97
validating post method, 100–102
validation file, 92–100
validation function, 100–102

ajaxSetup low-level interface, 116
ajaxStart method

calling waiting indicator, 125
using, 119–121, 123

ajaxStop method
binding, 123
using, 119–121

Alman, Ben, 241

anchor tag, creating, 4
animated graphics Web site, 125
animation

adding to sprite-based navigation,
55–56

easing, 38
animation methods

invisible elements, 30
invoking for modal window, 30
visible elements, 30

application interface
adding sprites to, 224–225
Back button, 241
content area, 206
contextual help, 241–246
CSS (Cascading Style Sheets),

209–214
disabling right-click context menu,

235–240
footer, 206
HTML (HyperText Markup

Language), 207–208
improving sprites, 217–221
layout, 206–207
loading content with AJAX,

226–234
navigation items, 206
primary navigation, 206
resize method, 214–216
secondary navigation, 206
sprite interaction, 221–224

Asynchronous JavaScript and XML
(AJAX), 92. See also JavaScript

handling volume of content,
231–234

including jQuery UI widgets,
226–229

loading multiple items, 230–231
attribute selector, using with

uploads, 70
Autocomplete widget

div tag, 167
features of, 149,167
form input box, 167
script file, 168
selectedAttraction variable, 169

INDEX

ptg

INDEX 249

B
Bach, Christian, 172
Back Button

handling, 241
and Query (BBQ) Library, 241

background color, removing, 22
background image

gradient-filled, 194
resizing, 194–196

bar chart
creating, 183–188
displaying, 186–187

BBEdit, xii
BBQ (Back Button and Query)

Library, 241
Blue-ray Disc example

::contains selector, 112
loading scripts, 112–116
modal window, 112–113

blur method
binding to email input, 62
using with user name, 100

brace (}), using to close code, 4
browsers, xiii

C
caching selectors, 10
calendars, adding to forms, 155–157
callback, using with modal window, 33
cameras.jpg image, using, 85
carousel. See image carousel
carousel file, creating, 37
Cascading Style Sheets (CSS)

applying for application interface,
209–214

border rules, 213
:focus pseudo selector, 211
footer section, 212
for image carousel, 35–37
important property, 209
inner container, 212
navigation areas, 212–213
outer container, 210–211
for Progressbar widget, 163
for sprites, 52–54
styling Web pages with, 18

Cecco, Raff, 191
chained methods, spreading, 8.

See also methods
chaining, explained, 3
Champeon, Steve, 19
charting data, 183–188
Chrome browser, xiii
click event, using with modal

windows, 27–28
click method

sprite interaction, 222
using in DVD catalog, 115

client-side validation, performing,
68–71

Closure Compiler
downloading, 11
packing and unpacking code, 11–14

Cloud Zoom plugin
centering photo, 192
downloading, 191
options, 193
photo container, 192
zoom effect, 193

code. See also jQuery code
closing, 4
packing up, 11–15
sharing, 16

colorText plugin, declaring, 200–202
comments and line breaks, 8
::contains selector, using, 112
content, handling volume of, 231–234
context menu

disabling, 235–240
id notesContext, 238
notes interface, 239
notes_add.php file, 238
notes.php file, 237
plugin, 236
unordered HTML list, 239

contextual help
class attribute, 246
CSS (Cascading Style Sheets),

242–243
delegate method, 243
div, 244
fadeIn method, 244
fadeOut method, 245
helpDisplay function, 244–245

mouseout event, 243
mouseout method, 245
mouseover event, 243
providing, 241–246
setTimeout method, 244–245
title information, 244–246
using, 245–246

cookies
assigning value of, 109
“remember me” value, 140
setting for user login, 98–100
time() function, 99
using MD5 hash with, 139–140
using to identify users, 139–141

cover art, creating for DVD,120
CSS (Cascading Style Sheets)

applying for application interface,
209–214

border rules, 213
:focus pseudo selector, 211
footer section, 212
for image carousel, 35–37
and HTML, 19–22
important property, 209
inner container, 212
navigation areas, 212–213
outer container, 210–211
for Progressbar widget, 163
for sprites, 52–54
styling Web pages with, 18

CSS states, moving elements from, 30
Custom Context Menu widget, 240

D
dashboards, creating, 188
data

cleansing, 142
transmitting securely, 144

Datepicker function, using, 156–157
dates, adding to forms, 155–157
debugging with Firebug, xiii, 10
delegate method

using, 32
using with contextual help, 243

design, planning, 23
dialog boxes, setting widths of, 161

ptg

222555000 INDEX

Dialog widget
autoOpen option, 160
buttons, 161
close method, 162
dialog function, 160, 162
features of, 149, 158–162
modal option, 161
NO button, 162
preventDefault method, 160
reserverequest table, 159
resizable option, 161
sleep function, 159
“Stay with us” tab, 162
Submit button, 160
YES button, 161

div tag, creating, 4
dollar sign ($), using with plugins, 200
DOM (Document Object Model)

API (Application Programming
Interface), 7

examining, 5–6
inspector applications, 6
tree-like structure, 6–7

DOM tree, traversing, 7–10
double slash (//), using with

comments, 8
DVD catalog

binding click method, 115
load method, 114
main page of, 113–115
Summary element, 115

DVD Collection Catalog, cover art, 120
DVD example. See also postdvd.php file

::contains selector, 112
loading scripts, 112–116
modal window, 112–113

dvdcount.js script
loading, 115
setting up, 112

dvdcover.php file, creating, 120

E
each method, using with forms, 61
easing methods

linear, 38
swing, 38

Easing Plugin, downloading, 38

Easy Background Resize plugin
adding to lodge Web site, 194–196
downloading, 194–196
features of, 194
image path, 195

Electronic Frontier Foundation Web
site, 144

elements, selecting, 9
else statement in AJAX validation,

96–97
email addresses

binding blur method, 62
hidden error span, 62
inputEmail variable, 64
.next() method, 66
span element with error, 66
test method, 64–65
validating in forms, 62–66

email validation
performing, 141–142
updating, 137–138

error message, for AJAX validation,
101–102

errors, catching for uploads, 69–71
event handler, binding, 3
events. See also submit event

binding to elements, 32, 34
for form methods, 60
triggering for AJAX calls, 118–125

exif_imagetype function, using, 73
Extensible Markup Language (XML),

versus JavaScript Object
Notation (JSON), 126

F
fadeIn() method, using with modal

windows, 30
fields, completing automatically,

167–170
file extensions

regular expressions for, 120–121
testing for uploads, 70

file uploads. See uploads
Firebug

downloading, xiii, 10
examining actions, 11
features of, 10

handler feature, 10
troubleshooting with, 10

Firefox browser, xiii
fn object, using with plugins, 200
focus function

tabindex attribute, 60
using with forms, 60–62

:focus pseudo selector, using with
CSS, 211

form data, serializing, 103, 125
form elements, clearing, 124
form fields, avoiding blanks, 66–68
form input

for adding movies, 120
client-side validation, 68
completing, 66–68
cursor placement, 61–62
each method, 61
focus function, 60–62
looking for, 61
regular expressions, 63–65

form methods, events, 60
form submission

email validation, 137–138
errorCount function, 135–136
errors argument variable, 136
incrementing submitErrors, 138
password validation, 136–137
preventing, 135–138
$submitErrors variable, 135

forms
adding calendars to, 155–157
adding dates to, 155–157
users_add.php, 232
users_search.php, 230
validating email addresses, 62–66

forums, participating in, 9
functions. See methods

G
get method

closing, 109
using, 108–110

getJSON request method, using with
tweets, 131

getScript method, using, 112–116
Given, J.P., 194

ptg

INDEX 251

gMap plugin
centering map, 182
downloading, 180
features of, 171, 180
loading page, 182
map type, 181
plotting points, 182
properties, 180
setting options, 181
style rules, 180
zoom level, 181

Google Closure Compiler
downloading, 11
packing and unpacking code, 11–14

Google Maps API, popularity of, 180
graceful degradation, 19
GSGD Web site, 38
Gustafson, Aaron, 19

H
“Hello World” example

anchor tag, 4
binding event handler, 3
chaining, 3
completing, 5
document ready function, 3
head section, 4
HTML div, 4
HTML markup, 2
jQuery source file, 2
script tag, 2
selector, 3
span element, 4

hello_world.html file, saving, 5
hover function

image carousel, 39–41
sprite interaction, 222

HTML (HyperText Markup Language)
creating for application interface,

207–209
and CSS, 19–22
unordered list, 239

HTML div, creating, 4
HTML files, referencing jQuery UI

files in, 150–152
HTML form, creating for

notes_add.php, 238

HTML list, unordered, 27
HTML markup, defining for sprite-

based navigation, 51
HTMLDOM elements, selecting, 18
htmlspecialchars() function, using,

142–143
HTTPS security protocol,

considering, 144

I
iframe method

removing from DOM, 125
uploading images with, 124
using with uploads, 75

image carousel
animate method, 40
autoCarousel function, 37, 39
automatic scrolling, 37–39
bodyHeight variable for

thumbnail, 48
building, 34
carThumb class, 45
centering modal window, 49
controlling manual scrolling, 41–44
CSS (Cascading Style Sheets),

35–37
easing animations, 38
enlarging thumbnails, 44–50
features of, 35
function keyword, 37
height of list items, 36
hover functions, 39–41
invisible portions, 37
left margin for CSS, 36
list items, 37
modal window for thumbnail, 48
mouse cursor, 40
moving, 38
moving list items, 38
moving to right, 42–44
naming items, 48
photoModal style rule, 45
photoPathArr array, 46
resetting left margin, 39
restarting automatic scrolling, 41
scrollRight element, 42
setInterval function, 39

splitting thumbnail path info, 46
stop method, 40
stopping scrolling animation, 41
visible portions, 37
width of list items, 36
zooming in on larger images,

44–50
! important CSS property, 209
images, uploading with iframe

method, 124
inc/movieUp.js file. See also movies

ajaxStart method, 123
beginning form handler, 124
binding ajaxStop method, 123
clearing form elements, 124
form handler, 124
modal pop-up window, 123
post method, 125
removing modal indicator, 124
serializing form data, 125
starting, 123
uploading data, 125
uploading image, 124

interaction, planning, 23
interface.css file

contextual help, 242–243
creating, 209

interface.js file
contextual help, 243
creating, 214
opening, 228, 235

Internet Explorer browser, xiii

J
JavaScript. See also AJAX

(Asynchronous JavaScript
and XML)

object literal notation, 126
test method, 72
unobtrusive, 22

JavaScript Object Notation (JSON)
arrays, 126
name:value pairs, 126–127
person object, 127
requirements, 126
returning in functions, 128
versus XML, 126

ptg

222555222 INDEX

JavaScript objects, setting up, 126
jqPlot plugin

$requestArray, 183–184
barMargin option, 187
CSS style sheet, 186
dashboards, 188
downloading, 183
features of, 171
$.jqplot.BarRenderer add-on, 187
JSON array string, 185
margin, 187
mysql_result, 185
renderer, 187
requestArray, 184
requestChart selector, 183
ticks option, 187–188
x-axis of chart, 188

jQuery code. See also code
closing, 4
combining with other code, 18
jsFiddle tool, 16
testing snippets, 17

jQuery Context Menu plugin, Images
folder, 236

jQuery Custom Context Menu
widget, 240

jQuery forums, participating in, 9
jQuery library

downloading, xii
including in progressive

enhancement, 21
jQuery plugins

Back Button and Query (BBQ)
Library, 241

Cloud Zoom, 191–193
colorText, 200–202
Context Menu, 236
creating, 200–202
Easy Background Resize, 194–196
fn object, 200
gMap, 171, 180–182
jqPlot, 171, 183–188
returning this object, 201
Sexy Curls, 197–199
structuring, 202
Tablesorter, 171–178
TinyTips, 171, 178–181
tool tips, 178–181

using $ (dollar sign) with, 200
versus widgets, 148
zWeatherFeedjQuery, 189–191

jQuery UI
customizing, 148–150
downloading, xii
referencing files in HTML, 150–152
Web site, 148

jQuery UI widgets
Accordion, 149, 226–229
Autocomplete, 149
calendars for forms, 155–157
Custom Context Menu, 240
Datepicker function, 156–157
“dialog” for visitors, 158–162
Dialog, 149
design of, 152
field completion, 167–170
onSelect option for dates, 156
versus plugins, 148
Progressbar, 163–167
tabbed interfaces, 152–155
Tabs, 149
ThemeRoller, 148

jquery.colorText.js file, creating, 200
jsFiddle tool, downloading, 16
JSON (JavaScript Object Notation)

arrays, 126
name:value pairs, 126–127
person object, 127
requirements, 126
returning in functions, 128
versus XML, 126

JSON example
DOCTYPE setup, 129
style info for Twitter widget,

129–130
JSON request, setting up, 127–133
JSONP format

cross-domain request, 128
using with tweet data, 127

K
Kastner, Cedric, 180
Kember, Elliott, 198

L
Leonello, Chris, 183
library, including in progressive

enhancement, 21
line breaks and comments, 8
live method, using, 32
load method

invoking, 111
syntax, 110
using, 110–111
using with DVD catalog, 114
using with multiple items, 230–231

lodge Web site
Easy Background Resize plugin,

194–196
page-curl effect, 197–199
sorting table records, 189–190
zWeatherFeed plugin, 189–191

login, creating PHP for, 97–100
login function, creating, 105–107

M
mainNav.jpg sprite

categories of, 50
measurement for, 51

MD5 hash, using with cookies,
139–140

Merritt, Mike, 178
methods, applying to objects, 3.

See also chained methods
modal windows

for AJAX validation, 104
animations, 30
callback, 33
calling, 27–30
centering, 31
centering for thumbnails, 49
click event, 27–28, 32–33
closing, 28, 32–33
creating, 27–30, 123
determining for closing, 33
fadeIn() method, 30
fadeOut function, 33
margins, 28–29
opening, 31
padding, 28–29

ptg

INDEX 253

pop-up window, 123
rel attribute, 28
shaded backgrounds, 31–32
using with scripts, 112–113

movies. See also inc/movieUp.js file
form for, 120
including in discs, 112

mySQL, using, 18
mySQL database, connecting to, 80
mysql_query function

running, 122
for validation, 96

mysql_real_escape_string()
function, using, 142–144

mysql_result, using with jqPlot
plugin, 185

mysqlErrorNum variable, 103–104

N
name:value pair

creating for tweets, 131
parsing, 108
using with get method, 109

naming convention, 48
navigation

making graceful, 27–33
modal windows, 27–30
sprite-based, 50–56

newName variable, using with post
method, 101

.next() method, using with forms, 66
notes_add.php file

creating, 238
HTML form, 238

notes.php file, creating for context
menu, 237

Notepad, xii
Notepad++, xii

O
object literal notation, explained, 126
objects, applying methods to, 3
Opera browser, xiii

P
page redirections, avoiding, 92
page reloads, avoiding, 92
pages. See Web pages
parenthesis ()), using to close code, 4
password

checking for AJAX validation, 94
checking for user login, 97–98
prompting for, 246

password field, avoiding blanks, 67–68
password validation, updating, 136–137
pephoto.sql file, running, 109
pePhotoUp.js file, saving, 70
peRegister.php file, opening, 141
photo table, creating, 109–110
Photographer’s Exchange Web site.

See also Web sites
account page, 107
client-side validation, 69–71
cookies for identifying users,

139–141
email validation, 137–138
errorCount function, 135–136
errors argument variable, 136
file types, 73
file upload form, 69
form inputs, 61
forms, 60
front page, 26
incrementing submitErrors, 138
password field, 67–68
password validation, 136–137
preventing form submission,

135–138
retrieving pictures, 108–110
saving image data, 82–83
server-side validation, 72–73
sprite, 50
$submitErrors variable, 135
upload function, 75–76

photos
retrieving, 108–110
zooming in on, 191–193

photoUpload.php file, locating, 72
photoUservariable, contents of,

109–110

PHP
createThumbnail() function, 85
explode method, 85
imagecopyresampledto function, 87
ImageCreateTrueColor function, 87
mysql_query function, 96
photo upload script, 80
preg_match function, 72
resource, 100
switch method for validation,

93–94
testing capability, 72–73
troubleshooting info for uploads, 83
for user login, 97–100
using, 18
using in server-side validation, 72

PHP functions
for data cleansing, 142–144
htmlspecialchars(), 142–143
mysql_real_escape_string(),

142–144
PHP registration, building for

validation, 92–100
pictures

retrieving, 108–110
zooming in on, 191–193

planning design, 23
plotting data, 183–188
plugins

Back Button and Query (BBQ)
Library, 241

Cloud Zoom, 191–193
colorText, 200–202
Context Menu, 236
creating, 200–202
Easy Background Resize, 194–196
fn object, 200
gMap, 171, 180–182
jqPlot, 171, 183–188
returning this object, 201
Sexy Curls, 197–199
structuring, 202
Tablesorter, 171–178
TinyTips, 171, 178–181
tool tips, 178–181
using $ (dollar sign) with, 200
versus widgets, 148
zWeatherFeedjQuery, 189–191

ptg

222555444 INDEX

post method
callback for, 101
closing, 102
GET method, 108
invoking, 103
using with ajaxSetup, 116–118
using with inc/movieUp.js file, 125
validating, 100–102

postdvd.php file. See also DVD
example

creating, 121
database connection, 121
database update, 122
running SQL query, 122
sleep timer, 122

preventDefault setting, using with
submit event, 102–103

Progressbar widget
calling, 165
CSS (Cascading Style Sheets), 163
CSS rules, 164
displaying, 165–166
fading in, 165
features of, 163
hiding, 164
removing, 166
setting margin, 164
shade, 163–164
using to close code, 163
z-index, 164

progressive enhancement
applying principles of, 27
examples, 19–22
explained, 19
HTML and CSS, 20
including jQuery library, 21

Q
query strings, identifying, 108

R
registration function

preventDefault setting, 102–103
serializing form data, 103
setting submit event, 102–103
starting, 102

registration window, fading out, 105
regular expressions

for file extensions, 70, 120–121
using with forms, 63–65
using with thumbnails, 85
using with tweets, 131–132

return false;
anchor tag, 15
encountering, 15
preventDefault();call, 15–16
stopPropagation(), 15

right-click context menu, disabling,
235–240

S
Safari browser, xiii
script tag, using to close code, 4
scripts. See also server-side scripts

::contains selector, 112
loading dynamically, 112–116
modal window, 112–113
for tweets, 130–133

Secure Sockets Layer (SSL), 144
security certificate, considering, 144
security protocol, HTTPS, 144
selectors

binding event handlers to, 3
caching, 10
::contains, 112
creating, 3
reading, 9
requestChart, 183

serializing form data, 103
server, retrieving info from, 110–111
server-side scripts, securing, 141–142.

See also scripts
server-side validation

developing for forms, 72–73
exif_imagetype function, 73

Sexy Curls plugin, using, 198–199
sites. See Web sites
slash-asterisk (/*), using with

comments, 8
sleep function, using with Dialog

widget, 159
sleep timer, creating for

postdvd.php, 122

Smith, George, 38
span element, 4
sprite interaction

addClass method, 223
click function, 222–223
creating, 221–224
hover function, 222
mouseout section of hover event,

222–223
span element, 222
span selected element, 222

sprite-based navigation
animation, 55–56
background images, 52–53
background position, 53
column position, 53
column width, 53
creating, 50–56
CSS layout, 50
defining markup, 51
hover effect, 56
layout of items, 54
mainNav.jpg sprite, 50–51
span background-position, 53
span element, 55–56
spriteNav rule, 52
sprites, 52–54
width position, 53
x- and y-axes, 53

spritenav.css file, creating, 218
spritenav.js file

creating, 221
packing, 11–14
unpacking, 14

sprites
adding to application interface, 223
anchor tags, 218
background-position, 219–220
base width, 219
CSS (Cascading Style Sheets),

218–221
images, 221
span elements, 219–220
uses of, 54

SSL (Secure Sockets Layer), 144
“Stay with us” tab, navigating to, 162
storyboards, using, 23

ptg

INDEX 255

styles, applying with ThemeRoller
widget, 149

submit event, setting, 102–103. See
also events

submit method, binding addMovie
form to, 124

submitErrors, incrementing, 138
$submitErrors variable,

initializing, 135
SXSW Interactive conference, 19

T
tabbed interfaces

creating, 152–155
div tags, 152–153
unordered list, 153

tabindex attribute, using with focus
function, 60

table records, sorting, 172–177
Tablesorter plugin

arrival dates, 177
columns, 176
conditional check, 174
features of, 171
HTML markup, 174
HTML section, 173
HTML table output, 175
requests id, 174
sorter property, 174
sorting records, 176–177
tbody section, 175
testing for data, 174
thead section, 175
unsorted data, 177
using, 172–177

Tabs widget, features of, 149–155
text editors, xii
ThemeRoller widget

choosing styles with, 149
downloading, 148

this object, returning for plugins, 201
thumbnails

createThumbnail() function, 85
creating for uploads, 83–88
height and width for, 86
naming, 48

time() function, using with cookie, 99

timeout, setting for uploads, 77–79
TinyTips plugin

creating on tabs, 179
downloading, 178
features of, 171
setting up, 179
source references, 178–179

Tool tips. See TinyTips plugin
tweet data, returning in JSONP

format, 127
tweets

containing in name:value pairs, 131
getJSON request method, 131
hash tags, 132
regular expressions, 131–132
script for, 130–133
search @ prefix, 132

tweetText, inserting anchor tags
in, 132

Twitter, creating URL access to,
130–131

Twitter API, popularity of, 127
Twitter widget

body section, 130
function of, 133
style info for, 129–130

U
Ullman, Larry, 100
unobtrusive JavaScript, 22
unordered HTML list

creating, 239
example of, 27

uploaded files
beginning loop for, 80
connecting to mySQL database, 80
createThumbnail function, 81
processing, 80–81
validation code, 81

uploads
attribute selector, 70
callback-style functionality, 77–79
clearing input fields, 79
client-side jQuery, 76
client-side validation, 69–71
creating thumbnails, 83–88
error span for file types, 69–71

fading in confirmation message, 78
fading out confirmation message, 79
file types, 69–70
iframe, 75–76
inputLength variable, 77–78
inserting image information, 82–83
modal windows, 78
performing, 74–75
PHP code, 75
PHP troubleshooting info, 83
removing confirmation modal, 79
saving image data, 82–83
scripting, 76–77
server-side validation, 72–73
setTimeout function, 77–79
SQL query, 82
thumbnails, 83–88

user login, creating PHP for, 97–100
user name, in use, 102–103
users

identifying via cookies, 139–141
informing with Progressbar, 163–167

users_add.php form, loading, 232
users_search.php form, creating, 230
users.php page, creating, 227
user-supplied data, cleansing,

141–144

V
validation. See AJAX validation;

client-side validation; email
validation; password validation;
server-side validation

visitor, establishing “dialog” with,
158–162

W
waiting indicator, calling, 125
weather, predicting, 189–191
Web application interface. See

application interface
Web pages

curl effect, 198–199
features of, 5
loading portions of, 111
styling with CSS, 18

ptg

222555666 INDEX

Web sites. See also Photographer’s
Exchange Web site

animated graphics, 125
Cloud Zoom plugin, 191
Easing Plugin, 38
Easy Background Resize plugin,

194–196
Electronic Frontier Foundation, 144
Firebug download, xiii, 10
gMap plugin, 180
Google Closure Compiler, 11
GSGD, 38
jqPlot plugin, 183
jQuery UI, 148
jsFiddle tool, 16
regular expressions, 63
Tablesorter plugin, 172

ThemeRoller, 148
TinyTips plugin, 178
zWeatherFeedjQuery plugin, 189

widgets
Accordion, 149, 226–229
Autocomplete, 149
calendars for forms, 155–157
Custom Context Menu, 240
Datepicker function, 156–157
“dialog” for visitors, 158–162
Dialog, 149
design of, 152
field completion, 167–170
onSelect option for dates, 156
versus plugins, 148
Progressbar, 163–167
tabbed interfaces, 152–155

Tabs, 149
ThemeRoller, 148

X
XAMPP, xiii
XML (Extensible Markup Language),

versus JavaScript Object
Notation (JSON), 126

Z
zWeatherFeedjQuery plugin

adding to lodge Web site, 189–190
downloading, 189
RSSlocation code, 190–191

ptg

This page intentionally left blank

ptg

Unlimited oniine access to all Peachpit, Adobe

Press, Apple Training and New Riders videos

and books, as well as content from other

leading publishers including: O'Reilly Media,

Focal Press, Sams7 Que, Total Training, John

Wiley & Sons, Course Technology PTR, Class

on Demand, VTC and more.

No time commitment or contract required!
Sign up for one month or a year.
Allfor$19.99amonth

SIGN UP TODAY
peachpit.com/creativeedge

creative
edge

ptg

You love our books and you
love to share them with your colleagues and
friends...why not earn some $$ doing it!

If you have a website, blog or even a Facebook page,
you can start earning money by putting a Peachpit
link on your page.

If a visitor clicks on that link and purchases something
on peachpit.com, you earn commissions* on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post an ad and
we’ll take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.
To learn more go to:
http://www.peachpit.com/affiliates/
*Valid for all books, eBooks and video sales at www.Peachpit.com

Join the
PeachPit
AffiliAte teAm!

	Contents
	Introduction
	Welcome to jQuery
	CHAPTER 1 INTRODUCING JQUERY
	Making jQuery Work
	Working with the DOM
	Learning a Few jQuery Tips
	Selecting Elements Specifically
	Making Quick Work of DOM Traversal
	Troubleshooting with Firebug
	Packing Up Your Code
	Using Return False
	Fiddling with jQuery Code

	Combining jQuery with Other Code
	Starting with HTML
	Styling Web Pages with CSS
	Using PHP and MySQL

	Progressive Enhancement
	Planning Design and Interaction
	Wrapping Up

	CHAPTER 2 WORKING WITH EVENTS
	Using the Photographer’s Exchange Web site
	Making Navigation Graceful
	Creating and Calling Modal Windows

	Binding Events to Other Elements
	Building an Image Carousel
	Creating Sprite-based Navigation

	Wrapping Up

	CHAPTER 3 MAKING FORMS POP
	Leveraging Form Events
	Focusing on a Form Input
	Validating Email Addresses
	Making Sure an Input Is Complete

	Tackling Uploads
	Performing Client-side Validation
	Developing Server-side Validation
	Uploading Files

	Wrapping Up

	CHAPTER 4 BEING EFFECTIVE WITH AJAX
	Using AJAX for Validation
	Building the PHP Registration and Validation File
	Setting Up the jQuery Validation and Registration Functions
	Logging in the User

	Using AJAX to Update Content
	Getting Content Based on the Current User
	Loading Content Based on Request
	Loading Scripts Dynamically
	Using jQuery’s AJAX Extras
	Using JSON

	Securing AJAX Requests
	Preventing Form Submission
	Using Cookies to Identify Users
	Cleansing User-supplied Data
	Transmitting Data Securely

	Wrapping Up

	CHAPTER 5 APPLYING JQUERY WIDGETS
	Using the jQuery UI Widgets
	Customizing the jQuery UI
	Including jQuery UI Widgets

	Using jQuery Plugins
	Beefing Up Your Apps with Plugins
	Pumping Up Your Sites

	Rolling Your Own Plugins
	Wrapping Up

	CHAPTER 6 CREATING APPLICATION INTERFACES
	Establishing the Foundation
	Creating the HTML
	Applying the CSS
	Making the Interface Resizable

	Improving the Application Interface
	Creating Better Sprites
	Loading Content with AJAX
	Configuring Additional Enhancements

	Wrapping up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

