

The process of designing and building today's dynamic Web applications
comes with a host of challenges not typically solved by traditional project
management methodologies. A wealth of practical resources, Real Web Project

Management: Case Studies and Best Practices from the Trenches is a book of
solutions for designing, managing, and delivering virtually any type of Web-
based project under even the most challenging of conditions.

Based on solutions implemented from actual, real-world scenarios, this
practical book offers a complete road map for navigating every facet of a
contemporary Web project. Filled with tips and techniques, it provides
practices to implement and pitfalls to avoid to ensure success. Beginning by
outlining the responsibilities of the project manager, this complete and
comprehensive guide then covers team assembly and communication, project
definition, change management, planning strategies, and workflow before
moving on to the design, build, and delivery stages. The book's accessible
format also provides immediate hands-on solutions for project managers
seeking a quick answer to a particular problem.

Issues covered include:

• The Web project manager--definitions and responsibilities
• The project team--assembling and tips for effective collaborative

communication
• The project--defining and planning, plus managing change in any type of

environment
• The Workflow--processes and analysis
• The design and build phases--managing and quality control
• The delivery of a completed project

All of this makes Real Web Project Management an essential reference for the
working project manager, or for those new to the field. It is the most

comprehensive resource available for planning, managing, and executing
successful Web-based applications.

 Copyright

What Others Are Saying About Real Web Project

Management

 Forward

 Preface

 Our Approach

 The Use of Case Studies and Interviews

 Who Should Read This Book

 Acknowledgments

 About the Authors

Chapter 1. The Project Manager: Who You Are and What

You Do

 Who You Are

 What You Do

 Summary

 Chapter 2. Web Team Roles

 Common Web Team Roles

 Common Team Problems

 Case Study: Startup Breakdown

 Summary

 Chapter 3. Communication Cues

 Communication: What It Is

 Communication: What It Isn't

 Communication Best Practices

 Case Study: Peeling the Corporate Onion

 Summary

 The Voice of Experience

 Chapter 4. Defining the Project

 The Creative Brief

 Project Documentation

Case Study: Defining the Project with HTML

"Shells"

 Summary

 Chapter 5. Managing Change

 A New Perspective on Scope

 Classic Scope Control

 Managing Scope Change

 Common Scope Headaches

 Summary

 Extreme Programming

 Chapter 6. The Art of Planning

 The Project Schedule

 Infatuation with Planning Software

 Planning by the Numbers

 Planning Pitfalls

 Case Study: Planning Software Overload

 Summary

 Chapter 7. Learning to Love Meetings

 Why Are We Here?

 Common Project Meetings

 Case Study: The Exploding Meeting

 Summary

 Chapter 8. Workflow

 Workflow for the Web

 Creating Workflow Standards

 Content Production Workflow

 Summary

 Chapter 9. Managing the Design Phase

 Is Information Architecture the Designer's Job?

 Design Production

 Design Production Phases

 Internal and External Design Groups

 How Technical Do Designers Need to Be?

 Summary

 The Information Architect Role in Practice

 How We Manage Design

 Chapter 10. The Technical Build

 Anxiety over the Technical Build

 Model–View–Controller

 A Generic Technical Build

 Code Review Guidelines

 Production Challenges

 Case Study: A Recipe for Disaster

 Summary

 Chapter 11. Surviving Quality Assurance

 A Common Scenario

 Quality Assurance for the Web

 What Does QA Test For?

 How Does QA Test Web Sites?

 The Testing Process

 The Politics of QA

 Case Study: Burning QA

 Summary

 Chapter 12. Getting It Out the Door

 The Final QA Phase

 Launch Deliverables

 Going Live

Case Study: The Most Expensive Launch that

Never Happened

 Summary

 Chapter 13. Leading Organizational Change

 The Invisible Team Member

 Common Organizational Structures

 Early Stages of Project Management

 The Project Management Office

Case Study: Establishing Web Project

Management at a Media Company

 Summary

 Appendix A. Project Quick-Start Guide

 Brochureware

 Business-to-Business Portals ("Vortals")

 E-Commerce Web Sites

 E-Marketing Projects

 International Web Sites

 Intranets

 Appendix B. Technology for the Web Project Manager

 What You Really Need to Know—Frameworks

 Object-Oriented Design

 Web Services with XML

 Content Management Systems

 Digital Rights Management

 Appendix C. Useful Web Sites

 Project Management Sites

 Web Development and Technology Sites

Graphic Design and Information Architecture

Sites

 Glossaries

 Hybrids

 Recommended Reading

Copyright

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial caps or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk
purchases and special sales. For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Shelford, Thomas J.

Real Web project management : case studies and best practices from the trenches /
Thomas J. Shelford and Gregory A. Remillard.

p. cm.

Includes bibliographical references and index.

ISBN 0-321-11255-5 (alk. paper)

1. Web site development. 2. Project management. 3. Computer software
development.

I. Remillard, Gregory A. II. Title.

TK5105.888.S485 2002

005.2'76--dc21 2002026276

Copyright © 2003 by Thomas J. Shelford and Gregory A. Remillard

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior consent of
the publisher. Printed in the United States of America. Published simultaneously in
Canada.

For information on obtaining permission for use of material from this work, please
submit a written request to:

Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled and acid-free paper.

1 2 3 4 5 6 7 8 9 10— MA— 0605040302

First printing, October 2002

Dedication

To our wives, Jackie and Kirstin, for putting up with late nights and frayed nerves
as we worked on obscure project management topics of no special interest to
people at cocktail parties, and to the dedicated and passionate Web development
professionals with whom we have worked over the years.

What Others Are Saying About Real Web Project Management

"If you're doing any kind of Web project, you need to have this book
beside you. Its contents are so clearly drawn from real-world
experience of what works and what doesn't that you'd be nuts to try to
do your project without it. Add to that the real-life examples and
templates and it'd be hard to see why any Web project manager
wouldn't want to own this book."

— Fergus O'Connell, Chairman and CEO of ETP and author of How
to Run Successful Projects III: The Silver Bullet, Third Edition

"The authors achieve their implicitly stated purpose, which is to coach
Web project managers on the theory, reality, and practice of their art
form. The language and tone is easy to read. That makes the book
approachable and nonthreatening."

— Russell Nakano, President, Navaha Inc., and author of Content Web
Development

"The book is a very complete, impressive collection of insights and
tips! I'd recommend this book especially to new project managers or
other functional managers who want to understand how Web projects
work."

— Tim Horgan, Senior Vice President/Online CXO Media Inc., an
IDG Company

"After experiencing scope creep on every project I have ever worked
on, it was liberating to get the project manager's perspective on how a
project should be managed. Applied to my recent projects, what I've
learned from Real Web Project Management has become core to the
way in which I work, allowing me to liberate the other developers and
actually meet deadlines with quality code. This book has become an
essential part of my techie library."

— David Kitchen, Senior Developer Premium TV (NTL)

Forward

I have been immersed in Web-based business initiatives for a long time.

I have worked closely with several (in fact, many) Web project managers, and I
currently have the good fortune to work among the very best and brightest— Lydia
Callaghan, Mike Jones, Michael Dugan, and Jeff Bauer. The role of project
manager for a Web-based business is highly complex and often very
misunderstood, most notably by project managers themselves.

This book characterizes and details the various roles that contribute to successful
Web projects and also coaches the reader on how best to run projects, including
"how to":

• Run productive meetings
• Win the confidence of key contributors and the whole team
• Deal, constructively, with conflict
• Manage expectations
• Win

Real Web Project Management will prove to be a valuable book to those new to
the project management job because its goal is to mentor that group of readers. It's
also aimed at giving seasoned project managers an opportunity to review and
reflect on what they have already experienced while working to refine their skills
in this increasingly important profession and discipline.

Our industry is reinventing itself and the limited people resources that Web
projects have need to be managed judiciously. This means, simply, high
productivity and low cost. It is absolutely critical for Web-based projects to be
executed with precision in order to meet their business objectives.

A person who is well trained in Web project management is essential to the
success of Web-based business initiatives, and I feel that Real Web Project
Management is a very useful book, written by experienced artisans about their
well-developed craft.

Michael E. Smith
Chief Technology Officer
Forbes.com

Preface

Like many of our fellow Web project managers, we came to the role, or rather the
role came to us, suddenly and somewhat unexpectedly. Without really knowing it,
we had been preparing for the role through our individual professional experiences
for some time. We were familiar enough with the project lifecycle to be able to
distinguish one end of a project from the other, but the more refined aspects of
project management were as yet unknown when we assumed our new
responsibilities. It was time to discover just what project managers actually are and
what they actually do.

The search for knowledge began with Yahoo! At the time, our search turned up
only a small handful of Web sites devoted to project management but nothing
Web-specific. We did discover the Project Management Body of Knowledge®
(PMBOK®) from the Project Management Institute (PMI). PMBOK, and other
project management books, taught us basic, traditional project managment
processes and methods that had been used in other industries for years. We felt
reassured with this newfound knowledge but at the same time a little uneasy
because we still could find nothing specific on Web project management. "That's
all right," we thought. "A project's a project— right?"

As we set out to mimic our colleagues in the more mature branches of software
project management, a dark, uneasy feeling entered the pits of our stomachs at the
kickoff meeting of every new project. Somehow, in spite of everything we had
recently read about process and methodology, we knew we were going to end up
doing the one thing we felt sure would betray the very premise of project
management: wing it.

The disconnect between the correct process and what happens in real life has been
a source of growing unease among Web project managers. For a time, many people
explained away the problem by pointing to the inexperience of the industry. It was
assumed that once traditional software development processes and best practices
were understood by immature Web professionals, the chaos would subside. Well,
not quite. As we gained more experience, project by project, we discovered that the
harder we tried to adhere to the use of the traditional project management methods,
the more frustrated we became and the more chaotic the atmosphere seemed.

How do you hit a hard-and-fast completion date when the specifications for the
project are changed and expanded daily by the very person who is mandating the
completion date? In your project plan, how do you account for the time your star
developer spends getting in the mood to work by shooting minibasketball free
throws for a couple of hours, followed by a donut run, and then a few quick games
of UNO with the graphic designer? This was our reality. Knowing when or how to
implement overengineered or seemingly inapplicable project management
techniques like "force field analysis" or "interrelationship digraphs"caused us to
second guess our approach to the "science" of project management. We needed
techniques and processes we could implement NOW that would garner us the
greatest results in the shortest amount of time.

Because of the continued rapid growth of the Web, the constant changes to the
technologies that support it, and the frenzied, media-driven expectations and
mythologies that surround it, developing Web sites using only traditional project
management methodologies adopted from other industries just was not enough to
get the job done. Many traditional methodologies rely on the existence of a fixed
scope and clear, measurable objectives. Web site design and development,
however, is not like building a rocket or releasing an off-the-shelf software
product. Web teams must collaborate in a continually unfolding creative process,
which is often more of an art than a science.

Traditional methods will get you part way there. Basic process building blocks can
be used with great success and should be. In this book, we demonstrate some of the
basic methods as they relate to Web development. But we also demonstrate where
traditional methods fail and discuss how the ability to improvise and think on your
feet will serve you far better than a painstakingly constructed work breakdown
structure or GANTT chart.

It all boils down to this: There is no accepted, proven, documented, or foolproof
process for developing Web sites or Web applications. You use what works, and

what works you glean from experience. We certainly don't think we have a
patentable method, but we do have a lot of experience; and we know what has
worked for us and our peers in the industry.

Our Approach

In writing this book, the goal was to spare the new project manager the pain of
learning project management theories, processes, and terminology that would
cause only confusion and frustration when they were applied to the Web
development arena. We wanted to chronicle our experience and describe the
methods and processes that have worked by showing them at work in real-world
situations.

From the moment we embarked on this project, we decided that the best approach
to recounting experiences was to be as lighthearted as possible without
undermining the point of the lessons. We are the first to admit that project
management for the Web, or any industry for that matter, is a pretty dry topic. We
hope that a little humor mixed into the content will keep the material engaging.
One thing we've learned from our experiences as project managers is that you must
maintain a sense of humor— without it you will lose the ability to lead effectively,
and your life at work will be tedious. By the same token, why should reading a
book about your profession be tedious? Simple answer: It shouldn't.

The Use of Case Studies and Interviews

What's the use of a lot of theoretical mumbo jumbo without some illustrative
material to prove or disprove the theory? In our early search for project
management knowledge, we read many books that were long on theory but short
on examples of real-life application. We wanted to see an example of a "force field
analysis" in action. More to the point, we wanted to see an example of a "force
field analysis" in action on a Web project in full meltdown mode with only two
days to go before launch. While working our way through project after project, we
discovered traditional methodologies that worked and many that did not. We found
other methodologies and techniques that could be tweaked to fit into the Web
environment. After a couple of years, it dawned on us that the hundreds of e-mail
threads, scope documents, and project plans we had drafted contained our own

project management body of knowledge. The basis for this body of knowledge was
experience: the real-life projects we had managed.

As we interviewed colleagues and peers in the Web development industry for this
book, we were provided with more case studies and stories that could be used to
illustrate project managment methods. We found that the experiences that
resonated the most with colleagues were not the huge successes but the dismal
failures. To be truly helpful and instructive, we have chosen to publish case studies
and interviews that illustrate things that can and often do go wrong during a Web
development project. In order to avoid any legal difficulties from sensitive
corporations and their attorneys, we have fictionalized the stories recounted here
and changed the names to protect the not-so-innocent. But be assured: The stories
herein are all based on real-life events; we couldn't have made up some of this stuff
if we tried.

Who Should Read This Book

This book was written for people who are new to the project manager role in the
Web development industry. Real Web Project Management will provide those of
you who come to the role from more specialized expertise, such as programming
or design, with an introduction to the world of Web development from a manager's
or generalist's perspective. We also hope the book will provide a resource for fresh
ideas and inspiration to veteran Web project managers who may recognize
themselves in some of the case studies and situations described in the book.

Through frontline experience and during the many interviews conducted for this
book, it became crystal clear that the role of the project manager in the Web
development industry has come to be considered indispensable. This is true for
both interactive agencies and internal Web development or IT departments. Web
project management has become a crucial success factor for a huge variety of
organizations. Having worked with many unfortunate companies that lack solid
project management practices, we believe that reading this book will be worth your
time. Please enjoy it, and send any feedback to feedback@realwebprojects.com.

Acknowledgments

The authors thank the following individuals for their support of this project.

• Tracy M. Brown, for contributing content to Chapters 6 and 8, as well as for
her invaluable editorial feedback as a reviewer.

• Rich Caccappolo, for contributing content to Chapter 13.
• Alicia M. Carey, assistant editor, Addison-Wesley Professional, for her

unwavering confidence in the vision and approach of this book.
• Susan Dorward, for contributing content to Chapter 13.
• Stephanie Kip-Rostan, literary agent at James Levine Communications Inc.,

for her advice and guidance throughout the complicated process of
publishing a quality professional reference book.

• William Webb, for contributing content to Chapter 12.

About the Authors

Thomas J. Shelford is a partner in Project Calibrate™ , a project management
consulting firm focused on providing best practices for Web teams
(http://www.projectcalibrate.com). Tom began his career on the Web as the
technical production manager of a major content portal and has witnessed Silicon
Alley's explosive dot-com lifecycle first-hand. He is also a senior consultant at
SeaState Internet Solutions (http://www.seastatesolutions.com), a freelance Web
development shop.

During his career, Tom has managed dozens of Web projects, including content
sites, e-commerce sites, e-marketing campaigns, and internationalization efforts.
These projects have led to an interest in content management systems and user
interface design. Tom advocates an interdisciplinary approach to the Web, and his
eclectic background includes mathematics and illustration in addition to project
management.

Gregory A. Remillard has been managing Web development projects for more
than five years. He was the technology manager at Parents.com and is currently a
Web strategy consultant. Greg is also a partner in Project Calibrate™ .

When not obsessively managing Web development projects or providing Web
strategy to Fortune 500 companies, Greg can be found behind the mixing console
indulging his other obsession: recording and mixing music.

Chapter 1. The Project Manager: Who You Are and What You Do

Who You Are

What You Do

Summary

Who You Are

Project management for Web development projects is very similar to project
management for other industries. The basic tasks are the same: write
documentation, create timelines, manage deliverables and milestones, facilitate
meetings, manage the team, and provide a single point of contact for everyone
involved in the project. These are core skills you will learn over the course of your
first few projects, and many are covered in this book. But how does the Web
project manager differ from, say, the software development project manager? The
difference lies not so much in the basic role itself but in the dynamics surrounding
a Web development project and how you understand and deal with the
expectations and situations that typically are present. What differentiates Web
project managers is that they manage projects that, by their very nature, are forever
in flux. The promise of the Web from a development perspective— easy to master
and implement technology— can also be its biggest handicap. Client expectations
still tend to be influenced by the notion that changes to specifications are simple to
execute and the direction of the project can be turned on a dime.

When Moe's Construction Company builds a bridge, they work from a plan that
has been engineered to a very fine level of detail. Moe knows what that bridge is
going to look like and what it's going to do long before the first rivet is pounded
home. If only you were as lucky as Moe. Rarely will a finished Web site or Web
application resemble the final specification that was signed off at the beginning of
the project. There are many factors that contribute to the huge variance in what was
originally conceived and what was finally delivered. These are some of the more
common factors.

• Changes in technology. Web technologies change about every six months.
• Increase or decrease in the project budget. If the budget is determining the

scope of the project instead of the other way around, expect the scope to
change as the client attempts to negotiate for more functionality or finds

more funding. There will also be occasions on internal projects where the
budget is reduced and the scope of the project must be scaled back
appropriately.

• Competition in the marketplace. If AcmeWidgets.com is your client's
competition, and they just rolled out an e-commerce engine that can read
minds and completes the order process without requiring a single keystroke
by the user, then be ready for your client to demand the same functionality.

• Personal agendas of team members. As mentioned before, advances in
technology continually allow ways to do things better, faster, or just plain
differently. Part of the fun of this industry is utilizing the ever-changing
tools and methods. The problem is that on occasion someone will try out a
new tool or method at the expense of the client and the project.

• Changes in the business model. There are still very few concrete, irrefutable
models for turning a profit online. As the public's and Wall Street's
perceptions of the Web change from positive to negative and back again,
Web entrepreneurs are more apt to change their business model to match the
business plan flavor of the week— even in the middle of the project build.

All of these factors not only weigh heavily on your projects but also influence who
you are from a professional perspective. Because of the fluid nature of these
factors, scope, expectations, and specifications will change as the project
progresses. You have to be completely comfortable with change because that, more
than anything else during your career as a Web project manager, is what you will
be managing most often. Change is what this industry is all about.

The Best Seat in the House

Being the project manager on a pressure-filled, high-stakes Web development
project is the professional equivalent of riding an out-of-control roller coaster day
in and day out for months at a time. If this analogy turns you off, keep in mind that
in addition to the adrenaline-fused ups and downs that make up your work day, you
are also at the center of every major decision that influences the project and
potentially the organization. You will be tapped by the decision makers to weigh in
on key issues, and your opinion will be valued and constantly solicited.

At different points during the course of your projects you will have access to just
about every level of your company or your client's company. In the space of half
an hour you will talk business strategy with the CEO and also show the part-time
HTML intern how to use style sheets. You will be trusted with sensitive
information and know most of the project details before everyone else does. The

insider status you maintain affords you the best seat in the house, and the
knowledge and experience that come with this status will continually enrich your
career.

What You Do

Summing up the project manager role in one tidy sentence that you can pull out at
Thanksgiving to explain to Aunt Martha what you do for a living is not easy. The
tasks you are charged with are widely varied and require skills ranging from the
ability to write and speak well to understanding the principles of a relational
database. When you tell Aunt Martha that you "manage Web development
projects," chances are she'll respond with a kindly, "That's nice, dear" and return
her attention to her glass of wine. However, Uncle Dick may not let you off the
hook so easily and will want to know just what this "Web development" stuff is all
about. In that case, here is a short list of the tasks that comprise the Web project
manager role and provide a high-level view of what you do.

• Facilitating communication among members of the team and the client.
• Setting the technical, functional, and design scope of the project.
• Creating and maintaining project documentation, including creative briefs,

functional specifications, and design style guides.
• Establishing and maintaining the project timeline.
• Managing the project milestones.
• Facilitating meetings.
• Managing the handoff of deliverables from one resource group to another.
• Managing internal and external conflicts.
• Providing motivation and leadership to the project team.

You will notice that these tasks require a widely varied range of skill sets. The
Web project manager is considered a generalist with just enough knowledge of
every disipline used on a Web project to be conversant with the people performing
the work and the person paying for it.

These tasks require skills that are divided into two classes: hard and soft. Hard
skills tend to be composed of specialized knowledge that allows you to perform a
specific discipline-related task like design a user interface or write programming
code. Soft skills, such as the ability to negotiate and motivate, allow you to
collaborate with others and facilitate high-level performances from your team.

Each chapter in this book will cover one aspect of the project manager's duties
during the course of a Web development project. Each chapter will be weighted

toward a set of hard or soft skills , such as the steps involved in the technical build
(Chapter 10) or managing the graphic design process (Chapter 9). What is
important to keep in mind and what this book attempts to demonstrate is that for
any given task the project manager is performing, a combination of both hard and
soft skills is absolutely necessary to be successful.

The Enabler

During the course of managing a Web development project you will be enabling
many things, both large and small, tangible and intangible, to occur. Before the
project begins you will be enabling the project sponsor or the client to picture his
or her idea or concept in the finished form. You will reveal their vision by relating
their idea back to them verbally in nontechnical language or through the use of a
creative brief, page map, or site map. During the course of the project you will be
educating the client, which will help them to better understand and articulate their
expectations and better comprehend each phase of the project.

During the course of a project you will also enable the people on your team to
perform their jobs effectively and relatively free of stress. Through effective
management, communication, and experience you grease the wheels of production
and keep the team focused and on task. You provide the necessary answers to
questions about the specification, the design, the timeline, and the client. You
enable better interpersonal relationships among your peers by your ability to
resolve conflict and smooth ruffled feathers.

The ability to enable others to do their jobs is an often overlooked and rarely
mentioned aspect of the project manager's role. However, this very trait is what has
many companies and organizations clamoring for more and better project
management practices tailored to the Web development industry.

Summary

Good project managers who are capable of efficiently delivering Web development
projects are in great demand. From a development and business perspective,
project management is the most crucial determining factor of a project's success or
failure. The focus on good project management in New Media and Web
development companies has become so acute that when investors and potential
clients alike are analyzing a company, the first thing they try to ascertain is
whether the company has an established, mature, and utilized project management
capability.

If you have just recently come to the role of Web project manager, then reading
this book will hopefully save you a lot of frustration, worry, and embarrassment as
you learn your craft. This book should not be used as a crutch, and it will not
address every potentially difficult situation or obstacle you find yourself up
against. This is not what this book is intended for, but reading it and absorbing the
lessons in each chapter and case study will give you the necessary insight into the
role of the Web project manager and the fundamental skills to grow and devise
methods for overcoming the unique challenges you will face.

Chapter 2. Web Team Roles

Key Topics

• Web Development Team Roles
• The Producer and Project Manager Relationship
• Working with Web Developers

Being a Web project manager means that you are coaching a diverse team of cross-
functional experts whose talents range from banner buying to data modeling.
Success depends not only on the project manager's familiarity with each team
member's deliverable but also on the ability of this diverse group to work together.
Leading a disparate band of talented, well-paid, and sometimes cranky experts into
the white heat of a large-scale, expensive, and difficult development project is no
picnic. The team will look to the project manager for leadership, solace,
inspiration, and days off.

The project manager needs to understand everyone's job function, the contribution
their deliverable makes to the project, what inspires them to perform, and their
individual quirks and idiosyncrasies. The Web project manager needs to
understand his or her team on the professional, personal, and cultural level in order
to be the most effective coach and manager possible.

Common Web Team Roles

The composition of most development teams is a chance occurrence, usually
determined by available staff, and you will rarely, if ever, be allowed the luxury of
picking and choosing the people for the team. The project kickoff meeting will be
the first time the team is assembled and your first opportunity to gauge the
dynamics of this new amalgamation of talent. The internal dynamics of Web teams
can be staggering in their complexity and scope. Managing the team, let alone the
project itself, is an enormous task requiring energy and interpersonal skills.

Before you can manage a Web development team you have to know the players.
It's important to note that team composition is different from organization to
organization, project to project, and process to process. Your Web development
team may not exactly mirror the type that is described in this chapter (see the
diagram in Figure 2.1), but there will undoubtedly be many similarities. The basic
roles on a typical Web development team remain relatively constant and typically
include the following.

• Project stakeholder (also client or business owner)
• Project manager
• Producer
• Editor/copywriter
• Information architect
• Graphic designer
• HTML developer
• Developer
• Tech lead
• Database administrator
• Quality assurance engineer

Figure 2.1. Diagram of a Web Development Team

The typical Web project team is divided into three distinct groups: content, graphic
design, and technology. The project manager manages across all of these groups
and manages the communication between the client or project stakeholder and the
team. The stakeholder normally does not play a daily, hands-on role in the
development of the project but is the person responsible for initiating the project,
getting the budget allocated, and wresting free the necessary resources. The project
manager is the conduit of communication between the stakeholder and the team.
Keeping the stakeholder or client abreast of progress on the project is one of the
project manager's primary tasks.

The roles associated with the technology side of the project include tech lead,
DBA, developer, and HTML developer. The roles associated with the content side
of the project are producer, editor, and copywriter (who could also be the
producer). The graphic design team consists of the creative director, designers, and
production artists. Two roles that cross over between both the tech and content
sides of the project are the information architect and the quality assurance
engineer. The IA works closely with the developers on the site architecture and
with the design and content teams on ensuring that the interfaces meet usability
requirements. QA engineers are responsible for testing all the components of the
product from a user perspective and generally look for both functionality and
display flaws and bugs.

The Project Stakeholder

The project stakeholder, sometimes called the business owner, is the person
responsible for initiating the project. This person could be from the marketing
department, an external client, an editor, a producer, or even the CEO of the
company. Some stakeholders are middle managers who must go to their boss for
authorization of new costs. The stakeholder's deliverables could include the
following.

• Project concept/idea
• Budget
• Marketing plan
• Page mockups
• Third-party content deals

Some of the stakeholder's deliverables are prepared with the help of the project
manager. The stakeholder, when internal, is also responsible for presenting the
creative brief and budget to the committee responsible for resource allocation. On
internal projects the stakeholder will work with a project manager to estimate the
size of the project team and the duration of the project.

Once the project is underway, the stakeholder moves on to other projects and tasks
and is usually not a member of the core build team beyond attending regular
update meetings with the project manager and signing off on deliverables when
required.

The Stakeholder Is Your Customer

Very early in the project, even before the team has been put together, establish how
you and the stakeholder will work together. Discuss issues such as communication,
status reports, and conflict resolution. Typically you will be managing the team
and the build; the stakeholder will be managing the business goals and marketing
initiatives. There will be occasional overlaps during the process; but if the roles are
clearly defined from the outset, your chances of success are greatly increased.

You will collaborate with the stakeholder on estimating and tracking the resource
costs on the project. The more business knowledge you possess, the more you will
be able to help the stakeholder early in the process with establishing the business
goals of the project. Being integrated in all aspects of the project will give you a
better understanding of the end product, allow you to experience a greater sense of
ownership, and give the stakeholder piece of mind.

The stakeholder is your customer, and your goal is to provide exceptional customer
service. The stakeholder empowers you with the responsibility to turn his or her
vision into reality. It's a tall order, especially when little, if any, authority comes
with the responsibility.

The Producer

The Web producer has myriad tasks and responsibilities to manage during the
course of a project. The Web producer role is approached and interpreted
differently and morphs from company to company and department to department.
It's also important to note that the producer role may also exist on the client side in
the form of a product manager. These are the typical deliverables and
responsibilities associated with the producer.

• Project concept/idea
• Creative brief
• Page maps
• Site map
• Final specifications
• Project timeline
• Budget
• Design direction
• Editorial content/direction
• Editorial resource management
• Third-party content deals

Traditionally the producer is much closer to the content and display aspects of the
project than the project manager. The producer tends to maintain the point of view
of an end user or client when working on a project. Projects may be initiated by a
stakeholder, but the producer gives the project its special flavor.

Working with the Producer

The producer/project manager relationship can be a delicate balancing act, a
graceful waltz, or a full-blown rumble. Because of the overlapping of tasks and the
occasional redundancy in resource management, the producer/ project manager
relationship can be difficult to master. You need to establish a clear understanding
of who will be responsible and manage what tasks, deliverables, and resources in
order to avoid problems down the road. Just as important as defining each other's
roles and responsibilities is the communication of the details of the arrangement to
other team members. Once the relationship has been clearly defined and
communicated to everyone, be sure to stick to the plan, or you will risk confusing
the team and undermining your chances for a smooth project.

Producer and Project Manager Overlap

In some companies the producer manages the entire project and all
resources without the help of a project manager. In other companies the
producer works on developing the concept and then turns over the project
to a project manager for the build phase.

Sometimes the producer is the stakeholder, sometimes not.

In some agencies the producer works closely with the client, and in others
the producer's primary tasks are internal. Good Web producers have honed
their project management skills and know how to work harmoniously with
a project manager. Then again there are producers who find it necessary to
micromanage every aspect of the build and make the project manager feel
superfluous.

The producer is a vital role and crucial to the project hitting the content
mark. It's a generalist role that can on occasion overlap with the project
manager role. If you find yourself in this situation, just remember the old
adage "Two heads are better than one."

When a producer and a project manager align themselves behind the common goal
of exceeding all expectations, the odds of success are greatly enhanced. Think of

Joe Torre and Don Zimmer winning multiple World Series, Steve Jobs and Steve
Wozniak launching Apple Computers, or John Lennon and Paul McCartney
collaborating on "Sgt. Pepper's Lonely Hearts Club Band," and you should get the
idea.

The Editor

Depending on the size of the company or department, editorial functions such as
writing, researching stories, and copy editing may involve several people or a
single person wearing all of these hats. The editorial staff is responsible for
creating or acquiring stories, articles, product descriptions, headlines, and other
types of copy. The editorial staff is usually tightly woven with the producer's staff
and can be managed by the producer if there is no managing editor on staff.

Most large, content-rich Web sites use an editorial tool to maintain the content on
the site. The editorial tool allows the editorial staff to input copy and images
throughout the site. Most editors will write the copy in a separate program like
Microsoft Word and then transfer the copy to the editorial tool. In many cases the
content entry is performed by production assistants who work on the production
staff. Figure 2.2 illustrates the typical content creation workflow.

Figure 2.2. A Typical Web Content Creation Flow

The editorial staff's deliverables include the following.

• Story ideas
• Articles and stories
• Procurement of stories or articles
• Product descriptions and reviews
• Interviews

If there is a photo editor on staff, he or she will work closely with the editorial
department on creating or choosing images and photographs to accompany stories.
The photo editor will more than likely be part of the design group.

Working with the Editorial Staff

Watch out for friction between the Web site producer(s) and the editorial staff.
Turf wars between producers and editors can flare up over the ownership of
content and the responsibility for coming up with concepts and ideas. The producer
may have an idea she loves, only to find stony opposition from the editor. The
same situation can happen in reverse.

Also, because the production staff is often responsible for inputting the content,
they depend on editorial to meet deadlines. It's the producer's job to chase down
the content and hound the editors, and that can lead to confrontations.

The Information Architect

One of the most challenging and interesting roles on a Web development team is
that of the information architect, or IA. The IA is the person who ensures that the
Web site will be usable by human beings and ensures that the underlying structure
of the Web site, including the design, content, and technology, will make sense to
users. IAs come from either a technology or design background and are conversant
in the finer points of both. IAs are usability experts and have logged many hours
observing people interact with various types of graphical interfaces, computer
hardware and software, and other objects that require quick comprehension by
humans to be used successfully.

Depending on the company, IAs can wield a great deal of power on a Web
initiative. They often take part in every aspect of the project build but especially in
the early design and functionality planning stages. Having an IA on board helps all
groups in the build process by providing a person solely dedicated to safeguarding
against bad design or whacky functionality that will eventually be deemed
unusable by the intended audience.

Working with the Information Architect

Working with an IA is always an interesting and educational experience. However,
just like any other member of the team, IAs are not infallible and can make
mistakes. Trust your experience and common sense. If the IA deems a design or
piece of functionality unusable, but you believe otherwise, do not be afraid to
challenge the IA on the point.

Another potential area of concern is the fact that the IA's role overlaps with so
many others' in the process but none more so than the designer. Watch out for turf
wars between the information architect and the designer. Normally their
collaboration is fairly friction-free because their common goal is to achieve the

best design possible for the client, but the relationship can occasionally be tested
by disagreements that can lead to delays.

G Information Architect

An information architect is an individual whose primary responsibility on
a Web development team is to organize the Web site content or
information into an intuitive, easy-to-understand structure from a visual,
navigational, and technical perspective.

The Graphic Designer

Designers breathe life into a Web site. Typography, photography, iconography,
color palettes, graphics, animation— these are the tools the designer uses to
establish concept, expression, message, tone, feel, and quality. Usually the first
stop for a producer working on an idea or concept, the designer provides an
excellent sounding board and translates crude page mockups into beautifully
polished works of art. Designers are also adept at working out thorny navigation
problems that crop up in the early stages of development. While normally not bona
fide information architects, good designers have an excellent grasp of how users
approach Web sites and will design with the user experience foremost in mind.
Designers often collaborate closely with the information architect on the page
maps, site map, graphical interfaces, and navigation design.

Designers have higher profiles that add responsibilities and pressures other team
members are spared. Because the graphic design and page layouts are the first
tangible manifestations of the project, the designer is often trotted out before the
stakeholder or client, page printouts in hand, to explain why fuchsia is the "right"
color for the navigation bars and what the current standard is in "cool" Web design.
Good with industry buzzwords, a designer can help sell a concept or influence the
client.

Designers are long on creativity and talent but traditionally short on programming
skills, but that is becoming more the exception to the rule as designers realize the
value of technical knowledge. Depending on experience, they can be conversant in
Web technology and understand the various components that comprise the back
end of a Web site. They usually have basic HTML skills and can mock up Web
pages for the browser or test how a design will translate to the screen. During the

build phase the designer will work closely with the HTML resource as the final
page designs are officially rendered for the screen.

Because Web design is a collaborative process, designers are good team players
and understand the art of compromise. Internal clients consist of producers and
stakeholders, and when working in an agency environment, they will work closely
with the producer or account manager to realize the client's vision.

While being good team players and giving 100 percent on every project, designers
often miss milestones and can add time to a project in their pursuit of perfection.
Hovering over or badgering the designer (or any resource) as they work is not a
good tactic for getting results. If a designer is consistently missing milestones and
delaying projects, rather than risking an unpleasant and nonproductive
confrontation, talk to the creative director about it and let him or her handle the
problem. Also keep in mind that the client or stakeholder could be the culprit for
the delays by going outside the normal channels of communication and inundating
the designer with tweaks and last-minute changes.

Working with the Designer

Collaborating on the Web site design can be one of the most enjoyable experiences
in the project life cycle. Working with the designer to chase down ideas and work
out difficult user experience problems calls on your own creativity and is always a
good learning experience. But don't get carried away. During the design meetings
it will be your job to keep an eye on the technical scope as ideas begin flying fast
and furiously. The design phase is when the scope of the project can grow
exponentially. It's not the designer's fault— they're paid to be creative. And it's not
necessarily the producer's fault— producers will push the design as far as they can
and continue adding features beyond the original specifications until someone
draws the line. The designer and the producer will be looking to you to speak up
when things have gone too far and you suddenly find that the purple navigation bar
with the four different user states has just added a week of DHTML and JavaScript
programming to the project.

The HTML Developer

How many of the people working in the Web industry today cut their teeth on
HTML? The most basic Web technology skill at the end of the 20th century has
evolved into one of the most challenging and unsung skills at the beginning of the
21st. Where would the Web be without experts adept at table structure and style
sheets? Browser compatibility, layout, alignment, frames, fonts, download time—

these are just a few of the technical and display issues the HTML developer
wrestles with daily. Working closely with designers and back-end developers—
often simultaneously— the HTML developer must possess good design sensibility
and technical prowess. Because he or she is often at the center of heated design and
layout debates, it helps if the HTML developer also possesses good negotiating
skills.

The HTML developer's deliverables and responsibilities can include the following.

• The HTML frameworks for all display templates
• The execution of smaller, nondynamic "flat" or HTML-only projects
• HTML mockups of proposed designs
• Style sheet implementation
• Image directory maintenance

The HTML developer is in constant demand in any Web company or department.
Designers and back-end developers alike put great demands on the HTML
developer's time. When you are working on a project that requires many templates
to pass through the HTML developer's hands, take care that he or she is not being
distracted by others. Designers can take advantage of the availability and good
nature of the HTML person by asking for mockups or tweaks that are neither
scheduled nor necessary. When you are on deadline, it's up to you to protect your
team from such interruptions. Ask the HTML developers to funnel through you all
requests for work that come directly to them. That way the requests will be
channeled through the proper work request process.

Working with the HTML Developer

For the HTML developers to complete their tasks, you must be sure they have the
necessary deliverables from the designer. These can include printouts, mockups,
optimized images, and type and color specifications. Because the HTML
developers may be working on several projects at once or just doing favors for
others, be sure to track their milestones closely and when necessary intercept
distracting work requests that could jeopardize the project timeline.

The Developer

The developer is your secret weapon, your go-to player and most trusted resource
on the project team. He or she thrives on mental challenges, brainteasers, and
puzzles— the more difficult and convoluted the better. Beyond being technically
proficient, exceptional developers can also see the forest for the trees. They

quickly grasp the business goals behind the project (assuming the goals are valid)
and can usually determine if the project will be a boon or a bust. And, given the
opportunity, the developer can help you understand the project better as well.

When you embark on a project and you are creating the early drafts of the
specifications, the developer will help you crystallize and define the back-end
requirements. If you are not very technical, then save yourself a lot of frustration
and potentially wasted time. Block out some time with the developer and
collaborate on the technical requirements and functionality.

Watching a programmer design an application on a white board or even a scrap of
paper can be a confusing but ultimately rewarding experience. With near religious
zeal they will leave no stone unturned as they pepper you with questions and
potential user scenarios you never thought of. They might embarrass you a little in
the process by exposing the gaps in your knowledge or ideas, but the project will
be so much the better for going through this exercise. After a white board session
with the developer (or tech lead), you will begin to see your project from a 360-
degree vantage point and will be able to go back to the producer or stakeholder and
get the clarification necessary to answer questions, make suggestions, and meet
their expectations.

KEY POINT

Conduct a white board session with your programmer or tech lead
(preferably both) early in the project. Using the first or second round of
page mockups and definitely before the design phase is underway,
diagram the application showing user inputs, decision processes, database
interaction, application output, and display pages. A little bit of UML
knowledge goes a long way in this exercise (see the UML reference in
Appendix B). Mapping the application with the programmer will expose
logic errors before they end up in the code and will provide you with a list
of questions to take back to the stakeholder that should result in a better
Web site.

Working with the Developer

Do your best to establish a strong rapport with your developers. Break through
whatever barriers you feel may exist and forge a good working relationship. A
developer's knowledge can be intimidating, but keep in mind that everyone has
strengths, and while yours may not be solely in the technical area, you perform
tasks on a daily basis that many people, including developers, find intimidating as
well. It helps to tell your developer everything there is to know about the project:
from the company objectives to background colors— hold nothing back. By
divulging all the information you have about the project and asking for feedback,
you are establishing a feeling of inclusion and trust.

A primary goal of establishing a solid bond with the developer is to allow for a free
and clear exchange of information. You need to be able to describe the expected
application behavior to the developer in language they can understand. The
developer in turn must be able to articulate to you, in language you can understand,
how he or she is going to create the required functionality to arrive at the desired
behavior. Some developers are better at communicating technology to nontechnical
people than others. It's your job to learn to interpret your developer's technospeak
into language the client or producer can understand.

You also want to establish a high degree of trust that will allow you and the
developer to be completely honest with each other. During the lifecycle of a
project, everyone makes mistakes, and how you handle your own and other
people's errors can have a dramatic impact on your project. You have to be
comfortable telling the developer that you omitted a key bit of functionality from
the specs or you misinterpreted the client's instructions. The developer in turn has
to be comfortable telling you that an error he made could set the project back two
weeks. Regardless of who erred, you have to be able to bypass the blame game and
together strategize a solution and get on with the project. It's not easy for
programmers to admit they screwed up. Create an atmosphere of trust and let them
know you will back them up and not lay blame at their feet when the going gets
tough.

The Tech Lead

The tech lead is your savior and friend. Cherish this person always and keep him or
her close. Just as you are the bridge of communication between the technology
staff and the stakeholder, the tech lead is the bridge between you and the high-
voltage nether reaches of the developer's mind. Depending on the organization, the
tech lead role can be a hands-on person, such as a senior developer, or a hands-off
member of the technology department's managerial staff.

The tech lead is a great help during the technical design phase as you work out the
backend specifications with the developer. The tech lead is also responsible for
conducting code reviews and keeping developers on track during particulary
thorny development projects. They are especially helpful when a junior or
inexperienced developer is assigned to the project. The tech lead can also provide a
buffer between yourself and a developer who is struggling and falling behind in the
schedule or is not communicative.

The tech lead's deliverables and responsibilities can include the following.

• Technical specifications
• Code reviews
• Staff management
• Programming

If your company or department does not utilize a tech lead, it may be well worth
your time to establish this role. Besides being a huge help for the project manager,
the tech lead role can provide a career step for the development team. The role
requires maturity and management skill and can provide a platform for acquiring
both.

Working with the Tech Lead

As mentioned before, the tech lead can be your best friend in the technology
department and your lifeline when things get hairy in the development phase. Keep
the tech lead fully informed on the progress of the development as well as the
performance of the developer. When the developer runs into trouble, give them a
reasonable amount of time to work out the problem first, and then ask the tech lead
to help out. This approach shows your confidence in the developer's ability to work
out problems on their own and displays a healthy respect for the tech lead's time.

The Database Administrator

The database administrator (DBA) is one of the more specialized members of the
team and is responsible for creating, advising, and controlling all aspects of the
project that involve the database. The DBA is not typically a full-time member of
the project team, but his or her contribution is invaluable to the project. The
developer works closely with the DBA throughout the lifecycle of the build but
more so at the outset of the project. Typically, a developer will create a database
schema as one of the first steps in the technical design. The developer will then
present the DBA with the schema, and the DBA will analyze it to be sure it meets

the standards he enforces on the database. If the schema is not up to snuff, the
DBA will consult with the developer on a more suitable schema for the project.

The DBA also writes code specific to the type of database being used for processes
such as stored procedures. Once again, this work is done in collaboration with the
developer assigned to the project. The bulk of the DBA's time is spent maintaining
the database and optimizing its performance. The DBA's typical project
deliverables and responsibilities can include

• Schema implementation
• Stored procedures and other database coding
• Staff management

Working with the DBA

During the course of the project your interaction with the DBA will more than
likely be limited to providing milestones and following up on deliverables.
However, if the DBA takes issue with a schema or database functionality request
from the developer, hear her out and trust her opinion. The DBA knows the
database better than the developer and will be looking to you to intervene if the
developer does not want to cooperate.

G Stored Procedure

A stored procedure is a group of database query statements that reside
within the database and perform a certain task. The main advantage of
creating stored procedures is that they prevent scripts from using tables
directly. This keeps your database tables safe from poorly written query
statements. Stored procedures are used to speed up the execution of
commonly used queries and to keep the query syntax safely hidden from
the business logic of an application. For example, the most commonly
used operations on a product database (add a customer, delete a product,
retrieve an invoice) could be coded as stored procedures.

The Quality Assurance Engineer

The QA tester is the final gateway between your project and life on the Web. Be
kind to the QA department because the day will come when you will be

negotiating with them for the release of your project and every advantage helps.
Depending on the organization, QA testers can be very technical and troubleshoot
bugs, or they may only test for poor user experience, design imperfections, and
copy errors. Usually the QA tester is familiar enough with the technology to write
up a coherent bug description but does not have the time or responsibility to get
under the hood and investigate the cause of the bug. The QA tester should be
involved early in the project and should be invited to all kickoff meetings. The QA
department, like HTML, can be a bottleneck in the build process. Be sure to get
your QA tester involved early in the process to ensure that your project is in his job
queue and on his radar. Even though the bulk of their tasks begin during the second
half of the project (depending on the development approach), getting QA involved
early gives them a preview of the moving parts and an idea of where potential
design and technical flaws may occur.

The QA tester's deliverables and responsibilities can include

• Bug reports
• Creation and maintenance of a QA methodology
• Creation or procurement of a bug reporting tool

Working with the QA Engineer

Similar to project managers, QA engineers have a great deal of responsibility but
little, if any, authority. This can make for a frustrated QA tester. The QA tester will
relentlessly work to expose bugs and flaws in the Web site and has a high set of
standards to uphold, but the bottom line is, when it's time to go live, the
stakeholder will brush aside QA's warnings and complaints and demand launch.
Guess who gets to communicate this to the QA tester? Yup, you do. When the time
comes for you to more or less tell the QA tester, "Thanks, but no thanks," and you
are going to launch with a bug list full of open issues, it helps if you already have a
good relationship in place.

KEY POINT

Get the QA department involved early in the development of the project.
Be sure they have copies of or access to all relevant documentation such
as specs, page mockups, page maps, and a project plan. Be sure they
understand the scope of the project so they can plan accordingly for when
the project moves into their department.

Common Team Problems

This section examines the symptoms of two common team problems and
recommends solutions.

Missing in Action— Become Part of the Team

Even though your little square on the company org chart may reside just above that
of the people performing the actual work, don't get a big head. The primary
message you want to be sending to your teammates in both word and deed is "We
are all in this together." And if this is not the message you are sending then nine
times out of ten, the message you will be receiving from your team is "Get lost!"

Symptoms

• You notice a consistently cool, aloof reception from team members at
meetings as well as one-on-one.

• Team members are always very quick to agree with everything you say or
suggest but deliver the exact opposite.

• No one on the team speaks up at meetings or provides any suggestions or
solutions to issues raised.

• The majority of the project milestones are being missed, and there is a
consistent nonadherence to the specifications.

Solutions

• Check your ego. Your job is to guide, coach, and support the team— not do
the actual work. The people on your team have specialized skill sets and are
experts in their area of endeavor. You on the other hand tend to be more of a
generalist with a good understanding of each player's tasks and deliverables.
Therefore, while being able to speak to each disipline, you cannot deliver the
level of quality the expert can.

• Demonstrate your commitment to the team by being willing and able to
pitch in when the going gets tough. If you are asking your team to work on a
Saturday, you'd better show up, too, and be willing to pitch in and help
where you can: code HTML, copy edit, pick up lunch— whatever it takes.

• Empower each team member with the creative freedom to arrive at solutions
to problems on his or her own. You may be able to sketch a reasonable
depiction of the product, but the experts on your team will be performing the
actual brushwork, which will result in the final, full-color rendering.

• Form a bond of trust and open communication with each member of the
team. Good team dynamics can be arrived at quicker if you take the time to
get to know each member of the team one-on-one. You don't have to become
everyone's best friend, but you do need to understand each person's
personality in order to better support them and give them the freedom they
need to excel.

The Micromanaging Stakeholder

In the course of your career you will work with more than one project stakeholder
who insists on managing every detail of the project, from concept to coding. While
their heart may be in the right place, the message they send is one of mistrust and
paranoia. It's very easy to recognize the micromanager— in fact, it's a frightening
and annoying thing to behold. Stay cool. In just about every relationship there's
always one partner who is more mature than the other. Guess which partner you
are? To manage this problem correctly, you have to suck it up, take the high road,
and call on those maturity genes to get you through.

Symptoms

• The stakeholder insists on attending EVERY meeting connected to the
project.

• No task is too small for the stakeholder not to have an opinion on how to
complete it.

• All tasks, milestones, and effort estimates in the project plan are suspect and
open to question and change.

• All decisions are second guessed.

Solutions

• Instead of the stakeholder attending every meeting— which can stifle
creativity, open discussion, and debate— suggest a weekly or even twice
weekly status meeting where you can update them on every decision and bit
of project minutiae. Providing this level of service will allow the stakeholder
to maintain his sense of place in the hierarchy and involvement in the
project.

• If necessary, frankly tell the stakeholder she is micromanaging. Ask her if
her time might not be better spent on coordinating other business aspects of
the project, like a marketing plan, instead of the nitty gritty of the build. This
discussion obviously could turn into a potentially nasty confrontation, so it's
important to be sure the topic can safely be raised. If you determine that a

discussion like this must occur, be sure to maintain your sense of humor and
calm regardless of how the stakeholder reacts.

• Remember that the stakeholder's heart is in the right place, and he wants the
project to be successful as much as anybody. Unfortunately, he may also be
a control freak who doesn't understand how to delegate or collaborate.
Sometimes it's up to us to educate as well as manage.

Case Study: Startup Breakdown

This case study describes one project manager's experience as he attempts to unite
a Web team made up of people from very different corporate cultures, who have
little Web experience, are suspicious of each other, and are charged with a nearly
impossible task— all the blood, guts, and glory the Web promises in 90 days.

Baby, You Can Drive My Car

Luxbaum, a multinational auto manufacturer, and Greenwood, a growing online
marketing company, entered into a joint venture in 2000 with the goal of creating a
Web site devoted to the various aspects of the car and driving culture. After much
handwringing, soul-searching, and expensive brand consultant's input, it was
decided the new site would be called iLikeToDrive.com. Luxbaum wanted to use
the site as a vehicle (no pun intended) for collecting user demographic data to aid
them in developing new models and ancillary brands and car-related products. The
new online company would use office space, tech resources, and Web producers,
all provided by Greenwood. An editorial staff was hired, and the auto company
supplied the marketing team and part of the executive management.

From the outset the team never fully gelled. The auto people who were brought in
from Detroit and other offices around the country had very little Web experience.
The editorial people were straight from the magazine world, and this was their very
first exposure to the Web environment. The Greenwood people who joined
iLikeToDrive.com had been working together for at least three years and were a
close-knit group and very Web-savvy. Consequently, the editorial and marketing
people felt shut out. The venture was saddled with specific metrics goals it had to
attain in its first year in order to get more funding from the parent companies. Time
was quickly passing, and the team was having a hard time getting started. The
situation was extremely volatile and highly political. Each group competed with
the other for power and attention from the board of directors, and ownership of the
vision for the Web site. All three factions came from extremely different corporate

cultures, and a unifying direction or team mentality had yet to be established by the
new management team.

After only four months there were shakeups at the top of the fledgling company.
The CEO and technical director were both replaced in the same week. Neither had
managed to bring the team together or create any type of unifying vision. Neither
one liked the other, and both complained about the other behind his back. A new
CEO was brought in from Luxbaum to straighten out the business side of the
company, and a former Greenwood senior producer was rehired to help pull
together the vision, voice, and design of the site. A member of the project
management team from Greenwood was brought in to attempt to bring some focus
and process to the project and get the development underway and keep it on track.

The iLikeToDrive.com board of directors told the new CEO they wanted the site
launched in 90 days, and everyone's bonus (including his own) depended on
meeting that deadline. Not only did the site have to launch within the 90-day
timeframe, but the team had to develop a CRM solution that would capture the user
data Luxbaum needed for marketing research purposes.

Broken and Bleeding

The iLikeToDrive.com team was approximately 30 people strong on the day Jim
joined. The Greenwood offices where Jim normally worked were noisy and
convivial places. By contrast, the iLikeToDrive.com wing was as quiet as a church.
Everyone seemed very busy and quite serious as Jim moved into his new cubicle.
Later that day he met with Karen, the new senior producer, to get the lay of the
land. Jim considered her talented and very capable. He had worked with her in the
past on large Greenwood initiatives, and they had always enjoyed an excellent
rapport. She told him the team was in terrible shape and she could not imagine how
they could meet the launch deadline with the team so fractured and
noncommunicative.

She described her first meeting with the editorial staff, in which she had tried to
establish the voice and tone of iLikeToDrive.com. The meeting was a disaster. The
editorial team was not used to collaborating with anyone on the content of their
articles. They were confused and intimidated by the technical aspects of the Web
and were not experienced enough to conceive of online tools or content that was
interactive in nature. They had never been forced to think in interactive terms, and
they had not been told this would be part of their job. Karen explained that her staff
of producers (the production staff) were there to collaborate with the editors on the

interactive aspects of the content, but the writers felt all aspects of the content
creation should be their domain, even though they had no experience with creating
Web content. Nothing was resolved in the meeting, and the division between the
two groups grew deeper.

In addition to the tug-of-war between editorial and production, trouble was
brewing with the marketing staff. Karen thought a lack of Web experience was
again at the heart of the problem. The marketing staff wanted to know when a
version of the home page would be ready so they could send the link to their ad
agency. They wanted the home page finished within two weeks in order to fit into
the marketing plan they were devising. It did not seem to matter that neither a final
design direction nor a content plan had yet to be established— not to mention that
there were no back-end systems in place to actually serve the Web site. To make
matters worse, the marketing staff shut themselves off from the rest of the team
and would only communicate through the CEO, a former Luxbaum colleague.

Karen did provide one ray of hope. The design company Luxbaum had hired was a
good firm with which Jim was familiar. They were based in New York City and
had a good project management team. At least that was one aspect of the build Jim
felt he did not have to worry too much about.

To round out his first day, Jim payed a visit to the developers' cubicle to get their
take on the state of the project to date. When Jim asked the developers to describe
their experience over the last few months at iLikeToDrive.com, their thoughtful
reply was "It's been like playing peewee golf on the recreation deck of the Titanic."
They had yet to build anything for the new site because they had no direction or
specs to work from. They had heard the site would require some sort of
personalization functionality that would pass for a CRM system, and the site was
supposed to provide the user with many "tools" and interactive features to use. The
recently departed technology manager had never taken the time to work with them
on conceiving any of this functionality, nor had he written a single spec to date.
The technology manager had apparently spent the better part of each day arguing
with the iLikeToDrive.com CEO and marketing department over issues such as
who should create the organization chart for the company.

The developers verified Karen's summation that the team was badly divided and
noncommunicative. In the months they had been with iLikeToDrive.com the
developers said they had yet to have a conversation with the marketing or editorial
team beyond "Good morning" and "Good night."

Jim's conversations on his first day on the job told him just how bad the situation
was he had inherited. The board had mandated a launch in 90 days, the first round
of design had not been completed, and there was no editorial plan for content or
interactive tools and applications. The team was divided into three hostile camps
that were not speaking to one another. It was going to be a big enough job working
with the team on conceiving the interactive, architecture, navigation, and database
requirements and then writing the resulting specifications, but he also had to
somehow bring together the team for the necessary collaboration. Jim also had to
establish his own credibility immediately if he hoped to have any sway over the
team. Jim decided he would concentrate on accentuating the positive and avoiding
any already existing turf wars. He would not be party to any form of gossip or
complaining within the group, as this would be fatal to his neutrality, which was
his primary strength in bringing together the team.

Creating a War Room

Even though some people on the team were already suspicious and wary of Jim
simply because he had come from Greenwood, he knew he still had the advantage
of being nearly completely neutral because he was so new. He had yet to form any
obvious affiliations with any of the feuding groups. His first move would be to
establish Monday morning status meetings, where a representative from each
group would report what advancements or achievements that group had
accomplished during the previous week and what they were hoping to achieve in
the week ahead. He set up an e-mail alias in the iLikeToDrive.com e-mail system
that he used to announce the meeting. His goal was to set up a war room–like
atmosphere that would help to unite the team. He had found out from talking to
people that not everyone was aware of the 90-day deadline, which was looming
closer by the hour. He also found out that an early iteration of the design scheme
had been completed by the agency, but only a few people had seen it. The agency
could not proceed without an idea of the scope of the site and how the content
would be organized.

Jim wanted to create a strong feeling of inclusion and open communication. He
planned on sharing all the information about the build, design, deadline, and
business goals he had learned over his first week. For whatever reason— culture
clash, mistrust, paranoia— information had remained concealed in the various
camps that comprised iLikeToDrive.com. If he could break down the walls and
make everyone understand that hoarding information or keeping details secret
would only serve to harm them rather than help, he thought he might have a chance
at bringing the team together. There was no job security in keeping secrets when

faced with a hard deadline of less than three months. On the first Monday morning
meeting, after everyone had introduced themselves (or reintroduced themselves, as
the case may be), Jim requested that a representative from each group share what
the group was working on and provide a status report.

The first to speak was Karen. She described her vision for the Web site and the
way users would interact with it. She spoke of how the Web site should be full of
"sticky" content areas, tools, and quizzes that would allow car enthusiasts and
nonenthusiasts alike to learn more about car and driving culture. Everyone listened
quietly. When Karen finished, Jim asked her how her group would contribute to
achieving this vision. He wanted Karen to state publicly the need for the editorial
team to collaborate with her producers on conceiving the ideas for the site content.
Karen did just that. She stated that even though her team had several ideas for
content areas of the site as well as several interactive tools, they were bogged down
by their lack of professional car knowledge as well as the manpower necessary to
flesh out the content areas with articles, copy for tools, and other pieces of copy
such as headlines and promotional blurbs. She said her team had tried to work with
editorial on the content plan but had yet to make any progress. Karen stated her
position matter-of-factly in a nonchallenging, nonaccusatory tone. She knew what
she was doing and why Jim had asked her to speak first. She provided the setup
Jim needed to break down the communication barriers between the production and
editorial staffs.

Jim turned to the small group of editors and asked them to describe their status on
content ideas and creation. Andy, the senior editor who had been brought in from
the magazine world, spoke. He described his own vision for the Web site and told
of content areas his team had conceived of to date. His vision and Karen's were
nearly identical when layed out side by side. Jim asked Andy if he had thought
about how the users would interact with the Web site, how they could navigate
from place to place, and what types of quizzes or tools the users would find on the
site. Andy responded that while his team had been able to envision the mission of
the site with regard to content, they were having trouble translating their ideas into
interactive applications. He explained how no one on his staff had ever worked for
an Internet company, but they were all excited at the opportunity to create
something vital and new in the online car culture space. Andy finished by stating in
an even tone of voice, "We think we need more help from the producers to
translate our ideas so they will work on a Web site."

Jim then asked the marketing people for a report on the status of the marketing
plan for the site. The representative from the marketing group gave an enthusiastic

account of a marketing plan for the launch of the site and described where they
planned to advertise as well as the types of online and offline promotional
campaigns that would soon begin. She also detailed some potential advertisers who
were expressing interest in buying ad space on the site. "The only problem we
have," she stated, "is we don't have any details on the site's design or content. So
it's sort of hard to plan promotions when we don't know what we're selling." The
assembled group broke into laughter at this statement. The tension that had filled
the air up to that moment began to dissipate.

The two groups on the content side of the project had spoken and described their
vision, and the business representatives had described how they planned to market
the site and talked about potential for revenue. Jim believed an open dialogue,
however slight, had been established. Jim then told the assembled group about the
deadline they were all facing. He calculated they now had fewer than 90 days to
launch the site that, to date, existed only in name. He asked the production,
editorial, and tech groups to take the next few days to meet and flesh out the Web
site. He asked that a representative from each group work with him on establishing
the timetable and goals for this scoping exercise. "White-board the site," he told
them. The editorial people didn't know what he was talking about. He explained to
them how to diagram the framework of the Web site on a white board with a
marker and how to draw the user experience as he or she interacted with a tool or
quiz. "What the user puts in and what the user gets back in the form of results," he
explained. "The developers will show you what I'm talking about." He asked the
production team to give the editors the benefit of the doubt when they expressed an
idea that may not seem immediately feasible. "Collaboration and cooperation are
what we need right now if we want to meet the deadline." He told the group, "I'm
not asking for a group hug but we have a long way to go and a short time to get
there." The group chuckled at the "group hug" term, but Jim sensed his message
was finally sinking in.

People began to return to their desks and cubicles in small groups of twos and
threes. Everyone seemed excited, and a sense of purpose that was actually palpable
filled the room. Karen and Andy disappeared into Karen's office to begin working
on a new editorial and content plan for the site. They were both talking animatedly
and laughing. Jim sat with the developers for a moment before returning to his
desk. He thought the meeting had been a success and hoped it would be the
catalyst needed for bringing the team together. "That was awesome, man," one of
the developers told him. "I thought Andy was going to freak out when Karen said
editorial wasn't helping her, but he seemed totally cool." Jim wasn't so sure Andy
was totally cool. He thought he caught Andy mocking him by rolling his eyes more

than once during the meeting. He also wasn't sure if the laughter Andy and Karen
were now sharing was at his expense. Or was he just being paranoid?

Late Nights, Black Moods, and UNO

The next few weeks seemed to fly by. The team pulled together in a way no one
thought possible. The editorial and production teams geled into a formidable
content machine. The final design the agency created for the site was stunning and
one of the best Jim had ever seen. The tech team conceived a brilliant plan for
allowing the Web site user to view personalized content based on a few profile
questions, the answers to which were stored in a database and later used for the
marketing department to design promotions, for editorial to create content, and for
Luxbaum to collect demographic data. Not every bit of corporate culture clash had
fallen away, and there were still turf wars simmering under the surface. The
Luxbaum people had still not entirely assimilated into the group, but they were at
least more conversant. Whenever a particularly nasty battle flared up, the
antagonists would turn to Jim to make a call one way or another. Jim didn't relish
being in this position and would push back on the people fighting and tell them to
work it out themselves but to keep the big picture in mind. He would remind them
there would be time after launch to try out alternative ways of doing something,
but under the current constraints, whatever was easiest to implement should be the
way to go.

The biggest win of all was the incredible increase in productivity that was
desperately needed to meet the deadline. The last 30 days of the build saw nearly
every member of the team working seven days a week and at least ten hours a day.
Jim kept his promise to the group and was on the job every day from early in the
morning until late in the evening. Even if he had very little to do in the late hours
of the evening, he remained with the developers or whoever else was working late
to demonstrate his commitment to the project.

During the last third of the build the days seemed to drag on and on, and not much
progress appeared to be made. The team would drift into collective black moods of
despair as the odds of them making the deadline seemed incredibly small. Jim was
carefully tracking the project and knew they were on target to make the deadline,
and he would remind people of this. He knew people were suffering from extreme
burnout and fatigue. The developers had started playing "UNO" every few hours to
give their minds and eyes a rest from the computer. Jim began to join in the games
and encouraged others to as well. Soon epic games of "UNO" with up to 12 people
playing would break out just when the mood seemed especially black. Often

problems of a technical, editorial, or business nature that were hampering progress
on the site would be discussed and worked out around the "UNO" table. The game
became another catalyst for solidarity among the iLikeToDrive.com team and a
friendlier forum for releasing pent-up angst and working out petty squabbles
among peers.

Champagne and High Fives

As with any large-scale Web development project, the last few hours are nail-
biting time, and the launch of iLikeToDrive.com was no different. The team
worked around the clock in the final 48 hours to fix all the bugs turned up by QA.
Jim and the team were exhausted but full of adrenaline as the lead developer
launched the Web site templates and iLikeToDrive.com was born. The team made
the deadline and in the process overcame personal and professional obstacles that
had threatened to undermine the enterprise from the beginning. Now the team
would concentrate on growing and maintaining the Web site but without the sense
of urgency that had so dominated the last three months and had contributed to the
group bonding so tightly. Jim was not sure he would remain with
iLikeToDrive.com and very well might be called back to Greenwood to work on
another large-scale project.

On launch day, amidst the high fives and the champagne, several members of the
team told Jim they never would have made it if he had not had the courage to step
up and lead the group without any agenda other than making the date and helping
them all learn how to work together as a team. They thanked him for the
atmosphere he had created and how he had helped them to keep their eye on the
ball throughout the build. Jim was exhausted but very proud of his
accomplishment. He had managed to bring the team together by listening carefully
to everyone's position early on when the team was fractured and allowing for an
open forum for people to voice their opinions and dissents and then begin a
dialogue to solve the problems and collaborate as a team. Without the ability to
collaborate and share an open dialogue, Jim never could have asked or expected
the team to work the long hours they put in. His success was also based on in his
determination and willingness to lead by example. Without the personal
commitment Jim demonstrated, he would not have succeeded to bring together a
team with such substance.

Summary

The disparate yet dynamic nature of a Web development team is one of the most
fantastic aspects of doing this work. On nearly every team there is an often
unspoken but shared awareness that the work being conducted is specialized, cool,
misunderstood, and totally revolutionary. Highly organized and functional Web
teams are a product of the very late 20th century. There is still no standard for the
Web team in terms of members, titles, or functions, since these elements change
from organization to organization.

To successfully manage a Web development team, the project manager should be
familiar with each team member's role and contribution. Although not an expert,
the project manager is a generalist but must possess enough knowledge to be
conversant with each resource. The following list of specialists is representative of
a "standard" Web team.

• Project stakeholder/client
• Project manager
• Producer and/or content developer
• Information architect
• Graphic designer
• HTML developer
• Developer
• Tech lead
• Quality assurance engineer
• Project manager

All of these roles require a different interpersonal approach to manage effectively.
Learn the quirks that tend to go along with each of these roles to better understand
and communicate with the people who inhabit them.

To successfully manage your team, you must become a part of it both in deed and
in spirit. Show your commitment to the team whenever you get the opportunity.
Allow your people the freedom to arrive at their own solutions in their own way;
don't micromanage or force a solution you might favor over one of their own
devising. It's what they're paid to do, so let them be the heros and collect the kudos.

Chapter 3. Communication Cues

Key Topics

• Communication Concepts
• Nonverbal Communication
• Communication Best Practices
• Communication Tools

If there is only one skill you develop as a project manager, make it the ability to
communicate effectively. Without good communication skills, all the other skills
and techniques associated with your position will be rendered moot.
Communication is the very essence of your position and is what you do better than
anyone on the team. Web development teams tend to be articulate, if not downright
verbose. However, most team members can only wax poetic about their own area
of expertise. Ask a developer to describe how the search functionality works, and
you could be treated to a solid half-hour of eye-glazing technospeak. Ask the same
developer why a chosen color palette enhances a particular piece of content, and
you'll be treated to a series of grunts, coughs, false starts, and finally an indifferent
shrug.

This is not to suggest that all developers are tongue-tied or clueless about design:
There are plenty of erudite philosophy majors on the loose who have parlayed their
sense of logical syntax into programming jobs. The fact remains, however, that for
the most part, the experts on your team are paid to do, not to explain.

Among the definitions for communication provided by Dictionary.com, this one
seems most applicable to Web project work: "The exchange of thoughts, messages,
or information, as by speech, signals, writing, or behavior." Simple and to the
point. The definition contains the standard methods— speech and writing— but also
mentions the more subtle methods of communication— signals and behavior.
There is one important fact to grasp as early as possible: You communicate as
much through your body language, countenance, and general behavior as you do
with your voice and documentation. The truth is, no matter how much you talk,
write, or draw, the message screaming loudest in the team's ears is the one you are
silently sending through nonverbal channels. Scary, huh? Think about it: You are
the leader of a group of people looking to you not only for direction but for cues on
how to interact with you, the project, and each other. The same is true for clients
with whom you are working, who will be acutely tuned in to your verbal and
nonverbal messages.

Communication: What It Is

Put simply, communication is making yourself understood by others.
Presentations, e-mail, meetings, one-on-one conversations, even lunch— these are
all venues for communication. Making yourself understood implies clarity and
consistency. Muddle the message with ambiguity or conflicting body language and
you are not communicating but confusing. If your message is interpreted
differently by each person on the team, your project will devolve into an expensive
game of telephone.

Communication is also understanding the messages others are sending you. If you
are not clear on what a coworker or client is telling you, ask for clarification. If you
don't understand an e-mail, ask for clarification. Asking for an explanation is not
admitting you are ignorant; it's part and parcel of your job to be certain you
understand details so you can pass along the correct information. Do not let a
stakeholder say to you, "It's a business issue. You don't need to know about it." If
your gut is telling you that you should know more, then press the issue and get an
explanation, because the odds are, this very detail will be what holds up a launch
and will cause a great deal of anguish to you, the team, and the client.

The Unambiguous Information Society

Communicating your message unambiguously means it can only be understood
one way. Whether speaking or writing, do your best to strive for clarity. Before
you speak or write, examine the message closely for any ambiguities or potential
holes that could lead to a misread. Obviously, you will not always have the luxury
of self-examination before you speak or write, and in these instances repetition is
the way to distill or parse the message to its essence. Repeat yourself, or ask
repeatedly for clarification, until both parties get the point.

Strive to communicate explicitly. Overcommunicate if necessary. Continue
breaking down your message into simpler and simpler terms until your point gets
across. Questions and answers are the tools we use to establish clarity. If no one
asks any questions at a meeting or presentation or after reading a specification,
consider this a red flag. Chances are the point is not getting across. Clients,
stakeholders, and team members count on you to communicate all apects of the
project clearly and explicitly.

Distilling technical minutiae into clear, unequivocal language is a challenge for
everyone on the team. Look at the following.

PROJECT MANAGER: "Does the system only check user name and password for
authentication?"

DEVELOPER: "E-mail is the unique identifier for authentication in the system."

PROJECT MANAGER: "What about user name and password?"

DEVELOPER: "Yes. Those, too."

PROJECT MANAGER: "So user name, password, and e-mail are all used for
authentication?"

DEVELOPER: "No. Only e-mail."

PROJECT MANAGER: "So a user can put in the wrong user name and password
but use an e-mail address the system recognizes and get in?"

DEVELOPER: "Yes and no. A user can have multiple identities but only one e-
mail address."

PROJECT MANAGER: "So what you are saying is a user could enter any old user
name and password along with an e-mail address the system will recognize and get
in. Right?"

DEVELOPER: "Yes, the user can enter any login they want, but if the e-mail
address is not in the database, they won't get in. If the e-mail addresses match but
not the user name or password, they will get a message saying the login is
incorrect."

PROJECT MANAGER: "So, then, they can't get in?"

DEVELOPER: "They could if they enter a user name and password that matches
what is stored in their profile."

PROJECT MANAGER: "So, then, what you are saying is user name and password
are not the only fields being checked for authentication?"

DEVELOPER: "Well, actually, yes, but technically, no."

PROJECT MANAGER: "I'm going to shoot myself now. Care to join me?"

DEVELOPER: "Not today, thanks."

Did this dialogue make your head hurt? These are the types of discussions you will
have on a daily basis. The goal of the project manager is to get clear, unequivocal
answers to questions in order to write accurate documentation and communicate
details to the rest of the team. Ask repeatedly for an explanation until you
understand. Your head may pound, but the pain will be worth the effort.

Translation Skills

The project manager is an information processing center. Information flows in
from the functional experts on the team, is processed, interpreted, translated, and
finally passed along in language that can be grasped by people who do not have an
expert's grasp of the subject matter.

Before you can communicate complex business, technical, and design ideas or
processes, you have to be able to understand them. To understand them you must
have at least a passing familiarity with the components of the business. The
preceding dialogue between the developer and project manager illustrates how a
project manager attempts to gain clarity from the developer. The project manager
has enough of an understanding of the technology to be able to ask the right
questions and to know the developer is equivocating in his answers. Project
managers are not required to be experts in every discipline associated with the
project, but they are expected to be at least familiar with each. By definition you
are a generalist, not a functional expert. But in order to be effective in your role as
chief communicator, you have to constantly expand your breadth of knowledge
about all the components of the project and business.

The goal of translating information is to keep clients, stakeholders, and team
members on the same plane of comprehension regarding the project progress,
problems, and many details along the way. The knowledge level of each team
member and stakeholder will vary widely with regard to specific areas of expertise.
Because you have a basic understanding of each expert's tasks and specialized
language, you provide a bridge of communication between the client and the team.

Nonverbal Communication

Be aware that the nonverbal messages you send can speak much louder than what
comes out of your mouth. By the same token, being tuned in to others' nonverbal
messages and body language can help you better understand your clients and
coworkers. People communicate nonverbally via facial expression, tone of voice,
posture, hand movements, gaze, and even wardrobe. A complete study of
nonverbal communication is beyond the scope of this book, but we do want to

touch on the basic postures and potential translations you will regularly face on the
job. Table 3.1 lists the most common body language postures and the associated
signal.

Body Language at Work

If you are the type of person who uses a lot of animated gestures to get your point
across, you may consider channeling some of that physicality into verbal dexterity.
Animated gestures and hand motions, while fine in nonbusiness settings, can set
people on edge in a meeting and suggest you are taking a nonnegotiable position
on an issue. This can hamper input and exposes you as an emotional rather than
rational person. Keep the gesturing to a minimum and maintain an open posture.

Table 3.1. Body Language Translation Grid

Posture Translation Accompanying Internal
Dialogue

Staring into space, slumped
posture, foot tapping,
doodling, legs crossed with
foot swinging, eyes
downcast, buttoning jacket,
glancing around

Boredom,
impatience,
ready to flee

"Why is this guy talking
about database triggers to
designers? I wonder if I can
sleep with my eyes open?"

Leaning forward, feet under
chair, open arms, open
body, open hands

Eager, engaged "Wow, project managers are
so smart! I never knew
database triggers were so
interesting."

Sucking pen or glasses,
stroking chin, ankle on
knee, hand to cheek

Evaluating "I wonder if setting up a
database trigger is the best
solution here?"

Nodding, blinking a lot,
tilted head, steady eye
contact, smile, arms behind
back, open feet

Listening,
attentive

"Hmmm. Seems like
database triggers have
something to do with the
database. This is sort of
interesting."

Arms folded, head down,
frowning, hands clenched,
slightly rubbing nose, face
turned away

Rejection,
defensiveness,
disbelief

"How could this guy assume
I need a 15-minute lecture
on database triggers?! I
practically invented them!"

Finger tapping, foot tapping, Combative "Who annointed this guy the

staring, rubbing hands, world's foremost authority
on database triggers? What
a showoff!"

Finger pointing, leaning
forward, clenched fists,
frowning, standing with
hands on hips

Aggressive,
defiant

"There is no way I'm going
to sit here and listen to this
guy talk about database
triggers."

Pulling ear, eyes down,
glances at you, touches
face, hand over or near
mouth, shifts in seat

Lying "How can I fool the team
into believing I know how to
create database triggers?"

KEY POINT

People tend to believe nonverbal communication more than spoken words
because nonverbal messages are considered to be more "truthful."

The tone of your voice can betray your true feelings when communicating with
others. Do your best to maintain an even tone of voice at all times, even when
things get hot in a meeting or in a one-on-one conversation. It's okay for others to
get steamed and display their emotions, but as the leader of the project, your
actions, tone, and demeanor speak louder than your words. Your tone of voice can
convey many emotions and states of mind, including anger, boredom, apathy, and
sarcasm.

If you suspect you may be sending the wrong messages with your body language
or tone of voice, ask a trusted friend working on the project to observe you in
action and offer feedback. Learning to master the nonverbal messages you send as
well as being a good study of other people's nonverbal communication can provide
you with an enormous advantage in the give-and-take world of project
management.

Character Communicates

Effective communication skills are closely related to other interpersonal skills like
empathy, rapport building, active listening, honesty, and truthfulness. These skills
and attributes equal character, and character is the foundation of a successful

project management career. A much larger percentage of your effectiveness and
success will be based on your character rather than on your technical skills. In
order to lead, you must gain the trust of your team and demonstrate the type of
character people respect and wish to follow. Striving for good character should not
be a new concept to you— this is straight out of Life 101— but in the occasionally
high-strung and melodramatic office environment, maintaining your character and
a positive outlook is an achievement in and of itself.

It is hard to fully appreciate what the various members of your team go through on
a daily basis. After all, you are not the one who sits in front of a computer and
writes code for 14 hours a day, struggles to come up with an idea for a crucial
design element in an hour, or has to test and analyze the final Web site before
launch and notate every bug and imperfection. In a perfect world you may have
had all of these experiences before moving into the project manager role, but the
chance of anyone being that well rounded is slim. Strive to continue learning as
much as you can about each production skill set by reading, searching the Web,
and especially, speaking to your peers. The more you know about each person's
tasks, the better you can empathize with that person. Developing empathy takes
one-on-one interaction and good, active listening skills.

Knowing how to listen will help you build rapport and establish relationships with
your coworkers and stakeholders. Meet with your team members individually at
least once a week during the project. Let the person know you are not looking for a
status report but simply stopping by to say hello and to answer any questions he or
she might have about the project. Your goal is to listen without butting in,
editorializing, or drawing conclusions. Show them you are grasping the essence of
what they are saying, but keep your own comments few and as brief as possible.
Summarize what you heard, and ask them if your summary is correct. Not
everyone on the team will be interested or even appreciate informal one-on-one
discussions with you. Don't be offended— some people would rather work than
talk.

The Web Team as a Melting Pot

Chances are you have people on your team who come from a culture very different
from your own. Cultural diversity on the job is commonplace today. It can be very
helpful to be aware of your team's cultural backgrounds to avoid appearing
insensitive or just plain clueless about the differences that may exist due to
ethnicity, religious beliefs, and geography. Be cognizant of the fact that things you
take for granted, such as hand gestures, personal space, tone of voice, touch, jokes,

or figures of speech, can mean something entirely different to someone from a
different culture than yours. Working on a team with people who have different
customs and religious practices can be challenging and even frustrating if there is a
communication issue, but getting past the differences and learning to accommodate
everyone on your team will prove fruitful.

Sensitivity and a willingness to accept a person's religious or cultural differences
are essential ingredients for creating a harmonious, culturally diverse team. For
example, if one team member is a practicing Muslim, he might require a longer
lunch break on Fridays to go to the mosque. Religious holidays vary, so be aware
that some team members may be requesting time off at different times throughout
the year for observation of their holidays. Be sure to notate these time-off requests
in your project plan.

Business Culture Online

An excellent source of information about nearly every culture that exists in
the world is located at www.businessculture.com. This site provides
reports on business customs, cross-cultural communication, etiquette,
proper gifts, negotiating tactics, and manners. Visit this site and become
the ambassador of culture in your organization.

If you are working with team members who are not native speakers of your mother
tongue, take the time to make sure they understand what you are saying. This does
not mean yelling at them in a loud voice: They're not deaf, and doing so only
makes you look insensitive and socially unskilled. Simply ask them if they
understand what you are saying and if you need to repeat anything.

Communication: What It Isn't

Communication is not arriving at the office four hours late wearing only a raincoat,
jumping on top of your desk, and loudly encouraging everyone to join you in a
chorus of "I'm mad as hell, and I'm not going to take it anymore!" Effective
communication does not need to be so demonstrative. Communication is a
controlled activity. Losing your self-control in any business situation will serve
only to undermine your credibility, not to mention scare people. Being in control of
yourself also means you are in control of the message. Two things you want to
avoid are not having a good understanding of your audience's knowledge level on
the topic at hand and being rude. The first one takes a certain amount of prior
understanding about whom you are talking to, and the second is just common

sense. However, both of these gaffes are common among project managers and, to
be fair, just about everyone at one time or another.

It Takes Tact

When was the last time someone treated you rudely? Remember how it felt— that
sort of shocked and bewildered sensation? Did you feel like working, helping, or
even speaking to that person afterwards? Probably not. Being rude, no matter how
tempting or even seemingly appropriate (and we've all been there), will only harm
your good standing among your peers and the company at large. Even
unintentional rudeness is harmful. Although you may not know you are being
perceived as offensive, the effects will still be the same. Learning good business
etiquette skills will serve you far longer than being up on that latest highly
complicated technical advancement in search engine results prioritization.

IT people can be blunt— not out of disrespect or rudeness, but simply because they
occupy a very logical, concise intellectual space. Bluntness can easily be
interpreted as rudeness. Be careful about going directly to the point, be tactful, and
be aware of your audience. People will react to how you speak instead of what you
say, and the message could be lost. Being abrupt and blunt is not the same as being
candid, even if you are delivering bad news or giving a dissenting opinion. Be
respectful, and use diplomacy in every interaction.

Tactfulness is a skill you will call on in many situations, especially those where
you have to critique a resource or even— heaven forbid— the client. Beginning a
performance review with the phrase "You stink!" as opposed to a more tactful
critique will not inspire the resource to improve but will more than likely result in
disciplinary action being taken against you or a more formal complaint being
registered against the company. Remember: Employees who are the victims of
rude or aggressive behavior do not complain to the instigator but to the company—
or beyond if necessary. Here are two simple techniques for criticizing tactfully.

• Praise in public; reprimand in private. This classic technique is foolproof
and always successful in demonstrating your sensitivity and ability to be
discreet.

• Use the "pat and slap" method to deliver criticism. That is, "Here's what you
do very well. That's what we're trying to achieve: Pat, pat. Now, here's
where you don't measure up to your abilities: Slap."

The following are some rude behaviors you should avoid.

• Not returning phone calls and e-mails. Letting your calls go to voice mail
and not immediately checking every single e-mail is okay, but be practical in
your screening. Return all phone calls and e-mails as promptly as possible.
You know your own frustration when your calls or e-mails are not returned,
so why perpetuate the aggravation?

• Side conversations during meetings. This is distracting to others in the
meeting and rude to the speaker.

• Interrupting someone who is speaking. Sometimes it's hard not to jump into
a conversation and cut someone off, but don't do it. Let people finish
speaking before you dive in and beat them to the point or show off your
knowledge on the subject at hand. Speaking in turn shows that you are
listening, and your point will be that much more appreciated.

Know Your Audience

Gone are the days when the designer can also backfill for the developer and bang
out some HTML to help meet a deadline. Web teams are composed of functional
experts who often have no idea how to perform another team member's tasks. The
project manager provides the translation services across the team and also between
resources and stakeholders. The knowledge level of any given Web development
topic can be drastically different from person to person, so the same message may
have to be told in a number of different ways. Avoid talking down to or over the
head of the people you manage and support. Understand the knowledge level of
your team with regard to their abilities outside their area of expertise. As you learn
about each person's general Web knowledge you will discover how to tailor your
messages.

Don't expect the HTML developer to understand what you mean when you tell him
values will be passed from template to template via both the OID and the query
string. He may sit in the tech department, but his programming knowledge more
than likely is not that of a developer. Explain the situation in terms people can
understand. Often people will not let on that they have no idea what you are talking
about for fear of exposing a gap in their knowledge or appearing clueless. If you
see their eyes glazing over, it's a safe assumption you are leaving your audience
behind. Readjust the message either up or down, depending on how much or how
little is getting through.

It can be a safe assumption that the client won't know squat about the table
structure of the database or why the database performance would improve by
implementing stored procedures. But before you lapse into baby talk and start

grasping for interesting analogies to explain the topic, first ask them if they are
familiar with the process so you can gauge how much you need to simplify the
message, if at all. It is insulting to be spoken down to or have someone
oversimplify information. Check first to see how much or how little your audience
knows about the topic before you speak. This shows that you are considerate and
want to communicate in the most effective manner possible.

Communication Best Practices

Putting all your communications skills into practice takes time and acute self-
awareness. The secret to success is being patient, both with yourself and with
others. Observation is the key to learning how well you communicate and will help
you decipher verbal and nonverbal messages your team and stakeholder may be
sending you. But there are also methods and steps you can take to help facilitate
communication and keep the information flowing unencumbered and undiluted
through the lifecycle of your projects.

Best Practice #1: Plan to Communicate

Wrapping a plan around when, where, what, and how you will be communicating
with your team and stakeholders will greatly enhance the effectiveness of your
process. Consider the myriad methods of communication you have in your arsenal:
documentation, meetings, e-mail, telephone, instant messenger, and hallway
conversations. Now think about your team and what methods you can match most
effectively to each person. Once you know which method would work best per
individual, think about the group as a whole and what methods would work best
for communicating with the whole team. Creating a communication plan is simply
organizing your methods with the team on an individual and group basis. The goal
of creating the plan is to ensure that useful, targeted information is communicated
to all involved in the project in a sensible, coordinated manner.

Some project management gurus recommend creating a complicated document or
spreadsheet to house your communication plan. The document is then disseminated
to the rest of the team. If you have the time or are working with a very large group,
this can be a good idea. However, most Web development projects happen at an
accelerated rate and are accomplished with small teams. A formal communication
plan sent to the whole team may be overkill and would add yet another deliverable
to your already heavy load. Create a document for yourself to help you organize
your thoughts and plan of attack. Because you will be the primary driver of

communication within the team, there is no need to send the document to the team:
It exists to keep you on track and help you organize your plan.

Creating a communication plan is not an exercise you will have to repeat for every
project either. Hopefully the pool of people you draw from will remain somewhat
consistent, as will the methods you use to communicate. The communication plan
is a reusable document and does not have to be considered a milestone or formal
deliverable in the project but instead is something you can spend time on early in
the project, store in notebook or in a Word document, and refer to as needed.

In your plan, list your resource groups and the methods you will use to reach them
and how each will be communicating status and issues back to you. Keep in mind
that all methods of communicating are two-way, so be sure that, for every method
you intend to use, your resources are comfortable using them as well. Table 3.2
illustrates the best communication method for the resource groups you will be
managing.

Table 3.2. Communication Methods per Resource Group
Resource Group Method
Tech/Design: Designer,
HTML, Developer, QA

E-mail, instant messenger, one-to-one
status check, weekly team meeting, issue
log, project plan, specs

Operations: DBA, System
Administration

E-mail, instant messenger, specs, issue log

Content: Producer, editor,
copy editor, production
assistant

E-mail, instant messenger, one-to-one
status check, weekly team meeting, specs,
issue log, project plan

Client E-mail, one-to-one status check, weekly or
bi-weekly status meeting, conference call,
issue log

Not all the communication methods you implement during the course of the project
will be readily adopted by the entire team. Namely, methods that require the
maintenance of a document by the group are the hardest to initiate and keep alive if
your company culture does not already include these methods. Examples of these
documents, and the most useful and commonly used, are the issue log and the
change request form. Because maintaining these documents involves time and
effort, some resources on your team will simply not comply with the use of these
documents but instead rely on you to maintain them and show their relevance to

the project. This is an unfortunate but common situation. It will be up to you to
show how these documents will help move the project along and keep details from
slipping through the cracks.

KEY POINT

Part of your communication plan will be the creation of
documents, some shared by the team, some not. For each project
you should create a document management system that need be no
more complicated than a set of folders and files on a public server.
Be sure everyone has access to the necessary documents as well as
permissions allowing them to change and save the documents.
Having a public folder for all the project documents will enable
everyone's participation in maintaining the documents and
improve the success of these methods of project control.

Best Practice #2: The Issue Log and the Change Request Form:
Communication Tools for Control

Once past the planning/kickoff stage of the project, you will move very quickly to
the control stage. Here, all your communication skills, knowledge, and tools will
come to the fore. Two highly customizable tools you can use that will enable a
great deal of control and allow you a wider margin for success are the issue log and
the change request form. These tools alone can be your keys to project control, but
of course, there's a caveat: Both documents require input from the team and
therefore a certain level of cooperation and collaboration, which is both a blessing
and curse. If your process already includes these tools and your resources are
familiar with using them, then cooperation should not be a problem when you roll
them out for use. However, if you are introducing these tools into the process for
the first time, you can expect a mixed reaction from your team and varied results
until the tools have been universally adopted by the culture.

It takes repetition and dedication to facilitate cultural change. The first few times
you use these tools on projects you will end up maintaining them by yourself. This
goes with the territory. However, by using the tools yourself and demonstrating
how you use them at meetings— one-on-one and with the stakeholder— people will
eventually come around and support them as well. Like any other aspect of process

change, it's imperative to get management buy-in and support when introducing
new tools and process.

Got Issues? Manage Them and Thrive

Issue management may sound like a job for a psychiatrist, but it's really a big part
of what you do on a daily basis. As the project progresses, issues small and large
crop up at an alarming rate. Most new project managers record issues as they come
up in their ever-present notebook, and the issues are then dealt with on an ad hoc
basis and prioritized by severity or threat to the project or project phase. This
method of issue management may work for a short time or for a simple project, but
it is also a recipe for disaster. Because the project is moving so fast, there often is
not time to thumb back through the pages of your notebook, and issues recorded
there last week, if not addressed, are now buried and forgotten, only to resurface
when it's least convenient.

Formalize your issue management process with an issue log. This simple document
is easily maintained and keeps issues where they belong: in front of everyone's
face. You can practically manage a project with this tool alone. It's the perfect
meeting agenda creator, project plan checker, and performance reviewer— all
rolled up into one simple sheet.

In its simplest form the issue log contains the following fields.

• Name/description
• Priority: can be recorded numerically— 1 to 5— or linguistically— low,

medium, high
• Opened by: who entered the issue into the log
• Assigned to: who the issue is assigned to for resolution
• Date assigned
• Status: usually "open" or "resolved"
• Resolution: description of the resolution
• Date resolved

This document can easily be created in MS Word or Excel (we've included an MS
Word version on the CD that accompanies this book). There are also more
elaborate issue logs available online that are tied to a database and provide a GUI
for entering and maintaining issue records.

Regardless of how simple or elaborate your issue log may be, the measure of its
success will be how much it was used by the team. Be sure to introduce the issue

log early in the project. Explain how to use the log, the benefits of using it, and
where it can be found. Bring the log to every status meeting and use it to help
focus the agenda of these meetings. You may find it necessary to create a separate
log for each resource group: design, tech, business. While this approach means
more work on your part setting up the logs, it will be easier for the team to use the
logs, and they won't have to waste a lot of time searching through the topical
records or entries. You could also create the log in an MS Excel workbook and
devote a worksheet to each resource group. If you are on the techie side, you could
even create your issue log as part of a project intranet and give the tool as much
functionality as you see fit.

Once you have your issue log created in whatever format is appropriate to your
situation, you must put it into practice. Let's take a minute to think about issue
management and tie the concepts to the different sections of the issue log. Issues,
by definition, are elements that need to be addressed and resolved or, at the very
least, acknowledged. On a Web development project, issues come and go quicker
than a computer virus delivered by teenage hackers high on PlayStation II. Your
job is to collect and record these issues in a suitable vessel, hence the creation of
the issue log. In order to communicate effectively via your issue log, you must
clearly describe the problem or issue. The Name/Description field is where you
will do this. Keep it as brief and succinct as possible.

Now that you have your issue clearly articulated, you have to give it a ranking with
regard to its severity in the Priority field. Will this issue halt your project if
unattended? If so, then mark it "high" or give it a 5 on scale of 1 to 5, with 1 being
analogous to "low." Be honest when you evaluate issues. Don't give every issue a
high-priority rating: This tool is used to capture and hold information and issues
until they can be addressed, not to create panic.

All team members who enter issues need to complete the Entered by field so that
whoever happens to be named in the Assigned to field can contact them for
answers to questions that are bound to come up. This is how the issue log
facilitates two-way communication and collaboration.

Monitoring the log is a responsibility shared by all, but the project manager
monitors it most closely to make sure issues are being addressed. Assigning a date
in the Date Entered field helps the project manager and others on the team keep
issues from getting too stale and can serve as a reference for judging how resources
are paying attention to their tasks. Another field that helps the project manager

monitor the log is the Status field, which usually is simply marked "open" for
unresolved issued and "closed" or "resolved" for issues that have been addressed.

Once issues have been resolved, it's good practice for the resource who addressed
or closed the issue to write a brief note in the Resolution field explaining what was
done to close the issue. This bit of information can help to answer questions that
others on the team may have had about the issue and hopefully help prevent the
issue from recurring. Finally, when the issue is closed, a date should be entered in
the Date Resolved field. This helps lend a sense of closure to the issue and can give
the project manager a snapshot of the duration of the problem, which can be
helpful at status and postmortem meetings.

Communicating Change

The Web was founded on the principle that changes both small and large to Web
sites can happen at the drop of a hat. While it may be true to some degree that
making minor changes to Web sites such as modifying copy, color, and images can
be relatively easy, large-scale changes affecting the layout or functionality of the
site are still wrongly considered "simple" by many clients and stakeholders who do
not understand the complexity of a contemporary dynamic site. Change
management is a fundamental skill that calls on your ability to clearly
communicate sensitive and complicated information. In addition to rapid
technology changes that can impact the technical architecture or behavior of a site,
business priorities and goals for a Web initiative can change almost as quickly.

The process you apply to functionality and design change requests and the
communication techniques associated with them will depend on several factors.

• Where the project is in the development cycle
• The scope of the change request
• The impact the change will have on the schedule, budget, and resource

allocation
• Your working relationship with the client or stakeholder

Be sure the client or stakeholder understands that the very early phase of the
project— usually before the front-end design is signed off and the technical build
has begun— is the easiest time to make large-scale changes. Explain what type of
sign-off procedure you will have and what exactly sign-off means. How formal a
sign-off procedure you adopt will depend on the size of the project and what type
of relationship you have with the stakeholder— a verbal "okay" or an e-mail may
suffice. However, if you are working on a large-scale project with a large budget, it

would be best to formalize the sign-off procedure with sign-off meetings and
signed documents that record all approvals and approval dates.

Change management is analogous to managing client expectations. The client or
stakeholder will think nothing of requesting a change that he or she considers basic
but in reality involves major modifications to the site. Most of the time you will
know what impact a change request will have and if the change is really in the
client's best interest at this phase of the project, if it can be done within the current
budget, if it is feasible, or if it even makes sense. Your tact and diplomacy will be
put to the test repeatedly as you explain to the client why a requested change
cannot be implemented without the schedule or budget taking a severe hit. The
most common tactic at this point is to recommend that the change be added to a
Phase 2 of the Web site. This tables the issue for the time being and allows you to
start collecting requirements for a second leg of the project. It also encourages the
client's thinking to shift away from trying to wedge in major changes during this
phase and to start looking forward to a second phase of the site.

Not all change requests are bad or harmful. Some ideas for changes crop up only
after the site is past a certain phase, like the HTML build, and the change will
actually improve the project. Don't be too overprotective of your specs and the
project timeline. You and your team will be able to gauge the impact of the change
and communicate back to the stakeholder what the change entails for the schedule
and budget. If you don't know what the impact of a change request will be on a
project, ask the resource who will have to implement the change so you can
properly communicate and understand the scope of the change. Minor changes can
usually be handled on the fly and don't involve a lot of formal process. However,
be sure to record the change either in the project schedule or issue log. Larger
changes that impact the entire scope of the project require more process and
documentation.

On large projects establish from the outset how you will be managing change
requests. Explain that change is inevitable and that there must be a formal process
in place with a sign-off procedure as well to ensure the change is properly
communicated to both the stakeholder group and the development team. A change
request form should be used for large-scale changes to the project, with signatures
of the client, stakeholder, and project manager. In addition to a change request
form, a log of changes can provide a good way to measure and monitor time spent
on changes to the original plan. Regardless of who requests the change, if it is
significant enough, a change request form should be filled out. The form should
include the following fields.

• Name of person requesting change
• Request date
• Summary description of change
• Importance of change (high, medium, low)
• Justification of change
• Impact analysis of change (time and budget)
• Resource assigned to implement change
• Status of change request
• Stakeholder approval

If the change is initiating from the client or stakeholder, it is still a good idea to use
the form. Obviously the approval is implicit, but the exercise of filling out the form
will help them think through the changes they are requesting, especially the
Justification field of the form. You in turn will be able to honestly and frankly
assess the change in the Impact Analysis field, and together you can decide if the
change is necessary. Once again, collaboration and communication are achieved
via documentation.

Significant changes requested by those working on the project are subject to the
same request process, with the added process of having to make a case for the
change to both the project manager and the stakeholder. It is your responsibility to
ensure that the form honestly assesses the requested change and to properly gauge
the impact to the schedule and budget. Significant changes need to be
communicated up or down the line as soon as possible to mitigate any major
impact to the schedule and to get the scope adjusted quickly. Before you schedule a
meeting to discuss the change, be sure the change request form is filled out and has
been disseminated to all interested parties. This will ensure that everyone is
prepared to debate the merits of the change.

Project Control Tools

In the Chapter 3 folder on this book's CD, there is a simple issue log that
you can modify to suit your needs.

Case Study: Peeling the Corporate Onion

This case study describes a project manager's experience as he struggles to kick off
an e-marketing project in an enormous multinational corporation. Layer upon layer

of corporate bureaucracy and poor communication across the company threaten the
success of his project.

The Kickoff Meeting

My first visit to World Globe Consumer Goods (WGCG) was impressive to say the
least. The corporate offices were spread out over several acres of land and the
parking lot was as big as an average shopping mall's. Inside Building 7, where my
meeting was to take place, the aisles of cubicles seemed endless. We passed
conference room after conference room until we finally arrived at the room where
our kickoff meeting was going to be held. Oddly enough, the conference room
reserved for the meeting was barely big enough to seat 5 people.

My company, Online Marketing and Development Associates (OMDA), had
recently been contracted by WGCG to implement an e-mail list management
system that was to be used for e-mail marketing blasts and e-mail newsletters. The
list management system was part of WGCG's Customer Relationship Management
(CRM) initiative and was to be managed by the CRM group. The CRM group was
newly formed and not fully staffed. The person running the CRM effort at WGCG
was Joe Reilly; he was also the project stakeholder. Joe and I had met briefly
during a conference call some weeks before, and this was our first face-to-face
meeting.

The meeting was attended by Joe, an engagement manager from the WGCG IT
group, an account representative from a strategy consulting company, a freelancer
working with the CRM group, and myself. The goal of the meeting was to
establish the production workflow for a weekly newsletter that was to be targeted
to the consumers of WGCG's home-care products.

Together we created a production schedule for the first three months of the project
that included dates for materials handoffs and approvals. In order for the mailing to
run smoothly, every milestone would have to be met each week. Joe assured me
his team would make this a top priority and he would be sure all the approval and
material handoff dates would be met.

After the meeting I felt confident that we were off to a good start with the project
and things would fall quickly into place. When I returned to my office, I created a
project plan that included the dates we had established in the meeting. The plan
was set so that on Monday of each week I would receive the brand promotional
material from the account rep of the consulting company. The newsletter content
would be based on the product or brand being promoted. On Tuesday I would send

the HTML version of the newsletter to the CRM freelancer, who would then get
the piece approved. Any required changes would be done on Wednesday, and the
mailing would occur on Thursday.

If It Sounds Too Good to Be True, It Probably Is

The first mailing of the newsletter was scheduled to go out on Thursday, October
31, which was still three weeks away. Two weeks before the mailing date, the
engagement manager from the IT group was to provide me with a list of 50,000
opt-in e-mail addresses for the newsletter. The delivery date for the list passed
without a word from the engagement manager. I e-mailed the engagement manager
to find out when he would be sending over the list but received no reply. After a
few more days passed without any word from the engagement manager, I called
Joe to ask him whom I could follow up with at IT to get the list of names.

Joe said he would follow up internally with the IT group to find out what was
going on with the list and he would call me back in an hour. By the end of the next
day, I had not heard back from Joe or the engagement manager from IT. I called
Joe again and left a voice mail reminding him that I needed the list. The next day
was Friday, which came and went without any contact from Joe or the engagement
manager.

When I arrived at work on the following Monday, I had a voice mail from Joe on
my phone. He told me he was in Denver for the next few days and would not be
reachable but would be checking e-mail. He told me to work with the account rep
from the agency on any outstanding issues for the newsletter. He mentioned
nothing about the newsletter list. "So much for 'top priority' status," I thought to
myself. I e-mailed the account rep and explained the situation and asked if she
could help me track down the mailing list at WGCG. She replied to my e-mail
immediately, writing that she would be happy to follow up on my behalf but she
didn't know anyone in the IT group except the engagement manager, whom she
had just met at the kickoff meeting, and she didn't have his contact information. I
had been trying for days to reach the engagement manager without success, so I
had to wonder why she thought she would succeed where I had failed. I gave her
the contact info for the engagement manager and wished her luck, never believing
for a minute she would hear back from anyone at WGCG.

To my surprise my phone rang 30 minutes later. It was the engagement manager
from IT. "Well, hello stranger," I said. He seemed to miss the point of the joke and
got right down to business. He told me the list was not in his possession and that I

would have to work with DRED, the Data Request Engagement Department,
which was located in Atlanta. DRED was where all consumer data collected by
WGCG was warehoused. I would also have to coordinate the data request with the
WGCG legal department. This was the first time I was hearing about any of this. I
asked him why hadn't someone told me this information sooner? The engagement
manager replied it wasn't IT's place to tell vendors how to request data but was
instead up to the project owner. "Why didn't you bring this up at the kickoff
meeting?" I asked. He replied simply that he was under the impression Joe would
explain this to me.

Peeling the Onion

The engagement manager gave me the contact information for a data manager at
DRED. I called the account rep from the agency and asked if she had a contact
person I could reach in WGCG legal who would be able to help me with the data
request. She didn't have any contacts in the legal department but said she would
work on it. I then called the data manager at DRED. I wasn't too surprised when
the phone was not answered and my call was sent to voice mail. I wondered if
anyone ever answered their phones at WGCG. I left a message for the data
manager asking that he call me back as soon as possible. I also sent him an e-mail
requesting he call me to discuss the newsletter data request.

Later that day I received an e-mail from the agency account rep with the name and
contact information from someone in the WGCG legal department. Obviously, the
agency people had a little more access within WGCG than I did. I called the legal
contact but, again, was sent to voice mail. I left a message explaining the situation
and asking that he get back to me immediately. I began to feel like Alice falling
down the rabbit hole. I was worried that once I finally did reach the person at
DRED or the WGCG legal contact they would tell me there was yet another layer
to drill deeper still before I could receive the data.

The following day the data manager from DRED returned my call. His name was
Hank Snow, and he told me he would be sending over a form that had to be
completed and signed by the project owner, WGCG legal, WGCG IT, and finally
by me. Once they got the form back, the request would be processed "as soon as
there was time to cut the data." He also mentioned that it was highly unusual for
someone from DRED to actually speak to a vendor and that vendor data requests
were usually handled by the IT engagement manager. I was tempted to tell Hank
that the engagement manager from IT was the person who told me to contact

DRED directly; but I sensed there may be some political issues between IT and
DRED, so I thought better of bringing it up.

While I had been on the phone with Hank, Joe had called me and left a voice mail.
Joe's message was brief; he was only calling to find out if the mailing was on track.
He had spent the last two days at an internal marketing conference and he had
discussed the newsletter with executives and managers from all over the WGCG
enterprise. He said he would be back in the office in the morning and to call him
then if there were any problems.

The Black Hole

The next morning I called Joe at his office. Naturally I was only able to reach his
voice mail, so I left a message telling him we had to speak immediately. I had been
e-mailing Joe every day with a status update on my travails with the e-mail list
quest, and I had also been cc'ing him on every e-mail I'd sent that was related to the
project. I assumed he had to be aware of the problems I had been having, but when
he finally called back at 6 p.m. from his cell phone as he drove home he professed
total ignorance of my situation. I briefly recounted my experiences over the last 72
hours and finished by describing my conversation with Hank from DRED.

He said this was the first time he had heard about DRED's data request process. I
asked him if he had seen any of my e-mails or any of Hank's e-mails on the
subject, and he said he hadn't checked his e-mail in over a week. I told Joe getting
the data from DRED was the most pressing issue at the moment and I would
appreciate anything he could do to help. I explained that if there was a delay in
getting the data from DRED we were in danger of missing the delivery date. He
said he would make it a priority and he would also get the form signed by WGCG
legal. He assured me I would receive the data in time.

After I got off the phone with Joe, I completed my portion of the form and faxed it
to him. I tried to picture the fax machine on the other end of the line sitting
unattended and forgotten in some random, dust-filled cubby hole in the massive
WGCG complex. I wondered if the data request form would ever make it into Joe's
hands.

The following day I sent an e-mail to Joe, Hank, and the WGCG legal contact to
let them know I had faxed the data request form over the previous evening. A short
time later I received an e-mail reply from the legal contact. Her reply was short and
to the point: she did not handle data request forms. Unfortunately she neglected to
mention who in the legal department did handle these requests. I replied to her e-

mail and asked her to please provide me with the correct contact in her department.
I was not very hopeful I would hear back from her, and true to WGCG form, I
didn't.

I then called Joe and asked him to verify that he had received the fax. He said he
had not retrieved the fax yet and was running off to a meeting but he would be sure
to take care of the matter later and get back to me as soon as he had the form.
Despite Joe's assurance, I doubted I would be hearing back from him anytime soon.
The rest of the day passed, just as I had suspected, without hearing a word from
Joe or anyone at WGCG.

A Plan Might Help

Over the weekend I thought about what I could do to improve the lines of
communication with Joe and the team at WGCG. I needed to implement a
communication plan that would help me navigate the many layers of WGCG more
efficiently. It seemed that Joe was always on the go and not able (or willing) to
check his e-mail very often. I decided to begin trying his cell phone first before I
called his office or sent an e-mail. If I failed to reach him on his cell, I would then
contact the account rep from the agency, who seemed to have a much easier time
reaching Joe.

I also planned to build a project Web site that I could update regularly. The Web
site would provide a centralized and easily accessible location for all important
issues and project updates that needed to be disseminated to the team. On the Web
site I would create an issue log where all outstanding issues would be listed and
assigned an owner and a status. The Web site would also list the contact
information for everyone on the team.

I decided to schedule a meeting for Monday and invite everyone on the team to
discuss communication methods and escalation procedures for the duration of the
project. This was something I should have done from the very beginning. I should
have set up a communication plan at the kickoff meeting. The first mailing had not
gone out yet and already the project was in danger. I was a little apprehensive,
however, because if it was this difficult just to get someone at WGCG to pick up
the phone or return an e-mail, then scheduling a meeting would be nearly
impossible. I thought the best way to make this meeting happen would be to call
Joe and explain the situation to him and get him to agree to the meeting first.

Implementing the Plan

Monday morning I called Joe on his cell phone before 9 a.m. When he answered he
seemed a little surprised to hear my voice. I had reached him as he was driving to
work. I told him the difficulties I was having reaching him and other people at
WGCG was endangering the project and that we should meet to create a
communication plan with contingency measures if someone on the team is not
available or does not respond to urgent messages. He thought it was a good idea
but said this was not a good week for him to have the meeting. I pushed him a bit
and told him we had to resolve this as a team as soon as possible if we hoped to
make the first mailing date, which was in four days.

He suggested we do a conference call with the team at 11 a.m. He said he had a
regular Monday morning strategy meeting at 10 a.m. and all of the people who
were working on the newsletter would be present. He said to call his secretary and
she would give me the number of the conference room they would be in and to call
the conference room at 11 a.m. and they would be assembled.

At 11, I called the conference room number I had received from Joe's secretary.
The account rep from the agency answered the call and said everyone was present
and ready for the call. I started off by explaining how important communication is
on a project of this type. I explained that projects with so many regular milestones
and that require so much coordination between departments need a sound
communication plan. I used the DRED data request debacle to illustrate how poor
communication could sabotage a project.

When I mentioned the data request issue, Joe spoke up. He said he had called
DRED as soon as he got into his office and told them to send me the data
immediately and to do so without all the paperwork. He assured me I would have
the data today. I was impressed with Joe's ability to get things moving at his
company, but why did he have to wait until the situation was nearly out of hand?

I continued with my explanation of the communication plan. I first described how I
thought I should be communicating with Joe. I told him about my idea to contact
him on his cell phone before I tried his office phone or e-mail. Failing that, I would
try to reach him through the agency account rep. Joe and the account rep both
thought that was a good plan. The account rep suggested following up all
important calls with an e-mail to her to provide a message trail. I agreed.

I then explained the project Web site. I had come into the office early and was able
to build a simple Web site that included a project update section, an issue log, and
a contact list. I gave them the URL of the site, and they were able to access it on a

computer in the conference room. Everyone thought the project site was a good
idea and would help tremendously with keeping people on track. I then asked each
person in the group to tell me the best time to call them during the day should I
need to reach them immediately, and I also asked for everyone's cell phone. I told
them this information would be added to the project Web site.

We then spent some time creating an escalation procedure for issues that may arise
during the life of the project— mainly missing deliverables or missed approval.
Everyone contributed to the plan and seemed eager to cooperate, which made me
feel like there was hope after all. I think it was the first time someone had tried to
actually create a process around communicating through the various layers in the
giant WGCG enterprise.

Lessons Learned

The communication plan we put together that day sounded great in theory but
ended up being difficult to put into practice. As it turned out, the DRED data never
arrived as promised and the first mailing went out a week behind schedule.
Missing the first mailing was the necessary catalyst to cause Joe to send off an
angry e-mail to the team in which he demanded everyone stick to the
communication and project plan. What made things seem somewhat futile was the
fact that Joe himself was the weak link. With his job pulling him in so many
directions and the newsletter project being only one project of many he was
responsible for, it seemed hopeless that things would ever improve.

Finally, after only two months, during which three more mailings were missed due
to a lack of coordination and communication, Joe had had enough. He pulled the
plug on the project. During the short life of the project, I had generated hundreds of
e-mails and phone calls and only a handful had been replied to or returned.

The biggest lesson I learned on this project was just how important it was to
establish a communication plan from the very beginning of a project. Also, I
realized how important it is to meet with the project owner, face to face, to
communicate how critical it is for resources in the client organization to be
dedicated to the project. Without total buy-in across the organization and
communication at every level, projects of this type have little chance to succeed.

Summary

Communication gets to the very core of what you do on a day-to-day basis. It's
great to know a lot about building Web sites and the attendant technology and

design, but if you cannot speak about the details in any kind of coherent and easily
understandable manner, you are in trouble. Communication is composed of much
more than just speech. The effective communicator will use all the available
communication tools at his disposal to get his message across. These include
writing, body language, listening, tone of voice, and even dress.

Because you are at the very center of the project and the majority of the
information will be flowing through you, you need to know how to translate and
relay messages effectively. For instance, the technical knowledge level will vary
greatly from person to person on your team. However, each person on the team has
to grasp how certain types of technology work and how it will impact her piece of
the project. It's your job to explain this technology to each person in language that
is appropriate to his or her level of understanding.

Clarity is your goal in all your communication tasks and responsibilities. Write
clear, concise specifications; give clear, well-articulated status reports at meetings;
clearly explain to the client why the project is three weeks behind schedule. Do not
equivocate. Say what you mean and mean what you say. It won't be so much what
you say as how you say it that will determine how people judge you— even when
you tell them something they do not want to hear— like the project is not really
only three but six weeks behind schedule.

Besides meetings and e-mail there are other tools you can use to communicate with
your team, such as the issue log and the change request form. While these tools are
integral parts of the project workflow and process, they are also important vehicles
for communicating details. When embraced by the team and managed correctly,
they can help keep a project on track and the lines of communication wide open.

The act of communicating during the lifecycle of a project is ultimately what you
will spend the bulk of your time doing. It can be trying and difficult, but
remember: Communicating is your most vital skill as you manage a Web project
through to its completion.

The Voice of Experience

Tracy Brown is the former Director of Production at Red Sky
Interactive and a veteran New Media producer who has worked on
many large-scale development projects including altoids.com and
sony.com. While at Red Sky, Tracy won the prestigious "Visionary
Award," which distinguished her among her peers as a thought

leader. Here she describes how crucial effective communication is to
a project and offers some tips for being a better communicator.

How do you manage the communication aspects of a Web development project?

The key for me is, how much communication? You don't want to communicate too
much, and yet you want to communicate enough. That's the biggest beef I've found
in break-out sessions where people were either communicating too much or not
enough. If a project manager sends everyone a 300-word e-mail every day about
the status of the project, half your team at least are just going to delete it without
reading it. People do not want really long e-mails, and people do not want really
long meetings. People want short e-mails and short meetings. E-mail is not a re-
placement for meetings, and anyone who believes that is headed for trouble. E-
mail is good for things that people need at their desks like lists of tasks or
reminders: Remember to do this; remember to do that.

People need two-way communication in a group. It's not just a hub-and-spokes
system with the project manager at the middle dispersing information to the other
teammates. The project manager needs to get everyone on the team in the room at
least once a week, I think, but maybe even more often, depending on how quickly
the project is moving. And maybe it's subgroups and not the whole group,
depending on how big the team is. But they need to have people get together in a
room so they can communicate with each other and misconceptions that different
people have about deliverables, roles, and so forth, can be aired. The project
manager needs to be a facilitator of the meetings. It shouldn't just be the project
manager talking the entire time. You know, it's important to get everyone to speak
so people can hear what others are saying and thinking and assuming about the
project. And brevity— cover all the high points. People are going to tune you out if
you are going on and on or if they have to listen too much in too much detail about
what the other people are doing.

Can you break down that idea a bit further, say, to the individual level?

I think individually you can't communicate too much. I think the producer or
project manager needs to have a sense of each person individually on the team and
how they can be communicated with. I don't think it should be "I am the producer,
and this is how I communicate." They have to adapt to the needs and the style of
each person on their team. So individual communication should vary greatly. I
think the group communication should be brief and clear but with enough detail
that all the issues are brought up. So the person who isn't inclined to speak unless

spoken to or unless she has to speak has a forum to speak and to hear other people
saying things. And the people who want to go over everything ad nauseum, which
usually is the project manager— often that personality type— they have to be
respectful that not everyone in the room needs to understand the depth of
knowledge they have about every part of the project. I think status meetings are an
important opportunity for project managers to also have a moment where they get
to demonstrate their authority. They are running a meeting— it's an event, and they
are running it. And they should have an agenda ready, and they should tell people
how long the meeting is going to take. They should always start on time. They
should always stick to how long it's going to be, unless there is some really good
reason why not. And it's a chance for them to lead with the people getting to see
them in that role but without being totally dominant— to be leading but in a
facilitating way.

In these instances a lot of nonverbal communication is occurring.

I'd say nonverbal communication is a very positive thing. And one of the things
that gets really compromised when people just use e-mail is you lose all that
nonverbal stuff that makes people so human and more friendly. Actually working
on a lot of projects where there are team members in different offices, I've found
that the difference between having a team meeting and doing phone conferencing
versus having a team meeting and doing videoconferencing is huge. Just to be able
to really see people. And see their body language and get a sense of who they are
as people just makes the other people on the team so much more inclined to be
open to them and be flexible and feel like a team. If you just hear a disembodied
voice, the people come off much more as "others," even when they are on your
own team. And it's just so much easier to look around your table and say, "Well,
this is us, I see us, and we don't see them, so they're not a part of us." So I think
videoconferencing is really where it's at in terms of time and money if people are
working remotely.

Chapter 4. Defining the Project

Key Topics

• The Creative Brief
• Needs Assessment
• The Project Charter
• The Statement of Work
• Use-Case Scenarios
• Wireframe Mockups
• Content Map
• Tech Requirements Meeting
• Application Flow Diagrams
• Technical Specification
• Project Risk Assessment

A Web project is a temporary endeavor that employs Internet technologies to
achieve a specific objective by creating or enhancing a unique product. To qualify
as a project, it must do the following.

• Produce a unique outcome or deliverable
• Be finite in duration, having a clearly defined beginning, middle, and end
• Require work
• Seek to fulfill a measurable objective

Your Web project may be the result of a corporate initiative originating from
within your company or a proposal that has been accepted by a client. In either
case, your immediate task during this embryonic stage is to define the project by
assessing the needs of stakeholders and working with your team to draft
requirements documentation. There are several key documents that will serve as a
road map for your team as you set off to deliver Web development services.

The Creative Brief

Project definition begins with the creative brief. A creative brief is a work request
containing a high-level description of the business objectives and functional
requirements, drafted by a project stakeholder and used to initiate the project. The
creative brief may consist of an accepted proposal or a form that project
stakeholders inside your company are required to complete.

The purpose of the creative brief is to communicate the objectives and describe the
major deliverables of the project, including significant features and deadlines. The
brief should include business objectives, desired launch date, user profile, budget,
project description, success metrics, a list of model Web sites, and a feature
summary. Using the creative brief as a springboard, you are ready to leap into the
murky waters of project definition.

Getting Started with Internal Initiatives

Internal corporate initiatives are particularly susceptible to the phenomenon of
runaway requirements. This is due to the fact that true costs are often difficult to
measure in the absence of rigorous employee time-tracking and profit-center
accounting. Since the real costs are unclear, project stakeholders have little
incentive to limit the scope of their ambitions. New project managers who are
struggling to establish a process for handling Web initiatives within their
organization usually begin by creating templates for project stake holders. The
creative brief is the most common of these documents. While the introduction of a
creative brief template is a crucial step in gaining control over the project, it can
provide a false sense of security. The creative brief is only the first of a series of
documents that must be created in collaboration with project stakeholders.

Are you doing enough to manage requirements in the early phases of a project?
What are the early symptoms of incomplete project definition? The following
scenario illustrates a recurring nightmare that may be familiar to you if your
organization is new to the process of Web site development.

Sample Creative Brief

A sample creative brief is in the Chapter 4 folder of the CD-ROM and on
this book's Web site at http://www.realwebprojects.com.

This sample presents a thorough and concise description of a promotional
book club Web site. Submitted by the marketing VP of a large publishing
company, this brief shows the level of detail that can be expected after a
project stakeholder has received some assistance from the project team.

Creative Brief

project name: Writer's Club Web Site
project Annie LePlume, VP Marketing, Book

stakeholder: Publishing Company Inc.
desired launch
date:

April 2002

development
budget:

$500,000 plus $3,000/ month hosting

Business Objectives

This new Web site will provide visitors with the opportunity to achieve a
very special goal: getting published in paperback. We expect this
promotional site to do the following.

• Attract new visitors to our site through promotions with writers'
clubs. For example, the XYZ Writers Club of America has 8,000
members who are specifically committed to getting their novels
published.

• Increase traffic and retention on our corporate Web site through
direct participation (visitors submit entries, read, rate, and review
other members' stories) and due to the nature of the contest (new
stories/winners posted monthly)

• Increase minutes per pages
• Promote our brand as a leading publisher of fiction
• Attract high-level stakeholders and generate revenue in the $1

million-plus range
• Increase online book sales by driving traffic to our online bookstore
• Obtain newsletter sign-ups and add these users to our marketing

database

Project Description

• The Book Club Web site will allow visitors to submit works of short
fiction, rate and review one another's submissions, sign up for an e-
mail newsletter, and share content with friends.

• Visitors will be encouraged to submit short stories (length 5,000–
7,500 words), of which two per month will be chosen as a winner by
a celebrity author judge or panel of judges provided by Book
Publishing Company.

• At the end of six months, winning stories will be published in
paperback as a collection of short fiction by Book Publishing

Company.
• Each monthly winner will have the option to submit a completed

novel manuscript for re-view; one of 12 complete novel submissions
will also be published in paperback form.

Model Web Sites

The following sites have some examples of similar features with desirable
look and feel.

http://www.ivillage.com/books/

http://www.amazon.com

http://www.writersdigest.com/

User Profile

The typical user will be female, college-educated, age 25 to 50, who is a
frequent buyer of popular fiction. She will probably access the site from
home. Her motivations for visiting the site include the desire to connect
with women of similar interests, the possibility of being published, and
curiosity about fiction created by women like herself. Detailed
demographic data to follow.

Feature Summary

The Book Club site will consist of the following major features.

• Home Page
• Registration
• E-mail Newsletter
• Submit a Story
• Journaling Tool
• Editors' Publishing Tool
• Story Archive
• Read and Review
• Send to a Friend

Home Page

• When users arrive at this page, they will find a welcome message
and a description of the contest with an introduction to the celebrity
judge(s). The bottom of this page will also house a brief profile and
photo of the last month's winner. We may also want to include a
small photo of the judge(s), as well as audiorecorded messages.

• The rest of the page will be dedicated to related links.
• At the bottom of the page users will be invited to sign in if they'd

like to submit an entry or read other stories.
• Clicking "sign-in" will bring the user to a registration page.

Registration Page

Before they can either submit or read a story, visitors will have to sign up
and submit their e-mail, which provides them with a membership in the
contest.

Monthly E-mail Newsletter

Visitors receive a monthly newsletter that does the following.

• Announces the monthly winner
• Introduces new books
• Presents book discounts and promotions
• Links to the writing center on our Web site
• Highlights the monthly deadline

Submit a Story

When members select "submit," they arrive at a Submit home page. This
page will feature How to Submit, Official Rules, FAQs (with links to
separate article pages where relevant), and a "Submit Your Story Now"
button.

• Clicking the "Submit Your Story Now" button will allow the user to
submit a story of 5,000–7,500 words via a Journaling Tool.

• After entering the story in the tool, they will arrive at a Thank You
page. This page will offer links to read and review other stories and
go back to the Book Club. Also, auto-reply e-mails will be sent to
the submitter.

• Each submission will need to be monitored before being published
on the site to confirm that there is no inappropriate content. Each

submission should enter a queue, which can then be reviewed and
either "accepted" (published) or "denied" (perhaps a form e-mail
should be sent informing the party that their story could not be
posted on the site). Submissions will all be read a second time by
judges to determine the monthly winner.

• When the submitter is notified that the story has been posted, there
will be the option to send to friends and family e-mail inviting them
to come and read the submission.

• Winners will be notified via e-mail of their success.

Read and Review

• When members click "Read and Review," they arrive at a "Read and
Review" home page.

• This page provides links to directories of this month's stories
organized either by title or by author.

• Visitors will be invited to be a "Peer Judge" and rate and review the
stories.

• There will also be a self-updating list of the Top Ten peer-rated
stories here. Each story title will be a direct link to the story. These
stories could be identified with a "Top Ten" icon at the top; this icon
would serve as a link back to the Top Ten list page so members can
opt to read all 10 of the Top Ten stories.

• Each story will have a Rate and Review option.
• Each story will have a Send to a Friend feature.

The creative brief arrives as an "urgent" e-mail, addressed from an
important project stakeholder. The message contains an awkward
subject line: "Okay, I filled out your form. Let's get the ball rolling."
The attached brief announces broad business objectives, includes a
rough sketch of a home page, and displays a list of model Web sites
with notes like "We love their color choices" or "We can do better
than this, right?"

You quickly find that your inbox is choking under a deluge of
mysterious messages originating from remote divisions of the
company. Each of these e-mails features a massive block of text in the
"cc" line. With each successive reply, the names on the "cc" list grow

like an alphabetic bacterium. The guerrilla lobbying effort of another
inspired project stakeholder has begun.

In an effort to drum up support for the project idea, the creative brief
has been circulated to potential allies across the company. With each
thread of the electronic brainstorming session, feedback blurbs are
introduced by "my comments in CAPS" or "see responses below."
Random feature suggestions appear, perhaps including a "peer-to-peer
networking for sharing pet photos." People stop you in the hallway
and ask, "When is the launch date?" The list of requirements is
already out of control, and you haven't even announced a kickoff
meeting yet! "Feature creep" begins to resemble an avalanche, and
you're at the receiving end.

The next section introduces the project documentation that will help you seize the
reins of runaway projects.

Project Documentation

Now that the project stakeholders have communicated the project concept and are
asking your team to commit resources, it is time to roll up your sleeves and draft
the requirements documents. The purpose of this extremely labor-intensive activity
is to work with your team to describe the project. Table 4.1 summarizes the main
documents that are used to define a Web project, as well as the chief collaborators
who will be instrumental in their creation.

Several key documents are used to describe the characteristics of a Web site.
Guided by a thorough needs assessment, use-case scenarios, and other
requirements-gathering techniques, these documents capture the business
objectives and functionality at the genesis of the project.

• Project charter
• Statement of work
• Wireframe mockups
• Content map
• Application flow diagrams
• Technical specifications

G Use-Case Scenarios

Use-case scenarios are narratives that describe all the possible ways in
which users interact with a Web site as they seek information or make a
transaction. Use-case scenarios are explained in detail later in this chapter.

Needs Assessment

Needs assessment is an ongoing process that usually takes place in a series of
formal meetings with project stakeholders. Regardless of whether these
stakeholders are coworkers (in the case of an internal project) or external
customers who are paying consulting fees, the goals are the same. The initial
objectives of the needs assessment process are to address gray areas or omissions
in the creative brief and to gather information that will be used to create the project
charter. If the business objectives are unclear, address these first by distributing the
creative brief to project stakeholders and compiling their feedback, while placing a
time limit on the response. Allow dissenting opinions to be heard and evaluated
before the features are set down on paper. Work with the project stakeholder to
refine the business objectives. If your team includes a business or marketing
strategist, their consultations will be crucial at this stage. These specialists have
expertise in applying Web-based solutions to the business problems of a particular
industry.

Table 4.1. Project Definition Activities and Deliverables
Task Collaborators Deliverable
Assess Needs
Define business
objectives

Project Stakeholder
Business/Marketing
Strategist

Project Charter

Describe user profiles Project Stakeholder
Business/Marketing
Strategist
Information Architect

List assumptions Project Stakeholder
Identify success
metrics

Business/Marketing
Strategist

Conduct competitive
review

Producer/Product
Manager

Identify model sites
Draft project charter
Define Requirements
Create client wish list Project Stakeholder

Account Manager
Producer/Product
Manager

Statement of Work

Review technical
feasibility

Tech Lead

Prioritize deliverables Project Stakeholder
Account Manager
Producer/Product
Manager

Draft statement of
work

Producer/Product
Manager

Create use-case
scenarios

Information Architect
Producer/Product
Manager
Tech Lead
Developer

Use-Case Scenarios

Draft wireframe
mockups

Information Architect
Tech Lead
Developer

Wireframe Mockups

Draft content map Information Architect
Editor/Content Producer
Project Stakeholder
Producer/Product
Manager

Content Map

Hold tech
requirements meeting

Tech Lead
Developer
Information Architect
Producer/Product
Manager

Application Flow Diagrams
Technical Specifications

Draft application flow
diagrams

Information Architect
Tech Lead
Developer

Draft technical Tech Lead

specifications Developer
Information Architect

Evaluate Risk
List constraints and
dependencies

Project Stakeholder
Tech Lead

Risk Assessment

Identify technical risk Tech Lead
Plan contingencies Project Stakeholder

Tech Lead
Contingency Plans

Once the business goals are clear, hold a series of feature brainstorming sessions,
but insist that each idea must relate to the business objectives and provide a clear
success metric. You may feel that you are exposing the product to a cycle of
endless revisions, but it is important to address feature suggestions early so that
everyone will be on board. This will lessen the impact of the inevitable second-
guessing that occurs at later stages and hopefully prevent radical changes in
direction.

The desire to put the brakes on open-ended feature discussions or resort to the
easiest solution can be irresistible for deadline-driven project managers. However,
creative problem solving plays a crucial role in this new medium. Given the
blistering speed at which new features and technologies appear on the Web, the
"right solution" to your business objectives will rarely be obvious. This is the case
even if your project team includes top business strategists. If you are fortunate
enough to retain business strategists, keep an open mind. The record of business
initiatives on the Web is littered with pompous whitepapers expounding on the
virtues of debunked technologies and business models that were rendered
embarrassingly obsolete in six months.

Top Web project managers make it their business to stay informed about recent
developments and serve as a valuable resource for stakeholders. Be courageous by
opening up the debate in these early stages and presenting creative suggestions. Do
your homework, take a deep breath, and then take the lead by initiating a creative,
open-ended needs assessment.

Here are some tips for conducting a needs assessment.

• Provide a questionnaire for project stakeholders that will help them to clarify
their thinking about their new initiative.

• Solicit examples of existing projects that are similar, and then define the
similarities and differences between existing projects and the proposed
initiative.

• Define your terms as you go along (for example, "What do you mean by
'category' versus 'section'?").

• Communicate ideas visually with diagrams and sketches.
• Paraphrase/repeat back each important concept to demonstrate

understanding of the issue, to clarify a point, and to reassure.
• Explore the project objectives at a greater level of detail than what was

brought up in the creative brief.
• Find out what determines a successful outcome for the project and how this

outcome can be measured.
• Ask the client to envision how the Web site will change over time.
• Solicit suggestions for future enhancements.

Needs Assessment Questionnaire

Open the Chapter 4 folder of this book's CD-ROM to find specific
examples of the questions that you'll need to ask. The book Web site
contains an updated version at http://www.realwebprojects.com.

The purpose of the needs assessment questionnaire is to assist project
stakeholders in defining the initial scope and objectives of the project from
a business perspective. Based on these core business needs, the Web
development team, led by the project manager, can suggest appropriate
Web-based solutions.

These types of questions are also used by account managers during the
sales process to uncover the customer's problems and open the door to a
solutions proposal. Rather than duplicating their efforts, you should try to
fill any remaining gaps in the creative brief or accepted proposal.

The Project Charter

The purpose of the project charter is to obtain consensus on the mission of the
project and establish the high-level expectations of the project stakeholders in
terms of schedule and resources. Putting the objectives into writing helps expose
any hidden agendas, misunderstandings, or confusion on the part of project
stakeholders. Eventually, project owners will have to resolve priority conflicts by
making difficult choices about which features to include in the initial launch. The

project charter sets forth the guiding principles that will inform these choices, and
it will keep the project from becoming easily sidetracked by one of the random
suggestions that your client makes late in the game. When drafting the charter, try
to avoid delving too deeply into specific features. The objective here is to justify
the project. The project charter is usually divided into several sections covering
objectives, scope, success measures, resources, and risks from a strategic or
"executive" level.

Strategic Objectives

While it's okay to strike a high-level corporate tone in this "made-for-CEOs"
section, do try to be specific. Avoid vague cop-outs like "The purpose of this
project is to increase the value of our brand by enhancing our customer's
experience on the site." You can do better by taking some time to ask probing
questions of your stakeholders while you explore the following.

• The mission, which conveys the general purpose of the project
• The business objectives, which justify the project in terms of the overall

company strategy
• The main deliverables, which define the primary outcomes of the project.

These outcomes should present a solution to a strategic business problem,
described in terms of what benefits the customer or end-user will derive
from the successful completion of the project.

Scope Overview

A project must be finite in duration and produce a measurable outcome. While it is
not necessary to anticipate each activity that will appear in the project plan, a
summary of the top-level project phases should be presented in outline form. This
section should answer the question "How will we know when the project is over?"
It is also extremely useful to list major deliverables that are related to the project
but fall outside the scope.

Success Metrics

The primary concern of project stakeholders is the expected return on investment
(ROI). By showing sensitivity to this issue and presenting a plan for measuring
results, you can manage expectations and be sure that clients appreciate the
benefits they will receive from the project. Each major deliverable identified in the
strategic objectives section should have a corresponding measure of success.
Statistical measures of success are more meaningful if they are expressed over time

(for example, will there be a sudden spike in Web site traffic followed by a gradual
leveling off, or will traffic slowly build?). It may be necessary to include additional
activities in the project plan to implement measurement technology like Web
server log analysis tools.

Resources

This section addresses the overall expectations of project stakeholders regarding
the budget, final deadline, and personnel. Although the project plan will provide
specific details later, it is important to set the general parameters now. This section
may include the following.

• Core project team roster with a brief description of roles and responsibilities
• Approval procedure for major deliverables
• Timing and format for periodic status reports
• Deadline for the final project deliverables
• Spending limit or burn rate, in terms of staff manpower and cash
• Project constraints and tradeoffs— for example, is the deadline a more

crucial factor than the cost?

Sample Project Charter

Project: Acquisition of JustAcquired Inc., a Health Content Publisher

Mission: To integrate the JustAcquired.com Web site into its new parent
company by rebranding JustAcquired.com's content and integrating its
major features into the parent company's Web site.

Business Objective: This integration of the JustAcquired.com Web site
will remove a potential competitor from the market. Successful completion
of this project will allow the parent company to enhance its market
position by rebranding the content of JustAcquired.com and redirecting its
Web site traffic to the parent company site. We will also achieve
significant cost savings by the elimination of redundant or obsolete
hardware and software as the hosting infrastructure is assimilated.

Main Deliverable: In order to provide for a seamless user experience after
the merger, customer data and content from JustAcquired.com will be
imported into the current database. This will create a single source of
customer data for all of our marketing initiatives. The content database of
health articles will also be consolidated in order to provide visitors with a

single point of access to the content and product offerings of both
companies.

Project Scope: The JustAcquired.com integration project will proceed in
three phases. During Phase 1, some important content assets will be
rebranded and migrated into the new hosting environment. Phase 2 will
involve consolidation of the membership database and the relaunch of
some interactive tools that will be salvaged from JustAcquired.com.
During Phase 3, redundant hardware from JustAcquired.com will be
decommissioned.

Phase 1 Summary

• Change logos on all content areas.
• Migrate message boards and chat system into the new hosting

environment.

Phase 2 Summary

• Merge membership and content databases.
• Relaunch health care products shopping area with access to

consolidated database.
• Migrate selected interactive tools from JustAcquired.com to parent

company's Web site.

Phase 3 Summary

• Decommission JustAcquired.com Web servers.

Out of Scope: The scope of this project does not include the integration of
JustAcquired. com's cobranded sponsors' Web sites. Each of these sites
will be dealt with as a separate project, depending on how the sponsor
contracts are renegotiated by the new parent company.

Success Metrics

1. After the integration project is complete and hosting redundancies
have been eliminated, hosting costs for the enterprise should
decrease by 30 percent when compared with combined, premerger
expenditures.

2. We hope to increase subscriptions to premium health content areas

by 30 percent.
3. We expect to increase our market share by retaining 50 percent of

JustAcquired.com's customers as measured by increased unique
visitors.

4. Total Web site traffic should see a spike of .5 million page views
per month in the first three weeks after the JustAcquired.com
message boards are migrated. Traffic should then settle down to a
steady .25 million page views per month.

Resources: This effort will probably require a five-month coordinated
effort among editorial, design, production, operations, and application
development. The total cost estimate based on man-hours is $300K to
$500K. An additional $100K in consulting costs may be incurred for the
database integration tasks.

The Statement of Work

This document describes each of the project deliverables. In many cases, this is an
expanded version of the original proposal that was presented to the client.
Eventually you will ask the client to prioritize this list and narrow it down. For
now, you can be generous by pulling a comprehensive list of deliverables from
several sources, including the following.

• The original proposal or creative brief
• The client wish list that was obtained during needs assessment
• Additional features that have been recommended by strategy consultants or

other experts

The format is contractual, containing a laundry list of items that the client will
receive when the project is concluded. The statement of work (SOW) does not
provide the implementation team with a blueprint or specification. Its primary
purpose is to list deliverables, rather than describe the means by which they will be
produced.

As the outline of deliverables takes shape, it is important to call upon a senior tech
representative to conduct a brief feasibility review. The tech lead should draft a
memo listing the major deliverables and providing a few comments on the level of
technical difficulty that each entails. This memo should also include a brief
discussion of the technologies and resources that might be brought to bear and
identify any serious challenges that could derail the project. These challenges

should also be reflected in the risk assessment that you will be drafting. Since this
review is based on incomplete information, the memo is not to be shared with
external clients. A simple e-mail will do.

Statement of Work (Excerpt) for a Streaming Media Player
System

The contractor will design and develop a media player system (MPS),
which is a system for entering, publishing, and playing multimedia across
the client's Web site.

The MPS will consist of the following.

• Media Database: This database will hold all pertinent information
to be associated with every audio and video asset that is published
to the client Web site.

• Media Pop-up Player: The pop-up player is the interface through
which the user will watch multimedia assets. It will display
streamed media content.

• User Media Preferences: This feature will accommodate broadband
users. The MPS will capture a user's streaming and bandwidth
preferences and serve up the appropriate media based on those
preferences.

• Media Promotion Box: The MPS will allow site administrators to
easily add boxes to various pages throughout the client's site and
permit content producers to publish content to these boxes using a
publishing tool. The Promotion Box contains a link to the media
clip that launches the pop-up player and promotional copy.

Feasibility Review Memo

-----Original Message-----
From: Tech Guru
Sent: Thursday, November 08, 3:34 PM
To: Anxiety Girl Project Manager
Subject: Feasibility Review
Hey:
Thanks for asking me to stop by yesterday's
meeting with the client—I do think it's

important for the tech team to get involved as
early as possible in the process. Here
are a few thoughts on the project.

So far, the features that were mentioned in the
preliminary Statement of Work could
all be handled by making some minor adjustments to
the content management system that
we built for the last job. No worries there.

One issue, however, was the client's request for
an interactive trivia quiz that could
be "syndicated" to third parties. At first I
wasn't sure how to export dynamically
generated results without requiring each partner
to clone the trivia quiz and host a
version of it themselves. We also talked about
simply using HTML frames, but this isn't
cool because with a framed solution the quiz would
have our logo and other branding, etc.

However, I've taken a look at the latest Web
Services XML technology, which provides a
solution that could allow us to "export" dynamic
results data in a platform-independent
fashion to any affiliate. By building a standard
XML interface to the trivia quiz, the
client could license it on demand without altering
the underlying code base.

The XML interface would sit on top of the quiz
engine and extract the quiz results,
transforming them into XML and delivering them to
the affiliate. The affiliate would
apply their own style transformation and display
the results in their own hosting
environment.

Although this will probably be a significant cost
item, we can definitely do it since

our developers have been learning XML. Also, we
could develop it in a Win2K /.NET
environment, which has pretty good support for Web
Services and SOAP if we decide to go
that route. Otherwise, we already have some great
Java packages for dealing with XML.

Okay, so anyway tell the client it's cool and we
can move forward. Let me know when
we're ready to start writing the specs.

Joe Guru

Use-Case Scenarios

While detailed site blueprints and page mockups are a helpful starting point for
designers and developers, the dynamic environment of the Web requires
specifications that focus on functional goals from the user's perspective. A detailed
inventory of buttons and widgets presented to a client for sign-off will not ensure
success. As you begin to gather detailed requirements, use-case scenarios are a
crucial tool.

KEY POINT

Web project managers should work with stakeholders to draft detailed
requirements, but a laundry list of specific features won't hold up for long.
In addition to taking inventory of every checkbox and radio button on the
page, project managers should focus on describing the "stories" or use-
case scenarios by which success will be measured.

Use-case scenarios are step-by-step narratives describing how a user progresses
through the application as he or she attempts to solve a problem. If your project
team does not include an information architect, you may be called upon to drive
this process. Seek advice from any experienced graphic designers on your team,
many of whom will have developed a knack for information architecture as part of
their design education and as a natural result of the page layout process. Once the
process is underway, a tech lead should be brought in to provide early feedback on

the technical feasibility of supporting the scenarios that are being tossed around
during the meeting.

Begin constructing scenarios by referring to the original business problem that the
project is trying to solve, rather than starting with the list of deliverables. By doing
this, you may find that many features are actually secondary or even irrelevant to
your users' needs. Design the site around core activities (searching for information,
making a purchase, updating account information) and build outward to
accommodate secondary needs (editing a shipping address, modifying a search). In
your design, be sure to accommodate multiple browsing styles. For example, some
users prefer keyword searching, whereas others prefer to "drill down" topic trees.

Effective Information Architecture

If Frank Lloyd Wright had used Visio instead of cantilevered cement
blocks, he might have been featured on the Argus Center for Information
Architecture: http://www.argus-acia.com/.

Wireframe Mockups

Once your team has developed use-case scenarios and a corresponding feature list,
the next step is to draft functional mockups for the major pages of the site. These
mockups are rough sketches— usually created in MS Word, Adobe Illustrator, or
Visio Professional— which show the major interactive features and content on each
page. Each major feature on the page is enclosed in a box that includes descriptive
information. Once again, the information architect can play a crucial role here.

It is better to begin drafting the requirements around the user scenarios, rather than
beginning with a high-level site map. This is because your visitors will experience
the site one page at a time, encountering a slender cross section of the Web site
depending on the scenario. As they follow the path of a particluar scenario, your
users will be interacting with individual pages, not the "site architecture" as a
whole.

If you are creating the wireframe mockups, resist the temptation to "design" the
page. Produce bare-bones functional skeletons, not graphic design proposals. Keep
your hands off Adobe PhotoShop, Dreamweaver, or FrontPage because you will
inevitably spend time fussing over visual appearance rather than thinking about

functionality. Any time you spend on layout will be wasted when stakeholders
reshuffle features during the second round of meetings.

A far greater danger lurks in the likelihood that your amateur attempt to beautify
the page ignites a passionate debate over aesthetics before the design team has
even looked at the proposal. At this stage, the conversation must focus on function,
not form. The discussions should revolve around "inputs and outputs," not color
choices or layout. By keeping the mockups rough, no one will mistake them for
first-round design treatments, and your designer won't be raising her eyebrows
over the goofy stock icons you decided to plop into the page.

Don't Mock It 'Til You Try It

The Chapter 4 folder of this book's CD-ROM contains examples of
wireframe mockups, application flow diagrams, and other scope
documents for several different types of projects. These documents are
updated on the Web site at http://www.realwebprojects.com.

Content Map

The content map (also called the "site map") is used to identify the major content
areas of the site and define their relationship to each other. Start by sitting down
with the content producers and taking a general inventory. Create index cards for
each content area, listing the following.

• Name or descriptive label, as well as suggested alternate labels that will be
meaningful to users— for example, "This Week" is more specific than
"Features."

• Purpose of the content— for example, "An archive of articles organized by
topic and listed in date order."

• Subject category or topics that are addressed.
• Related content areas and topical overlaps (for example, divorce law and

personal finance).
• Related interactive features and tools (for example, a calorie counter tool

should accompany diet articles).
• Parent and child categories.

Once this content inventory is complete, place the cards on a large table and
arrange them in groups. Organize the content areas by priority (how well does each
area support the business objectives?) and by content category or topic. Design a

content category "tree" that illustrates the parent and child topics. As you
document this process, be sure that the site structure will be compatible with the
user scenarios that were established earlier. The final content map will be a
collection of diagrams and descriptive notes, including the following.

• A flowchart diagram showing the "content tree"
• A detailed description of each content area, based on the index card exercise

just mentioned
• Diagrams that follow the visitor through the typical user scenarios, showing

which content the visitor encounters

Tech Requirements Meeting

The technical specifications provide a road map for the technical team to follow
when designing the software that will meet the stakeholder's requirements.
Technical specifications may be written by the project manager in collaboration
with the tech lead or by a technical writer under the supervision of the project
manager. The project manager is ultimately responsible for the quality of project
documenation, so exercise care in delegating this task. The specs will provide the
basis for the development team's blueprint, and they are the centerpiece of your
overall contract with the project stakeholders.

The effort of drafting the specifications begins at a "tech requirements meeting,"
wherein the tech team reviews the full project documentation to date (creative brief
or proposal, project charter, user scenarios, and wireframe page mockups). The
purpose of this meeting is to identify ambiguities in the requirements and gather
the information that will be needed to draft the specs. By the end of this process,
you should do the following.

• Determine who will be drafting the application flow diagrams and technical
specifications.

• Ensure that you have a sufficent conceptual understanding of the technical
issues impacting the project.

• Identify the major components of the system (for example, "There needs to
be a content database, a streaming media server, and a credit card processing
system"). It is not necessary to come up with a specific solution (such as
"We will use an Oracle database").

• Walk through the project charter, user scenarios, and wireframe mockups.
Identify areas of ambiguity in the requirements and make note of them in an
issue log.

• Reach consensus on a rough application flow diagram.

During this process, the wireframe mockups are used to guide the discussion and
keep it focused on solutions to a user's problem. As the technical team walks
through the various use-case scenarios, developers will ask for clarification and go
off on tangents about the various platforms and software solutions they will use to
solve the problem. Keep in mind that this is not intended to be a full "technical
design" or "tech brainstorming meeting." The purpose of this meeting is to gather
information in order to write the final technical specifications and deliver them to
the client for approval.

Application Flow Diagrams

The page-by-page experience of the user has been established, and now it's time to
take a bird's-eye view of the application as a whole. The application flow diagram
helps the tech team envision how each individual page is linked together and what
behind-the-scenes components will come into play from the middle tier and back
end. These system components might include login authentication, a third-party
payment processing system, or a product database. The application flow diagram
should display each page in a flowchart format and address the architecture of the
system as a whole. The point of this exercise is to produce a list of all the major
system components and a schematic diagram showing how the parts relate to each
other.

Application flow diagrams can follow a "decision tree" layout, where the reader
follows arrows through the path of a scenario. Figure 4.1 illustrates a simple
application flow diagram for displaying content, stored in XML format, that is
pulled from a database and published to a Web page. This diagram uses a three-tier
format, with each system component appearing in its respective column.

Figure 4.1. Application Flow Diagram for a Dynamic News Article

Technical Specification

The technical specification is the glue that holds together the flowcharts, functional
mockups, and other evidence of the frustrated draftsman inside you. Since you
didn't follow your dad's advice to become an architect, instead taking a job with an
interactive agency, you'll need another document to explain all of those lines,
boxes, and mysterious Visio icons. The purpose of the technical summary is to
provide the tech team (and the client) with a detailed description of what each
technical requirement is and how it will be addressed. The technical summary may
include the following.

• Hyperlinks to all project documentation, on an intranet or other project Web
site

• The current state of the system
• A summary of the major technical requirements, "stories," or user scenarios
• A summary of any feasibility studies or discussions
• A site overview listing of all the important technical components with a brief

description of each
• A taxonomy, or definition of terms— for example, "Parent Category refers to

the content category node that resides one level up in the tree from the
category in question— for example, 'respiratory problems' is the parent
category for asthma."

• Performance requirements for databases and Web servers (such as how
much data will be stored in the database, estimated Web site traffic)

• A description of the hosting environment
• A detailed description of each important feature within the application
• An outline of plans for future technical enhancements

Technical Specifications— Let's Get Visual

As graphic designs are created, use PhotoShop to include cropped
selections from these designs in your specifications. By accompanying
your text explanations with selections from actual screenshots, you will
avoid a great deal of confusion ("Uh, which search box are you talking
about? There are three of them on the page!"). A fine example of this
technique awaits you in the Technical Specifications folder under Chapter
4 of the CD-ROM. (An updated version is maintained on the book Web
site: http://www.realwebprojects.com.) These specifications, created for a
content portal, showcase highly detailed descriptions with accompanying
snapshots from the design.

Project Risk Assessment

Most Web projects don't come with insurance policies other than general
contractor "errors and omissions," so you'll have to roll your own. Project risk may
be addressed within the project charter or in a separate evaluation. Risk assessment
documents for Web projects usually touch on three points.

• Dependencies
• Technical risks
• Contingencies

The first step in risk management is to identify the potential dangers that lie ahead.
When drafting this part of the document with your project team, summarize the
risk areas at the project level. Start with dependencies, identifying any other
initiatives that might impact this project. Find out if there are any other projects
that must be completed before this project can begin. For technical risk areas, focus
on the final deliverables and any uncertainties that surround them. The tech lead
can assist you in determining whether the requirements fit within your project
teams' core competencies. Contingency plans propose an alternative course of
action should problems arise. They usually contain provisions for outsourcing and
a list of "B-list" requirements that can be pushed back to later phases if necessary.

Sample Risk Assessment and Contingency Plan

Dependencies: The following dependencies will affect the migration of
editorial content from JustAcquired.com to the parent company's Web site.

1. For the next three months most editorial staff will be working on the
content archiving project, which will reduce the amount of time that
they can spend on reviewing and editing the new content.

2. Technology consultants must finish the database upgrade before
editorial staff can begin entering new content into the publishing
system.

The following technical and other risk areas may impact the deadline for
content migration from JustAcquired.com.

1. There may be database integration issues that may delay the data
port from Informix into Oracle.

2. The amount of content that will be migrated is uncertain until the
audit of JustAcquired.com is completed.

3. The legal department must approve some content migration due to
content syndication licensing.

4. There has been a high turnover in the editorial group due to staff
cuts.

Contingency Plan

1. Freelance editorial assistants may be brought in to perform
copyediting and content entry tasks.

2. Database administrators can be pulled from certain lower-priority
projects to assist in the data migration.

3. A short list of must-have content areas is being prepared.

Case Study: Defining the Project with HTML "Shells"

In the winter of 2001, SeaState Internet Solutions was commissioned to develop an
online testing system for Adkins Matchett & Toy Ltd., which trains investment
banking professionals. This educational software would allow the firm to
administer assessment examinations for Wall Street financial analysts, whom the

firm trains in accounting, math, and other financial topics. The online system
would be used by the course administrators to set up student accounts and run
reports on student scores by company, class, and exam. Students would use the
system to log in and take the exams, which were delivered in various formats
ranging from multiple choice to free-form numeric answers. Student exams were
automatically scored and linked to study materials, depending on their answers.
The exam reports used graphical bar charts that indicated what topics students had
difficulty with, as well as their individual performance. Corporations whose
employees were participating in the seminars could log on to the system to track
the performance of their trainees. The entire system, including the student exams
and the instructor administration, would be accessible on the Web.

Road Map for a Virtual Team

Since SeaState Internet Solutions is a small development shop, it employed virtual
teams of freelance consultants. The necessity of outsourcing portions of the job to
remote staff made the written specifications absolutely crucial to success. These
remote developers required a crystal-clear blueprint as they worked from their
offices in Dallas and Washington, D.C. An additional challenge was that the three
project stakeholders were busy professionals who split their time between New
York and London providing hands-on seminars to investment bankers.

Ponderous Plans

Anxious to meet the financial industry's high standards, the project manager at
SeaState spent a great deal of time drafting detailed descriptions of every feature.
While the reams of documentation were valuable for the offsite developers, they
did little to address the concerns of the busy project stakeholders. Once the basic
feature set had been agreed upon, the client's primary consideration was usability:
Would students, corporate training managers, and course administrators find the
system intuitive and easy to use?

Flat design mockups and storyboards didn't provide the answer. The system was
being built in a Microsoft Windows 2000 environment, with a high-end SQL
Server 2000 database. Consequently, the budget did not allow for the creation of
working prototypes, which would have required an upfront investment in the exam
database, which was the most expensive deliverable. The clients were finance
instructors whose time was scarce. They certainly didn't have the leisure time or
the inclination to sift through the technical specifications and "imagine" how the
application would feel to its demanding end-users. Since most online learning tools

were proprietary licensed products, there were few publicly accessible examples
that could serve as a model.

Seeing It in "Shells"

The solution required a demo format that was a cut above wireframe mockups and
a step below a real working prototype. In response, the information architect
revisited his HTML skills, converting the page designs for the exam administrator's
area into a static simulation (see Figure 4.2). This demo was built entirely in
HTML and populated with "dummy" data. The demo was simply a dressed-up
facade, or "shell," of the original. This approach is analogous to the construction of
a fake Hollywood movie set that simulates the real "look and feel" experience
without the construction costs. By using an HTML skeleton, the clients could
quickly walk through the application, playing with the drop-down menus and
running fake exam reports. The shell was a big hit with the client, who was able to
suggest a variety of feature and usability improvements that would have been
difficult to make later in the project.

Figure 4.2. Administrator's Bar Chart Report, DirectTesting.com

Source: Screen capture copyright © Adkins Matchett & Toy, Ossining, NY.
Used with permission.

The technique of using HTML mockups to demo a feature was not new to the
project team. However, HTML mockups were not normally shown to the client
until well after the production phase was underway. In this instance, the shell was
not simply showcasing a feature in the specs. Indeed, after several iterations the
shell had become the cornerstone of the specification.

In many ways this highly realistic simulation was superior to the written
documentation, in that it was closer to the code and visually communicated all of
the features. Since it was built in HTML, it was easy to change and didn't require a
staging server or other technical development environment. The project manager
decided to use the final version of the shell as the authoritative specification, with
the written documentation provided as a supplement for the use of the developers.
The URL of the HTML simulation was referenced in the contract for the
development phase. The clients felt reassured as the cloud of mystery surrounding
the 18-page specification evaporated to reveal something that they could see and
touch.

Summary

Depending on your role, background, and expertise, you may be called upon to
shape the product by providing creative input into the requirements documentation.
While this can be a satisfying part of the job, you will be most effective if you can
act as a humble facilitator. Use your active listening skills to draw the project
requirements out of stakeholders and encourage the experts on your team to
describe their vision of the solution. If you are fortunate, your organization may
employ a technical writer to do the heavy lifting, but ultimately the project
documentation is your best safeguard against the risks that lie ahead.
Consequently, you should undertake an intense, personal involvement in their
creation and dissemination. The production and stewardship of requirements
documentation is one of your core responsibilities.

Defining the project is the first important step toward a successful launch.
However, as soon as you have enshrined the project requirements on paper, the
forces of change will begin to act against your fixed set of features. Changing
technology, business objectives, client demands, and other factors can easily render
your blueprints obsolete. In the next chapter, we will explore innovative techniques
for navigating your way through the inevitable sea of changes.

Chapter 5. Managing Change

Key Topics

• Classic Scope Control
• Managing Scope Change

The scope of a project is the set of affordable systems and software that the project
team has agreed to deliver.

Defining and managing scope is one of your most important responsibilities. By
the end of this chapter, you will have the answers to these three important
questions about scope:

1. What are the standard techniques for defining and controlling scope?
2. Why do the standard techniques seem to fail for most Web projects?
3. What are the latest best practices that seem to work for the Web?

A New Perspective on Scope

Most standard models for software development assume a fixed scope that can be
clearly defined at the outset of a project before any work begins. This presents a
problem, since Web sites constantly evolve in a changing technological and
business environment. In this chapter you'll learn to look at scope organically, as a
collection of requirements that need to be described, documented, and managed as
they grow. We'll also examine processes that embrace change through the use of
iteration. These newer approaches allow the requirements to evolve through a
series of small releases, showing early results and incorporating client feedback
during production.

G Iteration

The process of making incremental refinements to software. The product
gradually evolves in a series of working prototypes. These prototypes
incorporate client feedback into each release cycle.

During its initial stages, scope definition is analogous to a legal agreement between
two parties. As you draft the first round of requirements documents, your goal is to
create a "contract" between yourself and the project stakeholders, in which you

agree on the features of the site you are about to build. The key to success is
defining what you intend to deliver and how you plan to deliver it while obtaining
the client's consent before implementation begins. Once work has begun, the
project documentation will grow and change with each iteration of the product.
Project management theorists have come up with a standard methodology to guide
you through this process.

Classic Scope Control

Standard software development models are requirements-driven: They assume that
the project team will be delivering a final product with characteristics that can be
clearly defined up front. These methodologies provide a disciplined, sequential
process for defining the schedule, budget, resources, risks, and scope. For the sake
of simplicity, let's assume a representative process with four stages: Define,
Implement, Control, and End (DICE). The hypothetical "DICE" approach has a
few distinguishing characteristics.

• Define. All project requirements should be captured in the Define stage. The
output of the Define stage is the project plan. The approved plan includes the
scope, budget, and schedule. Project work is broken down into a hierarchy of
phases, activities, and tasks. The plan serves as a contract between the
project manager and the project sponsor. The purpose of this contract is to
commit the project team to the terms of the plan. The plan should capture as
much detail as possible, and it must be complete before implementation
begins.

• Implement. Once the schedule of deliverables has been set, Implementation
begins. During Implementation, the project manager assembles and deploys
the resources (people, hardware, and software) that are needed to deliver
what was agreed on during the Define stage.

• Control. During the Control stage, the project manager monitors and reviews
the project team's progress against the schedule of deliverables. The project
manager also resists the introduction of changes into the plan.

• End. At the End, the product is released. Project success is measured by
comparing the final results to the original set of requirements. If the project
team delivered against the original specifiations on time and within budget,
the project is deemed a success. Project failure is usually attributed to scope
changes on the part of the client or inaccurate effort estimates up front. This
analysis is used to make more accurate effort estimates in the future.

Figure 5.1 illustrates this generic software development process. This diagram is a
simplified representation of the "classic" approach, which has been adapted to the
Web.

Figure 5.1. DICE Software Development Lifecycle

Classic software development processes were designed to hit a fixed target.
Unfortunately, the Web presents a moving target, as business models and
implementation technologies are reinvented at an exhausting pace. In spite of this
mismatch, the majority of current best practices in use by Web project managers
today are inherited from this classic model.

The Standard

It is difficult to identify a "canon" of software development methodology,
but a few heavy hitters set the bar for industry standards:

Guide to the Project Management Body of Knowledge (PMBOK®), 2000
Edition. Newtown Square, PA: Project Management Institute, 2000.

McConnell, Steve. Software Project Survival Guide: How to Be Sure Your
First Important Project Isn't Your Last. Redmond, WA: Microsoft Press,
1997.

Rational Unified Process®: The RUP is a Web-enabled set of software
engineering best practices. RUP is used today by many organizations that

develop e-business applications. See http://www.rational.com.

The Project Web Site— Getting Everyone on the Same (Home) Page

Document and version control is essential to scope management. If your team can't
easily access the latest project documentation, they cannot know the scope of your
project. Once your requirements documentation has been created, it needs a home.
Important documents should be easily accessible to all members of the project
team. As the scope of the project evolves, "Who has the latest version?" becomes a
very popular question! A project Web site should contain links to all of the latest
project documentation, upcoming milestones, and the date of the most recent
updates. As the project manager, you should maintain the project Web site, which
will solidify your role as the "chief librarian" for all project documentation. Here
are a few tips.

• Use a file-naming convention that includes author, version, and date.
• Only one person should be responsible for maintaining the most recent copy

of a document and uploading it to the site. (That means you!)
• Do not be lazy by simply overwriting older files with new ones. Be

disciplined about keeping backup copies of older versions.
• Provide links to an archive of previous versions as well as the most recent

version.

Project Web Sites Made Easy

Maintaining and updating the content on your project Web site can turn
you into an HTML slave. Avoid the headache by using Web logs. "Blogs"
are free, easy-to-use, customizable publishing tools that can be placed
directly on your own Web server or used as a third-party service
(http://www.blogger.com).

Several service providers offer customizable project extranets at low cost
or even free of charge! Two of them are:

• eProject Express (http://www.eproject.com)
• Intranets.com (http://www.intranets.com)

• Provide multiple file formats for project team members who do not have
Visio, MS Project, or other software. For example, export Visio diagrams as

.GIF files. Export MS Project documents in Excel. Specify the file format
and file size alongside the hyperlink.

• Upload meeting notes and status reports in addition to the usual project
documentation.

• Include a project team roster with contact information (including instant
messenger handles), titles, and a brief description of each person's roles and
responsibilities on the team.

• Use a Web log system like Blogger (www.blogger.com) to make the job of
updating content on the site easier.

• Include links to the various rounds of graphic design mockups, prototypes,
and demos in addition to technical documentation.

Managing Scope Change

There are several change management techniques you can employ to avoid an
adversarial relationship with the project sponsor.

The Project Triangle— Scope, Schedule, Resources

A cornerstone of the project manager's role is to ensure that stakeholders
understand the tradeoff between scope, schedule, and resources. Tact, diplomacy,
and good negotiating skills will go to waste if the client does not understand where
their project sits along these three axes. The customer must be able to articulate
which legs of the constraint triangle she is willing to change and understand their
interdependence. This is a communication challenge that must be met with careful
education and reinforced at every opportunity. Rather than being the "project
policeman," a more effective approach is to assume a helpful "consulting" role that
lasts throughout the duration of the project. As the helpful consultant, you assist
the project stakeholders in navigating all sides of the project triangle.

Point–Counterpoint: Stakeholder Tradeoffs

When confronting the unforgiving tradeoffs of the project Triangle, always
be a polite problem solver. You should be assisting stakeholders to
navigate through difficult choices. Compare these two reactions to a
change order that was issued late in the project.

"As the project manager it is my duty to inform you that we just can't cram
this feature in and still make the deadline. It's entirely your choice, but if
we issue this change order, there is no way my team can hit the deadline.

We can't commit to the date if you really want to have this new feature. I
must be frank and up front about this so your expectations will be in line
with reality. The other option is to add this feature to Phase 2, which I
strongly recommend. We can also hire additonal consultants, but you must
decide that you're willing to waste $20,000. We'll need a decision within
two days so we can revise the project plan."

"Yes, we certainly can build this feature! I've read the description, and I
think I understand what you're asking for. In order to build it we'll all have
to make some tough decisions. The work that this new feature requires
would push us over the deadline, given our current staffing. One solution
is to bring additional consultants on board. I ran this scenario on the
project plan, and this option adds about $20,000 to the development fees.
Optionally, we can move this feature into Phase 2. I suggest that we all sit
down and make a list of the consequences that might result from pushing
back the deadline. Then we'll measure these against the benefits of having
this feature in Phase 1 and consider the budgetary impact of the $20,000."

Getting Project Documents Approved by the Client

As you collaborate with the project team to draft all of the requirements, you will
also have to get those documents approved by your client, who will try to squeeze
as much work as possible out of your team. The tug-of-war begins as soon as you
post the first page mockups to the project Web site. Your new client may drag your
team toward defeat by adding features while the deadline remains fixed. Other
clients try to cut costs by haggling over every detail as they try to wring a few extra
hours out of your overworked developers, or perhaps the first draft page mockups
have launched the client into a brainstorming hurricane that spins aimlessly with
no end in sight. Threatening to quit seems like a good option, but you'll have better
luck scheduling a priorities meeting and applying a few time-tested techniques.

The Chinese Take-Out Menu Approach

A common approach to obtaining sign-off is to help the project stakeholders
prioritize features. Once you have all of the decision makers in the room, pull out a
complete "wish list" summarizing all of the features that have been suggested. Ask
everyone to prioritize the list. If the room explodes into a frenzied debate, add
structure by having each stakeholder work independently. After everyone has
ordered his or her own list, ask them to present their list to the group with the
reasons for their selections. As the group moves toward consensus, priority

conflicts will emerge. The debate over some features will become deadlocked, and
stakeholders will ask for more information about cost. When you hear "I can't
decide— it depends which one is cheaper," then it's time to add the price column to
your Chinese take-out menu.

Now that you have the prioritized list and you've taken note of the deadlocked or
"tied" combinations, you can bring on the implementation team. Use a flip chart or
white board and create two columns, one for time and the other for money. Don't
provide actual figures in terms of days or dollars, since this information could
compromise your negotiations with the client. Simply assign a scale of 1 to 5, from
low cost to high cost. Determine which lower-priority features may be bundled
with higher-priority features— for example, "If we decide to provide online music
samples, then we can also include the film clips at minimal extra cost because they
both use the same streaming media server."

During this discussion, be careful to recognize the intrinsic value of software that
you may be repurposing, as well as the "sunk costs," R&D, and other up-front
investments that were poured into your technology infrastruture. Just because
you've built a highly scalable solution that only takes an hour to adapt, it does not
mean that the software is only "worth" an hour of a developer's time.

As you make progress, take a moment to introduce the concept of "Phase 2." Some
of the riskier features may require a proof-of-concept or prototype. Consider
developing "pilots" to test the business validity of a feature. Take baby steps.
Create an e-mail newsletter campaign as a one-off, and send it to a small target list
of customers before investing in the million-dollar publishing interface. Build a
long-term relationship with your client through a series of small successes, and
avoid the disastrously expensive "white elephant" or "Maginot Line" projects that
become legendary failures.

The "Surgeon" Analogy

Cost is naturally a major roadblock to getting a client to approve a set of features.
The "surgeon" analogy is a technique for helping the project stakeholder
understand the hidden costs of software development ("Why are you billing him so
much for tasks that appear to be no big deal?"). When discussing cost tradeoffs,
some project stakeholders may try to reduce the terms of the discussion into pure
man-hours. They will assume that the faster an application can be built, the less
expensive it should be. These clients are computing the value of your work based
on man-hours alone. Remind the client that graphic design and software

development are not like automobile repair, factory production, or bricklaying. A
better analogy is the complicated surgical procedure. In the case of laser eye
surgery, the procedure takes only a few minutes, but the doctor is being paid for
years of knowledge and expertise. The cost of a medical procedure reflects the
thousands of hours of training and preparation that qualify the surgeon to provide a
service that is both technologically complex and customized to the patient's needs.

Furthermore, rapid deployment and decreased time-to-market provide significant
competitive advantages. The scalability of your team's software is a valuable asset.
Your team should be rewarded for developing its expertise and infrastructure to the
point that you can produce a quality product in a short amount of time.

Playing Defense

Project managers seek to define the project and then build a protective wall around
the initial set of features. Scope "creep" usually manifests as a gradual erosion of
this wall. Most project stakeholders are sensible enough to quell major changes,
but the cumulative effect of tiny incremental changes takes its toll. How do you
prevent new requests from coming in over the wall? Formalize the process.
Establish a change committee and a formalized change procedure so that you will
not find yourself desperately plugging leaks as small requests pour in from all
directions.

Change Orders

Use a written change request document whenever there is a change in scope or
requirements. The change request form should include mention of the relative
priority of the change and the importance of the change in terms of time and
resources. Be consistent about requiring the use of change orders, or the client may
assume that a change has no cost impact. The purpose of this protocol is to manage
expectations and costs, not to discourage change or to appear inflexible in the face
of a dynamic business environment.

Problems with Classic Approaches

When your project feels like it is spinning out of control from scope "creep," you
may be tempted into a destructive battle with stakeholders. From your standpoint,
the objective of this tug-of-war is to aggressively limit the scope of deliverables.
After the scope has been "set" and the project is underway, you will be called upon
to battle the client to prevent changes. "Scope management" becomes a reaction to
changes initiated by the project stakeholders, who are laying siege to the integrity

of the original plan. Caught in a destructive dynamic, your team will begin to feel
like a defensive garrison as you fend off salvoes of change requests that threaten to
erode the fixed set of features. The traditional "siege mentality" creates an
adversarial climate that quickly infects the entire project team. The fallout from
this power struggle between the project manager and project sponsors sets a tone of
conflict that can last for the duration of the project.

In this hostile environment, traditional project managers focus on the plan, tracking
inputs, deliverables, and milestones against a fixed set of requirements.
Unfortunately, the attempt to specify every feature ahead of time and draft a static
plan has proved to be unrealistic for Web projects. During the lifetime of your
project, stakeholders will learn about the technology as well as their own business
needs. The overall business climate may change if the project lasts several months.
In response to this reality, innovative approaches like Rapid Application
Development (RAD) and Extreme Programming (XP) have taken the spotlight.
These methodologies share an "iterative approach" to scope management.

Iterative Approaches

Given the limitations of the standard model when applied to the Web, you will be
called upon to find creative ways of controlling requirements throughout the
lifetime of the project. The details of implementation will cause the specifications
to be modified on the fly. Several new methodologies have formalized this iterative
process. RAD is one of the most commonly accepted iterative approaches.

The Rapid Application Development methodology was designed to build software
with speed as the most important success criterion. The RAD approach is not
appropriate for every Web project. RAD is best suited for projects that have a
limited, well-defined scope and a measurable outcome. RAD works best with a
small, tightly knit project team and an on-site stakeholder who is empowered to
make quick decisons about functionality. The ideal team size is under ten people.
RAD also requires a stable technical architecture: It is not well suited for creating
large, complex systems on top of a completely new or untested infrastructure.

The cornerstone of RAD is rapid prototyping, wherein developers try to create a
small working product as soon as possible. The working prototype is then refined
based on direct feedback from the client. Each refinement, or "iteration," is a step
closer to the finished product. RAD project managers use a technique called
"timeboxing," in which scope is allowed to change but the delivery date remains
fixed for each iteration. The main advantages of RAD are that the client is able to

see results right away and frequent scope changes are allowed. With conventional
methods, there is often nothing delivered to the client until 100 percent of the
process is finished and the completed software is unveiled.

Extreme programming represents one of the most notable applications of RAD
techniques to the Web. This client-centric approach aims to deliver just enough
software to meet the customers' needs, incorporating the immediate feedback of
clients during the development of a series of rapid prototypes. In fact, there is no
distinction between the "prototypes" and the finished product. XP utilizes several
innovative techniques like "pair programming" to encourage teamwork, creativity,
and collaboration among developers. The interview section of this chapter
describes how XP works in the real world.

Extreme Programming (XP) Resources

See http://www.extremeprogramming.org/
http://groups.yahoo.com/group/extremeprogramming/links.

Common Scope Headaches

Most day-to-day problems with scope are caused by weaknesses in the project
definition process. While you work to create a methodology for managing scope
that is high on concept, keep an eye out for these nuts-and-bolts breakdowns. This
section describes the most common headaches, along with the cures.

Problem #1: I Sketched the Site Out on a Napkin— Is that Okay?

It's difficult to draft project specifications if the initial requirements were poorly
defined by the customer in the first place. The "cocktail napkin blueprint" can be
used to memorialize a moment of inspiration, but it is not a valid input for your
specification. Sure, you can "wing it" and attempt to fill in the blanks for your
client, but this guessing game usually ends in dissatisfaction with an end product
that doesn't match your customer's expectations.

Symptoms

• There is no creative brief or written document signed off by the client that
states the scope of the project and its features.

• There is a creative brief, but it is vague or poorly written.
• The project stakeholders are new to the Web or inexperienced with user

interface design.
• The developer has numerous questions about the specifications.

Solutions

• Build a feature inventory by asking the client to list all the items that appear
on each page.

• Build out a use-case scenario by walking a hypothetical user through the
application and asking the following questions.

What are the user inputs?

What sort of output should users receive?

What are all the possible actions a user might take?

• Find an example of a similar site that can be used as a model. Ask the
customer how her vision differs from the example or how the model should
be modified.

• When all else fails, take a stab at designing the application yourself. E-mail
the specifications to the project owner with the alternate features and design
choices presented as a series of questions highlighted in red. As the client
answers the list of questions, he effectively builds the specifications.

• Circulate early versions of the spec to a tech lead for a brief review and
obtain a list of questions for clarification.

Problem #2: It's Nice, But It's Not What We Had in Mind.

So you did a great job writing a 20-page specification, using plenty of technical
jargon to impress the developers. Unfortunately, your project is in trouble because
your nontechnical client didn't "get it" until round one of the design popped up on
her monitor. The fateful words "We didn't know it was going to work like this"
spell disaster for your deadline. In order to prevent drastic revisions late in the
game, steps need to be taken right now during scope definition.

Symptoms

• The client signed off on a feature summary but never reviewed the detailed
specifications.

• The client has very few questions about the specifications.
• The client makes radical scope change requests late in the design phase.

Solutions

• Conduct a face-to-face review of the spec where each feature is discussed in
detail. Many project stakeholders do not read through e-mail attachments.

• Be aware of different comprehension styles when you present the final
specifications to your client for sign-off. Convey your concepts visually,
orally, and in writing.

• Include visual mockups in your specs in addition to text explanations.
• Identify all the project stakeholders and have them sign off on the

specifications.
• If your project owners are inexperienced, do not sign off on the specs until

there is a demo/front-end prototype or finished design mockups. Build an
HTML skeleton or "shell" of the application and walk stakeholders through
the demo. Many inexperienced stakeholders don't understand what they are
getting until they see it on their monitors.

Problem #3: Just One More Tiny Little Change …

The cost of changes tends to increase as the launch date approaches. However,
your client may not realize that creative brainstorming and "tweaking" just isn't
appropriate during system testing!

Symptoms

• The project deadline is repeatedly pushed back.
• The client can submit feature changes without incurring any cost.

Solutions

• Draft a detailed scope document or specification and require a formal sign-
off before any work begins.

• Break payment schedules into a series of installments for each itemized
deliverable rather than a single payment for the finished product.

• Create a formal change order procedure and assign a cost to change orders
by making arrangements for additional fees or deadline extensions. Require
change orders to be authorized by the ultimate project sponsor.

• When drafting your documentation, include features that are not required.
Ask stakeholders to identify categories of requirements that will not be
included, like credit card transactions or personalization features.

• Circulate updates to the project plan and specifications after each change
order.

• Try an approach that employs rapid prototyping techniques. Shorten the
release cycle. Establish an open-ended "burn rate" fee structure, and invite
the client to provide continuous creative input.

Summary

Your job as a project manager is not to prevent change but to help your
stakeholders navigate through the inevitable tradeoffs between scope, schedule,
and resources. Avoid assuming the role of the "scope police" and become your
client's trusted partner, educating stakeholders so that they can make intelligent
choices. The inevitability of change may cause you to throw up your hands in
despair, but keep in mind that you are managing a creative process in a dynamic
communication medium, not building a suspension bridge. Attitudes and
methodologies inherited from civil engineering, the military, and other project
management cultures may not fit the open-ended, creative world of Web site
design.

Although they represent an exciting development, iterative models are not a
panacea to the problem of scope change. Many prototype-centric methodologies
require unique conditions for success. For example, rapid prototyping requires a
client who is knowledgeable about the Web, responsive, creative, and willing to
participate actively in the ongoing design process. Such clients are a very rare
breed! The techniques of pair programming advocated by XP enthusiasts often
require significant changes in organizational culture and work habits, as well as a
suitable personality! While it is true that many new appraoches promise to be
better suited to the Web, it is advisable to first acquire a firm foundation in
commonly accepted practices. Once you have mastered the fundamentals of scope
management, don't be afraid to experiment on small projects. As you work toward
mastery of the basics, stay abreast of novel approaches that offer a treasure trove of
techniques that will assist you in confronting change.

In the end, change can make your project better. Often the best ideas emerge in the
late stages of the graphic design phase, originating as an unwelcome "suggestion"
from a client that threatens your stranglehold on the scope. As you prepare to
embrace change, be forewarned that its inevitability is not an excuse for vague or

shabby specifications. A clear and well-defined set of requirements will go a long
way toward managing the client's expectations. Solid specifications will provide a
baseline against which you can measure the costs of future enhancements and a
valuable addition to your company's knowledge base. If you've done a thorough
job of defining the product, you will enjoy a smooth transition into the next
phase— creating the plan.

Extreme Programming

Alex Cone, CEO of CodeFab Enterprise Development
(http://www.codefab.com), talks about using Extreme Programming
to move beyond the traditional methods for managing scope.

This interview was conducted in October 2001 over a few margaritas at Tortilla
Flats restaurant in New York City's West Village. The restaurant served up a spicy
mix of retro 1950s paraphernalia and Mexican home cooking to local patrons. The
booths were packed with art gallery owners, bikers staggering in from meat
packing district bars, and Silicon Alley computer geeks taking a break from their
labors in the raw industrial loft spaces that litter the neighborhood.

After a distinguished career developing back-end applications for Wall Street
trading systems, Alex teamed up with some of the top developers in town and set
up shop in a warehouse space in 1997. Since then, his team has abandoned
traditional software development methodologies to produce innovative applications
for clients like Apple Computer and Standard & Poor's.

So we're writing a book about how to get Web projects done. Any advice?

When we started CodeFab, the first thing we did was look back at most of the
software development projects that we'd done over the last 10, 15 years, and
conclude that most of them had failed.

You mean failed from a process point of view?

They failed from the point of view that they didn't get finished in the timeframe or
within the budget, and we generally weren't happy with the end results. We wanted
to know why. We wanted to actually finish projects and do them the right way. By
and large we've been successful over the last four and a half years that we've had
this company. At the two-year point, I had already finished more software projects

than I had in the previous 15 years. I actually finished them and delivered them to a
satisfied client: They were a success.

In most of my experiences on Wall Street, you started some grandiose project,
people worked on it for a while, and then all the significant players left. It was
never finished, things got changed along the way, and you never saw a completed
piece of software that matched what you set out to do.

We started examining the current wisdom on software development and why
software projects failed. At that time the point person was Steve McConnell, who
had written a number of good books, including Code Complete, Rapid
Development, and The Software Project Survival Guide. There was some really
good thinking in there, but much of it focused around the cost of introducing
changes into your specifications and controlling the scope of your project over
time, as well as management issues in terms of keeping on track with what you're
doing and the importance of having more or less complete requirements up front.
This works very well if your focus is to be able to do fixed-scope projects.

The traditional approach was to do a whole bunch of work against a set of
specifications and deliver what was in the specs before moving onward. It seemed
like a good way to go, and it certainly provided good backup in terms of a contract
with the client. When you're two weeks into the project and the client wants to
change something significant, you can say, "Look at the cost associated with
making a change at this point."

However, by and large this didn't really work for us. We had some notable failures,
and part of it was our fault and some of it was the fact that this development model
really didn't fit with the Web. One of the primary tenets of the standard process
was that you can know at the start of your project what it is that you want to do,
what you'll need over the next 6 or 12 months, and that those needs will remain
consistent over that time period. And this has turned out to be completely
unrealistic. It was also founded on the idea that you could induce a client to
actually describe in sufficient depth and detail exactly what they wanted you to do
up front, before any work had been done yet. And that also turned out to be
impossible. You go out of your way to discourage the client to change the project
in midstream. You needed a change control committee, you billed them extra fees
for changes, and so on. That tended to foster a very bad working relationship with
the client.

In fact, this adversarial relationship was the source of our biggest problems.
Bascially, it forces you to have a huge fight up front with the client, wherein you
wrestle over the features and the specs and the cost and so on and so forth. The
client is trying to get the cost down as far as possible, while you're trying to limit
the features. You're trying to get detail out of them when they don't want to be
detailed, and then you have this huge fight before you even start the project.

Once the project gets going, you have another big crisis every time the client has a
brilliant idea about how they would like to do something. This is because the client
wants you to accommodate the change at no cost. Naturally, you show the client
your documentation, which proves that the new feature is going to cost a lot of
time, energy, and money— so you think you should be paid for it. The brawling
continues.

Finally, when you finish the project, you have a big fight at the end. "We're done."
"No, you're not." "Yes, we are— see, here are the specifications showing that we
did exactly what we said we were going to do." The client is only trying to be
financially prudent. This is their opportunity to get you to do more work for free by
saying, "Finish this, change this slightly, try and do this," but you're trying to be
financially prudent by saying, "Look, if we do another development hour, that is
costing me money, and you're not paying me anymore for doing that, so we have to
draw the line." So after you wrestle each other to a total standstill, you're probably
not in a good head for doing the next project with this client, and he's not psyched
to work with you, either.

So the main problem you've identified with the standard methodology is that the
customer does not really know what they want, and, to make matters worse, you're
working with a new technology that is changing rapidly along with the business
environment.

Right, and you're starting off with some assumptions that are fundamentally
unreasonable. You can't know exactly where you want to land. This isn't some kind
of a ballistic missile. This is like trying to drive to Boston by pointing the front
wheels of your car exactly in the direction of your destination address in
Cambridge. Then you take your hands off the wheel and just press on the
accelerator and hope that you'll get there. That isn't how you really drive to
Cambridge. Making such complicated journeys is about midcourse corrections and
about being adaptable. The traditional process fundamentally rejects change rather
than embracing change.

The only advantage of the standard methodology is that it fits well within the
corporate consulting mindset. The corporate client says, "We want to have this e-
commerce Web site up by June. I've got to go back to the budget people and get a
check for this piece of development. How much will it cost me?" The only people
who really succeeded at this were the overpriced consulting agencies who would
say, "Okay, then, I'll pull a number out of my butt and completely pad it with a $2
million markup." For a while, clients actually said okay to this, but now we're back
to square one.

So if the situation is unworkable unless you pad your estimates by some ridiculous
amount, then what do we do?

We really needed to start this whole process off on a completely different foot. One
of my developers came to me with this new methodology, started by this guy Kent
Beck, who was one of the original developers of Perl. It's called extreme
programming, or XP. We started working with this, and we basically came up with
a CodeFab version of XP. We worked on a couple of projects with this and found
that it addresses pretty much all of our concerns.

The basic idea is— to continue my driving analogy— you agree that we're heading
toward Boston, but all we work out initially is how to get to I-95. We'll take the
next step once we're on I-95. The client comes in, and you put together a "story"
rather than trying to do functional specifications. By trying to write these highly
detailed specs, you are struggling to do technological implementation during the
wrong phase. You're focusing on the details instead of the goal.

My emphasis on stories is that we want a good customer experience. For example,
one story says, "We want to build the application so that the next time the visitor
comes to the site we should know what they wanted the last time they came to the
site." As you start programming, you come back to this one-paragraph story that
describes the idea behind the user experience. You're not focusing on the features.
You don't care about specifying the details like "there should be buttons on the left
side instead of the right side, and the user should be able to turn on one-click
buying with a checkbox."

So the specifications are experience-driven rather than widget-driven. The
specifications are just stories about what the user gets out of the experience.

True, but there are a couple of restrictions on the client. The client has to be willing
to put somebody on site. The client has to be part of the development team because
you are doing short iterations. I can never get more than two weeks away from a

working version, but the client has to be able to fine-tune things all the time. For
example, there may be two different solutions to a problem, so we have to ask the
customer, "Which one do you like?" Or we say, "We're at this point, and we could
do any one of these three stories next— which one is the most important?" It really
requires close interaction on the client, and that person has to be somebody with
authority to make a decision. It can't just be somebody who makes a phone call,
because we can make a phone call ourselves. This system requires some serious
participation and accountability on the part of the client.

The actual process involves a series of prototypes, developed rapidly with
immediate feedback from the client.

You're doing just enough to get the story to work. And then you move on to the
next story and get that to work. You build this stuff up. You don't think to yourself,
"Okay, we need a grand shopping cart infrastructure before we start anything else.
We need a network communications layer before we start anything else." You just
do a little bit and then get back to work and do a little bit more. Everything is based
on making the stories come true. You iterate in the direction that you want to go.
When the client comes in on Monday and says, "I had a great idea over the
weekend," you can say, "Okay, great, let's do that now."

How do you get scalability into your software design if you are doing a series of
one-offs?

They are not one-offs. You are just adding more features to the baseline. They are
not prototypes. They are the real thing. You just make the specs into a story, like
"We should be able to handle a thousand users shopping at the same time." The
trick is to make it work, make it work right, make it work fast.

The major tenet of the whole XP thing is this refactoring. As you get a new
requirement, you are not afraid to rewrite the code to accomplish a new goal. It
steers you away from a tendency to design some vast infrastructure that you may
not need. You avoid maintaining all of this useless code just because you might
need it. You use just enough. You refactor and optimize the stuff that isn't good
enough. You don't work on any part that isn't actually a problem.

This is a classic problem with all software development. People tend to optimize
too early and optimize the wrong thing. If you find out that one spot is 80 percent
of your problem, then you put your efforts there. Don't try and solve a problem if it
isn't a problem yet. The client is right there, saying "It's fast enough to go live with

now." If it's not fast enough to go live with, let's change this one piece. Let's stop
adding new features and make this one thing faster.

If the product evolves on the fly, how do you handle billing?

Basically the client hires a team on a burn rate— say, for $150,000 you get these
four guys and their project manager for a month. And we just continue iterating,
executing stories, testing, rolling out a version for as long as the client wants.
When are we done testing? When the client says we're done testing. When have we
got enough features built into the product? When the client says we have enough
features.

So the client has to manage their own scope!

Absolutely. But they get lots of short-term feedback. They can take shortcuts if
they want to. They can say, "We need to go live with this feature, so we'll just
iterate in that direction until we get something that is good enough." They can say,
"Now I want to work on the user interface. Now I want to work on the
communication with the CRM software." The client can really drive the process.

Since the development team has been doing a series of short-term iterations, they
are never more than two weeks away from a working version. The client always
has something to play with. The client can always refer to a working version,
which allows them to base their ideas and suggestions on a realistic model. Plus,
we do other things. We integrate unit tests into everything right up front. You cope
with the story, write your first test and run it, and it fails because you haven't
written any software. You write the software until it passes the test. If you want to
make some changes, you re-run all the tests. If the code passes the tests, then you
have a piece of software that does all the stories you've defined so far. You get
much higher quality software that way.

We also do a lot pair programming, which is very nice. One person types, and the
other person navigates, and we keep rotating people around. This way everyone
sort of takes ownership of all of the code. Everyone has a piece of developing the
product. It's no longer "This is the JavaScript guy; this is the guy who does all of
the database stuff." Everybody gets a piece of everything, and you don't have to
study a bunch of documentation to figure out what the other guy did because you
worked on developing it. You have the developers volunteer to take on certain
tasks. You write them up on 3 x 5 cards like you saw on the wall, and people
volunteer to do them. This way the client isn't paying for twice as many

programmers as they need, and generally after a month or two they are completely
sold on the process.

The client feels like part of a team is their team and that they've come up with an
idea and have seen it turned into reality very quickly, as opposed to fighting
through some change control committee and then six months later finding out
whether the feature was useful or not. My experience is that clients change what
they wanted, or even what they thought they wanted, all the time. The changes
don't necessarily have anything to do with what they were originally thinking.

How do these clients manage the overall budget?

They basically have to accept a degree of uncertainty. It usually takes them a
month or two or three to realize that we've got such velocity on this project that it's
worth the ambiguity.

In the traditional model, the guy who is writing the check never looked over a set
of detailed requirements anyway. The budget guys are just trusting the client
manager to pick the right features and do the right implementation, so we don't
need to be that much more specific. Either they trust him or they don't. And if there
are specific requirements that can be conveyed to us up front, so much the better.
Nonetheless, that person continues to be responsible all the way. And it eliminates
the classic "It's the consultant's fault," which generally was just a smokescreen for
a person who could never make up his mind about what he wanted.

I guess the client sells this model to their manager by virtue of its flexibility.

Right. Basically the client adds features until they are happy with the feature set or
until they can't add more features within the budget. They're deciding what the next
feature will be and what features do not make the cut because they will take too
long to develop.

We want to shift the burden of expectations and prioritization back to the client
and make someone a proactive participant in the process rather than having a
project manager who is placed in an adversarial relationship with the client. The
client gets a lot more responsibility out of this process, and they also feel
tremendously empowered.

How does the project manager's role shift in this relationship? They are not
necessarily managing deliverables because deliverables are being established by
the client in concert with the developer.

The project manager sort of glues everything together. They are responsible for
getting the stories and the tasks written up and estimated, coordinating who is
doing what where, and also overseeing interaction with the QA people. Since you
start with unit testing right away, QA people get very involved. And there is still
the matter of putting together project documentation that has to go through the
client's approval process, so the project manager does all that. Plus the project
manager is still the primary point of contact for the client. They make sure we have
the right documentation and document status reports on what was actually
accomplished. Yes, there is a board with a bunch of 3 x 5 cards on it, but there
needs to be more formal status reports conveyed.

I love this process because I know I am getting paid fair value for the developer.
They work as long as the client wants them to work, and they are being paid for it.
If the client wants more developers or less developers, we can adjust. I avoid the
typical scenario wherein we're working like mad for the last three months, for the
final one-sixth of the overall project payment. And what's more, you are in such a
perfect state to go on to phase two.

Also, you're in a perpetual brainstorming mode, a creative process as opposed to
being on an assembly line process. Developers often feel like they are on the
receiving end of a directive, and if you're on the assembly line, you've got to churn
out whatever the directive tells them to churn out. There is no creativity.

With this system the developers are empowered to volunteer to take on this or that
story and estimate tasks. Then you reiterate, compare the estimates to the actual
time, and calculate your velocity or your fudge factor and estimate accordingly.
You get more and more accurate about estimating over the course of the project.

Alex, what's your definition of a story, and how do you measure it?

You're trying not to describe technological implementation so much as what the
user does and what outputs he receives. No longer than a paragraph. Something
that can be easily communicated so that we can say, "Can we make this come true?
Do these features make this true?" There is a strong emphasis on using metaphors.
You want to be able to give people a good sound bite so they really get a feeling
for what this is supposed to do.

Give me an example of a story from one of the cards that would appear up on the
wall.

We're doing this distributed publishing product for these Japanese guys. It's
basically a Japanese car magazine, but they have thousands of distributors and
editors who are on the road all over the place. They want to put a contributor on
the road with his laptop. He should be able to upload an article, upload the images
that go with the article, and do it all remotely from a laptop over a wireless
connection. The users should be able to search for an article by title in English or
in Japanese, and the user should be able to find articles pertaining to cars by the
model year. That's not saying anything about what their search algorithm is or what
the tool is that allows them to upload pictures pertaining to the article.

The stories can change over time. We started out with a Web-based solution. Then
we came up with a solution that integrates directly into Microsoft Word, but the
story continues to be true. The developer might break the story down into tasks and
provide a broad effort estimate for the story. And, of course, everything continues
to be recorded on 3 x 5 cards, and you work on things until they are done. Then
you mark them down and put them up on the board. The project manager is
measuring the velocity by saying, "You did that in half a week instead of two
weeks."

What makes a good project manager really great?

Good people skills, good organizational skills, willingness to be perceptive about
the client and the client's mindset, good ability to digest fairly complex
technological issues and translate them into something that the client can really
inhale, good ability to work with the employees and balance all the egos. There is
still a lot of developer ego management. Making sure that two people don't pair
with each other all the time or that nobody leaves anybody out in the cold, making
sure that developers are not spinning their wheels for too long on a problem and
that they are respecting decisions that were laid down about how we are going to
do this or that or the other thing. You are still doing client management. You are
still doing status reports. All the clients are different, and they all want weird stuff.

One of our top project managers is a nationally ranked pinball champion and often
competes in championships. One of my developers brought us XP and insisted that
we use it and is fanatical about it. He keeps sending e-mail messages with sound
bites about why this is good or bad or evil or whatever else. But I am actually
trying to encourage developers to be in this mode. Part of this is like trying to be a
housing coordinator at a college, trying to match roommates.

Chapter 6. The Art of Planning

Key Topics

• GANTT Charts
• Work Breakdown Structure
• Planning as You Go
• Planning Pitfalls
• Getting Started with Microsoft Project

Planning is the process of identifying what work must be completed and how it
will be finished within the approved time and resource constraints.

The Project Schedule

A key outcome of the planning process is the project schedule, which specifies the
duration of activities and when they will begin.

As you follow the steps required to draft a project schedule, keep it flexible, and
work to create a document that can withstand change. From the perspective of your
project team, the schedule provides answers to a few key questions.

What work is required of me?

What needs to be done before I can start working?

When does it have to be done?

What work happens next?

Infatuation with Planning Software

As project managers, we are often guilty of falling in love with planning software.
After toiling away on Microsoft Project or Excel, we can't wait to show off the
elaborate fruits of our labors: cascading GANTT charts drawn in confident colors
selected just for this project. We imagine ourselves in starched, short-sleeve,
button-down shirts with skinny black ties, crew cuts, and Buddy Holly eyeglasses,
striding confidently into Mission Control Houston to announce the launch
sequence. Nervous executives mutter to themselves, "How much will it cost? How

long will it take?," and we provide the answers in cool monotones. Four weeks into
the project, our NASA fantasies implode as the original plan becomes a Maginot
Line defense against the forces of change, a monument to the weekend we spent
plugging man-hours into planning software.

G GANTT Chart

The GANTT chart shows task information about your project as a series of
bars along a timescale. The bars graphically display task durations with
start and finish dates as they progress through time. The relative position
of the GANTT bars shows the sequence in which your project tasks are
scheduled to occur. GANTT charts are discussed in detail later in the
chapter.

We know that the plan will quickly become obsolete as the client issues change
orders. Stakeholders will change business priorities throughout the course of the
project as they progress along their own learning curve and their vision of the end
product crystallizes. Given these realities, how can we avoid feeling like planning
is a doomed enterprise? The first step is to realize that planning is an art disguised
as a science.

The project schedule should be a dynamic, living document, designed to be highly
flexible. Its purpose is to identify major deliverables and dependencies. As a
perpetual "work in progress," it should be customized to fit the unique
characteristics of the project. Don't waste time attempting to force-fit a simple
project plan into a Byzantine, all-encompassing "uber-template" that attempts to
capture and quantify every minute detail. Production and design specialists already
know how to do their jobs and how to schedule their own time. They are not robots
on an assembly line. Members of your team need the plan to tell them what's
expected of them and how they are affected by what other people are doing— not
how to budget their next 15 minutes.

Planning by the Numbers

Planning requires the following steps that you must undertake as part of your core
responsibilities.

1. Develop a work breakdown structure (WBS) by identifying the project
phases and activities. Consult with your team to break down the activities
into tasks.

2. Identify the dependencies between activities and highlight these in your
schedule by using color or special notations. Major dependencies are a risk,
so be sure to "raise a red flag" and identify them to project stakeholders.

3. Identify activities that can be run simultaneously or in parallel (for example,
data modeling and graphic design).

4. Estimate the effort and duration of each activity in consultation with your
team. If the project timeline allows, pad your time estimates by 15 percent.
Be sure to clarify whether the estimates you receive from your project team
are based on sheer man-hours or total duration of effort. Try to ask for both:
You will need duration for creating your schedule and man-hours for billing
your client! Most scheduling software allows you to enter both.

5. Determine the costs for each activity in terms of staff man-hours,
subcontractors, hardware, and software licenses.

6. Draft the project schedule and analyze the results.
7. Obtain approval, assign resources, and schedule work assignments.

The Work Breakdown Structure

The work breakdown structure is a hierarchical listing of the work that must be
completed in order to meet all of the project deliverables. The Statement of Work,
technical specifications, and other scope documents provide the raw material from
which the WBS is created. The WBS is created through a process of
"decomposition," which simply entails breaking each component of the project into
progressively smaller pieces until it becomes a collection of tasks or work
packages. By using this process, a monstrously large and intimidating project is
transformed into a series of small, manageable subprojects.

The WBS contains phases, activities, and tasks in outline form. The outline can be
broken down along functional lines (search engines and shopping carts) or by
physical components (page templates, content database, mail server).

Creating WBS Charts

Work breakdown structures are usually expressed as hierarchical
flowcharts, with each item assigned a number (see Figure 6.1). In
Microsoft Project, this structure is created by "indenting" tasks in the

GANTT chart to show the different levels of detail in a project.

Figure 6.1. Sample Work Breakdown Structure Chart

Source: Screen capture from the WBS Chart Pro™ software.
Copyright © 2002 by Critical Tools, Inc., a Texas corporation. Used

with permission.

Software tools, such as WBS Chart Pro™ from Critical Tools, Inc., are
available for use in conjunction with Microsoft Project, allowing you to
easily generate WBS charts (see http://www.criticaltools.com).

Drafting the Schedule

Regardless of whether you are using MS Project, Excel spreadsheets, or other
software, the final document should contain the following items.

• A descriptive name for each activity, defining a specific deliverable. For
example, "Create product info tables" is a better name than "Database
coding" because it specifies the deliverable that signals the successful
completion of the activity.

Tip: Scheduling Meetings

Include all of the important project meetings (especially client deliverable
reviews and interview sessions) in the project schedule. Have clients sign
off on the timing of these meetings and confirm it with all attendees up
front. Client review meetings that are pushed back or delayed can
contribute significantly to "slippage" in the project schedule.

• The resources that are assigned to each activity. This can be generic until
work assignments are finalized. For example, "Designer 1" and "Designer 2"
can be replaced with the names of actual people later. Nonpersonnel
resources like servers and other hardware that need to be purchased can be
mentioned in a "notes" column.

• The start and end dates of the activity.
• Overall cost estimates in terms of man-hours, subcontractors, and fixed costs

like hardware and software licenses.

The essence of project planning is the art of knowing what to leave out. Focus on
the critical path, the activities that must be finished on time, or else the whole
project will fall behind. Lump together routine tasks that represent standard
operating procedures (for example, installing and configuring operating system
software on a Web server). Focus on deliverables that are unique to the project. A
bloated schedule will add unnecessary administrative overhead and confuse the
people who need to use it as a road map. In addition to being a cost estimating tool,
the schedule is an important communication medium and should be designed with
a few key principles in mind.

• Major milestones and high-risk work efforts should feature prominently.
• The sequence should follow the natural timeline of events as closely as

possible.
• Task ownership should be clear. Avoid grouping unrelated tasks or tasks that

overlap across several resources. For example, if you are outsourcing a
portion of the development to contractors, consolidate their work into a self-
contained, separate activity.

• The plan should be comprehensible to people who are not project managers.

G Critical Path

The sequence of activities that determines the completion date of the
project is the "critical path." The critical path can be seen by tracing the

longest duration path through your GANNT chart or other schedule
diagram.

The standard format for conveying schedule information is the GANTT or
"waterfall" chart. (See the sample GANTT chart display in Figure 6.2 and the
sample project plan on the CD-ROM for examples.) A GANTT chart conveys the
project schedule as a series of cascading task bars arrayed across a calendar. The
chart is a visual expression of the WBS, the projected dates each task is to be
started and completed, and the resources assigned. Since the GANTT chart is a
crucial tool for conveying schedule information to project stakeholders, it should
be thoughtfully designed. Many project disasters can be traced back to a project
schedule that was difficult to understand or just poorly communicated. When
creating the plan, think of yourself as an information designer whose job it is to
communicate complex data clearly and succinctly. The bottom line: It's worth
taking the time to customize the appearance, layout, and labeling of the task bars.

Figure 6.2. Sample GANTT Chart Display in MS Project

Sample Project Plan

Open the Chapter 6 folder on this book's CD-ROM and you'll find a

sample project plan for a simple subscription-based content Web site. An
updated version of this document is maintained on
http://www.realwebprojects.com.

Assigning Resources

During resource scheduling meetings, your task is to identify and assign the
specific resources that will be required to complete the project. With their
historical perspective and managerial expertise, project managers play an
important role in advising senior managers as they make resource assignments.
The most interesting and challenging aspect of this process is the discussions (in
other words, corporate politics) that surround personnel assignments. You'll be
asked to state your opinion during these debates, and you should do so using
objective criteria that take into account the interests of the organization in addition
to the interests of the project.

Besides the obvious technical and professional expertise, the criteria include the
following.

• Role definitions and requirements. For example, on smaller projects a
programmer may also be required to interact with the client as a senior
architect or tech lead.

• Availability and scheduling conflicts. Identify any political minefields with
respect to company priorities and competing demands on resources.

• Experience with the project development process. A designer with a big ego
might not be the right fit for a collaborative design model. A Java guru who
is an infamous prima donna might not want to participate in an experimental
"pair programming" methodology.

• Knowledge of proprietary systems.
• Industry knowledge. For example, a Java developer who has worked with

online trading systems will be better suited for a financial project than a
colleague who has spent his career working on content publishing sites.

• Knowledge of previous, related projects.
• Professional development. For example, a simple interactive pop-up

advertisement may provide an opportunity for a designer to get her feet wet
with the latest version of Flash.

Don't forget to account for mundane project resources like workspace, office
supplies, videoconference facilities, and so forth. An appendix depicting
miscellaneous costs may be included with the plan.

Obtaining Approval and Scheduling Work

Once the plan has been approved by the client and your senior management, don't
rely on anyone to "delegate" the work assignments for you. Call a scheduling
meeting and present the final plan to the entire team. Be sure to include department
heads and other resource managers who may be aware of concurrent projects that
might cause scheduling conflicts. The purpose of this meeting is to clarify roles
and ensure that your schedule is accurately reflected in the work assignment
calendars. Present the plan to your client as a work in progress that will be
revisited at each milestone. Communicate confidence in the initial estimates.
Remind them that while change is inevitable, you will help them to make the
necessary tradeoffs between scope, schedule, and resources that will keep the
project on time and within their budget.

Plan (and Pay) as You Go

Exactly how can the rigid structure of the planning process be applied to the ever-
changing realities of the Web? Many innovative project managers have learned to
break their project deliverables into a series of "installments." The installments do
not necessarily correspond to classic project "phases" like design, production,
testing, and launch. Instead, they are defined to include whatever set of
deliverables the team is comfortable with estimating. At the end of each
installment, the client receives something of value, the project team gets paid, and
the plan for the next round is drawn up. This model is similar to a housing
construction project, wherein a building contractor takes a disbursement from the
bank at the completion of each phase of the project. For example, he is paid 10
percent of the total cost to lay the concrete foundation. Once the foundation is
inspected, the bank wires him another 15 percent to build the frame, and so on. A
layer of complexity is added for Web projects, since the final cost is a moving
target, depending on scope changes initiated by the client.

Under the "Plan as You Go" approach, the client is provided with a rough estimate
of the overall project duration and cost. However, the project team is only required
to commit to the deadlines and budget for the current installment. The team does
not commit to future installments until all the current deliverables have been met.
While it might appear that the project team is "copping out," this tentative
approach actually decreases the risk for the client, since the client can back out of
the project at the end of each installment. Assuming that the project deliverables
are to be built using standard Web technologies, the client will not be left high and
dry if he needs to walk away and find another team to finish the project. By the

same token, the risk and delay involved in finding a new project team encourage
the client to go the distance.

The project team gains several advantages as well, since it is able to insulate itself
from the risk of scope creep by reassessing the requirements and creating a new
plan at the close of each phase. This "Plan as You Go" approach allows the project
team to avoid "betting the store" on the initial time/cost estimates, since it would
otherwise end up "eating" the inevitable cost overruns.

The key to selling your client on this approach is to communicate that he will be
receiving something of real value at the end of each installment. It is also helpful to
have a solid track record of success on similar projects so that the client will be
more comfortable with the fact that your team has not committed to an overall
budget. A simplified set of installments for a small project might contain six
separate project plans, one for each of the installments.

1. First installment: scope documentation. The client pays 20 percent of the
total estimated development fees and in return receives a detailed "blueprint"
of the site based on a thorough needs assessment. The blueprint consists of
the complete scope documentation (techncial specifications, content map,
and so on).

2. Second installment: design mockups. Based on the scope documentation, a
new estimate for the overall project and the design concept is provided. The
client typically pays fees amounting to 15 percent of the revised total and
receives the final page mockups as PhotoShop files in layers for all of the
major site templates.

3. Third installment: final design. The client pays another 15 percent and
receives the finished HTML code along with optimized images. This
production-ready design is tested for browser compatibility and may also
include client-side coding (JavaScript, applets, and so on).

4. Fourth installment: working prototype. The client pays 30 percent upon
receipt of a functioning back-end prototype. The system may or may not be
"married" to the front end. If additional iterations of the prototype are
required, a new estimate is provided for each iteration.

5. Fifth installment: pretesting. The client pays approximately 10 percent for
the integrated system.

6. Sixth installment: launch. The Web site is tested and launched. The client
pays the balance of the fees.

Using Your Judgment

If project planning is really an art, where does the creativity come into play? Find
out by asking yourself a few questions before you tie up the network printer with
53 pages of diagrams.

• What tasks should I group together and why?
• What deliverables are most likely to change or be discarded by the client?

How should the plan reflect this possibility?
• What is the minimum amount of detail that needs to show up in the

documentation? Can I use this data set to create a summary or "brief" for the
client?

• What is the core product, and how can I schedule tasks so that the core
features will be ready as soon as possible, with optional or enhanced features
coming in at the end?

• What tasks can be folded into one supertask because they are standard or
routine?

• What activities can be run in parallel?
• What is the most important fact or idea that the plan should communicate to

the project stakeholders?
• What will clients learn from the plan that they didn't know before, and does

that lesson come across clearly in the documentation?
• Do my charts and graphs communicate the milestones, timeline, and

dependencies in a clear and simple format, or do my diagrams of
overlapping arrows and boxes resemble a bowl of spaghetti?

• Should the project plan be shared with the client, or will a list of project
milestones and client deliverables suffice? Many clients cannot resist the
temptation to micromanage your project team, so don't arm them with
excessive details.

• What are the client's deliverables, and does the client have the resources to
produce? Has the client signed off on their deadlines? What happens if the
client misses the deadline?

Planning Pitfalls

Project schedules run into trouble for two major reasons: inaccurate effort
estimates and "hidden" tasks that were overlooked when the WBS was created.
This section will address several activities that consistently run amuck and
examine why it happens.

A telling rule of thumb has emerged in the industry, suggesting that effort
estimates should be doubled, since they are usually off by 100 percent. This is not

due to the fact that developers can't figure out how long it takes to do a job but
rather that they are forced to make hidden assumptions about features that were
poorly defined up front. For example, the development of your Web site's search
engine takes twice as long because the client "assumed" that search results would
show percent relevance matching, while the developer assumed an unsorted results
set. Simply put, the requirements were not understood when the effort estimates
were given. Padding the project plan by an arbitrary "fudge factor" is not the best
solution. Take a step back and review your specifications for thoroughness,
completeness, and level of detail before you calculate a launch date.

"Hidden" tasks are an even more insidious culprit. These little thieves rob your
project of resources and strangle your deadline with the cumulative effect of
unseen delays. They are commonly referred to as "slippage." This attitude implies
that we are powerless against an invisible force that is almost mechanical in nature
and often attributed to organizational inertia. In reality, many of these hidden tasks
have a name and can be identified. They simply slip through the cracks of the
WBS because they are "organizational" or "process" tasks that do not relate
directly to a feature that appears in the final product, or their deliverable is
subjectively defined (for example, client satisfaction with a color scheme). Since
they are not associated with a physical deliverable, they are often overlooked in the
plan.

Approvals and Revisions

Approval tasks often appear in project plans as a "check-off" line item, with
minimal time allocated to them. In fact, the outcome of a review session with the
client is usually a series of new feature requests and modifications. To account for
this, each approval step should be assigned a duration of approximately 30 percent
of the total activity to include the inevitable revisions and corrections. This is
especially true during the graphic design stage. For example, if the first round of
design took 20 days, schedule 6 days to implement any tweaks and modifications
requested by the client.

Copy Editing for Design

Most project plans for Web sites include steps for writing and editing the copy that
will eventually appear on the site. The deliverable for this activity is usually
defined as a collection of Word documents stored in an "approved" folder on the
development server or network. Once copy has been approved and delivered, most
editors are happy to report that their work is "done." This is a false deliverable,

however, because the copy rarely gels perfectly with the design and layout once it
has been published to the live pages of the site.

Immediately after the content is published to the site (either during the HTML
phase or during the database content entry phase), designers will begin
complaining. During these "emergency meetings" called by the creative director,
you'll learn that the text is too long to fit within the layout or too short to fill out a
block of space next to a photo. The use of multiple font sizes, Flash animation
windows, fixed table widths, and other technical parameters will put demands on
the copy. Also, the copy that was initially provided to the design team during the
mockup stage will have changed significantly. The inevitable rewrites constitute a
"hidden activity" that causes significant slippage immediately after the content
entry stage. Unfortunately, this review of copy "on the monitor" occurs late in the
project, since content entry is usually one of the last steps before launch.
Experienced project managers will insert an additional activity in the plan to
account for this review of content after it has been published to the pages of the
Web site.

QA Testing

Estimating the duration of the testing phase presents a unique challenge, since
there is no way to predict the number of bugs that will appear. Each bug represents
a "hidden" or unexpected new task. Naturally, the expertise of your tech team will
impact your assessment of the likelihood of serious bugs. A general rule of thumb
is that the duration of the QA testing phase should be about 30 percent of the total
development time, but this can vary widely. Hedge your bets by including an
HTML testing step and several code review or prototype testing stages throughout
the entire development process.

Prelaunch Review

Senior executives can throw a wrench into your project plan at the worst possible
time. After having been absent from the process since the original deal was signed,
the CEO of your client's company loves to swoop in on the eve of launch and drop
the opinion of his wife, dog, or 15-year-old nephew who "knows how to make a
Web site." He might not have figured out how to open e-mail attachments, but the
CEO is definitely willing to delay his Friday morning tee time to check out the site
just in time to derail your Monday launch.

When you first drafted your WBS, you probably envisioned the "launch" task as a
two-day event involving a cranky systems administrator who has pulled an all-

nighter waiting for the new domain name to propagate to your mirror site in Japan.
This will be the least of your worries when hidden stakeholders from offices you
never heard of materialize at the last minute to deliver their opinion on the home
page copy. Identify these influential but silent players early, and include them in
"rubber stamp" sign-offs during the graphic design phase. If your client
representative is elusive about getting senior management involved for fear of
losing control of the approval process, then add a "prelaunch review" step. Allocate
at least 48 hours for the "annoucement" e-mail to circulate and another 72 hours to
sort through (and deflect) the gratuitous responses. If you're lucky, someone might
even catch a typo that your editors missed.

Getting Started with Microsoft Project

Microsoft Project is one of the most widely used software applications for
creating a schedule, estimating resource requirements, analyzing task
dependencies, and tracking costs. It is used to create a graphical
presentation of the schedule, which is very useful for project stakeholders.
Project 2000 features Project Central, which allows team members to enter
their own schedules directly into a master plan through a Web browser.
MS Project has a huge number of features that can easily intimidate the
novice user. Here are a few tips on getting started.

1. Assign a start date to the project: The project start date that you
enter in the "Project Information" setting is used as the default start
date for all tasks unless overridden by a dependency. It is
recommended that you enter only the project start date and let
Microsoft Project calculate the finish date after you have entered
and scheduled tasks.

2. Create a task list: Copy your WBS outline into the left-hand column
of the GANTT view. Use the toolbar indent (arrow) buttons to
properly indent tasks under activities and phases. Do this until the
outline structure reflects the organization and sequence of your
WBS.

3. Input resources, using generic names that can be replaced with
actual people later.

4. Input duration. Do not use end dates to set task duration! The end
dates will be calculated automatically. If you force an end date, MS
Project will create a "finish no earlier than" constraint. If you want
to capture actual work effort rather than duration, you have to insert
an extra column. If you do not want Project to automatically

calculate duration, create a "fixed duration" task by double-clicking
the task line and unchecking "Effort Driven." Adjust the resource
allocation if the durations are calculated to yield an unrealistic
result. You can also change the "working time" to reflect the
working days and hours for everyone on your project.

5. Set the dependencies in the "Predecessors" column.
6. Estimate costs by using the "View/Resource Usage" option, which

can be exported to Excel.
7. Make your schedule easier to read and review by using the "Bar

Styles" option (right-click on the GANTT chart calendar display).
Use the Bar Styles dialog box to customize the appearance of the
task bars and add useful labels like start dates, task names, and
resource names.

8. Get the plan approved and save the initial version as a baseline. This
will allow you to use the tracking GANTT features that show which
tasks are on schedule as you input actual work.

9. Save an HTML version of the plan by selecting the "Export to
HTML using standard template" option. This can be easily
disseminated and uploaded to your project Web site.

Case Study: Planning Software Overload

In an attempt to create enterprisewide planning standards, many interactive
agencies have adopted unified project, process, and resource management
software. These complex software packages offer the combined benefits of
managing projects, building and using standard methodologies, and efficiently
leveraging resources to help minimize project lifecycles. With the rapid growth of
Web consulting agencies in the late 1990s, many small firms rushed to mandate
centralized resource planning systems and "graft" them onto their current
workflow. Sometimes these ambitious attempts yielded disastrous results for
companies whose culture and workflow were a poor fit for monolithic planning
systems.

This case study presents the story of Agency X, a fictional Web design shop whose
experiences are representative of a wider phenomenon in the industry. Agency X's
oldest office, based in New York, began as a design-oriented New Media agency,
which grew rapidly as its client base exploded between 1998 and 2000. As Agency
X strove to provide a full range of solutions, it acquired other interactive agencies

in an attempt to round out its service offerings. The rapid pace of acquisitions led
to cultural and role conflicts as the new entities were assimilated. In an attempt to
integrate the various business units, the company tried to create a single, all-
encompassing project development methodology. This centralized process was
implemented in an enterprise planning software package. The attempt to force-fit a
broad range of project types into a single mold added massive administrative costs
to smaller projects. Eventually this complex model was discarded in favor of a
staged, "plan-as-you-go" approach within a looser framework.

The Problem

The company started its explosive growth when the New York office merged with
a California-based technology shop, which filled a gap by providing back-end
programming. The respective organizational cultures were at odds, however, and
conflicts emerged as the first joint projects got underway. Since the New York
office was front-end oriented, it produced a creative culture with open and dynamic
team roles. Experimentation was encouraged, and creative contributions were
accepted from various members of the team. Producers were expected to provide a
great deal of creative input and were involved in brainstorming sessions during
conception. The project planning methodology was loosely defined, since the
company relied on experienced team members to adapt an open process to the
particular needs of the situation.

In contrast, the technical people in California used the joint application
development (JAD) process. JAD uses structured, faciliated sessions to gather
requirements, model the business logic, and design the functional details. These
detailed specifications drove the entire process. The project managers in California
had no direct relationship with the client, which was managed exclusively by the
sales team. Project managers assumed a "back office" role, administering the plan
by obtaining resource estimates from the tech leads who actually designed the
applications.

As a result of these differences, the two offices had completely divergent ideas
regarding the roles of project managers and producers, especially with respect to
who had the client's ear. This aspect of the role was crucial because it determined
who had power and authority on the team. In New York, the producer was also the
account manager. Since the producer was not responsible for specific deliverables,
their authority was based on the fact that they controlled the client relationship.
This presented a huge cultural chasm as New York producers desperately avoided

being assigned to California projects where they would be doomed to obscurity
and discouraged from providing creative input.

In order to get everyone on the same page, management hired an expert who was
based in the California office to develop a production process for the whole
company. While this effort got underway, Agency X was busy acquiring more
firms. At its apex, the company had offices in five cities. Each acquisition brought
its own unique culture to the mix, based on its specific competencies. Management
forged ahead in the race to create the "one-stop shop" solution for clients.

The Solution

The process consultant hired a team and set about devising a universal planning
model that could accommodate any kind of Web development project. The model
consisted of standard documentation and checklists for each phase. Thousands of
man-hours were devoted to the design of the ultimate "uber-plan." By designing
the most complex hypothetical project imaginable, the consultants attempted to
capture the characteristics of all the possible smaller projects.

The model was implemented and enforced by the universal adoption of a
centralized resource tracking, planning, and accounting tool. The software was
extremely robust and contained an all-encompassing variety of features, including
timesheet tracking, workflow, and reusable project templates. It displayed role-
specific features tailored to each of the team member's needs, responsibilities, and
skills. It delivered comprehensive information on all of the projects in
development, from executive-level summaries to detailed work assignments for
each team member.

Management found the tool appealing for a variety of reasons. The company
wanted to copyright its new process, which would make an attractive point on the
annual report and provide rich fodder for sales pitches and press releases. The
tactical objective was to create a knowledge management system so that managers
could collect historical baseline information about costs and deliverables. In the
long run, this was supposed to enable project managers to quickly build schedules
and budgets.

The Problem with the Solution

As the tool was rolled out, project managers logged on to create their schedule,
budget, and resource "buckets" for time tracking. Everyone entered his or her time
in the tool, which tracked effort estimates versus actual work in real-time.

Problems began to arise when project managers attempted to create a schedule for
simple marketing Web sites, consisting of five to ten basic pages. These sites were
relatively easy to create and provided a high-profit, "quick-hit" revenue boost for
the company with their low overhead. Ready to make a quick $100,000 for the
team, project managers were stumped by a system that pummeled them with a two-
year-long development schedule for a generic CRM/e-commerce site. The creative
brief alone featured several dozen line items, with a multitude of fixed tasks
delegated to each person on the team. For each of the 30+ task line items,
employees were required to input their activities for each hour of the day.

The producer's job was transformed into a monotonous data entry nightmare. Hired
to be creative, flexible, able to think on their feet, and to bring a team to gether,
these producers now spent their day sitting in front of a machine, plugging away at
the schedules and tweaking their time sheets. Hundreds of hours were spent simply
learning the tool and the dictionary of acronyms required to navigate its multitude
of fill-in forms.

There was significant cultural resistance to the tool, and soon enough people began
to find ways to "cheat" the system. Graphic designers took a great deal of pride in
their creations and wanted to work overtime on their cutting-edge assignments.
Often the more interesting work was found with smaller, low-budget clients who
couldn't afford the extra man-hours. With its fixed resource allocations and
comprehensive time tracking, the system discouraged this work. Designers began
to hide the extra hours they were spending on these fun, portfolio-building
projects. Hours were "stolen" from easier projects that took a short time to
complete. The surplus time would be spent honing Flash skills on fun projects.
Crushed by the data entry workload, project managers devised shortcuts that
allowed them to lump tasks together into aggregate categories. These activities
diluted the value of the reporting features.

The extended planning and design phase had other repercussions. Clients began to
complain, saying, "The design phase is taking too long— we need a prototype
now!" The team would build a prototype, and inevitably the client would ask to
"just launch it." When pressed, the development team would give the prototype a
facelift, launch it, and then deal with a barrage of bugs.

The Harsh Reality

As resistance to the scheduling system mounted, the process consultant was
shuffled around and reported to several different people. Finally, she was replaced

by a VP of Production with real Web production experience, who adopted a
simpler process. The new head of production concluded that the best process is a
skeletal guideline that provides the most flexibility and allows talented project
managers to think on their feet, take ownership of the process, and innovate. The
consensus was that given the multitude of ways to cut corners based on the unique
needs of every project, there is no "universal" process.

The new process was phase-based rather than project-based. Project managers
created a new budget and a new schedule at the end of every phase. There were
four basic phases. The process began with a ballpark estimate for the entire project.
This estimate was revised as the project progressed through each stage. The first
phase included the analysis, requirements, concept, and the creative. The client
signed the new budget and a new schedule at the end of each phase. By breaking
the project into four budgets, project managers enlisted the client in controlling
scope. The end of each phase provided a reality check and an opportunity to cut
back on scope. This avoided the impossibility of adhering to a fixed schedule from
the beginning and empowered project managers to "evolve" the plan.

Summary

There is little correlation between the effectiveness of a schedule and the number
of tasks you were able to identify and list in Microsoft Project. The schedule is a
communication tool that must express key concepts like task dependencies and
next steps. Good plans are designed with moving parts that respond to change and
can shift into new configurations without crashing to the ground. In practice, this
means discarding monolithic schedules and resisting the utopian impulse to force-
fit a project into a preordained mold. Web projects require creative solutions that
move beyond the traditional approach, which calls for a centralized "master plan"
that must be set in stone before work can begin. Today's innovators are taking a
"plan-as-you-go" approach, breaking the planning phase apart and allowing the
documentation to evolve naturally along with the rest of the project. Within this
staged structure, client sign-off becomes an ongoing dialogue rather than an item
on a checklist.

A flexible planning framework is your best companion as you enter the uncertain
waters of the graphic design phase. With its subjectively defined deliverables, this
stage of the project is the source of considerable uncertainty. The majority of scope
changes will occur during this phase as the client is able to visualize the end

product for the first time. It is common practice to roll the graphic design phase
into the planning process, since many clients consider page mockups to be the
"final blueprint" for the site. As you deliver the "final" plan and enter the graphic
design phase, be sure to let the client know that it is a baseline "best guess," a
rough sketch of the landscape that will need to be redrawn with their assistance.

Chapter 7. Learning to Love Meetings

Key Topics

• When to Call a Meeting
• The Meeting Agenda
• Meeting Pitfalls
• Types of Meetings

Just about everyone involved in the Web development industry will tell you the
same thing: They have spent too much time in pointless, badly managed, and
needless meetings. Spending time in a hot conference room talking about nothing in
particular is a mind-numbing experience, but the mismanaged meeting syndrome
perseveres. Project managers need to know how to run good meetings that do not
waste the team's time and the client's money. There are some very simple rules you
can use to run effective meetings where the attendees leave feeling like progress
was made and action items were created. It's a good feeling to run a successful
meeting that engenders confidence from the team and client. It's an awful feeling to
be faced with a hostile group of people or an angry client because you called yet
another needless meeting.

Besides being one of the major communication tools at the project manager's
disposal, meetings are a chance for project managers to spread their wings and
demonstrate authority. If you can run effective meetings that move along quickly,
get things accomplished, and allow for constructive communication, you will be
doing your part to improve the project management culture in your company and to
establish your reputation as a leader.

Why Are We Here?

Why do people call meetings when they really have nothing to talk about? Calling
agenda-less meetings is a common management blunder. As project manager you
will be responsible for scheduling many meetings, so try not to abuse this
responsibility. You don't need to call a meeting for every little issue that pops up.
Always strive to use alternative communication methods to solve problems other
than calling a meeting. When faced with an unexpected issue or challenge, such as
a sudden change request from the client, curb the urge to call a meeting. Use the

method prescribed for people with anger management problems: Take a deep
breath and count to ten. Do you really need to assemble the team to solve the issue,
or can the issue be handled via e-mail or just visiting someone's cubicle? The
surest way to expose yourself as a novice or as an overreactive manager is to call
too many meetings or call meetings without a focused agenda.

KEY POINT

The number one rule for meeting facilitation is to have an agenda.
Without a clear, focused agenda you will be wasting people's time and
eroding your credibility.

Keep in mind that your peers must attend other meetings throughout the day, such
as department meetings, performance reviews, and strategy sessions. Remember,
your job is to enable productivity for your team. Scheduling them into too many
meetings is a surefire way to kill productivity, not enhance it.

Table 7.1 shows some common situations that crop up and which require a meeting
and which do not. Try to liken these examples to circumstances you currently face.

The Agenda Is Your Road Map

Remember the Boy Scout motto and "be prepared." Your Scouting days may be
over, but that doesn't mean you can go into meetings unprepared, and in this case,
unprepared means no agenda. Even if the agenda has only one item on it, taking
the time to write this down shows you are thinking of the group's time. The
purpose of an agenda is to focus the meeting and keep everyone on track. It's the
road map for the meeting and will keep the conversation from going astray. Your
agenda will be derived from whatever issue you want the team to discuss, clear up,
or resolve. Know what you want to accomplish ahead of time instead of calling the
meeting with a vague idea in mind and hoping your team will pick up your slack.

Table 7.1. Recognizing When a Meeting Is Required

Circumstance

Meeting
Required:
Y/N Alternative Solution

The directory path and No While this seems like it may

resulting URL for the Web site
must be established. The
system administrator,
developer, and business owner
all must agree on the URL
structure so the path can be
created.

require a meeting because of
the various groups involved, it
doesn't. Common tasks such
as this one can be handled via
e-mail.

The client just called and wants
to change the background
color on the home page.

No Speak to the designer or
creative director working on the
project and get a mockup
made with the new background
color. Send the mockup to the
client for approval and move
on.

Unsubscribing users from your
fantastic new Web subscription
service requires three separate
procedures performed on two
databases. Customer service,
the application development
team, and the business owner
are arguing over who owns this
responsibility from start to
finish.

Yes In a case like this where
process is in question and
competing factions are taking
up positions, call a meeting,
establish the process, and
settle the dispute.

The e-commerce portion of
your Web site is going to be
outsourced. The business
development team has three
deals on the table and has
asked you to evaluate the three
candidates from a tech
perspective. You have
prepared a brief on each
candidate and would like to
make your recommendation.

Yes This situation could be handled
by simply e-mailing your briefs
to the business development
people with your
recommendation. However,
there are bound to be
questions about your findings,
which could result in a slew of
e-mails between yourself and
the business folks. It would be
best to call a meeting to settle
the issue.

The scope of the meeting will dictate the scope of your agenda. If the meeting is to
brainstorm a solution for a particular problem, the agenda may have only one item.

If the meeting requires input from every group involved in the project, such as a
postmortem, the agenda could be complex.

Stating the agenda is the most effective way to begin meetings. Be sure everyone
understands the topics on the agenda and how the meeting will be conducted. By
stating the agenda at the outset, you can set the tone for the meeting and focus
everyone's attention.

At the very least your agenda should include the following items.

• The primary purpose of the meeting
• The meeting topics and in what order they will be addressed
• Who will be addressing each topic or at least speaking first on the matter
• How much time will be spent covering the various topics
• What deliverables and action items should come from the meeting

If there are many items on your agenda, make copies of it for all attendees. This is
a good practice even if there are only a few agenda items. It demonstrates your
professionalism and will provide everyone with a road map for the meeting. It's
also a good practice to send your agenda out to all attendees ahead of time. If you
are using MS Outlook to schedule your meetings, you can write up the agenda in
the invite e-mail, but it's better to attach it as a Word document.

Participation Is Key

Not everyone who attends your meeting is going to be relishing the opportunity to
participate. It can be frustrating for the person conducting the meeting or speaking
to feel like not everyone assembled is interested in being there or is engaged in the
discussion. It is fair to assume that if a person has been invited, they will be
expected to participate. However, this is not always the case. Here are some
reasons why people are reluctant to participate in meetings.

• There is not a clear agenda for the meeting, or it was not stated from the
outset.

• Some people do not feel comfortable speaking in groups.
• They may not have "bought in" to the meeting topic or project.
• Some people feel like their contribution will be ignored by their peers or

management.
• The group has not worked together before, and a sense of trust has not been

established.

A skill you will quickly develop is how to elicit participation from everyone (or
nearly everyone) in the group. There are some simple things you can do to draw
reluctant participants out of their shell. The first and most important thing you can
do is to be sure everyone understands and is interested in the agenda. Once you
state the agenda out loud and describe what you hope the "takeaways" or action
items will be, ask the group if they agree. Look around the table and make eye
contact with everyone assembled to be sure they heard and understood the
question. By making eye contact with everyone there you are signaling to them
that you are expecting their participation.

After you have agreement from the group as to why you are all assembled, thank
the group for giving up some of their time to attend. Rarely are people thanked or
acknowledged for attending meetings and giving up an hour that could have been
used on completing tasks. Finally, before the meeting begins, you can mention to
the group how important everyone's participation and input will be to solving the
issue at hand. People like to be acknowledged for their expertise and talent,
especially publicly. A simple statement like "You were invited to this meeting
because you are the experts in this area, and I know we can come up with an
excellent solution for …" will go a long way toward setting the right tone for the
meeting.

Some people recommend breaking the ice before diving into the meeting topics.
Taking time to perform an ice-breaking activity like introducing yourself to the
people sitting to your left and right can get the conversational juices flowing, but
they can also be risky. Side conversations could develop that do not stop when it's
time to begin working through the agenda. You should use your best judgment
with regard to what ice-breaking activities you choose to perform and how much
time you devote to them. If the meeting is a kickoff meeting or is attended by a
group of people who have never met, ask everyone to introduce themselves and
describe their role in the project.

What to Do When the Fur Starts to Fly

When the pressure is on and critical decisions have to be made quickly by a
disparate group of experts, there are bound to be conflicting points of view. It's
natural and expected and, most importantly, healthy. Everyone wants to contribute
and do a good job, but in tense situations some people believe their idea or solution
is the only correct one. Usually a debate ensues that is also important and healthy.
How else can the best decision be made if the issues involved cannot be debated?
Opposing views are a good thing, and it's the group's job to choose the best one.

However, as the person conducting the meeting you have to be on the lookout for a
healthy debate becoming an unhealthy argument. It happens. People in this
business are passionate about what they do and can be very turf conscience. Be on
the lookout for behaviors such as these.

• An overly aggressive tone
• Personal attacks
• Withdrawn and silent behavior
• Speaking over someone else; not letting others finish their sentences
• Aggressive body language
• Assigning blame

When conflict arises in a meeting, you must remain neutral. Your credibility is
founded on your resistance to taking sides. You also need to stay calm when the
fur starts to fly. If you also lose your cool, the chances of reeling in the meeting
and calming hostile emotions are greatly diminished. Try to get people to focus on
the facts, not on each other. Remember: You are all there to solve a problem, and
doing so will benefit everyone.

Here are some steps you can take when your meeting begins to resemble a battle
scene from Planet of the Apes.

• Be assertive. This does not mean join in the fray, but change your tone of
voice to get people's attention and rein in the situation. Only allow one
person to speak at a time, and remind the group to stay on the topic. Tell
them emphatically that getting personal will not be tolerated.

• Slow the pace of the discussion. If the situation is heating up and opinions
are flying fast and furious, ask the group to pause for a moment so you can
catch up on the discussion and ask the person speaking to summarize her
point.

• Do not tolerate rudeness. As soon as someone in the group makes an off-
color or rude remark, do not hesitate to call them on it. It's your job to keep
the group on track, and insulting remarks only serve to derail people's
attention. Tell the person who made the remark to please refrain from
inappropriate comments no matter how much they think they are warranted.

• Call off the meeting. When things get out of control or are well on their way
to becoming out of control and any hope of productivity is out the window,
halt the meeting. Tell the group it's time to stop until everyone calms down
and clearer heads can prevail.

When meetings begin to spin out of control and emotions are raw, it's very easy to
dive into the mix and kick up a little dust of your own. Don't do it. This moment
will pass, and you and your team still have a long way to go before you finish the
project. You need to maintain everyone's respect throughout, and nothing helps
your credibility and position like effectively managing a dicey meeting where the
chips are down and emotions are high.

Meeting Pitfalls

Your peers on the job are professionals just as you are, and it's probably safe to say
they have a good grasp of basic social skills. However, everyone forgets their
manners occasionally, and not everyone is socially adept in all situations. Here are
a few meeting pitfalls you may encounter.

• Mismanaging the clock. If you have a lot to cover and one hour to do so,
keep a close eye on the clock. If the meeting becomes snagged on a single
topic, halt the conversation and suggest a new meeting be scheduled to cover
that topic. Remind the group there are a lot of other topics to get through on
the agenda.

• The hijacked meeting. Often two or three people in the group will latch onto
a topic and run with it. This will leave the rest of the group doodling, staring
at their hands, or glaring at you. When this occurs, ask the people hogging
the conversation to "take it offline" so the meeting can continue. Use an
assertive tone; they'll get the message.

• The personal agenda. Similar to the hijacked meeting is the attendee who
chooses to ignore the stated meeting agenda but instead insists on changing
the topic of discussion to something they want to talk about. Don't let this
person get away with this side-tracking technique. Politely cut them off with
a comment like "That's an excellent point, and we should schedule some
time to talk about that issue. However, today we have to cover the agenda
items we discussed at the beginning of the meeting."

• The expensive meeting. Does the HTML intern really need to be sitting in a
design meeting? Meetings can get very expensive for your client when you
invite people who are not absolutely required. As project manager you
should be on top of all the details and able to answer questions and cover for
a resource who may not be in attendance. Giving good service means
watching out for your client's well-being. Save them money when you can,
and they'll have that much more to spend on future projects.

• The insidious side conversation. It's often tempting when stuck in a boring
meeting to begin a conversation with the person sitting next to you. If you

are facilitating a meeting and observe a side conversation, shut it down by
clearing your throat or catching the eye of one of the side-conversationalists.
You don't have to be obnoxious about it; you're not the meeting police, but
there should only be one conversation going at a time.

• Bad scheduling. Scheduling meetings around everyone's busy day is always
a challenge. However, there are some times it's best to avoid, like early
Monday mornings, late Friday afternoons, and during the lunch hour. Lunch
meetings tend to become more about the food than the topic, and not much
work gets done. Who can concentrate on the marketing plan for a Web site
when you're eating egg salad?

Being aware of these common meeting pitfalls and how to deal with them will
make you a star meeting facilitator in your organization and enable your team to
maximize their time.

Common Project Meetings

The following sections describe several types of standard meetings you will call
regularly during the life of a project.

Kickoff Meetings

Kickoff meetings should be lively affairs. The average project has at least three
kickoff meetings: the project kickoff, the design kickoff, and the tech kickoff.
Kickoff meetings are a chance to get the team pumped up about the project and
share their enthusiasm with the client. Kickoff meetings set the tone for the project,
so be sure to keep them focused and upbeat.

Before the project kickoff meeting, you should already have a first draft
specification and timeline. These materials will be handed out at the meeting. The
project kickoff meeting is a chance to cover the goals of the project, the
expectations, the communication plan, and the larger milestones in the project.
Review the spec with the group and ask if there are any questions or comments.
This exercise is more about saying to the team, client, and yourself, "We are
committing ourselves to building this Web site with this feature set in this amount
of time, and nothing is going to deter us from our mission!" Be sure to touch on the
project risk areas, and talk about any contingency plans you may be working on.

The design and tech kickoff meetings serve the same purpose as the project kickoff
meeting. The purpose of the meeting is to review deliverables, milestones,
expectations, and risk. At the design kickoff meeting be sure to have the

information architect, tech lead, or lead developer present. Having a tech person
present at the design kickoff meeting will allow the designer's feasibility questions
to get answered before they get too far along in the design process.

Kickoff meetings are also an opportunity for the project manager to demonstrate
his or her authority (or impression thereof) to the assembled team.

Status Meetings

Status meetings can be the lifeblood of a project. You will generally be attending at
least two regular status meetings per project: one with your team and another with
your client. Schedule your status meetings with the team late in the week and with
your client early. The goal of these meetings is to check in on the project
milestones with your team and to keep your client informed on progress, problems,
and any issues that may have arisen during the previous week. Keep these
meetings as brief as possible, but don't skip them altogether. Even if there has not
been a great deal of progress made on the milestones (in a Web site build this is
rarely the case), gather the team and get a report from all the leads.

Use your judgment with regard to how many people are required to attend the team
status meeting. Generally the team leads are sufficient, but you may want the
people performing the tasks to give the report. These meetings are a good
opportunity to foster a feeling of solidarity among the team because they are those
rare instances when the business, marketing, tech, and design resources all gather
to talk about their particular part of the project. One would think that people would
naturally be interested in their teammates' tasks, but unless someone is
contemplating a move to another department, people generally are not interested in
this level of detail.

Status meetings with your client should also be kept as short as possible, and once
again, use your best judgment with regard to the invite list. This meeting is on the
client's dime, and they do not want to be paying for resources to attend a meeting
when they could (should) be working on knocking off the project milestones.

Postmortems

By far the most intense meeting you will preside over, the postmortem is an
opportunity to generate valid, documented lessons from your projects and move
your company, the process, and, potentially, your career forward. Postmortems are
meetings designed to review the project that just ended (or phase of the project
completed) and allow the team to share their views on what and who made the

project simple, difficult, pleasurable, or miserable. The focus of the discussion is
on the process— what more could a project manager ask for?

Many people confuse postmortems with gripe sessions and come to the meeting
ready to point their finger at anything that moves. It's your job to be sure everyone
understands that the postmortem is conducted not to blame individuals but to
expose the flaws as well as the strong points in the process. The idea is to improve
the process, not punish individuals for perceived poor performance or settle a feud.

Postmortems require all of your people and meeting facilitation skills. You may
not necessarily need to wear a striped jersey and carry a whistle, but you should be
ready to dive in should the discussion turn into an argument or, worse, a full-scale
brawl.

If there was ever a meeting where you want to send out a meeting prep kit, it's this
one. The kit should contain at the minimum an agenda, a list of attendees, and a
guideline for behavior during the meeting.

In order for the postmortem to be successful, you have to create the right
environment and set the stage properly for uninhibited participation. This doesn't
mean dim lights, soft music, and a clothing optional policy (although you never
know). Setting the stage properly means communicating to the team that open,
honest, constructive participation is expected, and there will be no retaliation from
management or other team members for comments or viewpoints that are critical
of the process. Stress to the team both in the rules you send out ahead of time and
in how you facilitate the meeting that blaming individuals is not helpful in
improving the process and will only serve to divide the team and potentially
alienate people. If someone has a personal issue with you or another member of the
team, this meeting is not the place to air it.

Because you will be deeply engaged in facilitating the meeting discussion, you
may not want to keep notes. Assign a note taker before the meeting so you can be
free to stay engaged in the discussion. You should, however, be sure to capture the
points made, lessons uncovered, and process improvements suggested on a white
board or flip chart as the meeting progresses. Successfully facilitating a
postmortem where the team leaves feeling good about their input is one of the
biggest challenges you will face. Successfully conducted postmortems are the sign
of a mature and experienced project manager.

Postmortem on the Web

An excellent postmortem questionnaire template is available on
Gantthead.com at
http://www.gantthead.com/Gantthead/content/templates/Project_Post-
mortem_Survey.doc.

Case Study: The Exploding Meeting

This case study describes a project manager's experience as a meeting he is trying
to facilitate devolves into a full-blown rumble.

Background

I had been dreading the meeting all day. I was working on a project to build a new,
highly complex Web-based interface for the recently purchased list management
system. The new system was state of the art and incredibly powerful; however, its
interface was not very user friendly and was not conducive to the established
workflow— hence the need for the development of a new "front end" for the
system.

I called the meeting to review the first draft of the spec I had written based on
Gail's (the stakeholder) requirements. The project was still in its early phases; and
to be honest, I was still not up to speed on the new technology involved. Gail was
from marketing and completely nontechnical, but she envisioned the application
behaving in a certain manner with a certain workflow and accomplishing certain
tasks. She was very sure how the interface should behave, yet she had not
consulted with anyone from the editorial group, who were the end-users of the
application. That struck me as odd, but I had never worked with anyone from
marketing before, and I wasn't sure if I should suggest that it might be a good idea
to get feedback from the people who would actually be using the tool. It seemed
pretty obvious to me, but I didn't want to push any buttons so early in the project.

Jim, the programmer assigned to the project, was soft spoken and painfully shy. He
rarely spoke above a whisper. It was difficult to get a clear answer from him, and
even then he spoke in vague, technical generalities that were difficult to decipher. I
still trusted him, however, and I was relying on him to step up at the meeting and
bail me out of any tight spot I might get in regarding whacky functionality requests

that were not in the current spec. Even though I was relying on him to fill in any
technical gaps in my knowledge, I was worried because I knew he had his own
ideas of how the tool should behave that were not entirely in line with Gail's.
Earlier in the day I asked him to give me his feedback on the spec, and he only said
that I had "captured the gist of it" and left it at that. It certainly wasn't the
reassuring answer I was looking for.

The project took on a high profile due to the extremely high cost of the new list
management software and the fact that a custom interface had to be developed in
order to actually use it. Two other attendees of the meeting that afternoon were
Dick, the vice president of Technology, who was responsible for purchasing the
new list management software, and Stan, the vice president of Application
Development, who was the developer's functional manager. Because Dick had
purchased the system, he had a vested interest in seeing to it that the interface was
developed quickly and the system was put into use as soon as possible. He did not
want to be blamed for acquiring a white elephant. Stan was attending the meeting
to be sure the project scope was reasonable and not bloated with unnecessary
features that would keep his developer on the project past the time budgeted for
him.

Competing Solutions

To prepare everyone for the meeting, I e-mailed the spec to all the attendees two
days in advance. I wanted to be sure that everyone had a chance to review the
document beforehand and alert me to any errors in functionality or workflow I may
have created. I did not hear back from anyone, so I assumed everything was in
order.

The meeting was scheduled for late in the day, which may have been a mistake on
my part but unavoidable due to everyone's schedule. We assembled in the
conference room at 4 P.M. I had copies of the spec ready for everyone arranged
around the table. As people were getting seated, I made the introductions. Gail,
John, and Stan sat on one side of the table, while Jim and I sat on the opposite side
facing them. There was a detectable amount of tension in the air; as the group sat at
the table, there was zero small talk. I felt all eyes in the room boring in on me as I
stated the agenda for the meeting. We were gathered to review the first draft of the
spec for the newsletter tool to be sure all the business requirements were addressed
and all the features were technically feasible. No one spoke, and I could not tell if
they were all bored already or just anxious to get the meeting over with so they
could go home.

Because I was not entirely comfortable explaining the functionality of the tool,
even though I had written the spec, I asked Jim to explain to the group the scope of
the project and how extensive the work would be. He rose from his chair and went
to the white board, which is standard procedure whenever a developer wants to
explain anything technical. Lines, words, symbols rendered haphazardly across the
expanse of a white board are crucial to a developer making himself understood.
Jim faced the board as he quietly spoke and drew diagrams of what he was
planning to build. No one in the room could hear him, and I noticed Gail craning
her neck toward the front of the room as she tried to decipher the mumble
emanating from Jim while simultaneously giving me a sidelong glance as if to say,
"Is this guy for real?" From the bits we could understand it began to become clear
that the tool being described had very little in common with the tool described in
the spec. Gail became more agitated and asked why all the features described in the
spec did not appear to be included in the interface Jim was describing. This
question was directed more at me than at Jim, and as I stammered and struggled to
respond, Stan jumped up and went to the white board, saying "I think what Jim is
trying to say is …" and launched into a description of a newsletter tool that bore no
resemblance to the interface described in the spec or to the tool Jim was attempting
to describe.

Stan began earnestly drawing on the board and listing all the necessary steps
required to build he interface he had in mind. Jim returned to his seat and was
silent for the rest of the meeting. Gail began to fire off questions: "What happened
to features X, Y, and Z?" she demanded. "We never asked for what you are
describing." "Where is the functionality described in the spec?" Try as I might, I
could not keep up with what Stan was diagramming; the technology he was
describing was beyond my grasp. I could not answer Gail's questions, so I turned in
my chair to fully face the person speaking at the board and not have to meet Gail's
confused and increasingly angry looks. I leaned forward quietly and asked Jim
what Stan was talking about and if what he was describing had anything to do with
the spec. He shrugged and said over his shoulder, "Sort of."

Suddenly, Dick, who had been quiet for most of the meeting, took exception to
something Stan said and in a sarcastic tone blurted out, "That idea is implausible
and makes no sense whatsoever." With that he launched into his own description of
how the interface application should be designed and built. A loud, long, technical
argument ensued between Stan and Dick, with neither one making much sense to
the nontechnical people in the room and neither apparently willing to back down.
They argued the point for at least ten minutes while the rest of us sat silently.

Finally, Gail asked what this discussion had to do with the spec we were assembled
to discuss.

Challenged

Dick turned to Gail and asked, "What spec? You mean this spec?" He pointed to
the document in front of him and made a face of disgust. He claimed to have read
the spec several times but could not understand a word of it. I began to feel my
cheeks burn as he went on to say he found the grammar poor and the prose
incomprehensible. Was he a closet grammar professor? What did this have to do
with the interface application? Why was he indirectly attacking me by criticizing
the specification document? In a condescending tone he read aloud a passage from
the spec and then sneered, "What the hell was that supposed to mean?" I thought I
was going to fall off my chair. I was too embarrassed to look at anyone else in the
room, and I was too afraid to speak because of what I might say. I was being
personally attacked in a project meeting I had called in an attempt to get everyone
involved on the same page. I was angry and more than a little confused, but I knew
I had to stay calm as I figured out what to do next.

The conference room suddenly felt unbearably hot and stuffy. No one spoke. I
stared dumbly at Dick, who had yet to look at me once since entering the room, not
even during his bizarre critique of my writing ability. We had been in the
conference room for over 90 minutes and had not accomplished any of the
objectives on the agenda. The meeting had exploded in my face in an incredibly
unexpected fashion. Stan came to my rescue at last by stating it was obvious there
were still a lot of technical issues to discuss and we should meet again after all the
technical considerations had been ironed out. Dick said that was fine with him and
asked sarcastically who would write the final spec once the details were worked
out. No one answered, and they all rose silently from the table and started to leave
the room. I looked at Gail, who had downcast eyes as she headed for the door. She
did not return my glance. Jim and Stan slipped out quietly behind Gail, and I was
left alone in the room with Dick. I began to gather the copies of the spec that were
strewn about the table. I was seething, but I said nothing. As I was going out the
door, I heard Dick say over my shoulder in what I thought sounded like a sincere
tone, "Great meeting."

Lessons Learned

What did I learn that day? For one thing I learned that Dick was not going to get a
Christmas card from me that year. Dick saw the holes in the spec I had written and

took me to task for it, but he could certainly have expressed his disapproval more
appropriately. There is something to be said for manners and decorum in public.

I also realized that I had set myself up for failure from the beginning. The
technology was beyond my grasp, and I did not perform the due diligence
necessary to be up to speed on the technical aspects of the project. I called a
meeting to have the experts, in front of the project sponsor, verify a spec I had
written without really knowing if the functionality described in it was feasible.
What did I expect? The techies knew better than I what was possible and what
wasn't. I was so wrapped up with pleasing Gail that I tuned out the warnings from
the developer, however subtle the warnings may have been, about the functionality
described in the spec. And in my haste to get the spec approved, I didn't take the
time to have Jim explain what he had in mind so I could better negotiate with Gail.

I felt I was responsible for managing Gail's expectations and fearing letting her
down and blowing my first high-profile marketing project, I wrote up the spec to
include all her requirements and hoped tech would back me up. Unfortunately, the
tech group had their own ideas about how the interface application should be built
and never took Gail's requirements, or me, seriously.

Summary

Get used to the fact that you will be spending a large percentage of your workweek
in meetings. You will also be leading the majority of the meetings you attend.
Learning how to facilitate a meeting is a skill that will very quickly become second
nature to you. Running effective meetings requires a certain degree of confidence,
skill, and sensitivity to group dynamics. Keeping a group of people focused on a
topic is a difficult task, but there are some methods you can use that make the task
a little easier.

The single most important tool you will use to control your meetings is the agenda.
Always create an agenda before any meeting where there are more than four
people in attendance. Creating an agenda allows you to discern if the meeting you
are calling is really necessary, and it provides you with a road map for the meeting
discussion. Never call unnecessary meetings. You know how much you hate
attending them, so don't inflict this drudgery on your team or client. It's one of the
fastest ways to lose credibility.

Keep in mind that the people you invite to meetings are there for a reason: to share
their views, to offer their expertise, and to critique— in short, to participate. The
odd thing is, there will always be people who will be reluctant to participate, and

you must learn to draw them out and make them a part of the discussion. There are
many reasons why some people have a hard time participating in meetings, such as
not having bought into the project or meeting topic or reluctance to speak in
groups. Before the meeting discussion begins, be sure to state the agenda, and ask
the group if everyone agrees that is what the discussion will focus on. Look around
the table to be sure everyone is involved. You will know immediately who needs a
little coaxing to offer their input when the discussion begins.

Friendly debate is a common occurrence in nearly every meeting you will attend,
but tempers can flare when the pressure is on. Stay aware of the tone and focus of
the discussion as debates play out. As soon as the discussion turns personal in any
way, be it aggressive body language, a sarcastic tone, or a personal attack, you
should intervene. Tell the people attending your meetings that personal attacks will
not be tolerated. Ask the people engaged in the debate to keep the conversation
focused on the topic, not each other. If necessary you can always halt the meeting
if tempers and emotions cannot be soothed. Know when the point of no return has
been reached in the discussion and pursuing the topic further will only serve to
damage the relationships of the people arguing. Above all, when emotions start to
show in a meeting, stay neutral. By taking one side over another in a public debate,
you run the risk of alienating people with opposing views.

Besides the occasional argument breaking out in your meetings, there are other
unproductive behaviors that occasionally crop up.

• The side conversation
• The meeting hijacker
• The personal agenda

These are the most common problematic meeting behaviors you will encounter.
Dealing with these situations takes a bit of tact and some assertiveness. Once
again, having an agenda is a big help in these situations.

Meetings have a bad reputation because people have been mismanaging them for
so long. In the extremely fast-paced world of Web development there simply isn't
time for bad or unnecessary meetings. If word gets out that you do not know how
to run a meeting or if you call too many meetings, your credibility will be
diminished and you'll have a hard time getting people to reply to your meeting
invites. Learn how to manage meetings effectively and you will enhance
everyone's work experience by sparing them hours of wasted time sitting around
the conference table.

Chapter 8. Workflow

Key Topics

• Documenting and Analyzing Workflow
• Making Workflow Recommendations
• Content Production Workflow

Workflow is often defined as the relationship between the activities in a project as
it moves from start to finish. Workflow encompasses the standards and protocols
that your production team will follow as the outputs from one step in the process
become the inputs for the next step. With all of the heavy machinery in place,
workflow standards act as the conveyor belt that moves the parts down the
assembly line.

Workflow for the Web

Workflow is simply the path that a deliverable follows through your organization
as it is transformed from an input (let's say a PhotoShop page mockup) through to
output (a finished HTML page). Along this path, the "raw materials" pass across
the desks of many people across multiple departments. At each stop on the way,
processes are applied that transform the graphics, page mockups, e-mail messages,
meeting notes, and handwritten reminders into something of value. The industrial
overtones take on a new complexity within Web teams. Rather than describing a
digital assembly line, Web team workflow defines the "relationship" between the
business units and the key events that affect your work-in-progress. It's a very good
idea to define this workflow at two crucial junctures: before your team dives into
production and when your team shifts into postlaunch maintenance.

Workflow management is not micromanagement. As you define the workflow you
are not telling people how to do their job but instead communicating how their job
relates to the big picture. You also assist the project team in setting ground rules
for sharing inputs across departments. These are a few ways to lubricate the
interlocking parts of your Web team.

• Introduce collaborators long before it's time to pass the baton. (The client's
graphic designer and your HTML code jockey should be pals well before the
design handoff, when things might get confusing and nerves will be tested.)

• Establish naming conventions for shared assets like content files and
graphics.

• Agree on the location and format of assets that are ready to be handed off.
(Will the final, approved copy be posted to a special folder on the intranet or
to the project Web site?)

Benefits of Workflow Planning

In addition to making the daily workload a little bit easier for your team, a solid
workflow will lessen headaches for you as well. A well-designed workflow does
the following.

• Decreases the amount of effort required to track milestones and resolves
issues related to handoffs.

• Reinforces a culture of teamwork. Familiarity with what's going on both
before and after they touch the product increases empathy among team
members.

• Bolsters the importance of the project plan. Because workflow focuses
attention on dependencies, team members will have a greater appreciation
for the impact of missing their own deadlines.

• Eliminates risky assumptions. If the workflow is clearly communicated,
costly misunderstandings can be avoided. When asked, most functional
experts will say that they do not have any questions about what is expected
of them during the process because they "know" their job. This is because
they are making tacit assumptions that will become visible when it's too late
to make adjustments.

Creating Workflow Standards

Developing and documenting workflow standards is paramount for maintaining an
efficient, successful production environment. Still, not every member of the
production team, or management for that matter, realizes it. This is because
processes are often taken for granted. Subsequently, when you set out to define, or
revise, the workflow process(es) at your organization, make a point of informing
and including the people whose buy-in you'll need to implement your
recommendations. If revising your current workflow process is too controversial,
start by simply documenting the workflow process you use now. Chances are,
inconsistencies and weak links will come up during the documentation process and
revisions will naturally follow.

Work habits can be a highly charged issue, so approach the topic diplomatically
and involve as many people as you reasonably can in the process. Explain the

following benefits of documenting your organization's production workflow to
everyone involved.

• Improving handoffs between different team members
• Creating a better understanding of, and appreciation for, each individual

team member's responsibilities
• Providing greater predictability and repeatability on projects
• Exposing any incorrect assumptions about how the process works and

providing a forum to correct them
• Presenting your process as a selling point in sales meetings with clients

Code Review: Standards for Developers

As developers write code, they need to follow standards as well. In the same way
that copy editors follow a style guide, programmers need their own style guide to
ensure that their code will be readable, understandable, and reusable when it is
shared with their colleagues. Technical requirements around scalability and
performance also play a big part in software style guides, ensuring that programs
will deliver results without breaking under stress. These standards are typically
enforced through a series of peer reviews that are conducted at critical junctures
during the software development process. Code reviews are covered in detail in
Chapter 10.

What Processes Do You Need?

Depending on the breadth of your organization's services, you may have more than
one type of workflow process. You may produce marketing Web sites that contain
static creative content, for example, or e-commerce sites that are database-driven.
If this is the case, you may need to define several workflow processes. Avoid
getting too specific, though; the goal is to create general guidelines that provide
predictability for your team and your clients. Attempting to define every step taken
during production can stymie innovation and damage morale.

Documenting Your Current Workflow

Begin documenting the production process your organization currently uses by
identifying and describing the following components.

• Phases. The overarching phases stages of your production process
• Deliverables. Any and all items that are created and shared during

production

• Dependencies. Which deliverables cannot be started or finished without the
completion of some other deliverable

• Resources. Employees, freelancers, vendors, and equipment
• Roles. Repeatable roles performed on project teams, even if individuals

assume multiple roles or change those they perform from project to project.
For your standard to be truly useful it needs to define tasks and deliverables
by roles, not individuals

• Roles on deliverables. Which roles are responsible for which deliverables
and which ones contribution to them

You may be surprised to learn that different people on the same project will give
you different answers to the following questions. To uncover these inconsistent
world views, you'll need to interview at least one key person from each type of
specialization within your organization (sales, design, QA)

• What are their deliverables?
• Which specific team member(s) create them?
• Who should review them? Who should approve them?
• What do they need from others in order to create their deliverables?

(dependencies)
• At what phase in the project do they start and complete each of their

deliverables?
• What is working well for them in the current workflow situation?
• What is not working well for them?

Workflow Analysis

Now that you have an idea of what your production team is doing, think they are
doing, and wish they were doing, you are ready to present your findings. A
workflow analysis document is a good format for presenting the findings, since it
invites the question "How do we address these needs?" and opens a path for
recommendations.

The workflow analysis can include some or all of the following items.

• An introduction explaining what you are addressing— defining your
organization's workflow process, why you are addressing it (clarification,
documentation, revision, project difficulties, etc.), and how you gathered the
information presented in the document (interviews, case studies, etc.).

• A summary of the current workflow process. This can include notes of
inconsistencies where they exist.

• A more detailed discussion of the inconsistencies you found.
• A chart showing your production phases and where deliverables fall within

them. Include dependencies of deliverables where they occur.
• A description of your deliverables— what they are and who authors them

(see Table 8.1 for an example).
• A description of your team roles— what they are called and what they do

(see Table 8.2 for an example).
• A summary of your findings— for example, there may be several opinions

about what the current workflow is and whether it is satisfying your needs or
not.

An effective use of the workflow analysis is to present it in a meeting where the
participants of the workflow process interviews are gathered to hear your findings
and to discuss remedies to the problem areas you identified.

The workflow analysis can provide a structure for brainstorming on a subject that
otherwise can appear overwhelmingly complex or contentious. A "Workflow
Brainstorming Session" like this can give you the materials you need to put
together a recommendation that reflects many points of view.

Workflow Recommendations

You are now ready to develop recommendations on improving your workflow
standard. The best practice is to combine the workflow analysis and the
recommendations into one document. You should edit down the original workflow
analysis to focus on the primary weak spots that the recommendations will address.
Update your introduction and summary, and add recommendations along with the
following information.

Table 8.1. Sample Deliverables for Information Architecture
Deliverable Roles
Hypermap: A conceptual representation of the user flow
through the site

Responsible:
Information Architect
Contributors: Lead
Designer, Strategist

Site Map: A graphical representation of the site structure
and navigation, showing how many screens there will be
and how they link to one another

Responsible:
Information Architect
Contributors: Lead
Designer

System Architecture Components Model: Provides a
summary of the major technical components of the system
and how they will interact at a high level

Responsible: Object
Model Architect
Contributors: Client,
Strategist, Lead
Developer

Creative Concepts: Two (or more) interface designs
articulating different approaches to the look-and-feel of the
site

Responsible: Lead
Designer
Contributors: Junior
Designer, Creative
Director

Creative Direction: The refined, final look-and-feel for the
site, arrived at through the review and revision of the
creative concepts. This direction informs the design of all
site screens

Responsible: Lead
Designer
Contributors: Junior
Designer, Creative
Director

Editorial Guidelines: A description of the recommended
tone for editorial content (copy) to serve as a guideline for
the writers and merchandisers. Art direction for
photography and/or illustration to serve as a guideline for
photographers and merchandisers

Responsible:
Producer
Contributors:
Creative Director,
Strategist, Lead
Designer

Component-Based Requirements Descriptions: A functional
view of the system requirements that maps directly to the
object model and the hypermap, thus integrating technical,
business, and user experience requirements

Responsible: Object
Model Architect
Contributors: Lead
Developer,
Information Architect

Table 8.2. Sample Role Definitions
Role Description
Strategist Works with client to formulate project/business strategy.

Draft the business strategy documents. Draft ROI
documents and cost-benefit analysis. Present project to
resource prioritization committees.

Senior
Account
Manager

Manage communications with the client/customer. Ensure
that the project deliverables meet the client's expectations
and the terms of the sales contract. Continuous contact with
customer throughout the project.

Associate
Editorial

Write site copy and ensure that copy is moved through the
copy editing process. Perform data entry of content into the

Producer content database.
Deconstructing Workflow

One brainstorming technique is to grab a stack of Post-it® notes and sit
down with your team to write down all the tasks they can think of.
Organize the notes into groups by sticking them on a large white board.
Assign each group a name and draw lines connecting the handoffs
between groups. After about an hour, you should be left with a pretty clear
vision of your current workflow. Once you have documented the current
process, you can reorganize the notes to reflect the desired situation.

• Which problem(s) from the analysis section does each recommendation
address?

• How critical is the implementation of that recommendation to the health of
your organization?

• How difficult will it be to implement?
• What is needed to implement it (money, new hires, promotions, management

support, and so on)?

Using this criteria you can then rank your recommendations based on the ease of
implementation and the importance to the organization. You can also include
recommendations on the future use of the new workflow standards (that is, its
distribution to new employees, partial or full distribution to clients, periodic review
and refinement, other areas of your business that would benefit from a similar
process review and documentation).

Workflow for the Real World

Not all project managers have a burning ambition to create new corporate
reengineering jargon for a major consultancy. Open the Chapter 8 folder
on the CD-ROM, and you'll find two whitepapers that address nuts-and-
bolts workflow issues.

"Small Project Team Workflow": This proposal defines roles, workflow,
and process for a small Web production team that has been brought
together to launch a new Web site. This document provides an excellent
example of the industry standard "in a nutshell."

"Maintenance Team Workflow": This study addresses the challenges of an

overworked and understaffed maintenance team for a large Web site.

Up-to-date versions of these documents are maintained on this book's Web
site at http://www.realwebprojects.com.

Table 8.1 displays the results of a workflow analysis for the Information
Architecture phase of a complex project. This table shows the specific deliverables
as well as a detailed description of the roles and responsibilities that are associated
with each deliverable.

Content Production Workflow

The most significant workflow issues on a Web development project often relate to
the creation and publishing of content. There are several workflow "events" that
should be accounted for in any content workflow plan.

• Harvesting. Few Web sites contain completely homegrown content. This
activity entails researching content syndicators and obtaining appropriate
content sources.

• Authoring. Create and develop your own indigenous content by writing
copy, obtaining royalty-free images, and preparing multimedia.

• Submission. Submit content online to editors and managers for review.
• Review and edit. As editors and managers will review submitted content,

version control is crucial.
• Approval. Approved contents should reside in a special location.
• Categorization. Content objects are designated according to "type" (feature,

news article) and assigned to topics within a subject tree (such as parenting,
health).

• Scheduling. The managing editor determines when the content will be
published and when it will expire.

• META tagging. Content descriptors are created for the use of search engines
and other indexing tools.

• Content entry. This is the data entry into the content management system
(CMS), which may take the form of associate producers typing content into
form fields to be saved in a database.

• Publishing. This step exports content into Web page templates, where it can
be previewed in the development environment or made available to the
public on a live URL.

• Archival and deletion. Content expiry is triggered by an automated process
based on live/down dates, moving content into an archive area, or
recategorizing content in the database.

Naming Conventions in Action

Naming conventions are crucial to enabling a smooth transition of digital
assets from one group to another. This is particularly crucial for interactive
tools, which generally deliver customized, dynamic content. These
projects demand an unlikely marriage between editorial workflow and
application development.

During the creation of an online "personality profiling tool" based on a
user's color preferences, project managers faced a difficult problem. At a
crucial juncture in the project, they had to obtain editorial copy from a
client and hand it off to production in a format that could be directly
understood by the business logic. This was no small task because the
assessment tool relied on a "quiz engine" that generated hundreds of
possible results combinations, depending on what colors the user had
selected. If a user chose blue as her first-ranked color and red as her eighth
favorite, she received a customized message about aspects of her
personality.

Consequently, the results-processing algorithm was a complex mix of
favorite and least-favorite color rankings. The content itself was written by
a nontechnical editorial team that was managed by the client. Since the
programmers who were writing the results algorithm were unfamiliar with
the content, there would be no way for them to determine whether the quiz
engine was delivering the "correct" results until it was too late. In addition
to making the hundreds of content blurbs understandable to the code, there
also had to be a way to automate the process by which the user's color
selections were "mapped" to results. This would cut down on crucial
development time.

The project plan obscured the complexity of this problem behind a single
task that was labeled "Deliver Content to Production." The plan
recognized that this step was necessary and allocated time and resources to
it. However, an accurate plan was not enough. At its essence, the problem
was a workflow issue rather than a planning issue because it raised the
following question: "How can we make sure that the input from process A

is understood and usable by process B?"

Formatting rules and naming conventions provided the answer. Instead of
delivering the quiz results content in one giant document with explanatory
text ("This blurb is for people who choose blue as their third-favorite
color"), the copy was broken up into hundreds of pieces. Every possible
result had a corresponding text file assigned to it. The next task was to
somehow enable each result to "find' its mate.

A convention was devised for naming each results blurb according to the
color combination assigned to it. For example, the copy for the
"Emotional" section of the report for people who selected blue as their
favorite and black as their least-favorite color was labeled
"emotional_blue_black.txt." The naming convention became more
complex as analysis categories were added. Colors were assigned numeric
values in order to speed integration with the results algorithm. Positioning
and special characters determined whether the color was a favorite, least-
favorite, or other type of ranking.

These formatting rules and naming conventions were agreed upon and
enshrined in a workflow document that was published to the project Web
site. By following these workflow instructions, nontechnical editors were
able to deliver text copy that could be imported directly into the database.
The copy was immediately understandable to the source code, saving the
programmers hundreds of man-hours that would have been spent sifting
through reams of copy and translating it into a machine-usable format.

Summary

Workflow recommendations are often met with fear and suspicion. If you decide to
suggest workflow reforms, the sound of nailbiting will emanate from isolated
cubicles as your colleagues ponder questions like "Are you trying to change my
job?" or "Is someone going to get fired after we redefine roles?" When addressing
workflow issues on your team, begin by speaking to their pain. Describe a well-
known problem that is causing hardship or added work for everyone, and let your
recommendations follow from your fact-finding mission. Avoid being labeled a
busybody reformer with an agenda who's out to change the world and disrupt
everyone else's job. Instead, strive to be an objective problem solver, and you'll

have plenty of cooperation as you fix the broken plumbing in the pipes of your
project team structure.

When it comes to workflow, the single most important favor you can do for
yourself and your team is to sit down with everyone, describe the current state, and
put it down on paper. The simple act of defining roles as they currently exist will
allow you to expose most of the problems, without coming across as a sinister
agent of doom. This simple act will undoubtedly spawn some very interesting
discussions and revelations. More importantly, it will expose any organizational
booby traps that threaten to snag you as your team is called upon to finally "deliver
the goods" in the technical build phase.

Chapter 9. Managing the Design Phase

Key Topics

• The Information Architect and Designer Relationship
• Managing Sign-Off
• Design Production Phases
• Internal and External Design Teams
• How Technical Do Designers Have to Be?

Although the seed from which the Web sprouted may be rooted in technology, the
hook that captured the imagination of the masses was, and continues to be, graphic
design. The "look and feel" of a Web site will ultimately generate more business
(and opinions) than the back-end functionality. Some may argue that without
sound functionality, the design is useless. While this may be true, it is also true that
the Web is a visual communication medium, and good design is sometimes more
useful than whiz bang functionality.

Design solutions can be every bit as challenging and elusive as technical solutions.
Like developers, designers will collaborate with the client, team, and themselves
before donning the headphones and disappearing behind their Macs for a few days.
When they emerge, they usually have several versions of a design solution ready to
be discussed at length. Designers come armed with an expansive and
metaphorically rich design vocabulary that incorporates everything from Wall
Street to 1970s Japanese architecture to Britney Spears. The ability to colorfully
describe their work is part of the charm and allure of the Web designer.

Is Information Architecture the Designer's Job?

Information architecture (IA) is tightly wound with the graphic design phase of a
Web project. In early generations of Web development the graphic designer was
the information architect. So was the client, the programmer, the editor, and the
HTML programmer. In other words, everyone had a say in the site's architecture.
However, it was the designer who, almost by default, was charged with
establishing the Web site's structural underpinnings from a navigational and
usability standpoint. The prominence of IA as a necessary facet of Web
development has grown tremendously over the last few years, and IA departments
in Web development companies are now common.

The answer to the question "Is IA a function of the designer?" would probably
depend on whether or not you have an information architect on your team.

Generally speaking, the information architect has a very broad and sweeping role
in Web development projects, and the scope of their role tends to overlap the
following resources.

• Project manager. The information architect works with all the production
resources on the team and is responsible for creating and requesting certain
deliverables. The project manager helps the information architect manage
these deliverables and track his tasks as well as the tasks of the resources he
is working with. The bulk of the IA work is done early in the project, but the
information architect is involved in all phases.

• Quality assurance. The information architect is involved in all usability
testing of the information system they design. The information architect
works closely with the QA engineer on designing tests for various
components of the information system.

• Developer. The information architect collaborates with the development
team on the appropriate content categorization structure, database schema,
and content management systems. The information architect, similar to the
project manager, has a general knowledge of Web technologies— at least
enough to be conversant with the tech team. If the information architect's
background is technical, then her knowledge will allow greater latitude when
designing the tech components of the information system. If the information
architect's background is more design oriented than technical, then she will
rely on the developer to weigh in on the technical decisions.

• Designer. The information architect will collaborate with the designer on
many of the display aspects of the Web site. While the information architect
is responsible for detailing the client or management's vision of the site, he
must be able to articulate it accurately to the designer, who will then create
the look and feel.

IA on the Web

There are many excellent resources to learn about information architecture on the
Web. Here are two outstanding places to start:

• The Argus Center for Information Architecture— http://argus-acia.com/
• Webmonkey's Tutorial—

http://hotwired.lycos.com/webmonkey/design/site_building/tutorials/tutorial
1.html

If you have an information architect on your team, the designer will be more
focused on creating the graphic elements of the site, including images, color
palette, and typography. All of these elements will be influenced by and derived
from the information architect's design document, which will provide the design
objectives for the Web site.

If your team does not have an information architect, it would be worth your time to
learn as much as you can about the disipline. IA is an extremely interesting topic,
and as a project manager your generalist's background will allow you to learn the
basics quickly. At the outset of the design phase, work with your designer and
other members of the team on creating a design document that is as comprehensive
as possible. The document should include the following.

• The Web site's goals
• The client's goals and vision
• Definition of the site's audience
• A comprehensive site map that includes the content categorization structure
• Page maps
• Tone and voice of the content and graphic design
• Navigation system
• Back-end technologies

This may sound like the Web site functional specification, and to some degree both
documents will borrow from each other. The design document, however, is more
"top-line" than the functional specification and is not technical even though it
discusses some technical aspects of the Web site.

Design Production

The length of your design phase depends on the scope of the Web site under
development, your established in-house process, the relationship you have with
your client, and the design philosophy to which your company subscribes. These
factors also come into play in determining how many design revisions the client
receives before signing off on a design element.

Revisions and Sign-off: Making the Client Happy

Most Web design companies allow the client at least two rounds of revisions
before completing design work on an element of the Web site. Then again, there
are some design companies that allow the client to dictate how long the design
process will last. It's generally easier for the design team and the client to break up

the design tasks into large pieces. This approach may require more sign-off
meetings, but at least the client is integrally involved in the process the entire time.
Generally the following design deliverables require sign-off.

• The color palette. This color scheme of the site has a profound impact on
everything from usability to emotions.

• The home page. One of the most debated pages from a design perspective
during the build. Everything has to be in sync on the home page: identity,
images, color, typography, tone, and voice. Everyone wants to make a good
first impression. Oddly enough, often the home page is one of the least-
visited pages on large Web sites.

• Landing pages. If the Web site is using a categorization structure that
requires landing pages to allow users to drill deeper into the content, then
these pages should be carefully designed and rendered.

• The header and footer design. Each page template (except the home page) of
a Web site generally displays the same header and footer designs. Since
these two elements of the Web site are so basic, they often do not receive the
scrutiny they deserve. Be sure to get sign-off for these foundational
elements.

• Content page templates such as articles, Q & As, quiz and poll interfaces,
and search results pages. These templates make up the bulk of the content
display pages and will communicate through their design the desired look
and feel of the Web site.

All of the preceding pages actually should be signed off twice. The first time these
pages are signed off is during the page-mapping phase. Wire frames of every page
of the Web site should be approved and signed off by the client before any
graphical representation of the page is created. The pages receive their second
sign-off after the design revisions are complete.

Sign-off means many things to many people. To the project manager it means the
end of the design phase and time to move on to the technical production. To the
designers it means their work was appreciated and approved and hopefully can be
refined further before launch. For the client sign-off means the design will pass
until they see something they like better on another Web site. Since the client is
paying for the time it takes to build the site, they usually feel free to change their
mind at any time during the build, and they often will. It's your job as project
manager to make the client aware that there are a variety of penalities for not
honoring sign-offs. Changes that come after sign-off require the designer to come

up with a new design solution that could require code to be rewritten and add to the
scope of the project.

None of these issues really deter a client from making changes after sign-off, but
all of these issues add time to the schedule and increase the cost of the project—
sometimes by a significant amount.

The sign-off procedure need not be complicated. Design review meetings are
scheduled for the designer, creative director, client, and project manager to review
the current design deliverables. The client is asked if they approve, and if they
agree, it is notated by the project manager. Some companies have dated sign-off
documents their clients sign, which leaves a paper trail and can be a good idea if
you are dealing with a difficult client. However, use your best judgment with
regard to how elaborate you want to make the sign-off procedure. Your
relationship with the client will also influence this procedure. At the very least be
sure to notate the date of the meeting in your project notes so you can reference
them should the client request a change or claim a revision did not occur.

Design Production Phases

The design process often begins before the proposal is accepted and the contract
signed. During the sales pitch, the client is asked to describe Web sites they like
and why. Invariably, the descriptions of sites clients like include "It looks cool …"
or "It looks professional …" or "I like the colors… ." Surfers and clients alike
demand good graphic design and will make many assumptions about a Web site
based on the execution of the design.

These are the basic phases that comprise the design production cycle.

• Brainstorming
• Multiple idea renderings
• Final concept accepted
• Production

During the design kickoff meeting, the design team will spend some time
brainstorming the myriad directions the design tone of the Web site can take. The
information architect or project manager will attend the meeting to contribute
technical or usability comments and keep the discussion within the realm of

possiblity. The brainstorming process continues beyond the kickoff meeting until
the design team feels like a direction has been reached.

Once the team has a basic design direction they are comfortable with, they will
begin to create the necessary design assets. The first set of deliverables will be
multiple versions of the design that are shown to the client. The client will either
select a favorite or work with the designer on creating an ideal solution using
elements from each version. Now that the designer has a definitive direction to
pursue, the revision process begins.

The number of revisions the design process goes through is decided in advance and
indicated in the contract or statement of work. Typically the design process goes
through at least two revisions, but this number changes from company to company
and project to project. The project manager sets up the revision schedule with the
designer and communicates the schedule to the client.

Your goal as project manager is to be sure the revision process runs as smoothly as
possible. Be sure to take accurate notes during the design review meeting with the
client. After the meetings, verify your notes with the designer to be sure nothing
was missed and everyone is on the same page.

The project manager does not have a great deal of input in the design process
beyond being sure the milestones are hit and the communication is efficient.
However, this does not mean you should not speak up at design meetings and offer
your opinion. Often, your generalist background will allow you the perfect
perspective to resolve a particular design issue.

When at last the design revision stage is finished and the final design has been
signed off by the client, the designer will prepare the necessary design assets. The
common practice among Web designers today is to lay out the Web pages in
Adobe PhotoShop or Illustrator. These pages are either saved as JPEG files and
displayed on a production server for the client or they are printed out and presented
on paper at design review meetings. Once the final design has been approved, the
designer will cut the actual design shapes (navigation bars, headers, buttons, and so
on) out of the master file and optimize the pieces for the Web. This work is also
often performed by production artists. Once the files have been cut and optimized,
the design assets are handed off to the project manager, who in turn hands them off
to the HTML programmer.

Design Management Resources

An excellent resource for articles and information about managing
designers and the design process is the Design Management Institute; visit
them online at www.dmi.org. There are many free articles for download.

KEY POINT

Be aware of last-minute design tweaks the designer may attempt after the
final sign-off has been achieved. While the designer's intentions are good,
if these tweaks are not scheduled or involve any retooling by the
developers once the project is in technical production, they should not be
allowed.

Internal and External Design Groups

The differences between working with an internal design group and an agency
design team are explained in this section.

The Internal Design Experience

As you progress through your project management career, chances are good that
you will work in internal development groups as well as in the agency
environment. In either case the design production process is relatively the same.
The biggest differences will be the actual design work and the clients. As you
would assume, an internal design group may spend 80 percent of their time
updating and working within an existing templated environment. The look and feel
of the Web site has been established, and the designers spend the bulk of their time
on new headers, images, and illustrations, all designed to work within the
established framework. The creative director in this type of group is challenged
with keeping the design fresh and the designers inspired while working within the
existing look and feel.

Projects that flow through this type of environment tend to be easy to manage for
the project manager. The process is usually well documented, and after a few
projects, things fall into place relatively easily. The clients are all internal, and
after a while the project manager knows and understands their idiosyncrasies and
expectations.

The External Design Experience

The graphic design department in an agency environment is tightly woven into the
reputation of the agency. Clients tend to choose one agency over another not so
much because of technical prowess but because of design capabilities and a
dazzling client portfolio. Pressure on designers in agency groups can be higher
than in internal groups due to the client-facing role they play. In an agency the
revenue of the company depends on the designers making the client happy,
whereas in an internal group revenues may not be tied so directly to the designer.

The designer's individual temperment will dictate to which environment they are
better suited. Some designers respond to the pressure of an agency, and this
pressure acts as a catalyst for good work. Others prefer the more familiar setting of
an internal group, where there tends to be a bit more flexibility in the timelines and
milestones.

While an agency may have a set and well-documented methodology and approach
to design, the process will change from client to client. The project manager will
be spending much more time managing the client as opposed to the design
deliverables in an agency situation. A good project manager learns the designers'
strengths and weaknesses. When projects come in, the project manager can consult
with the creative director on the resource allocation for the project and help choose
the designer who will be the best match for the project.

How Technical Do Designers Need to Be?

As front-end and back-end system designs become more and more intertwined, the
need for the Web designer to become technically savvy is apparent. How savvy is
the question for many designers. Is it enough to just know HTML? Should the
designer need to know programming basics in order to successfully design for the
Web? Therein lies the debate. How technical do designers have to be today? Some
would argue that designers should design and developers should code. This is
historically how the two camps worked together: one camp imposing limitations on
the other as they both try to push the boundaries as much as possible. But which
camp has the greater influence over the other? Which camp should have the greater
influence?

JavaScript was probably the first exposure to programming logic that designers
experienced. In order to use those groovy image rollovers, designers had to edit an
existing JavaScript that performed the rollover function. It's doubtful many
designers actually became JavaScript experts because there are so many free and

easily editable scripts available online, and writing code is not a designer's primary
focus. But regardless of the availability of code, designers were now getting their
hands dirty with it.

With the addition of Action Scripting in Flash™ the designer was now faced with
the need to understand (at least rudimentary) programming logic. Sure, Flash™
actually writes the code, although the designer can choose to do so, but now
programming logic and the need to understand a programming language stand
between the designer and the finished piece.

As the technical side of the Web becomes more and more complex, should
designers have to improve their technical knowledge and at least learn
programming basics in order to converse better with the tech team? Or will the
facilitation of communication between the tech and design groups continue to be
conducted by the project manager? It would seem a little of both. It makes sense
for designers to embrace technology further as design and technical development
move closer in scope and definition. It may not be enough for the project manager
to act as translator in the future of Web development as projects grow more and
more complex. The front-end design of Web sites and Web applications will
engender more and more integration of the tech and design groups, with the project
manager concentrating more on managing responsibilities, tasks, and deliverables
and less on technical translation.

This debate will continue to evolve during the next generation of the Web. There
have already been essays written on the subject by people who represent both
camps: those who believe designers should design and developers should program
and those who believe designers should learn how to program to better perform
their tasks.

Summary

Like other roles on the Web development team, the designer brings to the project a
generalist's knowledge of the overall process. However, in the future this may not
be enough. More and more, Web front-end design and technical back-end
functionality will be intertwined. Designers will, almost by default and by using
tools such as Flash™ , become more technically proficient throughout their careers.

The design process consists of the following phases that result in deliverables that
are approved by the client.

• Brainstorming the original design direction

• The revision process for all facets of the design
• The final sign-off of the finished piece

The project manager's most important contribution to the design process is
ensuring a smooth sign-off process for each deliverable and making sure the client
honors the sign-off procedure.

Designers, like developers, have their own quirks that project managers need to
learn and exploit in order to get the best work out of this group. Project managers
should never be afraid to speak up and suggest a design solution to the designer,
but the bulk of the design collaboration occurs within the design group. How a
project manager manages the design process will depend on whether he is
managing an internal or client-facing design group.

Design is one of the most enjoyable phases of a project. The design process is
when people get to be visually creative, and the first inklings of what the Web site
will eventually become begin to emerge. Web designers are expressive people who
need the freedom to work out design solutions without being too encumbered by
timelines and milestones. Be sure your designers have all the freedom they need to
create and that their headphones are as big as possible and always turned on.

The Information Architect Role in Practice

Fabrice Hebert is the former managing director of Oven Digital, one
of New York's best boutique interactive design shops. Fabrice joined
Oven as a project manager and in short order optimized Oven's
production process. Oven is well known for its front-end design
capabilities. The jewel, so to speak, in its client roster is Tiffany.com.
In this interview Fabrice discusses how Oven uses information
architects and the Oven design process.

Can you tell us about the role information architects play at Oven?

The information architect department overlaps with all the other departments.
Actually, in our methodology we call everything information architecture. This
department is the one writing the whole process along with QA. The IA guys are
the most crucial component of everything. You can replace site builders and you
can replace designers, but you have to have the information architects from the
beginning.

The information architecture department at Oven is a three-person department. One
of them has a computer designer degree and has a very technical background and a
lot of system architecture— stuff like that— so he's the tech guy of the information
architects. The other one knows nothing about tech. His approach to information
architecture is purely from the front end. And the other guy, the head of the
department, is actually experienced in both.

The information architect who is technical is used a lot at the beginning of the
project for functional specifications and technical specifications. He also
contributes some help in understanding business requirements from the client.
Information architecture can overlap heavily with design, and we try to avoid that
situation. It needs to be done concurrently. One of the problems we had in the past
was when the designers were doing information architecture. So we tried having
the information architecture happen before design, and that didn't work well either.

In the end we realized that you have to work concurrently. You have to sit down
next to each other and explain specifications. We found when the information
technology was too separated from the design process or was too far integrated in
the design that we ended up with bad design. There can be a lot of politics, and
designers sometimes feel they have constraints put on them if the information
architects are somehow assumed to be managing the designers. The only solution
to that was to put them on the same level.

Describe the Oven design process for us.

Oven started as a design group; there was no technical ability. For every design
project that we do, the process involves using a lot more designers than I think our
competitors are using. For every single project that we are doing— Tiffany, for
example— you would have eight designers, which kind of, when you look at from a
management point of view, you would say that's a waste of money. Well, that's
kind of the compromise that we make.

The way it works is that the design department is always very collaborative,
always works together, they all sit next to each other, and they all use Internet
tools. We actually have a tool that allows designers to plug in comments about
other people's designs and then post messages like a message board, and that's
great because no design goes out without everybody thinking, "Oh, yeah, this is the
best one."

Of course, we use a professional methodology that allows for several revisions.
Sometimes we don't hesitate to go through three, four, or five revisions. That's fine

with us. The designers spend a lot of time initially writing the creative brief, and
even the creative brief is a very collaborative effort. It's done with the information
architect and it's done with the project manager. And the creative brief gets sent out
to the entire design team so everybody understands. I think it's exceptional because
the product you get in the end is something unique.

There is a huge internal decision first, so at the end of the day when we put a
design out, we say, "Okay, we managed to get the best design," and the quality is
better. That's great because the internal selection makes you think about the reason
why the design you presented to the client is the best. In design I think the most
crucial thing, when you think about client approval, it's not the design itself, it's
how you present it to the client. That's the most important thing. And the fact that
our designers spend so much time together— eight people— that's a lot of people in
a room trying to argue about the design. In the end they come up with the right
solution, and they can articulate that in front of the client very well. And I think
that that produces great results. The client is very happy when he can argue about
points in the design and have another revision— they like that. That's one of our
best selling points as well when we do presentations for clients.

How We Manage Design

David Young is one of the founders of Triplecode, an interactive
design studio in Los Angeles, California, that specializes in
Shockwave applications and design. David approaches design from a
code perspective, which gives him a wider breadth of opportunities
for discovering the perfect behavioral and design solution. In this
interview he discusses hands-on client management, the de-evolution
of interactive design, and why designers could benefit from being
more technically savvy.

Could you describe your company's project management style?

What is our project management style? That's a tricky question. Some of it varies a
lot according to the client. First we'll meet with the client to get a sense of the brief.
What we'll do is take that and begin doing some exploration or sketching to try to
address the brief. So we'll take the brief and start playing with what that means.
Usually that's a combination of visually what might it look like and especially
getting down in code trying to figure out what might the content be that they are
trying to communicate.

How do you extract direction from the client during that process?

It's funny because usually the client thinks they have clear ideas of what they want
the project to be from the beginning. And it's only after we start working with them
for a while and they start seeing some sketches and some ideas and we start talking
to them that they and we both realize that the original project that they had in mind
may not really be the right solution.

Are you trying to lead them toward a particular destination during this educational
process?

No, it's usually more like a mutual education process. We are never experts when
we first walk in to what the clients domain is, so we're learning a lot about what
they're up to, but they also start seeing, as we start presenting ideas to them, that
there are very different ways of designing or making interactive experiences than
they might have originally imagined.

It sounds like your approach is more like "What does the information look like?"
rather than "What does the page look like?"

Exactly. It's almost like we start at the information level because the visuals are a
by-product of what the information is. You can say, "Here is a look or here is a
style," and we're just going to use some predefined layout, but then your design
doesn't become specifically relevant to whatever the project is.

Most designers start off by "Let's get the color palette nailed down first."

(Laughing) In some cases that is important because you are working with a
company with a fixed brand or identity, so those are starting points that you can't
really change. But my thinking is, even if you are doing print design, you have to
understand what your content is before you can start designing for it.

How would you say your approach differs from how an information architect
might approach the project?

I think they are pretty close. It's almost incorporated into our process. Since we're
not a big company, we don't have different people doing these different things. We
don't have a dedicated information architect. Since we're so small, we do
everything simultaneously.

Our approach is a little more sculptural, I think. If you're working in code, you can
almost start defining what your information is in a sort of code way by defining

data structures or objects. And as you simultaneously reshape what those data
structures are, you can start adding interactive or motion behaviors to them.

How does the PM facilitate the communication that goes on between you and the
client as you try to discover these information objects?

Well, usually the project manager is also the designer and the programmer. So
there's not really an interface there. And usually when we deal with clients, we're
dealing with the CEO of the company or the curator of the exhibit, so there are not
a lot of layers happening on their side either. That has something to do with the
fact that clients choose companies whose structures fit within their structure, too.

There are different scales of groups. When you have 50 people working on the
Web site, you have a lot of very different specialized skills. And you also have
smaller teams where you have two or three people all sort of doing everything
together. So you don't necessarily need these large teams to get something done.

Because we're a small company and a small group, we don't have a single, fixed
approach or a project management method. The way that we work tends to get
influenced by what the client's needs are in terms of the project itself or the client's
management and organizational structure.

How many iterations do you give a client, or do you just collaborate until it's done?

I think it's more along the lines of the latter where we just collaborate until it's
done. Usually with the client we know when there's a deadline, and we know we
need to get the initial direction approved so we can begin a more formal
implementation. But there's a real change from a sketch to something that's really
running. Often times once it begins working, and you start to have people
interacting with it and using it, you start seeing things you want to change. So
there's a lot of revision that tends to take place even in the later stages of the
project. I think that because our designs are so code based it's pretty easy to make
major revisions later on in a project phase than if there were a more strict design or
traditional design approach.In our code we can just change a couple of functions
and make fairly substantial changes to the way the design looks or works.

Because you are more concerned with behavior …

Right. When you want to change all the graphics, in our experience it hasn't been
too hard to do. I'm not sure why it is so easy for us as opposed to other design
approaches.

Do you worry about giving your clients too many options and confusing them early
on in the approval process?

Usually in the initial phase of the project we're learning just as much about what
they're doing as they are about us. So our initial presentations tend to be fairly
informal because we don't have a choice that we think is the right one because we
don't know what the right one is yet. So we show them a bunch of different designs
and the number varies according to the scale of the project, but it's only by
showing them and discussing them with the client that we can begin to understand
what they do or don't like about different versions.

We then see if they like the look of this one but they like the behavior of that one.
Or this one sort of is getting them to think really differently about the way the
content might be structured, so you start taking all these different pieces from them
and gradually start melding them together.

What generation is Web design currently in?

My background in Web interactive design is pre-Web. I started doing interactive
stuff before the Web was around, almost before CD-ROMs were around, where it
was just computer-based interactive design, and the bigger question was how do
you use the screen for any sort of interactivity? This was in the late 1980s and
early 1990s. It seemed at the time you weren't concerned at all with any of this
delivery issue and you were writing programs in C or some other more deep
machine-level thing. You were really unlimited in what you could create; there
were almost no constraints. And also, we tended to work on pretty high-ended
machines in those days, beyond what would be considered a consumer desktop
machine.

So there was amazing stuff that was being done, and people often forget that before
the Web the interactive medium was pretty rich. Then the Web came along, and it
was almost like this giant step backwards. Suddenly you were limited with these
text-based HTML pages with very few graphics and download speeds, and the
computers were a lot less powerful because you'd be on more home computers.
And it's almost like now we're finally catching up to where we had been. So in a
way it's this evolution, and in a way it's been this sort of de-evolution. There was
this weird hiccup of really horrible design that happened for a while or very tightly
constrained design, and now we are coming back to allowing the technology to be
a little less of the straitjacket that it had been for a while.

What would you attribute that to?

Part of it is that personal computers got a lot more powerful, and obviously things
like Flash and Shockwave and to some degree Java have gotten more standardized
on people's machines. So you are able to do these things more

What's on the required reading list for the new Web designer?

The first book I'd shove in their hand is some sort of programming book. I really
think they need to learn some amount of appreciation for that. When I taught for a
while at an art school, it seemed there was a lot of reluctance from the students to
learn programming, and a lot of that was just a weird stereotype: "We're designers,
and we don't need to learn math… ." And not the acknowledgment that
programming in its own way is equally as creative as visual design. There's some
sort of scariness that comes from the computer.

My experience with design students has been that the more diverse their
background is, the better their design is. The more they know about different
things, the more they bring to the way they solve design problems. Whether that's
psychology or programming or architecture, its going to allow them to think about
more stuff. It's an art thing.

The biggest frustration I have with the usability issue is that a lot of people feel
that the primary way you evaluate how successful an online project is is by its
usability. And it seems that this has created Web sites that are all equally bland and
generic and with very similar navigation and systems to them. My feeling instead
is that this is such a brand new field, so we shouldn't lock down yet any strict rules
about what works or what doesn't work and that people should be experimenting a
lot more.

My hope is that there is still, with the changing of technology, a lot more room for
exploring what the Web can be. Maybe it also depends on your audience, too. It
depends on who you're designing for. If you design for a big conservative company
that tends to do work for more conservative clients, then they're going to want
more basic stuff. There is a corporate conservativeness that says we need to be safe
in what we do. And yet you can see plenty of examples of companies that aren't
safe, that are really successful. Often you hear these stories about a company that
broke the rules and did some real different kind of advertising or design and that it
changed the whole landscape.

Chapter 10. The Technical Build

Key Topics

• Model–View–Controller
• Generic Technical Build
• Code Review Guidelines
• Production Challenges

Anxiety over the Technical Build

At the commencement of the technical build, your project team is armed with
detailed specifications, feasibility reviews conducted by experienced tech leads,
and formal status meetings for checking progress against milestones. In spite of
this technique, the technical build remains a source of great anxiety for several
reasons.

• Most project managers have a general knowledge of Web programming
languages and are uncomfortable discussing the complex details.

• No one wants to look dumb when programmers start dropping technical
terminology. The urge to nod your head with a phony look of grave
recognition is irresistible.

• If anything goes seriously wrong during this stage, you might not find out
about it until late in the testing phase, when it may be too late.

• The development phase of a project is fraught with risk, including technical
feasibility issues, cost overruns, and missed deadlines.

Mitigating the Fear Factor

There are a variety of tactics that you can use to address any insecurities that you
have about the technical build. In addition to familiarizing yourself with technical
buzzwords and concepts, you can grope toward a sense of security by building
additional milestones into the schedule. You might pound away for hours at MS
Project, breaking out a multitude of subtasks in the hopes of capturing and
monitoring every potential point of failure.

However well-intentioned these tactics may be, you will need more than a detailed
laundry list of milestones to survive this critical stage, and you can't do it alone.
Given the array of risks and limitations that plague the technical build, your best
insurance policy is to put MS Project away and focus your efforts on supporting
code review procedures within your development team. A system of peer-based
code review procedures, developed by the tech lead and reinforced though your

workflow supervision, will increase the odds of a smooth transition through testing
and launch.

Internal code reviews conducted "early and often" provide a self-policing quality
control mechanism within the production team. The "Recipe Finder" case study at
the end of this chapter describes a project that began effortlessly, only to hit a brick
wall during the technical build due to a lack of code review procedures. This
necessitated a costly recovery effort that served as a wake-up call to the
organization and gave rise to an effective, self-regulating code review system.

Model–View–Controller

Although application architecture is the job of senior engineers, as project manager
you should ensure that provisions have been made to separate display, business
logic, and data. There are many approaches for doing this, but one of the most
successful (especially for object-oriented programming) is the "model–view–
controller" (MVC) paradigm.

What Is Model–View–Controller?

The MVC paradigm is a way of separating design, business logic, and data by
breaking an application into three parts.

You Know You're in Trouble When …

For many of our unfortunate colleagues, the "build phase" begins with a
producer taking a graphic designer's full-color page mockups, scribbling a
few notes in the margins, and dropping them off on a programmer's desk.
After returning from his smoke break, a developer takes a look at the page
mockups and announces his verdict to the nervous project manager, "It's
pretty straight forward." At this point the developer rolls up his flannel
shirtsleeves, shoves aside the Dungeons & Dragons Monster Manual, and
disappears for several days. As the deadline approaches, the following
exchange can be overheard.

PROJECT MANAGER: I don't want to bug you, but do you have a
second? How's it going? How's it coming along?

DEVELOPER: It's coming along okay. I've got a few bugs, but I'm

working on it. It looks bad in Netscape four-seven, so I'm trying to figure
out how the Document Object Model works, but I guess you don't need to
hear about all that stuff.

PROJECT MANAGER: So everything's cool, right?

DEVELOPER: Uh, yeah. Hey, I'm kind of in the middle of something. I'll
send you an e-mail when it's done, okay?

PROJECT MANAGER: Sure, man. Thanks for your time.

Several days later the developer (in the same flannel shirt) emerges baggy-
eyed from behind a pile of empty Sunkist cans. In general the site meets
the original requirements, and everyone crosses their fingers as the site
passes into QA for testing.

This project manager is "rolling the dice," hoping that the product will
pass the testing phase. If this scenario sounds familar, pay careful attention
to the systematic approach advocated in this chapter.

• The model serves as an abstraction of some real-world process. It manages
data, responds to queries about its state, and reacts to instructions to change
state (for example, a relational database or JavaBean).

• The view is responsible for displaying graphics and text to the user (for
example, the JavaServer Page that dynamically generates HTML).

• The controller manages the interaction between the parts of the system. It
accepts input from the user and instructs the model and view to perform
actions based on that input (for example, a Java servlet or CGI script).

A Generic Technical Build

Most database-driven, dynamic Web applications follow a similar process. The
activities that go on during this phase of the project warrant distinct zzmilestones
in the schedule. If you are not directly managing this workflow process, you should
at least be closely monitoring it. The activities for a representative tech build phase
are illustrated in Figure 10.1.

Figure 10.1. Process Flow for a Generic Technical Build

A Process for Everyone

Gantthead.com's Process section presents a full menu of processes for
guiding your team through the technical build, with recipes for many
different types of IT projects that can be adapted for the Web. You'll need
to sign up for free membership, but it's worth the two minutes; go to
http://www.ganthead.com/Gantthead/process/processMain/.

The Tech Kickoff Meeting

The technical build begins with the "tech kickoff meeting." During this meeting,
the technical implementation team meets with the project manager, producer, or
product manager and sometimes the project stakeholders to review the
functionality requirements and the development tasks that have been set out in the

plan. The tech lead and developer(s) review design mockups of the various page
templates, read the technical specifications, and review site maps and application
flow diagrams. The directory structure of the site is also discussed along with
secondary issues like ad serving and Web site traffic analysis requirements. The
team should spend a significant amount of time identifying code that can be
repurposed, as well as how code from the current project can be genericized for
future reuse. The outcome of this meeting is a revised version of the technical
specification (drafted by the tech lead) and refined time estimates for each task in
the development phase. The project manager updates the project plan if necessary.

Infrastructure Configuration

This activity usually involves the setup of the overall system architecture and
development environment. Operations staff prepare the "live" hosting environment
by anticipating bandwidth requirements and installing the necessary hardware and
software. If necessary, a separate "sandbox" or development environment is
prepared for the programmers to test their code. Database administrators are also
involved as they prepare to implement the database design.

Component Inventory

The purpose of this activity is to identify software objects within the organization's
"code base" so they can be reused to accomplish the task at hand. For example,
when building a calendaring application, developers take advantage of software
"libraries"containing date-processing functions that allow them to perform routine
jobs like converting between different date formats. These "library procedures" are
designed to be generic, but if necessary they can be easily modified to handle the
current job.

While it is the job of developers to hunt down relevant source code and reuse
software modules, you can contribute to this process as well. As a project manager,
you should have access to documentation from previous projects that may have
used similar technologies or functionality. By researching these applications and
bringing them to the attention of the tech lead, you can assist the developers in
finding some examples they can draw upon to speed up the development process.
This role is especially crucial when working with freelancers or new hires who are
unfamiliar with the current code base.

Data Modeling

This activity involves setting up and accessing the data source, which may reside
in a relational database, flat text files, or be obtained from a third party via an
import of data in XML format. Database administration activities may include the
design of a database schema, the writing of database queries, the creation of stored
procedures, and database tuning.

G Stored Procedure

A stored procedure is a group of query statements that reside within the
database and perform a certain task. The main advantage of creating stored
procedures is that they prevent scripts from using tables directly. This
keeps your database tables safe from poorly written queries.

Stored procedures are used to speed up the execution of commonly used
queries and to keep the query syntax safely hidden from the business logic
of an application. For example, the most commonly used operations on a
product database (add a customer, delete a product, retrieve an invoice)
could be coded as stored procedures.

Display Markup

This activity may involve the coding of display languages used by the client device
(for example, HTML and JavaScript for the browser or WML for wireless display).
This raw display code is typically handed off to application developers for
insertion into dynamic templates. In more advanced development projects, this step
may be extended to include related tasks, like coding JavaServer Pages or writing
XSLT code to transform raw XML into HTML that the browser can display.

At this stage a separate quality assurance "checkpoint" is recommended. The
purpose of this separate testing step is to review the display markup as it appears
across different environments. Typically this involves a thorough test of the HTML
in various Web browsers at multiple connection speeds. Testing is conducted by
usability experts in the QA department as well as by graphic designers who
independently review the work. The design team conducts its own review to ensure
that the final version "on screen"matches their original vision in terms of font,
color, layout, and other qualities that are subject to browser interpretation.

Scheduling Tip: Running Activities in Parallel

In many cases, data modeling tasks can begin during the graphic design
phase, depending on the quality of your specifications. Running these two
activities in parallel is a slick way to beat a tight deadline.

If the specifications for your application are complete and detailed, give
the green light to begin this work ahead of schedule. The schema and the
database tables can be created during the final rounds of design approvals
because, at this point, the open issues should be merely cosmetic.

After the initial review, designers and HTML coders will get together to discuss
the various tradeoffs and limitations the display code imposes on the final look.
When both sides are happy with the tradeoffs among download speed, aesthetics,
and platform compatibility, the creative director and QA testing director will sign
off on the display code.

Application Coding

Here the rubber meets the road, as developers write the business logic of the
application, create dynamic templates, and insert SQL statements that will query
the database. All the deliverables from the previous tasks are linked together
during this stage. Software development should proceed in an iterative fashion,
using a "building-blocks" approach. This means that prototypes or working
components should be developed early and then tested before the programmer
attempts to tackle the next level of complexity.

Ideally, the application should be built as a series of self-contained modules. Each
bit of functionality is tested before adding on the next layer of complexity. Good
programmers begin with the simplest feature and move on to more complex
features. This allows programmers to isolate errors in their code.

Webmonkey Tutorials

Inundated by Web programming acronyms? As a project manager, you
don't need a 400-page Java book, you just need a primer that will give you
a general understanding of what's going on under the hood. The various
Webmonkey.com tutorials (http://www.webmonkey.com) provide just
enough detail for you to hold your own at the next tech meeting.

Sharing Content with XML

XML (Extensible Markup Language) specifies the logical structure of a
document, allowing it to be shared with third parties. XML is "extensible"
in that it allows its users to create custom tags to describe how the content
is organized. The rules that govern the document are declared in a DTD, or
Document Type Definition. For example, if your document is a poem, the
DTD might translate it into plain English as "a poem is composed of one
title and one or more stanzas, each of which contains one or more lines of
text." The XML markup for this hypothetical poem might look something
like this.

<xml>
 <poem>
 <title>Roses are Red</title>
 <stanza>
 <line>Roses are Red,
 Violets are blue.</line>
 <line>I love project
 management, and so do
 you.</line>
 </stanza>
 </poem>
</xml>

Once the content is received in XML, customized style formatting can be
applied using XSLT (Extensible Stylesheet Language Transformations).
XSLT allows you to define style rules that convert the raw XML into a
final display language like HTML.

For example, the set of XSLT instructions for our poem might read (in
plain English) as "render the poem's content into HTML, such that the title
is displayed in the arial bold font. The text in each line should be colored
blue. There should be one line break between each stanza."

The advantage of XSLT is that any third party can apply their own "look
and feel" to the raw content. By using a DTD and applying the rules of
XSLT, content can be marked up in XML and syndicated to many partners
regardless of their technical environments. In other words, XML is the
lingua franca for content on the Web.

Prototyping

Working prototypes that demonstrate key functionality may also be utilized at this
stage, especially if there was no adequate proof-of-concept during earlier tech
feasibility discussions. Under "Iterative" models like Rapid Application
Development, fully functional prototypes are developed as soon as possible, and
new features are added incrementally.

Code Review

Reviews should be conducted periodically as each major feature is added.
Performance testing (on both the database and Web server) is also conducted as
part of the code review, especially during the final review before the project is
handed off to the quality assurance testing phase. Code review is an absolutely
crucial insurance policy that allows developers to identify problems early, before
it's too late to save the deadline.

Point–Counterpoint: "Should the project manager play an
active role during the application coding phase?"

"If the project manager has done her job drafting good
requirements and specifications, then she shouldn't have to be
actively involved. Designing the application is best left to the
experts. It's difficult enough without having to deal with the
suggestions of someone who just read a Learn Java in 48
Hours book and thinks she's an expert. Project managers
should limit their activities to communicating and tracking
milestones. As they say, having too many cooks in the
kitchen causes a lot of problems."

— A senior developer

"While the details of implementation should be left to the
experts, project managers can definitely contribute. They
need to clear up ambiguities in the requirements. They can
make sure that the technology solution fits the company's
business strategy and accommodates whatever plans there
might be for future enhancements. They sometimes advise on
resource tradeoffs and organizational priorities. They should
also be managing the overall process and keeping developers

on their toes in terms of deadlines. Project managers who ask
a lot of questions about implementation details can be
annoying, but at least they force everyone to justify their
decisions."

— A senior tech lead

Code Review Guidelines

Code review is especially important for all new scripts and nontrivial
enhancements before the code is launched. The goals of the code review are to
ensure that the overall system is designed in a scalable, sensible way and also to
ensure that the code itself is well structured and well written. Each of the technical
review items should show up in the project plan or checklist.

A programming style guide should be used. This can often be obtained from the
company or organization that supports the programming language (for example,
Sun Microsystems provides a style guide for the Java programming language). A
style guide explains conventions for writing code in a clear, readable manner.

The code review should be initiated at regular intervals during the implementation
phase. A suggested review interval is every seven to ten workdays, which provides
the opportunity to fix systematic problems before the implementation has advanced
too far.

For simple projects, the review may consist of an informal walkthrough of the
code. However, for more complex projects and final reviews, the reviewer's
comments should be written. The reviewer should indicate the severity of the
problems uncovered during the review, differentiating between "necessary" and
"recommended" changes. Necessary changes include serious bugs that must be
fixed before launch. Recommended changes include minor style improvements or
simplifications of the code that can be finished after launch.

A separate review of any code that is used to query the database should also be
conducted before launch. The purpose of this review is to allow database
administrators to "tune" the database for optimal performance under high traffic
conditions. The DBA needs to understand how the database tables are being used
in order to put performance improvements in place. Also, there are often multiple

ways to build a query, and the DBA may be able to suggest improvements to
queries. Finally, the DBA may identify some performance issues that are best
addressed by implementing stored procedures (and were overlooked during
technical design).

After completing a project, developers should enter important details about the
project in a searchable knowledge base. This project documentation, typically
stored in an intranet archive, provides valuable information to future developers
who will be maintaining and enhancing the code.

Creating a code review system is the production manager's responsibility, but as a
project manager you can play a crucial role in advocating, establishing,
documenting, and enforcing code review policies on each and every project. This
effort may entail an internal political battle, but it is a battle that is worth fighting
given the time and effort that this practice will save over the lifespan of several
projects. If you are outsourcing a major portion of the development work to a third
party, ask the contractor to describe its code review procedures, and be sure to
track those deliverables by asking for some documentation of the results of each
review.

Production Challenges

Although your Web team may include several developers and a tech lead, in
practice the day-to-day tasks devolve to individuals working in isolation. The
resulting code is often a "black box," whose inner workings are a mystery to
everyone on the team except for one or two people. Good tech leads are in high
demand, and their efforts may be diluted over multiple simultaneous projects.
Consequently, the activities during this highly technical phase are usually a
complete mystery to all but a small handful of people in the organization.

Principles of Good Technical Design

• Reuse existing code and database tables where possible.
• Create reusable, modular code and database tables by identifying

features that may be useful in future projects.
• Database, application logic, and presentation (HTML) code should

all be separated out. This will make the code easier to maintain,
reuse, and redesign.

• Identify high-level application flow. Determine which functions and
procedures should be stored in a library. Decide what logic should

be built as a component and what elements should be cached or
dynamic.

• Identify potential performance problems. Think about scalability by
considering how performance and system requirements will change
as more data is added to the system. Consider how dynamic code
will hold up under increased traffic.

• Anticipate enhancements or features that business owners may want
to see in the future.

To make matters worse, at this juncture developers are highly sensitive to oversight
and criticism. The code a developer writes during this critical time is considered by
her peers to be a direct reflection of her competence and intellectual acumen, in
much the same way that a world-class chess player is judged by his opening
moves. Given this psychological climate and the limited technical knowledge of
most project managers, it is very difficult to manage milestones during this stage.
Less experienced developers may conceal or downplay the inevitable difficulties
that arise. Interruptions by nontechnical people during this phase are usually
unwelcome.

Problem #1: The Designer's Blind Date

Symptoms

• Midway through development, the project sponsor or creative director looks
at the work in progress and notices that what they see on the screen looks
different from the design.

• Frantic phone calls and e-mails ensue, asking the question, "How did our
'Mona Lisa' turn into a 'Moaning Loser'?"

• The designer is overheard saying how she has been painfully reminded of
her last blind date: "He definitely looked a lot better on match.com than he
did in real life!"

Solutions

• Submit the HTML to a quality assurance testing and design review before
handing it off to the application developers.

• Be sure to obtain the creative director's sign-off before handing the finished
HTML over to the developers. Obtaining sign-offs on printed page mockups
is not enough. This is because the shortcomings of HTML, browser

incompatibilities, and monitor display limitations can all affect how the
design is translated onto the screen. Once "application coding" begins, it's
very costly to make tweaks to the design markup.

Problem #2: No News Is Not Good News

Symptoms

• Nobody on the tech team has any questions about the specifications or
requirements.

• You sent the specifications as an e-mail attachment asking everybody to
"please read this," but you've never been able to hold a tech planning
meeting.

• The application developer skims over the specifications and says, "It looks
pretty straightforward." He is strangely silent or absent during planning
meetings.

• The lead developer cancels or avoids status meetings. He begins working
and delivers terse, vague status reports. You are reluctant to cause a
confrontation or be a pain in the neck.

Solution

• If the developer is unable or unwilling to discuss her plan of attack, it's
probably because she doesn't have one. Round up her manager or a tech lead
and schedule a special planning meeting. During the tech meeting, review
the specifications line by line. Ask developers to illustrate the system
architecture on a white board. Ask questions about how the team intends to
implement the requirements to ensure that the technical specifications have
been read and understood— for example, "Do we already have some code we
can use to build the search engine that is mentioned in the specs?" If you can
ensure that everyone understands the requirements and has a solution in
mind, you can minimize unpleasant surprises on the eve of a deadline.

Problem #3: "You need Java? Cool! I used to work at Starbucks!"

Symptoms

• The developer doesn't have the technical skills to do the job.
• Your organization was desperate for technical talent and hired consultants,

freelancers, or people who were "willing to learn."

• The project team includes only one junior developer or a programmer who is
new to the programming language.

• The consultant you're hiring for the job knows all the buzzwords and
technical terminology but can't seem to produce any code samples or
references.

• The programmer supplies dozens of reasons why certain features "can't be
done" but offers few solutions.

• The programmer is working alone. When asked for status reports, the work
samples are buggy or behind schedule.

Solutions

• Conduct code reviews early and often.
• Be sure that developers work in teams.
• If you are understaffed, pull someone off another project for a few hours to

act as a code reviewer.
• If the current developer is untested, have a contingency plan for bringing in

additional help.
• Foster a supportive work environment in which it is okay to ask for help

without being looked down on.
• Schedule status meetings with an agenda that explicitly focuses on problems

and obstacles rather than reporting successes.

Case Study: A Recipe for Disaster

In the fall of 1999, a leading culinary arts portal undertook an ambitious plan to
enhance the centerpiece of its food channel, the Recipe Finder. This project
commenced at the height of New York's "Silicon Alley" hiring frenzy, when
technical talent was extremely difficult to find. Consulting firms capitalized on the
demand for "programmers-for-hire" by hyping the skill sets of their contractors and
rushing new hires through abbreviated training programs.

In the race to stay ahead of its competition, the project team was augmented with
inexperienced contractors who presented impressive, "buzzword-compliant"
resumes. These newbies were thrown into the applications development kitchen,
where the menu de jour was a customized search engine designed to serve results
into a personalized shopping cart.

To make matters worse, the project manager was also new to the job. In his
reluctance to make waves among his new colleagues, he stood by while an
underskilled contractor ran amuck with the code until it was too late. A more

experienced developer stepped in to save the day; but most of the code had to be
rewritten, causing massive delays in the launch date.

Finder Features

The Recipe Finder is an interactive tool that allows users to search a database of
food recipes based on their preferences. The tool provides additional features,
including a list of "Top Ten Most Requested Recipes" and a shopping-cart-style
"Recipe Box" that allows registered members to store and retrieve recipes at a later
date.

The Recipe Finder helps users select from their search results list by displaying
icons that tell which category each recipe fits into. When users select a recipe, they
are presented with nutritional information and the option to add the recipe to a
Recipe Box. Users may also e-mail their recipe to a friend, view tips and ratings
submitted by other members, and submit tips and ratings of their own. The main
features include the following.

• Search a database of recipes by keyword, meal, main ingredients,
preparation style, special categories, season, or special occasion

• Display search results with special category icons (vegetarian, no salt, and so
on)

• E-mail recipes to a friend
• Store recipes in a Recipe Box
• Rate recipes and share cooking tips
• Accept member recipe suggestions

In addition, the tool interface was placed in an attractive "wrapper" that contains
related content. Editorial staff use a publishing interface to assign content to
categories, allowing the relevant articles, features, and topics to be dynamically
delivered to the page. The attractive left-hand navigation uses sophisticated
DHTML to create expandible menus. Relevant advertising from the sponsors of
the tool also appears in numerous places.

A content publishing tool on the back end allows editorial staff to add, edit, and
remove recipes from the recipe database. The Recipe Finder was developed in
Vignette StoryServer, with an Oracle database. StoryServer allowed the
development of dynamic page templates as well as page caching. The business
logic was written in Tcl, with embedded HTML and SQL statements, as well as
proprietary StoryServer commands. The site was hosted in-house.

The business rationale for the project was set by Jane, the editorial director of the
site. An accomplished cookbook author and experienced editor, Jane was familiar
with the features of competing Web sites. With her print publishing background,
she had a clear vision for the tool but was very uncomfortable with the technical
details of the software development process. Jane had several business objectives
for the tool.

• To provide a centerpiece tool for the portal that will increase Web site traffic
by providing useful personalized features, tools, and links to related content.

• To differentiate the site from competitors with various search and
personalization features.

• To provide a database of recipes that can be provided by paid sponsors,
generating direct revenue.

After a series of informal brainstorming sessions, the project began with Jane's
submission of an editorial creative brief. The new features were inspired by a
competitive review of leading food Web sites. Jane pitched her project to a
committee of department heads at a weekly "priorities" meeting. Her brief
consisted of rough page maps, specifying a laundry list of features and editorial
copy on a page-by-page basis.

Introducing Tim

At this point Jane enlisted the support of Tim, the project manager. A brand new
project manager with two months on the job, Tim had previously worked as the
technical production manager for a large Web site. Tim was skilled at drafting
technical specifications and communicating technical ideas to nontechnical
audiences. However, as a new project manager he was inexperienced at evaluating
project risk and had a vague, conceptual understanding of project management
principles. With Tim's assistance an effort estimate was calculated, and the project
was added to the production calendar.

As the production workload piled up with an onslaught of fall projects, the
production team decided to bring in contractors from a reputable consulting agency
that specialized in StoryServer development. Given the reputation of the agency
and its technical focus, a lengthy screening process was avoided. However, in the
absence of industrywide certification standards, it was difficult to judge
competency until the contractors were actually on the job.

From this group a contractor named Chris was assigned to develop the page
templates that would support the search engine, "Recipe Box" shopping cart, and

other features. Chris was a junior developer with six months of hands-on
experience, and he had recently completed a training course on Vignette
StoryServer technology.

As Chris and the other contractors familiarized themselves with the local
development environment, Tim polished off the technical specifications in a series
of needs assessment interviews with Jane as well as user interface designers in
other departments. Jane presented the specifications to senior management for
approval, and Tim's functional page mockups were sent to design. The project was
off to an amazingly smooth start.

As the graphic designer worked on creating final page designs, Tim fielded minor
feature changes and updated the specifications. As editorial changes began to pile
up, the project was split into two phases, with high-priority core features in initial
rollout and the "nice-to-haves" relegated to Phase 2. The pros and cons of each
feature tweak were discussed in long e-mail discussion threads, and effort
estimates were applied against the new features that were included in Phase 2. For
example, some debate raged around the issue of where to place a member
authentication "wall," since it would reduce page views by discouraging visitors
who might be reluctant to sign up for their free membership. As the requirements
stabilized, the Phase 2 items were compiled for submission to the priorities
meeting as a separate project.

Tim finalized the plan in MS Project, based on the effort estimates of tech leads
and his own production experience. As congratulatory feedback about the smooth
planning phase rolled in, Tim wondered what all the "scope control" fuss was
about, thinking, "This project management gig is a breeze."

The Build Begins

At this point the technical build was ready to begin. Chris assumed a prominent
role, drafting a database schema and submitting it for approval to Moe, the
database administrator. An experienced database administrator, Moe was
responsible for maximizing database performance on interactive tools. Moe's job
was to oversee the creation of new tables on the database and ensure that queries
would not adversely affect database performance.

As Chris began interacting with the rest of the team, it became clear that he was a
very quiet, serious fellow. Since Chris was a technical consultant and an unfamiliar
staffer, Tim was reluctant to ask any questions about the schema for fear of
insulting Chris. Additionally, the database administrators were swamped with other

work. Given Moe's slow response to Joe's schema request, it seemed unlikely that
anyone would have time for a superfluous status meeting. Primarily interested in
winning friends among his new colleagues, Tim was reluctant to take an assertive
role in actively managing these members of the project team.

An e-mail exchange between Chris and Moe went on for a few days as they made
changes to the schema. Given the amount of technical jargon exchanged between
the two parties, Tim assumed that progress was being made. He certainly didn't
want to show his ignorance of "foreign keys" and "inner joins" by having to justify
a request for a formal status meeting on the data model.

In the fourth week of development, status reports began trickling in from Chris as
he tested the "Rate & Review" and "Top Ten Recipes" features. As Chris moved
on to tackle the search engine, radio silence ensued. Tim shrugged it off, assuming
that "no news is good news." Other developers in the group assumed Chris was a
one-man superstar, since he never seemed to have any questions or problems. He
continued quietly tapping at the keyboard and thoughtfully rubbing his brow for
another two weeks, while Tim juggled other projects.

As the deadline approached, Tim grew anxious and asked Chris for a status report.
Chris indicated that there were "a few issues, but we're really close" and asked for
a deadline extension. Tim knew it was important to have the lead developer "on his
side,"so he lobbied to increase Chris's contract and extend the deadline. Tim
pointed out the extensive delays that had been caused by the slow response of
Moe's overworked staff. This had significantly hampered Chris's efforts as he tried
to build the search engine queries.

Trouble in the Kitchen

Another week passed, with the deadline looming closer. At this point, Chris's
contract was about to run out. Al was asked to lend a hand. Al was a senior
developer who had been busy working on a related project. As a secondary role, Al
had been responsible for answering Joe's questions and providing assistance by
request. Al stepped in to assess how much work remained on the project. At this
late stage in the project, the remaining work included minor fixes to some of the
code, all of the "Recipe Box" shopping cart functionality, and the search results
pages. In order to get a clearer idea of the scope of the remaining work, Al opened
up the code and took a look inside.

The code itself was clean and well commented, but it lacked basic error checking
of user inputs. The programming logic was crammed with convoluted "if-then"

statements. Chris also ran into problems on the search results page with handling
the output from two queries at the same time. In each case, stock solutions were
readily available that could have saved several days of wasted effort. At this point,
Moe assumed a more active role, stepping in to review the code from a database
efficiency standpoint. Moe offered several suggestions to rework the SQL queries
and introduce caching of some dynamic elements. Chris was asked to hand off the
project to Al. After reengineering much of the code, Al finally carried the project
through to launch, several weeks behind schedule.

Lessons Learned

Chris had run up against roadblocks that were entirely preventable and that he had
spent many hours toiling away at in solitude. The combination of Chris's reluctance
to ask questions, Tim's chronic reticence, and the lack of a formal code review had
wasted weeks of development time.

The solution was clear to everyone: If someone had reviewed the code periodically
during the early phases of the project, the project could have been completed ahead
of schedule. Additionally, Chris's learning curve would have been accelerated, and
he would have avoided the uncomfortable scrutiny to which he was subjected at
the end of the project.

Based on this experience, the production team instituted a formal code review
process. Guidelines and other documentation were drafted and placed on the
intranet, where it could be reviewed by staff and new hires.

Summary

Software development for the Web follows a standard process. However, the "paint
by numbers" approach is not enough to ensure a quality end product. Help your
tech leads to institute a formalized code review process in order to introduce
quality checkpoints that will identify problems before it is too late. Given the
complexity of software development work, your best hope as a project manager is
to create the conditions for effective self-policing. Code review allows you to
harness the collective knowledge and experience of your technical team.
Additionally, code review can safeguard against "hidden" bugs that might not
reveal themselves during quality assurance testing (QA), like performance or
scalability limitations. Since most project schedules do not account for the
possibility of major bugs during QA, it is crucial to pass a sound product into
testing.

Chapter 11. Surviving Quality Assurance

Key Topics

• Why Web QA Is Different
• What QA Tests Are For
• The QA Process
• The Politics of QA

A Common Scenario

The project you have been working on is now just a few weeks away from the
launch date, and your head is swimming with details. You have been working 14-
hour days for the past month, but you still feel like you do not have a firm grasp of
the details or exactly what everyone is working on. You do not want to ask the
developers for a progress report because you can tell they are weary of your
questions and no longer speak to you in any sort of civilized manner. They
communicate only in irritated nods and grunts that could not in any way be
characterized as cordial— and that's if they bother to acknowledge you at all. When
the business owner is not whining about a feature that had to be cut from the build,
he is whining about another feature that must be added now at the eleventh hour.
The creative director is complaining to anyone who will listen about how you
deliberately kept the designers from seeing the completed templates so they could
make their "last-minute adjustments."

You haven't looked at the project plan in weeks because it's too depressing and it
no longer has any relevance to the schedule as it has unfolded before you. But one
day, out of sheer frustration, fear, and panic, you open the project plan just to see
how far afield this project has really drifted, and you see that the milestone you
must hit if this project has any hope of launching on time is only a day away. It's
the final big effort and the part of the project that always threatens to push
everyone over the edge: quality assurance.

You break out in a cold sweat. You can picture the quality assurance (QA)
engineers as they eagerly tear into your project and reveal just what a shambles
you are attempting to unleash on the world. You picture their sneers and casual yet
menacing demeanor as they write up the most insignificant flaws like visited link
colors not changing, font sizes too big or too small, seemingly confusing copy,
and, worse, missing pages, server errors, crashing browsers, frozen computers—
total and utter chaos! You think of the deals, the pleading, the excuses, the
promises, and the cajoling you will be forced to do to persuade these people to

release the project. You wince as you start to calculate the hundreds of e-mails you
are going to have to write to the team, reminding them to check the bug database
and fix their bugs. You grow dizzy at the thought of the hours of follow-up with
the team and the testing and retesting of all the bugs QA has exposed— all done at
a frantic pace as the clock continues to tick.

You think back to the early weeks of the project when, in your infinite wisdom,
experience, confidence in the team, and reliance on the spec that existed at the start
of the project, you scheduled only five days for the QA and bug-fixing phases of
the project. Idiot! Everyone said that would be plenty of time, and according to the
production department's project calendar, QA would be able to devote all of their
resources to the project when it came in. But that was months ago. Since then the
scope of the project has grown to include everything from a third-party metrics
reporting tool that requires an as yet to be developed code imbedded in the
templates to a new membership database created to accommodate a last-minute
marketing request.

Epiphanies are not always blissful, and you are experiencing a painful one now.
You are three weeks away from an immoveable launch date, the programmers say
they will not be ready to hand off to QA for at least another month, and when you
give QA the most recent version of the spec, they will laugh openly in your face
and tell you even if they had the available staff to work on the project— which they
don't— they'd still need two weeks just to complete the first round of testing.

While the preceding scenario is a tad melodramatic, it is taken from real life. The
information in this chapter should help you avoid a messy QA phase in your
project and survive the testing and bug-fixing tasks with your sanity and nerves
intact.

Quality Assurance for the Web

The quality assurance methodology for Web development projects evolved from
traditional software QA. However, the Web development environment imposes
different limitations on the QA process that are not present in traditional software
development, such as the following.

• Short development times. Web development projects tend to run from three
to six months.

• Changing requirements. Scope creep and ever-changing requirements mean
the QA department often does not know what to expect from a project until
it is officially handed off to them.

• Simultaneous development projects. In most Web development companies
and internal Web departments, there are several ongoing projects. Often the
QA department is testing several projects simultaneously with a limited
staff.

• Lack of standardized QA practices for the Web. There are as many different
QA processes as there are Web development companies and departments. A
standard QA process for the Web has not been established, and the discipline
straddles a line between front-end usability testing and server-side
functionality testing. At both ends of the spectrum, and everywhere in
between, the standards for Web QA vary greatly.

Quality assurance testing employed throughout each phase of a project is typically
how software is developed. The developers perform unit testing themselves to be
sure each discrete piece of the application is functional before it is integrated into
the whole. However, the Web development environment is not conducive to this
type of testing, mostly due to the rapid pace at which Web sites and Web
applications are developed. Therefore, QA on Web development projects can begin
to resemble quality control testing, which ensures that the final product is bug free
and ready to be released to the public or client.

G Unit Testing

Unit testing means running one component of a system for testing
purposes.

Another significant difference between QA for the Web and traditional software
development is the level of technical experience the QA engineers possess.
Generally, software QA engineers are also developers who have a very high degree
of technical knowledge. In the Web development industry, QA engineers come
from a variety of backgrounds. Many end up in the QA department because it
suddenly became apparent that somebody had better be testing the site to be sure it
is really ready for release.

What Does QA Test For?

If your QA department is like most in the Web development industry, they will
join the process toward the end of the project build, and they will be testing for
bugs or defects in some or all of the following areas.

• Usability
• Browser and OS compatibility
• Functionality
• Internal standards
• Performance/load handling
• Content
• Security

Usability

Usability bugs are the types of defects that tend to impact the user experience from
a navigation perspective. Usability issues include hard-to-use or -find links and
navigation menus, unclear site flow, and confusing or difficult tool, page, or form
interfaces. Usability is a fast-growing discipline in the Web development industry
and should be taken seriously by any professional Web development team. Jakob
Nielsen is the industry's annointed usability guru and his book on the subject,
Designing Web Usability: The Practice of Simplicity, is considered the usability
bible. Nielsen recommends spending 10 percent of the project budget on usability
and claims this cost will be recouped many times over during the life of the Web
site. How your QA department approaches usability issues is a question of your
company's standards. Most QA engineers will flag obvious usability problems such
as confusing navigation or unclear instructions on a tool. However, there are many
more subtle usability bugs, such as architecture or design issues, that may hamper a
visually impaired user. These bugs may not be uncovered by QA unless these types
of issues are part of the company's standards for usability.

Jakob Nielsen Online

Visit Jakob Nielsen's Web site— http://www.useit.com— for articles,
whitepapers, and books on the subject of Web usability.

Another Web site that features Jakob Nielsen's writing is the Nielsen
Norman Group— http://www.nngroup.com.

Browser and OS Compatibility

Compatibility testing across Web browsers and operating systems is one of QA's
most important tasks. Because Web sites display differently from computer to
computer and browser to browser, they must be checked for compatibility on all
the popular Web browsers, browser versions, operating systems, and screen
resolutions. A site may display perfectly on Netscape Navigator version 6.2.1
running on the Windows 98 OS with a screen resolution of 800 x 600 pixels per
inch but horrendously on Netscape Navigator 4.08 running on the Macintosh 7.01
OS and a screen resolution of 1040 x 768 pixels per inch. A mature QA department
will know what to look for when doing compatibility testing and will have
documented the analomies across browsers and operating systems. They will also
know how style sheets are handled in the various browsers, which is a difficult
design component to optimize for. A good QA department will also have up-to-
date metrics on which browsers, operating systems, and screen resolutions are most
favored by their audience and on the Web in general.

QA should always test for the lowest common denominator in terms of user
configuration. Company standards come into play again with regard to what
exactly the lowest common denominator is for a user. Does the company support
people who use a 9,600 baud modem connected to a Macintosh Quadra running
Mac OS 6.5 and Netscape 1.2? Probably not. QA will help the company determine
where to draw the line with regard to what user scenarios are supported. Most large
Web sites no longer support versions of MS Internet Explorer and Netscape
Navigator lower than 3. The percentage of Macintosh users on the Web is dwarfed
by Windows users, and most Web sites and design companies do not optimize for
the Macintosh audience. Microsoft Internet Explorer is the Web's most popular
browser, probably due to the ease with which it handles style sheets and its tight
integration with the Windows OS, which is the dominant OS in the PC market.

Functionality

Functionality testing used to involve simply putting data into a Web form and
getting the correct result set or page back. As Web sites become more and more
complex and database-driven, functionality becomes the norm, QA testing tasks
expand and change. Even with the increased complexity of Web sites, most QA
departments still only perform functionality testing from a user's perspective. Does
the page load in a reasonable amount of time? Is it the page that was requested?
Are the quiz results accurate? Generally, QA does not look beneath the hood of the
application or Web site to be sure the code is optimized and the database schema is

as efficient as possible. These optimization tasks are left to the developers to
perform, and QA will work to expose any deficiencies in the code simply by using
the Web site.

Internal Standards

Most professional Web development companies or departments will have
standards for design, functionality, and performance to which they must adhere.
Part of QA's responsibility is to make sure these standards are met. These details
run the gamut from internal tracking tags being implemented on every page to
correct logo usage. The company standards are normally documented and available
on the company or department intranet. The QA department is often responsible
for creating and maintaining these documents.

Performance and Load Handling

Another crucial area of testing concerns Web site performance. The QA
department will have established benchmarks for performance that include
download times and the allowed wait time for a Web application's results page to
be delivered. The QA engineers will time all pages and applications to be sure
standards are met. Slow load times and applications "timing out" usually are a sign
of a bug or the need for the code to be optimized.

G Timing Out

When a Web page does not load into the browser after a prescribed
amount of time and a 500 error (server error) is displayed, the page is said
to have "timed out." Similarly, if a Web application does not return results
after a reasonable amount of time and instead displays a blank page or a
500 error, the application has timed out.

Load testing or stress testing is an area where the QA department may or may not
be involved. Some companies require developers to conduct performance or stress
tests during development that involve running scripts that simulate varying degrees
of traffic and load on the application and the Web servers. Often these tests are
done in collaboration with the system administrators who are responsible for the
server's performance. If your company does not require developers to perform
stress testing, then this chore should fall to QA. There are many commercially

available scripts that can aid the QA engineer in performing these crucial tests.
Again, help from the system administrator will be required to install the scripts and
load test the servers.

Content

Even though most content displayed on a professional Web site has been proofed
by a copy editor, QA still combs through the site and makes sure is are dotted and
ts are crossed. During the mad rush at the end of a project, the content is often the
last thing to be put into the templates. Mistakes happen. Be sure your QA
department checks for errors in grammar, spelling, and punctuation, and for
illogical or clumsy prose.

Security

Security holes are most often the responsibility of the system administrators. They
maintain the company firewall and servers and make recommendations to the
developers on how to best code for security. E-commerce sites present the most
security concerns, and QA will be checking that all sensitive data entered into
shopping systems are protected and secure.

How Does QA Test Web Sites?

Most QA departments have an established testing regimen through which they run
new Web sites and Web applications. The regimen will consist of testing for all or
most of the elements just described, documenting bugs, following up with the
project manager when a round of testing is completed, and rechecking the bugs
once they have been squashed.

The QA Process

When you were developing your project plan, you consulted with the tech lead and
QA staff on their estimate of the length of the testing phase for your project. They
based their estimates on the functional scope of the project (the spec at that time)
and on the availability of resources at the time the project was handed off to QA.
You plugged this time estimate into your project plan and continued on with the
build.

If you are extraordinarily lucky, your project has progressed smoothly, the scope
has not increased dramatically, you have hit all your crucial milestones, and you
are now only a few days away from the QA handoff. You check your project plan
and see that today's task is to alert QA to be ready for the coming handoff. You e-
mail QA and tell them what time and on what day you expect to hand off the
project. You set up a meeting with QA, during which you give them the most
recent version of the spec and describe any outstanding issues, such as missing
content or unfinished coding.

The QA department will appreciate the update on the project details and will be
doubly glad you are not trying to hand off something that is incomplete. This is
QA's first task in managing their phase of the project: to be sure nothing comes
into QA that is not completely developed. The goal is to hand off the Web site to
QA after the technical build is finished. From the moment the project is in QA
until the end of the first round of bug testing, there will be no coding or design
tweaks. Rarely does this happen; but because of the inevitable scope creep and
resulting time slippage that happens during the build phase, it is important that the
technical build is complete and that the only coding during the early rounds of QA
testing are minor tweaks and bug fixing.

Early Quality Assurance Milestones

Even if your development process does not include unit testing or code reviews by
developers, two QA milestones should be scheduled during the course of the build:
design and HTML. Be sure QA tests and approves these components before they
move along the development path.

• Design QA. The Web site design— specifically page layout and navigation
elements— should be approved by the QA department before the project
progresses to the technical development phase. Testing the design elements
of the Web site before the back-end functionality is built will ensure that the
final design is consistent with the specs and scope of the project. This is also
a chance to make sure the Web site is conforming to the company standards
for design and usability. Exposing problems at this early stage in the build
will save time and keep the project within budget.

If you think all the design deliverables will not be completed by the date
scheduled, then work with the creative director or designer and the QA lead
on a rolling handoff schedule of design elements. This will allow the project
to progress to the technical build and avoid a potential bottleneck.

• HTML QA. When the page designs have been rendered in HTML, be sure
these templates are tested and approved by QA. The HTML templates of the
site provide the structural framework required to support the dynamic code
and functionality. If your QA department does not perform code reviews for
advanced programming languages, they at least should be able to test and
check the HTML code. The HTML should be checked to be sure it conforms
to current World Wide Web (W3C) standards. If your company does not
require the HTML to comply with these standards, at the very least be sure
all the links are working, images are in place, and style sheets are
functioning. Cross-browser and OS testing should occur in this QA phase as
well.

The Bug Database

Similar to the issue log, a bug-reporting tool or bug database is an indispensible
communication tool used during the QA phase to log bugs in a centralized location
under the project name. These tools come in many shapes and sizes and provide
varying degrees of functionality. There are incredibly expensive products available
that do exactly the same thing as a bug database or tool you could build yourself
with MS Access.

Regardless of how you acquire your bug-reporting tool, off the shelf or home
grown, there are some basic features that must be included if the tool is to be used
successsfully.

• Severity ranking. The QA department will have a ranking system for the
severity of the bugs they find. The severity is a measure of how much the
bug hinders the user from interacting with the site. For instance, a ranking of
High describes a bug that totally disrupts the user experience, such as a page
not found or a server error. A less severe bug, such as a broken image,
would receive a ranking of Low.

• Type of bug. Similar to bug severity, the reporting tool should display the
bug type. Web site bug classification is fairly standard across the industry,
but there are still variations particular to individual companies and
departments. Bug types include Display, Navigation, Functionality, Copy,
and Usability.

• Description. It's important that the bug behavior be described briefly yet as
concisely as possible. This will help the bug owner to determine if what is
being described is a problem with the site or a user error.

• Status. Once a bug is reported, it needs to be monitored by the development
team and the QA department. The goal of the development team during the
QA phase is to change the status of bugs from "Open" to "Fixed." The status
of a bug can also be "Waived" if it is discovered that the bug is not really a
bug after all.

• Author. The QA engineer who discovered the bug should identify herself
and provide her e-mail address in this field so the bug owner can contact her
for any necessary clarification.

• Owner. It's important to assign the bug an owner, whether an individual or a
group. For instance, a broken image may be assigned to design or HTML. A
server error obviously would be assigned to the programmer or
programming group.

• Date. Bugs should be assigned a date when they are logged. This allows the
project manager the ability to monitor the progress of the QA process.

There are some other nice-to-have features that help move the process along, such
as the ability to e-mail bugs to team members. A link to the bug location is helpful
as well. The tool should also allow for varying levels of permissions. "Guests" can
view bugs but not change the status of them, whereas a team member with more
privileges can change the status of a bug when it is fixed.

It's also important to be sure the reporting tool is easily accessible. The most
successful bug-reporting tools are served from the Web or the company intranet.
Tools that are not dynamic, such as those built using a desktop application, must be
stored on a company server, which often means the tool will not allow
simultaneous access. Building your bug-reporting tool as an online application will
save you time and headaches during busy QA phases.

Finally, the bug-reporting tool should be easy to use and understand. The goal of
any communication tool is to keep everyone on the same page and in tune with
each other and the effort at hand. You don't need to buy a reporting tool with so
many whizbang features that it becomes a hassle to use. If you build the tool in-
house, keep it simple, and provide only the essentials to get the job done.

The Testing Process

Where the rubber hits the road is in QA. The standard testing procedure is
described in this section.

Handoff

Generally the project is handed off to QA by the project manager once the
technical development is complete. A handoff meeting is scheduled, where QA is
fully briefed on the project before they start testing. Possible attendees to this
meeting are the QA lead or testing engineer, the developer, the tech lead, the
producer, and the stakeholder or client. During the handoff meeting, the project
manager will present any outstanding issues of which QA should be aware, discuss
how the scope of the project has grown or diminished, indicate expected outcomes
or results of certain dynamic features, and most importantly, review the time
alloted in the schedule to allow QA to complete their testing. An up-to-date draft of
the spec should be handed off to QA along with the project.

If your project is on schedule and a testing engineer has been scheduled, then
testing should begin immediately. If you miss your QA handoff date, then the
project will enter the QA queue, and testing will begin as soon as an engineer is
available. In busy Web development companies or departments, hitting your QA
milestone is imperative to making your scheduled launch date.

Rounds One, Two, and Three

QA testing occurs in rounds. The QA department should have an established
testing procedure they follow for all projects. They may begin by testing usability
and then progress to functionality testing or begin with security testing or load
testing. The QA engineer will run the project through all the required tests and log
all flaws and bugs. Once the first round of testing is complete, the engineer will
inform the project manager, and testing will stop until all the bugs have been fixed.
The project manager should have his team fixing bugs as they are reported.
Everyone on the team should have access to the bug database and should be
checking it frequently. The project manager should be monitoring the bug database
closely and following up with his team to be sure they are checking the bug report.
When the first round of testing is complete, the team will attempt to fix all the
remaining bugs as quickly as possible. When the fixes are complete, the project
manager will alert QA, and the second round of testing will begin.

During the second round of testing, the QA engineer revisits all the reported bugs
to verify they were fixed. Occasionally, fixing bugs will create new bugs, which
are revealed and reported. During this round the team and the QA engineer work
closely together to clear up any questions the QA engineer may have about the
design, copy, or functionality.

When the second round of QA is complete, the QA engineer, developer, and
project manager meet to review any outstanding bugs or issues. If the Web site is
in good shape, then the site is ready for the final round of QA. Until now all testing
was conducted on the production servers where the Web site was developed. In
order to get a true sense of how the Web site will perform, the final round of
testing occurs in the live environment. The Web site is soft launched to the live
servers, where the QA engineers can get a truer sense of the Web site's behavior. If
required, the Web site will be password protected until it is ready to be launched to
the public.

Soft launching a Web site is an important step in the QA process. Often a Web site
that has been stable in the development environment will break once it is live. This
is usually due to paths to databases, applications, and design elements changing
once the site is on the new servers. It can take a full day for the developer to
stabilize the site once it has been migrated to the live servers. More serious bugs
are often exposed in the live environment as well. Do not attempt to launch your
site in the live environment without first going through a thorough soft launch
period of testing.

The Blessing

When the final round of testing is complete and the Web site is stable in the live
environment, QA will meet with the team to present their final report. At this
meeting the QA engineers will give the project their blessing and allow the site to
be launched, or they will recommend that the site not launch because of a still
outstanding bug or flaw. This meeting provides the opportunity to negotiate with
QA on what the term "launch ready" means for this project. Even up to the last
minute before launch there will be small imperfections that are still being chased
down, such as misspellings, broken images, and broken links. If these issues are
known, are being addressed, and are not on the home page, and you can promise
QA they will be fixed before launch or immediately after, then you have a good
chance of convincing QA to allow you to launch. However, if there are major
problems, such as the search functionality not working, then you should get an
estimate from your developers on how long the fix will take and alert your client or
the stakeholder. You can also expect QA to be extra thorough when they retest the
broken functionality. Receiving the blessing from QA is the first step in the launch
procedure.

Black Friday

A good rule of thumb is never launch on a Friday. Even if you have all the
confidence in the world that your Web site is completely sound, do not
risk launching over the weekend because should something go wrong (and
you can almost be sure something will), it can be difficult to track down
your team. First impressions count, so be sure your site is launched at a
time when you have full coverage by your team.

The Politics of QA

Sometimes standards and process clash.

That's Not a Bug, That's a Feature!

A common problem for both the QA department and the project manager is that no
one wants to admit he or she made a mistake. This can be especially true for
developers whose pride can often get in the way of a delivering a bug-free product.
It is a rare project where there are no disputes between the QA engineer and the
developer, the copywriter, the designer, or especially the project sponsor as they
try to rush the QA effort.

As project manager you are caught dead center in these disputes. Within minutes
your feelings for the QA department will turn from love to hate and back again as
you struggle to settle bug disputes and calm frayed nerves. Because the QA phase
occurs at the end of the build when your team is tired and anxious to get the project
out the door, small bugs can take on gigantic proportions. Use all your leadership
skills (and this may be difficult because you will be tired as well) to motivate the
team to stick together and cooperate with QA through the bug fix phase. Help the
team through this phase by monitoring the bug list carefully and double checking
QA's work as well. If there are a large amount of reported bugs, offer to assist in
fixing any bugs that are within your technical or editorial capabilities.

Who Needs Code Reviews?

One of the most frightening and illogical assumptions in the Web development
field is that developers, due to their commitment to quality and their incredible
skill, do not need their code checked for bugs. The argument almost works. The
commitment-to-quality part is quite noble, and of course, who could doubt a
developer's skill as images of 1950s lab-coated geeks with crew cuts humming

"The Star-Spangled Banner" come to mind. But the reality is this: Web projects are
intense, pressure cooker affairs where the specifications constantly change and the
hours are incredibly long. Everyone on the team will pass through periods where
quality is far down on the work survival priority list— certainly well below Diet
Coke and finding a favorite CD, two items that get people through the toughest
parts of the build with their sanity intact. No matter how committed to quality a
person may be, his energy and concentration will fluctuate during the course of the
build, leading to mistakes and oversights and, hence, a need for QA and code
reviews.

Another argument developers will use to avoid QA and code reviews is that these
testing procedures make them feel they are not trusted enough or competent
enough to do good work. This argument verges on the personal, and it must be
handled correctly. The argument has nothing to do with QA or competency, but it
is actually about an unwillingness to be supervised and the inability to work in a
team environment. Some developers would prefer to be left completely alone and
to code in solitude. This approach may work in some software development
environments, but building Web sites is the most collaborative form of software
development. If this argument should crop up on a project, don't engage the
individual; it's not your battle. Kick the issue to the tech lead or even the CTO if
necessary. This argument is a signal that there may be some deeper issues brewing
in the tech department, and a closer look at the overall process may be required. It
could also simply be the sentiment of one individual, in which case you shouldn't
worry too much because that person will be moving on soon enough, willingly or
otherwise.

Case Study: Burning QA

In this case study, we watch as a project manager in a publishing company resorts
to a manipulative tactic to get her project released from QA and subverts the
established practices of the organization. Where is the dividing line between
putting personal relationships ahead of company interests?

Landing the Client

Michelle was a project manager working in the interactive department of Axelrod,
a large publishing company. Axelrod published several trade magazines for the
financial community, and each magazine had a companion Web site. Axelrod's
online advertising department recently acquired Pennywize, a large national bank,
as a new client. The pitch centered around the creation of a debt reduction

calculator that would be displayed in a standard Web banner. The idea was that a
person would enter her debt amount, how quickly she wanted to reduce the debt,
and how much she could afford to contribute each month to pay down the debt.
The user would enter all of the information directly into the banner ad, which was
doubling as a tool front end. When the user clicked Submit, she was sent to a
results page that presented different payment scenarios for paying off the debt
within the amount of time selected. The user could also choose to enter new figures
into the tool from the results page to see other payment scenarios. The results page
also displayed marketing messages aimed at driving the user to the Pennywize
Web site, where she could open a checking or savings account online.

In addition to the interactive ad, the bank would become the sole sponsor of all the
financial tools on Axelrod's Web sites. This sponsorship would provide millions of
page impressions over the course of a year for the Pennywize Web site. It was an
impressive package and the bank liked the idea of the debt reduction calculator, but
past experience had shown no quantifiable success with online advertising or
sponsorships. Before they committed to the total package, which was potentially
worth more than a million dollars in ad revenue to Axelrod, they wanted to do a
three-month test of the debt reduction ad. If the ad drove significant amounts of
traffic to Pennywize's site and a significant percentage of people who clicked
through became Pennywize customers, then the bank would sign on for the entire
program and a three-year commitment.

As with most projects that originated from the ad sales group, there was a hard and
fast deadline that could not be missed. The launch date was timed to coincide with
a large print ad campaign Pennywize was rolling out in the Sunday edition of
several large metropolitan newspapers. The campaign was slated to begin in three
weeks. Fortunately, the project was not a difficult one for Michelle's team, who
had built far more complicated online financial tools.

The Handoff

The tool was ready for the QA handoff on the designated day according to
Michelle's project plan. The design and HTML had already been tested by QA the
previous week, and Michelle had provided complete specs to the QA engineer soon
after the project kickoff meeting. Juan, the QA engineer who would be testing the
tool, estimated that the first round of QA would take three days. Michelle and Juan
had been working together at Axelrod for the better part of three years. They had
worked on many challenging projects together and had a keen understanding of
how the company worked and how to manage the development process.

Michelle did not expect any major flaws in the tool, so she budgeted two days for
bug fixes after the first round of QA was over. The second round of QA should
only take one day. The second round of QA was nothing more than the QA
engineer verifying that all the reported bugs were fixed. This schedule would allow
the tool to be launch ready on the Friday before the newspaper ads ran in the
Sunday editions.

Michelle was well aware of the fact that launching anything on a Friday was
forbidden. There was usually not enough coverage in terms of people being
reachable in case something went wrong with what had launched. However, in this
case the timing was unavoidable. The ad had to be live on the site when the Sunday
editions hit the newsstands, and Michelle did not want to ask people to come in to
work on a Saturday night to launch the ad and all the attendant functionality.
Launching the ad required the work of the advertising production group, the
application development group, and the system administrators. A launch of this
type could never be done on a weekend.

Round One

The first round of QA went smoothly enough. There were no fatal functionality
bugs and only a few cosmetic bugs, but otherwise the ad tested fine. Unfortunately,
on the day the first round of QA ended, Cynthia, the account representative from
the ad group, wanted to alter the design of the ad and change some of the copy on
the results page. Michelle had not counted on any last-minute changes, but she
didn't think this would be a problem or would disturb QA. She asked the
programmers to make the changes at the same time they were fixing the bugs.
Michelle did not tell Juan about the changes to the ad or the results page because
they did not affect functionality, only design.

Two days later Michelle handed off the ad to Juan for the second round of testing.
According to her team all the reported bugs had been fixed. She felt sure the
second round of QA would take less than a day. Michelle handed off the project to
Juan by e-mail, as was the practice. She mentioned in her handoff e-mail that all
reported bugs had been fixed and that the design had changed a little bit. An hour
after she sent the e-mail she received a reply from Juan informing her that due to
the design and copy changes, the project would require another round of testing.
Juan explained that even minor changes to the display elements of a project always
required a new round of testing. It was the process. To compound the problem, the
testing could not even begin until Monday or Tuesday of the following week
because of a large project that was scheduled to begin QA immediately.

Michelle was shocked. She had explained to Juan how important this project was
to the company, and she could not understand how the design changes that had
been added at the last minute could require a whole new round of QA. She became
angry at the thought that Juan was delaying her project because of the "process."
She was upset, but at the same time she knew that if she had taken the time to let
Juan know about the design changes, this situation might have been avoided. She
e-mailed Juan and asked him if there was anything he could do to get the ad
through the second round of QA today. She told him the new design did not
change any of the functionality— it was just display changes. Juan responded that
the other projects coming into QA had tight deadlines as well and that even though
the design changes were slight, rules were rules. And anyway, Michelle was
planning to launch the ad on a Friday, which was against company policy.

Round Two

Michelle knew Juan was correct in wanting to perform a new round of testing on
the ad, but she also had the best interests of the company at heart. She knew Juan
did as well, and that was what was making her angry. She decided, however, that
this battle was one she could not fight. She had always had a good relationship
with Juan, and she valued his service. She contacted Cynthia from sales and
explained the situation with QA. Cynthia did not seem terribly concerned. She told
Michelle to explain to Juan that this was the most important client in the company
and that the ad could not miss the launch date. Cynthia asked Michelle why she
had sent the ad through QA anyway because the ad group rarely did that. Michelle
explained that anything that goes on the live site had to pass through QA. Cynthia
replied that this was the first time she had heard of that rule. So much for process,
Michelle thought.

Michelle was right back in the middle of the QA mess. She decided to try a ploy
that she always hated when it was used on her, but she felt it might be the best tack
in this situation. She would e-mail Juan again and explain the importance of the
client and ask him to please forgo the new round of QA, complete the second
round of testing ASAP, and release the ad so it could launch the next day, which
was a Friday. "Surely," she wrote, "you understand how important this project is to
Axelrod as a whole but especially to those of us in the interactive group." This last
line was gratuitous, and she knew it. It might even be viewed as a veiled threat, but
she wanted the e-mail to have an impact— especially since she was going to cc
Cynthia, the Axelrod CTO, and the vice president of sales. It was a cheap shot, and
she knew it. By including executives on the e-mail she would be presenting Juan in

an unflattering light and would invite others to pressure him into subjugating his
process in order to get the ad project out the door.

Michelle had to decide where her loyalties were strongest: with the company or
with maintaining her relationships with her coworkers. She decided that in this
particular instance she should side with the company and do what she thought she
had to do to get Juan to finish the testing in time to launch. She sent the e-mail and
decided to let the chips fall where they may. If the CTO was a reasonable manager,
he would see how both sides had a valid argument and make the right call. The
right call in this case, Michelle reasoned, was launching the ad.

Was the Sacrifice Worth It?

Despite her knowing better, Michelle felt a sense of satisfaction in sending the e-
mail. She knew there was probably a better, more diplomatic way to handle the
situation, but she was undeniably angry at Juan and, to be totally honest, out for a
little blood. She felt a pang of regret nearly instantaneously after sending the e-
mail, but she had to go all the way with her decision now, which would more than
likely mean explaining to the CTO how Juan had become an obstacle in getting the
project to launch. She was also a little angry at Cynthia for fobbing off this
problem on her, and she regretted not being able to get Cynthia to take
responsibility for getting the ad through QA.

Juan had a perfectly reasonable response to Michelle's e-mail. Without losing face
or appearing guilty of anything more than not having the capacity to handle the
workload, he was able to put the problem back on the business owners. He
responded to Michelle's e-mail by explaining that should sales or the CTO make
the decision to launch the ad project, then they had to acknowledge that the price
would be delaying the other projects that desperately needed to get through QA.
Juan positioned it as a "this or that" proposition. You can have the ad, but you lose
the other project, which also has revenue attached to it. By presenting the problem
this way, Juan was able to show that he valued the company's interests over the
process and understood the business ramifications of either decision.

For a couple of hours neither the CTO nor the VP of sales responded to either
Michelle's or Juan's e-mail. Cynthia weighed in with an e-mail imploring Juan to
finish testing the ad so it could launch. Finally, the CTO sent a simple one-
sentence e-mail to the group: "Finish the Pennywize ad, and launch it." And with
that, the debate was over.

Michelle felt a mix of emotions. She believed she was vindicated because she had
sided with sales and knew her project was more important than process or any
other project that was in the QA queue. At the same time she felt enormous pangs
of guilt at having used an underhanded tactic to get her way with Juan. The project
was launched the next afternoon according to plan. Juan sent Michelle an e-mail
stating that the ad was ready for release— and nothing more. Michelle was by now
feeling so guilty that she tried to read between the lines. "He didn't sign it. He
always signs his e-mails. What does that mean?" Finally, she sent Juan an e-mail
apologizing for having resorted to cc'ing his superiors in order to get her way. She
knew he knew what she had done and that knowledge was feeding her guilt. Juan
validated her feelings by not responding to her e-mail. Ever.

Summary

QA is the final gateway the project must pass through before launch. It can be a
trying process, especially in light of the fact that by the time the QA phase rolls
around, the team is often tired and ready to move on. The project manager will be
called upon to help the team chase down and fix bugs and at the same time help the
QA engineers monitor the bug list. At least once during the QA phase, a dispute
over a bug will crop up between QA and a team member or the stakeholder. When
this occurs, the project manager will be called upon to play referee and help settle
the dispute amicably.

Most Web QA teams test primarily for usability and adherence to company
standards. Functionality testing is usually limited to the user experience— for
example, does the search functionality return the correct results? QA generally will
not look beneath the hood of the Web site but will leave code checking and
optimization to the developers. However, QA should at least be in the loop with
regard to more technical testing, and part of their process should include being sure
the technical tests such as load testing and code reviews are completed.

Establish a good relationship with your QA department, and gain their trust. Prove
to them you are just as committed to upholding the standards they have worked so
hard to institute. Having a good rapport with QA will provide you with some
helpful leverage when the time comes to negotiate for the release of your project.

Chapter 12. Getting It Out the Door

Key Topics

• The Final QA Phase
• The Walk-Through
• The Handoff Package
• Postlaunch Tasks and Responsibilities

The Final QA Phase

Launch should be viewed as the transition from the development phase to the
maintenance phase. It's important to keep that point in mind as your project heads
into the launch phase, and all you can think about is getting away from the office
for a week or two to rest and regroup. By the time the project is out the door, you
and your team may very well be ready for a break from the project, the client, and
each other. However, there is still some work to do and some deliverables to
manage before you move on.

Launching a Web site is always a great feeling, especially after a long, arduous
build. And the launch phase needs to be managed just as carefully as the rest of the
project to be sure you and the team do not stumble at the finish line.

The Soft Launch

The final round of QA occurs in the live environment. Even if your company does
not have a QA department and all the testing is performed by the developer, it is
still good practice to soft launch the site before the public release or any marketing
or press releases go out. A soft launch is when the Web site and its entire directory
structure and functionality are moved from the development server to the live
server where the site will reside. If there is a development database, then the table
structure is migrated to the live database as well.

The soft launch is conducted by the developers in coordination with the system
administrators and the DBAs. The goal of the soft launch is to allow the Web site
to stabilize and be thoroughly retested in the live environment. QA and the
development team will test all the functionality as well as verify that all the display
elements of the site have remained intact after the migration. A common migration
problem stems from paths to image directories, style sheets, and databases not

being updated in the code when the site's location changes, causing the site to
break.

Don't rush the soft launch period. Allow at least a few days for the site to be
retested and stabilized on the live server. During this time the editorial people may
still be entering content into the site, proofreaders may still be combing the content
for errors, and the developers will still be fixing bugs.

The following e-mail is a good example of the type of correspondence among the
team that occurs during this phase in the project. This e-mail is from the project
manager to the tech lead and director of application development at an interactive
agency, summarizing the final development phase and the prelaunch QA process.

All:
Late this afternoon the client signed off on
the final release of the
system. Sure, the usual minor content bugs
continue to trickle in as we
go from soft launch into final QA, but we have
a very happy client who
keeps dropping quotes like "This thing is sooo
cool" and "You guys were
amazing!"
I wanted to thank both of you for working with
your team to accommodate
a schedule that was stretched to the limit by a
demanding and eccentric
client. Jane and Steve made this happen, and
here are a few highlights,
going from front end to back end. I'll start
with Jane.
Jane developed a slick prototype of the quiz in
record time, soothing the
client very early in the process and avoiding
any major soul-searching/
second-guessing head aches down the road. She
stepped up to the plate and
volunteered to take on additional
responsibility for the entire front-end
and free results experience, removing a great
deal of the pressure from

App Dev and allowing Steve to focus on the
daunting task of building the
algorithm. Jane delivered a very streamlined
system, using JavaScript
and other client-side goodies to create
absolutely minimal performance
overhead. Jane worked some very late hours,
blasting through a massive
number of last-minute copy and design edits,
the highlight of which
came last night when we both worked on the bug
list until 11 p.m. after
participating in the infamous sushi-eating
contest, which Jane won! She
can down 20 pieces of yellowtail and redesign
ten templates in a single
night!
Steve displayed some tenacious attention to
detail wading through a very
knotty algorithm that generated quiz results
for hundreds of possible
combinations. He led the effort to develop a
naming convention and
content workflow that allowed a nontechnical
editor from the client to
create hundreds of text files that could be
seamlessly imported into the
quiz system (also enabling yours truly and the
producer to get down and
dirty by doing some serious content entry). The
logic for the quiz engine
was essentially bug-free in spite of the mind-
numbing details. Steve also
identified combinations that the client's
algorithm did not account for
and pointed them out in time for us to address.
Managing the technical
coordination with our partner site was also a
crucial role.

During the next week we'll have a chance to do
the final QA testing and
some stress testing as well. It wasn't an easy
project, and we still have
some Phase 2 enhancements ahead of us, but
based on the outcome so far,
I'm very optimistic that we'll make our public
launch date without any
major problems.
Yours,
Project Manager Sam

The Walk-Through

As the soft launch period wraps up, you more than likely still have some small
bugs and open issues on the bug list. Meet with the QA department and your team
to discuss the remaining open issues and create a plan of attack for either
eliminating these bugs before launch or taking care of them very soon after.

Once you have a plan to clean up the bug list, schedule a meeting with your client
or the stakeholder of the Web site for a final walk-through. The walk-through is
when the project manager and the client or stakeholder of the project click through
the site together to be sure everything is in order and the site is launch ready. If the
project has been managed well and all the proper sign-offs have occurred, the
walk-through should generate only minor comments or tweak requests from the
client. Obviously a major functionality change request at this point would hold up
the launch and add significantly to the cost.

Because the site has been soft launched for a few days, the client more than likely
has been checking out the site on their own and has prepared a list of questions,
tweaks, and possibly even some bugs that got past QA. The walk-through meeting
can be conducted face to face with the both of you viewing the site, or it can be
conducted over the phone. You could even conduct this meeting by instant
messenger if that is more convenient. The goal of the walk-through is to be sure
the client is completely satisfied that the final deliverable has met the expectations
set forth in the specifications. The client's final sign-off is the expected outcome of
this meeting, not more work or large-scale changes. If the client begins requesting
changes more significant than a minor tweak, then you will either have to scrub the
launch or create a Phase 2 for the project.

Launch Deliverables

As the project nears completion, it's time to start thinking about managing the
handoff process to the client. Unless the contract calls for the same team that
developed the Web site to also perform ongoing maintenance, you will have to
prepare the new team for these duties.

Turning over the Keys

A complete handoff package should be assembled prior to the launch date so the
team or person who inherits the site is fully briefed and can perform all the
necessary maintenance tasks. Schedule a meeting with the maintenance team to
review the handoff package and answer any questions they may have.

A very helpful service you can perform for your client is to evaluate the capability
of the people who are slated to take over the site. You want to be sure they have
the technical ability to manage the day-to-day technical maintenance tasks. If they
do not, it would behoove both you and your client to raise this red flag. The
solution could be that the development team needs to provide more training on the
functionality of the site, or the client may have to hire a new team or Webmaster.

The handoff package should include the following.

• Site map
• Wireframe mockups
• Style guide
• Project documentation
• Application manuals
• Maintenance plan

Site Map

This document is most often created in Visio and displays the hierarchy of the site.
The site map should display the flow and navigation of the site from page to page,
including search and application results pages.

Wireframe Mockups

Every template used in the site should be represented by a black-and-white
illustration. This provides an easy-to-read inventory of functionality and placement
of elements on the page without the finished graphic design elements. This allows
easier planning for future redesigns of the display templates.

Style Guide

This is an important document that will be used by the maintenance team to create
new areas of the site and keep the look and feel consistent with the original design.
The style guide consists of the following elements.

• Color swatches. Every color used in the design of the site should be
displayed with its name and hexadecimal equivalent.

• Style sheets. All style sheets used on the site should be printed out and
included in the style guide. The style sheets should be listed by name and
associated location or template.

• Type specs. If style sheets were not used in the development of the site, then
the style guide should list all the fonts used in the site, as well as any specific
formatting and where the formatting was used.

• Other HTML formatting. Any other HTML formatting not covered by the
style sheets should be listed and the location where it is used notated.

• Images. All image files should be listed in this document. Besides the image
name, each listing should also include the names of the templates or piece of
functionality where the image is used (such as a navigation bar rollover).

• Directory structure. Create a printout of the directory structure that displays
the hierarchy of the site on the server. This printout should include all
directories and subdirectories that make up the back end of the site.

• Nomenclature. The naming convention for files and directories should
accompany the directory structure. Normally the programmers create these
naming conventions.

• Code samples. The developers will provide code snippets from various
elements of the site. These code snippets will provide examples of the
correct syntax use for the maintenance team.

Project Documentation

Assemble all the important documents you created during the life of the project.
These include the final specification, the project plan, and all sign-off and change
order forms. You could also include the issue log and QA bug list if you like. The
more complete the better. These documents will provide the maintenance team
with the necessary back story, which will allow them to solve problems or fix bugs
that may arise during normal use of the site. These documents will also provide the
maintenance team with templates for the ongoing documentation of the Web site.

Application Manuals

Be sure to write thorough and easy-to-understand manuals for any Web
applications the project has called for. The most common manual will be for the
editorial tool component of the content management system (assuming one was
created for the project). Include screen grabs and other helpful illustrations as well
as any specialized naming conventions and directory paths the users of the tool will
have to know.

Maintenance Plan

Part of your preparation for the final handoff of the site is to create a maintenance
plan for the site once it is in the client's possession. During the discovery phase of
the project, you worked with your client to establish exactly how much
maintenance the Web site will require once it's launched. You asked questions such
as How often does the content need to be updated? Will the site require new
content categories and subcategories in the future? How often do the images need
to be updated? Are there plans for more advanced functionality in the near term?
The answers to these questions are what shaped the final specification and scope of
the build.

Before launch, work with your client on creating a simple maintenance document
that reiterates the preceding questions and provides not only the answers to
questions of frequency but describes the areas of the site and the associated files
that need to be accessed for the maintenance to occur. The maintenance plan can
be part of the handoff package. Be sure the programming team taking over the
maintenance of the site also has a copy of any manuals that were created for the
use of the editor or producer of the site.

Another important part of the maintenance plan is the identification of the people
who will be taking over the maintenance of the site. Everyone on the client team
should be identified by name, role, and title if appropriate. Contact information for
each team member should be included in this document as well.

All of these documents should be assembled into a binder with a table of contents.
It is also a good idea to assemble these documents electronically and burn them to
a CD. The binder and the CD will be the physical deliverables that comprise your
project.

Handoff Package Sample

The Chapter 12 folder on the accompanying CD-ROM includes examples

of the various documents you will have to create or include in your
handoff package, including a site map, page maps, and a style guide. An
up-to-date version of this document is maintained on this book's Web site
at http://www.realwebprojects.com.

Going Live

It's the big moment at last; but don't lose sight of all the final details before you go
public.

The Launch Moment

It's a scene you've pictured in your mind for weeks. The team is crowded around
the developer's desk as he prepares to flip the switch that will cause the site to go
live. Everyone is nervous, joking and rechecking the bug list. Champagne is at the
ready. You all count down to the launch moment: "3 … 2 … 1 … Launch!" The
floodgates are hurled open, and millions of happy surfers are now streaming onto
your site as the champagne corks pop. The client beams, the team cheers, and
you're carried out of the office on the shoulders of your coworkers, pumping your
fist in the air exultingly.

Well, maybe. Keep in mind that if you are following a careful launch regimen, then
you have already soft launched the site onto the live servers and have already been
testing the site for a few days. Most times the actual launch occurs when a phone
call or an e-mail from the client arrives giving you the green light to go live. The
official launch can be a rather anticlimactic moment if all you are waiting for is
final approval. In many cases the actual launch task consists of little more than
swapping out the temporary home page for the real home page.

KEY POINT

Just before the site goes live, it is important to send out a "Launch Notify"
e-mail to the client, the system administrators, the project team, QA, and
the customer service department. In the e-mail state the exact time and
date the site will be live and what the expected traffic loads may be like
for the first few days. Also, be sure to include contact information for all
the members of the team who will be on call to handle any problems that
may crop up in the first week postlaunch.

Regardless of how low key the actual launch moment is, it is still a time to
celebrate. Even on the most contentious projects the moment of launch will bring
smiles of joy and accomplishment to the faces of your team.

The Customer Service Plan

When the Web site goes live, the frontline of the organization is the customer
service representative. Any professional, commercial Web venture should have a
trained customer service staff— even if it's a staff of only one individual. Before
the site launches, it is your responsibility to meet with the customer service team to
be sure they are completely up to date on all the site's functionality and any
potential areas for user questions or difficulties. As soon as the final specification
is signed off, you should send the customer service team a copy. Be sure customer
service participates in all regular status meetings during the build phase of the
project.

The only way customer service can do their job efficiently is if they are completely
familiar with the entire Web site. Take the time to establish a good rapport with
your customer service team, since they will provide you with a wealth of
information, especially once the site is live and they begin fielding questions from
users. Customer service works hand in hand with QA postlaunch to stay abreast of
all bugs or parts of the site that are not user friendly. QA and customer service
should have a formal process in place for monitoring the site once it's live. This
process should also include an escalation procedure when things break. Be sure
you are on the e-mail list from customer service that reports user feedback so you
can stay informed of what parts of the project are successful and what parts are not
from the user's perspective.

The Escalation Procedure

This procedure should be created well before launch and signed off by all members
of the team who are involved. The escalation procedure details exactly what
happens in the event of problems that may occur on the site once it's live and who
should be contacted and in what order. That 3 A.M. phone call to the tech lead to
report something minor like a broken image is not good escalation management.
However, should the site be generating a server error instead of the home page, it's
imperative to know whom to contact first and by what method: e-mail, beeper, cell
phone, home phone, or signal flare.

Work with the team leads on who should be on call and on what schedule— for
example, is the weekend on-call person different from the weekday on-call person?
You also need to establish what types of bugs should be escalated up the chain. As
mentioned before, broken images can wait until the next business day, but what
constitutes broken functionality? Do erroneous search results require a 911 call, or
can this wait? The degree of complexity and functionality of the site will determine
how you set up your escalation procedure. At the very least, the entire team's
contact information— e-mail, office phone, and cell phone— should be posted on a
public project Web site and included in the launch notify e-mail.

The Warranty Period

Once the site is live and has been handed off to the maintenance team, you will still
be responsible for monitoring the site and fixing bugs for a predetermined amount
of time. This amount of time can be from one week to one month and is considered
a warranty period. This is a great time to have your development team create any
documention that is still necessary. You can also use this time to begin
transitioning from the project that just launched to new projects. It's important to
keep your team assembled and focused on the project that just launched and not
immediately become immersed in a new project. Unfortunately, this is much easier
said than done. Build the warranty period into your project plan, and be sure all the
resource managers are aware of the duration of the warranty period for your project
to avoid a scheduling conflict.

The Postmortem

This meeting is covered in more depth in Chapter 7, but it bears mentioning here,
since this will generally be the final team meeting once the Web site has launched.
The postmortem is an opportunity for every team member to contribute his or her
impressions and interpretations of the project from a process perspective as well as
suggestions for improving the process. One thing you have to consider carefully is
when to schedule this meeting. Two weeks after launch is usually the best time.
Try to conduct this meeting before the warranty period has ended and people have
moved on to other projects. You want to be sure the details of the project are still
fresh in everyone's mind. Remember that the postmortem is not a gripe session.
Keep any personal feelings out of the meeting, and be sure everyone approaches
the meeting with a positive state of mind and an eye on improving the process.

Case Study: The Most Expensive Launch that Never Happened

This case study chronicles the experience of a project manager attempting to
manage the integration and launch of an e-commerce system. Several factors are
working against the project manager, including an incredibly tight and highly
publicized deadline, a nonresponsive vendor, and a clueless executive management
team. The project manager is caught in the middle of a variety of forces that
ultimately lead to his undoing.

The Setup

ConSports was a content publishing Web site specializing in sports-related news
and information for athletes and participants of nearly every sport imaginable. The
site was advertising supported and growing quickly, but the founders wanted to
expand the site's revenue capability by selling sports equipment online.

Despite the fact that ConSports had an in-house technology staff that included Web
developers, system administrators, and DBAs, the founders of ConSports believed
they would be better off outsourcing the development of the e-commerce system.
The founders did not want to distract the ConSports developers from their current
daily maintenance tasks with a long, complicated development project. By pure
chance AdRev, the company that provided ConSports' ad serving technology,
wanted to begin developing e-commerce systems for their clients. One thing led to
another, and before long ConSports was AdRev's first client for e-commerce
development. Based on ConSports requirements, AdRev presented an $8 million
proposal for the development of the system. ConSports agreed immediately.

A minor detail left out of the negotiations between ConSports and AdRev was the
fact that AdRev had no experience in developing e-commerce functionality despite
what they told ConSports. ConSports did not believe any due diligence was
necessary because AdRev was its closest and most trusted vendor. AdRev took
advantage of this situation, and with the initial payment of $3 million they now had
the funding necessary to gain the required technical knowledge to build the e-
commerce system they promised— or something close to it.

Lou started working as a project manager at ConSports on April 1 and immediately
began planning for the delivery of the e-commerce system from AdRev. He
worked backwards from the previously established launch date of July 1 and tried
to identify all the necessary tasks and internal milestones necessary, all the while
keeping in mind that the biggest task would be the installation and rollout of the e-
commerce system that was scheduled to be handed over on June 1. AdRev was

developing not only the e-commerce back-end functionality but also the front-end
templates that would display the shopping cart pages.

Lou was worried about the lack of a QA department at ConSports. He took a little
comfort in the fact that AdRev had promised every aspect of the system would be
thoroughly tested before release. He also understood that ConSports would simply
have to install the system on its servers, connect to the database, and be ready to go
live. From AdRev's perspective it was the simplest of integration projects, but from
Lou's perspective, if he was not able to test the system to his satisfaction, he would
be the person with the most exposure should problems arise.

He attempted on many occasions to meet with the AdRev project manager to
develop a more detailed plan for the handoff and installation of the e-commerce
system. Unfortunately, the AdRev project manager was too busy with other
projects. As he turned down meeting requests, he promised a thorough walk-
through before the system was handed off.

Smells Like Teen Spirit

Two weeks before the scheduled delivery of the system Lou received a call from a
project manager at AdRev. He was told the handoff would have to be delayed by
one week due to a previously scheduled upgrade of the AdRev development
servers. Unfortunately, the upgrade could not be rescheduled. Lou quickly
calculated how this delay would impact his launch plan. He told AdRev the system
could not be delayed any further or the highly publicized launch date would be
jeopardized. Lou also insisted that they meet in order to hammer out the details of
the handoff, and he wanted a demonstration of the system. The AdRev project
manager agreed, and they scheduled a meeting for the following morning.

The next day Lou and two senior ConSports developers arrived at the AdRev
offices. They were looking forward to trying out the system and meeting the
AdRev development team. Lou had never seen any documentation describing the
system AdRev was building, and for that matter, neither had the developers. As far
as Lou knew, no one at ConSports had ever seen any specifications provided by
AdRev.

The three of them stepped off the elevator on AdRev's floor exactly at nine o'clock.
The office space beyond the little reception area was filled with rows of tables and
desks jammed together, most of which held flickering computer monitors. Colorful
vinelike ropes of data cables and phone wires hung from the ceiling to the floor in
several different places throughout the open office space. A thin layer of cigarette

smoke hung in the air above the desks and tables. The uniform of choice at AdRev
was oversized tee shirts complementing extra-baggy jeans. Lou thought the total
effect was something like a high school cafeteria being used as a base of operations
for a technology company.

They waited in the reception area for 20 minutes until Tim, the AdRev project
manager in charge of the ConSports project, got off the elevator and briskly
walked through the reception area. The receptionist called his name and told him
he had some visitors. Tim introduced himself to Lou and the developers and
apologized distractedly for being late. Tim appeared nervous and jumpy as he gave
the group a quick tour of the office before ushering them into a small conference
room.

Lou explained that they were anxious to see the e-commerce system and to test its
functionality. Tim assured them that they could take the system for a test drive
right away. There was a computer in the conference room, and Tim typed a URL
into a Web browser and waited for the page to load. After a minute or two, the
page request timed out. Tim hit the reload button on the browser, but the page
timed out again. He opened a different browser and tried again, only to experience
the same results. Finally, he picked up the phone, dialed a number, and began
speaking to someone in hushed tones. When he hung up the phone, he explained
that the system was down at the moment, but the developers were working on it.
They anticipated the system to be up and running in a few hours.

Lou was angry but did his best to keep his cool. He asked Tim to set up another
demo for him as soon as possible. The team from ConSports left the AdRev offices
disappointed, angry, and with a growing unease about AdRev's capabilities to
deliver the system.

Escalation

Lou was not able to reach Tim for the next three days. Finally, on the fourth day of
calling, Tim answered his phone. Lou wanted to know what was going on at
AdRev and demanded a demonstration of the system that very afternoon. Tim
apologized sincerely and said they were still unable to provide a demo because
they were right in the middle of QA testing and the system was not available. Also,
the server maintenance was scheduled to begin the next day, so the system would
not be available for another week. Lou was sure Tim was not being truthful, but he
felt helpless to do anything about the situation. He had not been part of the vendor
selection process, and his bosses, Zameer and Keith, the founders of

ConSports.com, had only good things to say about AdRev. All he could do was
make them aware of the delay and hope his team had the stamina to install, test,
and launch the project by the target date. Instead of risking an unpleasant
confrontation with Zameer and Keith when he informed them of the AdRev
situation, Lou sent them an e-mail and outlined the problems the project was
facing. He never received a response.

When the delivery date passed without any word from AdRev, Lou began working
on a contingency plan that would require work to be conducted around the clock in
order to hit the launch date. In preparation Lou pulled two of his developers from
other projects and dedicated them to testing the e-commerce system once it arrived.
Lou asked the developers to write test scripts to simulate a load on the system so
they could measure the performance. He also met with the marketing team, and
together they devised as many complicated user scenarios as possible to test the
usability of the system. He was as prepared as he could be. All he needed was the
system to be delivered within the next few days.

Two days later Lou received a call from Tim at AdRev. The system was ready, and
he wanted to meet to discuss the handoff details. They met later that day at the
ConSports offices, and Tim described the handoff procedure. AdRev would FTP
some of the files to ConSports, while other parts of the system and the database
would be backed up and delivered on tape. Lou asked if the system had been
thoroughly tested and if there were any outstanding bugs they should be aware of.
Tim assured the group that the system had passed a very stringent QA regimen and
it was ready to be released to the public. And to ensure a smooth installation
process, he and an AdRev developer would personally be on-site every day during
the installation and implementation period.

The Devil Is in the Details

True to Tim's word, the following day AdRev delivered the e-commerce system
files. The digital backup tape arrived with a user manual and documentation that
described the directory structure, the database schema, and wireframe page maps
of each of the system's display templates. The only thing missing was Tim and the
AdRev developer. By noon ConSports had the complete system in their possession,
and the developers began the installation process. Lou was so relieved to have the
system finally in-house he didn't care that Tim or the AdRev developer had never
shown up. His team was sharp enough to get through the installation without any
help from AdRev.

The ConSports developers completed the installation within 24 hours. They now
had 15 days remaining until the launch date. Before the developers could test the
system, the massive job of entering the sports equipment inventory into the system
had to begin. There were 10,000 items to enter into the system, and all of them
included an image and a product description. The testing and product entry would
have to happen concurrently, which could lead to a variety of problems should
bugs develop, but Lou was left with no alternative.

A team of freelance product entry people had been hired to enter the products into
the system, and they sat in the developers' area to facilitate communication should
problems with the system arise. The manual that provided the basic instructions for
using the system read like subtitles for a badly translated foreign film and was
nearly indecipherable. It took the product entry team the better part of two days to
figure out the order entry process. Frantic calls to AdRev support, Tim, or anyone
else at AdRev failed to provide any answers.

By the time the inventory entry procedure began, there were only 12 days left until
launch.

The Clock Continues to Tick

As soon as there were a few items entered into the system, the developers began
testing. To their joy and amazement the system seemed to work well, and the
ordering process from the user's perspective was intuitive and simple to complete.
Lou was everywhere at once: He would enter products for a few hours, test for a
few hours, proofread the product descriptions that were about to be entered, and
keep Zameer and Keith up to date on the progress.

On the third day of product entry the e-commerce system servers crashed. When
they were rebooted, the product entry team found they had lost the last several
hours' worth of work and would have to reenter close to 100 items. The product
entry procedure consisted of finding the correct image in the image directory and
linking it to the product page, typing in the product ID number, and then copying
and pasting the product description from MS Word into the product entry GUI.
Once the product description was entered, it had to be formatted with simple
HTML tags. The entire process for a single product could take anywhere from five
to ten minutes to complete.

Lou and the developers began trying to figure out why the system crashed. Once
the system was rebooted, it worked fine. Meanwhile, the developers covering the
QA tasks were logging more and more bugs. The majority of the bugs had to do

with typos in the product descriptions or missing, broken, or incorrect images. Lou
realized the product entry people, in the interest of saving time, were not
previewing their work before saving the pages. Lou assigned one of the product
people the task of fixing the content bugs. He also asked the rest of the people
entering the products to be sure to preview every page in order to catch their own
errors.

So Close, Yet So Far

With seven days to go until launch, there were close to 6,000 products entered into
the system. The bug database had close to 300 records in it, and Lou spent the
majority of the next few days and nights fixing content bugs. Lou calculated that at
the current rate of product entry they would be able to have all the product entered
by the launch date; but there would still be hundreds of bugs remaining in the bug
list.

Just as Lou completed this calculation and updated the schedule, the e-commerce
servers crashed again. The system was rebooted, only to discover the entire last
day's worth of product had been wiped out of the system. Lou was furious as he
conferred with his developers on what could be causing the crashes. One of the
developers thought these were the classic symptoms of a memory leak. The system
worked fine once rebooted, and then as more and more memory leaked out or was
used up inefficiently, the system crashed.

Lou called Tim and told him he wanted to meet with the AdRev developers
immediately. An hour later Lou and the developer who diagnosed the bug were
sitting in an AdRev conference room. Tim sat across the table accompanied by
someone who appeared to be a high school kid, who was introduced as the senior
developer and architect of the e-commerce system.

Lou began to describe the problems they were experiencing. It appeared there was
a memory leak somewhere in the system. The kid claimed that he did not know
what Lou was talking about. The ConSports developer began to describe how the
system would be fine once it was rebooted and then gradually performance would
suffer until the system finally crashed. Based on these symptoms, they contended
that it had to be a memory leak. The kid smiled as the problem was described to
him. He sat silently for a moment as if not sure what to do next and then said,
"Yeah, we know. There's a leak in the virtual memory, and we couldn't figure out
how to fix it."

Lou was furious and demanded an explanation. The kid just shrugged, and Tim
said this was the first time he was hearing about the problem. As Lou left the room,
he turned back to Tim and told him AdRev could forget about getting paid the
balance of the development fee. Tim only smiled and nodded.

Back at the ConSports office, Lou, Zameer, Keith, and the head of marketing took
stock of the situation. There were now six days to go before launch, and they only
had half of the inventory loaded into the system. There was a severe memory bug
that had to be fixed before the site could go live, and there were still over 200
minor bugs that needed to be addressed.

Zameer asked the developers if they thought they could isolate and fix the
problem. The developers believed they could, but it could take a few days, and
then the system would have to be tested again and the product entry would have to
finish. If by some miracle they did make the launch date, due to the high-profile
marketing campaign, the potential traffic load on the servers might bring the
system to its knees. Lou had requested a soft launch period of two weeks before
the big marketing push, but Zameer, Keith, and the marketing department ignored
his warning and went ahead with their plans for a multimillion-dollar campaign
promoting the new e-commerce service on ConSports.com. Now they were faced
with the fact that if they launched, it would be with only half of their inventory and
no guarantee the system would survive the load.

"I Thought I'd Be on the Beach by Now"

On the table in front of Keith was that week's issue of Sports Illustrated open to a
full-page ad announcing the launch of the "Greatest Sporting Goods Store on the
Web, ConSports.com!" Keith looked at the ad and then said out loud to no one in
particular, "I thought I'd be on the beach by now!" The final decision was to
postpone the launch until the system was deemed sound. The developers promised
to work around the clock to repair the memory problem. Once the memory bug
was fixed, the remaining product could be entered into the system and one last
round of testing would occur. They estimated the launch would only have to be
postponed by one week, two at the maximum. The delay would mean $3 million in
advertising dollars down the drain and another $2 million spent on ads promoting
the new launch date.

At 6 A.M. the next morning Lou's phone rang. Zameer was on the line and
hysterical. He told Lou all the ads on the site were missing, and some of
ConSports' biggest sponsors had already called demanding an explanation. Lou

said he'd be right there. Upon arriving he found Zameer, Keith, and the head of
marketing waiting for him. "What did you say to AdRev?" Keith demanded of
Lou. Lou thought for a minute and replied that he only described the problem with
the memory leak. "Did you say we were not going to pay the balance due for the
commerce system?" Keith asked. Lou remembered his parting words and nodded.
"I was pissed off," he said by way of explanation. "Who gave you the power to
make threats on our behalf?" Zameer asked. "AdRev is refusing to serve our ads
until we pay the balance due for the e-commerce system, and guess what? We don't
have any money!" As it turned out, the extra marketing dollars that needed to be
spent plus the loss of the revenue from sales ConSports was hoping to make in the
first weeks of business had wiped out the ConSports cash reserves.

"There's nothing left," Keith explained. To make matters worse, ConSports' biggest
new sponsor, an athletic shoe manufacturer, had read about the problems
ConSports was experiencing in that morning's Wall Street Journal and decided to
cancel its sponsorship deal. The writing was on wall: ConSports was going
down— but not before Zameer and Keith fired Lou on the spot.

ConSports immediately began legal proceedings against AdRev, claiming they
were in breach of contract. AdRev countersued ConSports on identical grounds. As
the problem escalated in the press, more sponsors abandoned ConSports. The e-
commerce system never launched, and within a year ConSports was out of
business completely.

Lou retired from the industry with the intention of writing a novel, but he never
finished. Within six months he was back at another dot com, working on a project
with a tight deadline and everything riding on a successful launch. Only this time
he was determined to see the project through to the end and to avoid threatening
any vendors on his employer's behalf.

Summary

The launch phase of a project can be incredibly hectic. There is a lot at stake
during the final days of a project build, and people are on edge. No matter how
tired you may feel, you need to be as focused now as you were at any other time
during the build. You will have to inspire and motivate your team to be focused as
well. If you have managed your project carefully, you should enter this phase of
the project confidently, and your nerves should be fairly calm.

Soft launching for the final round of QA will go a long way toward ensuring the
site is stable and ready for public release. Work closely with your team and client

during this phase to be sure all the major bugs are squashed and the client is
confident the final deliverable meets all expectations.

Keep in mind that simply making the site live to the public is not the only task
during the launch phase. You will be assembling a handoff package that will
include all the pertinent documentation for the maintenance team that will be
inheriting the site. The transition needs to be managed well to ensure a smooth
handoff to the client. Meet with the maintenance team in advance of launch, and
answer any questions they may have about the design or functionality of the Web
site.

Another important and often overlooked task during launch is meeting with the
customer service team that will be fielding user questions and comments. Be sure
the customer service team has a copy of the final specification and they are
thoroughly familiar with all aspects of the Web site. Make yourself available to
answer any questions they may have about the site, and be sure to pay attention to
any suggestions they may have with regard to usability. Customer service
representatives are closer to the end user than anyone, and their experience can be
invaluable.

Launch is what you are working toward on every project. Launching Web sites is
what you do better than anyone. Coordinating the entire effort and all the disparate
elements and resources for this one moment is one of the primary reasons there are
project managers on Web development projects. Every time the moment comes,
savor it. The moment may be composed of nothing more than the official nod from
the client that the status of the site is now "live," or it could be as dramatic as a
last-minute bug fix being conducted minutes before the CEO of the company
unveils the site in front of an auditorium full of shareholders. Launch is victory,
and you should celebrate accordingly. Enjoy the moment because your next project
is probably only a few days away.

Chapter 13. Leading Organizational Change

Key Topics

• Common Organizational Structures
• The Project Management Role
• The Project Management Office

A project is a microcosm of the organization, and it can be a most effective
proving ground for organizational reform. The role of project management is often
vaguely defined, but this situation has a silver lining. Your fuzzy location on the
organizational chart provides you with considerable latitude, as well as the danger
of stepping on toes. This chapter encourages you to take advantage of your hands-
on position to implement change "on the ground." By the end of this chapter, you
will learn how to use your project as a success story, a source of inspiration for
senior executives who are trying to make the case for a more efficient organization

The Invisible Team Member

In addition to designers, developers, and QA testers, your project team contains a
silent but powerful player who can determine the destiny of every project: the
company's organizational structure. Most employees of a corporation are prisoners
of the "org chart." As functional specialists, the scope of their activities is limited
to well-defined parameters. Designers design. Salespeople sell. Sure, they'll have
input into how the designing and selling gets done, all right— when they make
director in six years!

Project managers can take advantage of their "fuzzy" role to advance their vision
of best practices. As inventors and enforcers of process and protocol, project
managers are uniquely positioned to recommend and implement changes. Few
advocates of organizational change are as well positioned as the middle-level
project manager. Highly paid management consultants write whitepapers in the
hope that executives will "sign off" on them (whatever that means!). Senior
executives issue mandates based on the latest issue of the Harvard Business
Review or the opinions of their golf pro. These mandates are left to "trickle down"
to the rest of the company through the medium of fearful or politically motivated
VPs and directors. Project managers on the other hand can truly lead by example,

making change happen "on the ground" by immediately adopting best practices
and implementing them in their own projects.

A track record of delivering results creates instant credibility with senior
management when it is time to speak up and recommend changes. Projects are the
proving ground for new methods, and no one is better positioned to report
objectively on the effectiveness of a new workflow than the project manager. The
project manager represents the interests of the project, rather than the interests of a
functional department. Consequently, astute executives come to rely on this
impartial source of "local knowledge," which filters its way up the corporate food
chain anecdotally. Organizational changes can often originate with watercooler
anecdotes like the following.

"The project manager has been saying all along that the team had a
really hard time with multiple designers and no creative director. The
collaborative approach just isn't working with the big egos in our
group. He says it has dragged out the design process by two months!"

With their unforgiving analysis of successes and failures, project postmortems
yield a rich crop of hard evidence that can be used to justify recommendations to
the rest of the company. While being situated at the business end of a "dashed line"
on the org chart feels precarious, it also provides the best vantage point for
organizational pioneers who want to make an impact.

Life Outside the Organizational Chart

"Annex 149" was a drafty storage closet that had been home to the
Microsoft Exchange Server. As the workload blossomed, this corporate
version of the backyard toolshed now provided low-budget cubicle
housing for a production team that was bursting with consultants,
programmers, and a new project manager named Kirstin, who had been on
the job for five months.

Allen, an ex-ColdFusion developer, stepped out from behind a shriveled
Chia head and four Star Wars figures to drop a profound thought on
Kirstin, who had just visited his desk for a report on the status of a code
review: "I have tremendous, unbelievable respect for project managers."

Allen was a rather dull fellow and not at all the sarcastic type, so Kirstin
allowed herself an embarrassed shrug. Alex, however, was just warming

up: "I respect you guys because your job sucks. I would never want your
job. The way that you have to deal with salespeople, editorial, and
marketing people and design people throwing random stuff at you all
day— you guys have the worst job. Not to mention clients."

Initially embarrassed, Kirstin went back to her desk and took a few
minutes to digest these words. As she looked at her thriving Chia kitten,
she realized the irony of Alex's observation. Having to work "up close and
personal" with clients, designers, editorial, marketing, sales— and
everybody in every conceivable department of the company— exactly what
she loved about being a project manager. The opportunity to get out of her
office and lead people from every corner of the organizational chart was
exactly why she had chosen to become a project manager instead of an
HTML programmer. Even though she was a junior employee, she was at
the epicenter of tremendous forces of organizational change, as her
company moved ahead with large technology initiatives.

Kirstin's leadership role on cross-disciplinary project teams placed her in a
unique position. For all practical purposes, she "floated" outside the neatly
stacked organizational chart boxes. Sure, the director of the Interactive
Group wrote her reviews, but somehow her connection to the rest of the
company was blurry. She was a "dotted line" that cut across every
department, not just Creative or Technology. Her place in the grand,
rapidly changing scheme of things was confusing and at times
infuriatingly vague, but it was exciting nonetheless— more exciting than
HTML programming anyway.

Common Organizational Structures

There are many different ways to structure the relationship between a project
manager and the rest of the organization.

Functional Organizations

The "silo" model segregates staff according to functional specialty (typically sales,
design, editorial, marketing, production, technology, and QA). Functional, or
"line," managers absorb project tasks into their normal departmental workflow.
The project is divided into segments that are doled out to the departments. Each

piece of the project is coordinated by its respective functional owner. The project
manager is a member of whatever department is sponsoring the project. The
project manager's primary loyalty is to her line manager. For example, a junior
editorial producer might be responsible for developing the content area of a Web
site. She reports to the editor-in-chief, but she will require the assistance and
cooperation of other departments. The project is sponsored by editorial, but she
will be asking Design and Marketing to assist her.

This organizational structure also complicates communication. All job requests
must be cleared through the respective line managers. In order to get anything
done, you may have to play ventriloquist: Place the functional manager on your
lap, and ask him to repeat whatever instructions you have for his team. Repeat
seven times, once for each department that's involved in the project. Project tasks
often take a back seat to whatever departmental tasks are going on. The project
manager is reduced to the role of a supplicant, roaming the halls looking for a
handout as line managers cut slices from the man-hours "pie" and staff work on the
project pro bono in their free time. Bribery carries the day until senior executives
intercede to force the project along.

The Functional Matrix

This fuzzy scenario includes a project manager with limited authority who is
coordinating a project across several departments. The veneer of authority is
deceptive: The project manager feels "in control" at the early stages of the project
as she happily initiates important e-mails and calls meetings. Once again, the
project manager's primary loyalty is to her line manager. For example, a junior
project manager in the IT department may be responsible for ensuring Y2K
compliance. She reports to the director of Operations, but she calls upon the
assistance and cooperation of other departments. The project was sponsored by IT,
but she depends on the cooperation of functional managers in Facilities,
Production, and Legal. Although it was nice that the electricity stayed on after
December 31, 1999, her primary concern was the approval of her boss, the director
of Operations.

Once implementation begins, however, this type of organization starts to show its
true colors. During the later stages of a Web site design, for example, your client
may begin reading Wallpaper magazine. This results in a sudden request for a
brand new design with "1960s retro futuristic airport chic." You've only contracted
to do three versions of the design, but you want to do the extra work in order to
generate "good will" with the client on future projects. As you lobby

unsuccessfully for last-minute resources, you realize that you are merely a "liason,"
facilitating communication and keeping track of the project schedule. Your
requests for additional work fall on deaf ears— as an outsider, you have no real
leverage with the project team.

In a functional matrix, the project runs smoothly as long as the initial requirements
are well documented, resource assignments are preapproved by line managers, and
scope doesn't change. In other words, you're in big trouble. Communication
"liasons" have a hard time rallying systems administrators to pull all-nighters load
testing the servers the week before launch. Once resources are stretched thin, line
managers will have other pressing work for their staff. Soon you're right back
where you started: relying entirely on the good graces of the line manager to secure
the necessary resources. After a short-lived whiff of influence, you're back to a
"functional organization," and the schedule is held hostage by competing demands
on resources.

The Project Matrix

This is the most favorable arrangement from a project management perspective.
Under this structure, the project manager has full responsibility for the tasks that
appear in the plan. For the duration of the project, the project manager has day-to-
day or "operational" authority, while administrative authority is retained by the
department head. Functional managers focus on "people issues" (training,
promotion, performance evaluations). Staff go to their managers when they require
advice or technical assistance, but progress reports are made directly to the project
manager.

In essence, staff are "on loan" from their functional groups for the duration of the
project. This allows the project manager to focus on the interests of the project and
secure the necessary resources to achieve the deliverables. Ideally, the project
manager will be a member of a separate project management office (PMO), which
is "chartered" by senior management. Since the PMO is an autonomous group that
is accountable to a very senior executive, the project manager is empowered. Due
to the autonomous nature of the PMO, she is in a peer relationship with the line
managers. In this way, she is uniquely positioned to enforce the plan without being
bogged down by personnel management. Her loyalty is to the project, and her
authority is independent. This structure is illustrated in Figure 13.1.

Figure 13.1. Project Matrix Organization with a Project Management
Office

The Project Unit

In this specialized case, the project manager is in charge of a self-contained "unit"
composed of core personnel from several functional areas. A temporary reporting
structure is created for the duration of the project. This structure is typically used
for long-term, large consulting engagements that may occur on-site at the client's
location. The project team may be temporarily detached from the parent
organization, reporting to a unit of the client's organization. The senior project

manager must now deal with personnel and HR issues (vacation, performance
evaluations, sick pets, and so on). Given these distractions, the project manager is
now "big sister" as well as "big brother."

Early Stages of Project Management

The ability to maintain a clear vision of "where this project management thing is
headed" is a crucial success factor in pulling your colleagues toward the adoption
of best practices. The "primordial soup" of project management at a New Media
organization usually consists of a few motivated account managers, editorial
producers, or extroverted programmers who are scattered throughout the
organization. These people draft schedules and specifications in an effort to deliver
projects that are handed down by their managers.

Project management intiatives within most companies follow a remarkably
consistent growth pattern. In interactive agencies, account managers grow into the
role as they bring their company's creative resources to bear in support of the
client's needs. In companies with a strong technology focus, the project
management role usually arises as a means for technology managers to control
scope or rein in the requirements of ambitious project sponsors. As the project
management effort grows in size and sophistication, there may be a number of
project managers scattered throughout various departments in the organization.

As the role becomes better defined, there is increased pressure to represent the
interests of the project rather than the interests of the functional department.
Friction between department heads and project managers is a common "growing
pain" at this stage because functional managers are primarily concerned with staff
retention and cost reduction. Their decisions are based on several criteria.

• The need for long-term staff development and training
• The desire to minimize resource expenditures from their department's budget
• The desire to increase the department's standing and influence within the

company

These objectives will often conflict with the interests of a particular project. For
example, the production manager who is concerned about his team's job
satisfaction will try to assign employees to challenging projects, stretching them
beyond their current skill set. As the project manager, however, you will seek to
assign the fastest, most experienced worker.

"Yeah, Samir is the fastest, but he's been stuck in 'HTML Hell' for two
years. If he doesn't get a chance to start learning JavaServer Pages,
he's going to quit and join his buddy who's taking down six figures
with some startup gambling Web site. Unfortunately, I promised him
the last time that there would be no more rush client work and he
could start learning JSP. Now, we've got a new hire who's been using
Adobe GoLive, and this is a great opportunity to wean him off of it
and get him to start doing some real hand-coding in JavaScript. So I
need to use the new guy, or Samir is going to freak out, and we'll lose
our best HTML guy to zanycasinoworldparadise.com, which would be
really personally embarrassing."

Naturally, no one wants his or her project to be used as JavaServer Pages boot
camp! To make matters worse, if the revenues associated with client work are
small, the line manager would rather expend resources on internal projects. For
example, the redesign of the company intranet will have more impact for the
department internally than the "Bad Hair Day" community site that the client wants
to set up for $50,000. The fact that "nobody ever uses the intranet" and the
redesign will suck up 2,000 man-hours makes little difference when annual
performance reviews come around.

Managing the Managers

You will need the cooperation of functional (or "line") managers in order
to effectively staff your project team. You also need their support to
implement your vision for the development process. As you assume a
leadership role, obtain buy-in on staffing and organizational initiatives
with these tactics.

• Tap into the department manager's prime motivators when "selling"
your vision for change. Cite the positive impact your project will
have on staff development, cost reduction, and the prestige of the
department.

• Establish a "prioritization committee," which is responsible for
creating a high-level resource schedule or calendar that cuts across
all projects. This will alleviate resource conflicts between project
managers and line managers.

• Require project stakeholders to advocate/ promote their project
internally and publicize the rationale. This will lubricate resource
prioritization and remove some of the burden from the project

managers.
• Ensure that the project has the necessary management approvals

before seeking resource commitments from line managers.
• As a last resort, put the "fear of God" into department heads by

introducing the possibility that subcontractors or consultants might
be necessary if in-house capabilities are found to be lacking.

The Project Management Office

As project managers throughout the company recognize common goals and the
need for a consistent development process, the establishment of a project
management office (PMO) is the final step. This evolutionary leap consolidates
project management functions into a centralized office that services all of the
various departments. The benefit of this centralization is to allow project managers
to cross departmental lines and respond to the needs of a growing company
regardless of its organizational structure.

The PMO structure brings several important benefits to an organization.

• It involves a consistent, companywide project planning methodology that
will allow company operations to scale rapidly without suffering from
communication and organizational breakdowns.

• There are consistent quality standards for all Web-based products and
services.

• The objective cost-benefit analysis of projects aids in prioritization and
decision making and promotes the more efficient allocation of resources.

• A growing institutional knowledge base, acquired through detailed
documentation of processes, templates, and best practices, develops.

• Formal training on project management skills, techniques, and tools. In
project-based Web development organizations, these skills are crucial for
everyone in the company, regardless of their department.

• Project managers are provided with a career path and active mentoring.
• The PMO serves as a neutral and independent watchdog, ensuring that best

practices are followed and that projects are conducted and analyzed in a
climate of objectivity.

• Project managers can represent the interests of their projects and the
company as a whole rather than their respective departmental interests.

Making Your Case: Project Management Whitepapers

In the Chapter 13 folder of the CD-ROM, you will find three documents
that can assist you in making the case for the establishment of project
management in your organization.

The "Project Management" whitepaper: This document explains what
project management means for Web-centric companies. It includes a
definition of project management for the Web, business objectives,
benefits, and a basic development process. The whitepaper is targeted at
middle managers.

"The Project Management Office" proposal: This document presents a
blueprint for the establishment of a PMO and also provides the business
justifications. The proposal is designed for presentation to senior
executives.

"Proposal to Centralize Web Production" whitepaper: This whitepaper
advocates the migration from a functional or "silo" organization to a
functional matrix by pooling Web development resources.

Up-to-date versions of these documents are maintained on this book's Web
site at http://www.realwebprojects.com.

Establishing a Project Management Office

If you have joined with senior management in an effort to establish a PMO, you
will be called upon to supplement your traditional job description with three
additional roles.

• Politician
• Pragmatist
• Publicist

These roles will help you to overcome the aversion to change that you will face
from people in your organization who are affected.

Politician

As the politician, you will need to craft a message about the benefits of project
management. Make your pitch as attractive and acceptable as possible. This

message must be repeated at every opportunity. Like a candidate running for
office, you will need to tell project stakeholders what they want to hear in terms of
the benefits.

• Faster time-to-market for projects
• Decreased costs
• Overall increase in capacity and output (getting more work done)
• Improvement in the quality of work
• Greater stakeholder satisfaction with features and functionality

Pragmatist

The need for project management makes sense to most people. However, even if
people in your organization accept the logic of project management, they may
struggle with the project prioritization process. There will also be a struggle over
the means by which projects are assigned to project managers. Project
prioritization and resource allocation are emotional issues becasue they touch
directly on the distribution of power and authority. Those who complain the
loudest are usually the most wary of losing their power.

Although you may not be directly involved in the prioritization process, you will
need to find a way to participate actively. This is because your success will be
affected by the projects that receive resources. If doomed projects are chosen for
implementation, the result will reflect poorly on the value of project management.
Avoid taking on a "lemon" as a pilot project by getting involved in the evaluation
process. The best way to do this is to contribute to estimating costs, benefits, and
ROI. The trick here is to take the emotion out of the equation. This is done by a
comparison of various projects on an "apples to apples" basis, which means that all
participants should concentrate on the financial aspects of each opportunity. In
addition, you should strive to be seen as an expert in the prioritization process so
that you will be viewed as a key advisor when initiatives are launched.

Publicist

Although it might seem uncomfortably self-aggrandizing at times, you simply must
communicate successes (even small ones) as widely, frequently, and consistently
as possible. To avoid the perception of "blowing your own horn" while at the same
time winning over converts, you should highlight the efforts of other participants in
the process, emphasizing cooperation as the key to success— for example, "Thanks
to our outstanding developer and our new process, the project was launched on
time." Good propaganda efforts will serve to drive home awareness of this "new

way" of doing business, as well as the sense that it is breeding success. This will
cause a "bandwagon" effect among project stakeholders, creating the perception
that failure to join the trend will be dangerous to their initiatives.

When objections arise, raise the level of these three activities even further. State
your case, explain the benefits in a practical way, and keep harping on the benefits
and successes.

We Are the Champions

Your champions in senior management can take a similar, but slightly more
tactical role in support of the effort. Project management leadership can focus on
these specific activities to assist the team.

• Push for cultural change.
• Insist on the creation of, and adherence to, a consistent methodology.
• Take emotion out of the equation.
• Buffer the project managers and allow them to focus on delivering projects

successfully.
• Advertise successes.
• Seek recognition for project managers as both functional and technical

leaders.

Throughout the process of establishing a PMO, your champion needs to buffer you
and aggressively push for the adoption of standards and process.

Case Study: Establishing Web Project Management at a Media
Company

This case study relates the experiences of a global media company (which we'll
refer to as "BigGlobalMedia, Inc.") as it struggled to build a coordinated network
of Web sites from a diverse media empire consisting of magazines, newspapers,
cable TV progarams, and other properties.

The Early Days: Everyone Has a Silo

BigGlobalMedia, Inc. embarked on its Internet strategy with a collection of
independently branded sites devoted to the numerous print magazines that were
owned by the conglomerate. Each media group had its own independent Web

team, with its own producers, editors, assistant producers, Web developers, and
designers. The IT department had its own group of application developers and
systems administrators, responsible for maintaining the corporate site, intranet, and
desktop support. All told, there were six isolated pockets of Web developers across
the company.

This arrangement provided each department with a great deal of creative control
over its Web site. However, this ad hoc system lacked uniform quality standards
and a coherent development process. There was a great deal of duplication of
effort, poor knowledge sharing in terms of features, and chaotic competition
between the different channels for scarce development resources.

From a technical perspective, it was a disaster. Three of the media groups had very
little technical expertise or supervision and were poorly positioned to solicit or
receive assistance from the other groups. There was little project documentation.
Designs and requirements changed late in the implementation phase, "spaghetti"
and duplicate code proliferated, maintenance was increasingly time consuming as
the Web sites grew, and site performance was a problem. Furthermore, people felt
isolated. The entire development staffs of two departments resigned because they
did not see any growth opportunities within the limited scope of their departments.

Consolidation: Joining the Pool

The graphic designers who were scattered across the various departments felt
isolated as well. When a new creative director was hired, he gradually began to
pull the designers together into a centralized Design department. This transition
had gone well and helped to ensure high-quality design standards across the
company. The creative director's easygoing personal style allowed him to pull
designers away from the channels and into a central department without alienating
anyone. Design's success helped mobilize a similar movement to create a
centralized Production department that would join its counterparts in corporate IT
as part of a new Technology group led by a CIO. Figure 13.2 illustrates these
changes to the organizational chart.

Figure 13.2. Centralization of Web Production

Each of the six affected departments had concerns about centralization.

Would they get as many resources as they had before? Not necessarily, since
resources would be allocated according to companywide priorities. Man-week
assignments were made to departments depending on the relative priority of their
projects. This ensured that talented developers would be assigned to challenging,
high-priority projects and furthermore incentivized project sponsors to come up
with creative, revenue-generating ideas and advocate them aggressively at
prioritization meetings. Departments could get more or fewer resources, and this
would change over time depending on the importance of the projects that they were
generating. There would be more flexibility and more coverage.

What about the close working relationships that project sponsors had with their
development team? Although there would still be close collaboration between the
business owners and developers, the new Technology team needed project

sponsors to be more organized and not waste development time. Also, there was no
guarantee that a particular developer would always be dedicated to a particular site,
so new relationships would have to be forged.

Would Production be responsive to emergencies and high-priority issues
specifically related to projects that were sponsored by Marketing? The Production
team worked out processes to handle this and set up contacts and e-mail aliases to
facilitate communication. However, work on urgent issues would fall into place
along with the rest of the company's priorities. Revenue potential, brand, and other
strategic ROI factors went into the calculation of priorities.

How did the Web developers feel about moving? Most of the Web developers
welcomed the move to a central Production department. A few developers initially
had concerns about being less involved with the business side, where they had
enjoyed significant creative input in product development. The advanced
developers in the original IT group were concerned as their ranks were flooded by
ex-"Webmasters," whose expertise was focused on front-end technologies like
HTML and JavaScript. The relationship between the original IT staff and the
channel Web developers was poor, due to the history of a separate organizational
structure and the general lack of technical supervision outside of corporate IT. The
IT developers for their part had grown accustomed to being insulated from
interaction with project sponsors and were reluctant to face daily interruptions and
scope changes. Bringing the Web developers into the fold was a step in the right
direction, but it took years for members of the new Production department to gain
the respect of some veteran IT developers.

Introducing Project Management, Take 1

Getting management buy-in for the Production consolidation was a cakewalk
compared to the introduction of project management. At the time, there were two
project managers in the company. Frances, in corporate IT, wrote specs and
managed deliverables and timelines for large enterprisewide initiatives such as
Y2K. Carmine, in the Production department, kept track of project assignments,
status, submission dates, and due dates. These two divergent project management
functions did not provide a very good model to point to when making the case to
senior management.

Management's first attempt was to hire a tech-savvy project manager, Deana, to
manage the Production department. They reasoned that one person should be able
to do both technical and project management. Deana focused on working with the

editorial content producers to introduce the idea of written specifications,
timelines, and process. Unfortunately, most of the Editorial management team was
new to the Web. Coming from a print magazine background, most senior editors
were used to "handing off" a concept to Production and were unfamiliar with the
day-to-day collaboration and feature specifications required by Web projects.
While Deana evangelized project management to senior editors and wrote
specifications, one of her reporting managers, Sam, worked with the developers
and interviewed job candidates. Contrary to management's expectations, one
person could not do it all. After three months of hard work that yielded little
progress, Deana resigned.

Introducing Project Management, Take 2

Deana's departure made people take notice. Why hadn't she been able to get any
traction? What had been the source of her frustrations? Deana had taken a top-
down approach with Editorial and focused on the more bureaucratic aspects of
project management rather than the benefits. She had also been an outsider who
did not understand the process and the dynamics that she was trying to change and
who could not draw on existing relationships to implement this change. The deck
had been stacked against her, and it was a significant blow to the company when
she left.

Sam took over management of Production. He resolved to achieve the same goals
that Deana had, but through different means. He identified a junior developer,
Tanya, to make the transition into project management. Tanya had shown an
interest in project management when working with Tech on a project earlier in the
year. Frances mentored Tanya as she put together specs, timelines, and flowcharts.
She had done pretty well and was interested in doing more.

Questions and Concerns: What's Project Management, Anyway?

As Sam prepared to move Tanya into this role, he had to address concerns from the
developers.

"Tanya's technical skills are not as advanced as ours. How can she manage our
projects if she doesn't understand the technology as well as we do?" Tanya didn't
have all of the answers; but she did understand the technology well enough to
know when she needed input from the senior developers. In some cases, tech leads
were assigned to work with her and the developer to ensure that effort estimates
were realistic and that all technical considerations were identified.

"Does this mean that we report to Tanya, the new project manager?" Developers
still reported directly to Sam. Tanya's primary responsibility was ensuring her
projects' success, not managing staff. This presented some unique challenges to
Tanya. As the "manager without authority," she would have to motivate her team
and convince them of the importance of her projects.

"How does Tanya's role differ from Sam's?" Sam and Tanya worked closely
together and supported each other. Sam provided the force of authority that Tanya
needed to ensure the cooperation of her team. Sam focused on managing the
Production team and setting standards for technical implementation. Tanya's focus
spanned all phases of the project, from concept to launch.

"With Tanya writing specs, does that mean that we will have no input into the
concept or storyboards? What about Design's input?" Developers were not
required to get involved during the concept phase; but they were invited to
contribute ideas and be actively involved if they were interested. Project kickoff
meetings included the developer and the designer, providing the perfect forum for
developers to present creative input before the specs were finalized.

On the Job

Sam and Tanya started working through the project lifecycle, developing processes
and standard milestones. They created a project checklist for developers to follow.
Sarah, the creative director, put together a one-sheet outline of project
implementation phases and jazzed it up with a little caricature at each phase. It was
comprehensive, yet simple and fun enough for the Editorial staff to pin it up on
their bulletin boards for reference. Tanya had the toughest job: convincing the
Editorial staff to follow the new process.

Her experience at BigGlobalMedia Inc. was a tremendous asset to her as she faced
this challenge head-on. She had been a developer long enough to understand the
technical issues that the developers faced. Also, she had a lot of experience
working with tech-phobic Editorial staff. She knew how to speak their language
and how to express complex technical concepts in ways that were nonthreatening
and accessible. She had a reputation as someone who was easy to work with. She
began by working with the Editorial staff, not the senior management. Once they
realized that she was helping them define what they wanted and could walk them
through technical issues and translate technical jargon, they were sold. In return for
her assistance, they had to agree to follow the process, help meet timelines, and

provide intelligent sign-off for designs and specifications. It seemed like a pretty
good deal all around. Soon Tanya had more work than she could handle.

Two Steps Forward, One Step Back

So much change in such a short period of time caused some stress in the new
Production department. Some developers did not like the increased supervision by
Sam and Tanya. Suddenly there was a development process, which was great; but
there were also milestones, status updates, and code reviews. Sam could see how
well the developers coded, and Tanya could tell which ones were on schedule.
Developers who were used to the old days of the "Wild West" had a lot of
adjusting to do.

There were similar problems with editors from the various media groups. The
biggest obstacle was getting, and keeping, sign-off on specifications. Some
business owners had grown accustomed to having their own development staff at
their beck and call. They seemed to be addicted to those last-minute, time-
consuming tweaks that should have been worked out during the design phase.
Some tried to avoid project management by sending numerous requests directly to
the maintenance team. Other business owners were not sure what level of detail
was needed in a specification, and this required some education and hand holding.

A match was struck amid this explosive situation with the entry of project manager
number two, Raul. Raul was a recent junior developer hire from a leading
equipment manufacturer and a huge fan of process. It seemed to Sam that Raul was
a good candidate for project management. He was not working out too well as a
developer, and, besides, Tanya needed some help. Raul loved process, but he could
not work effectively to put process in place. He was often overheard wildy
gesticulating, waving his arms in the air with a raised voice, "This is not a spec!"
and "This is impossible!" He was very adept at shooting down misguided efforts
but had a hard time facilitating better solutions. He did not have Tanya's patience,
teaching abilities, or people skills. Everyone involved found the situation
frustrating, and Raul submitted his resignation within a few weeks.

In the meantime, some developers decided that they'd had enough. A handful of
resignations trickled in. Editorial turnover was high as well. This was during the
height of the Internet bubble, and there were plenty of opportunities elsewhere.
While it was hard to lose valued employees, the loss made it easier for the
company to adapt to the change in process. Those who were unwilling or unable to

adapt left. The newly hired employees did not question the new process that had
been established.

Success

Tanya hired two more project managers, and the projects started to roll in. As
everyone got into the swing, it became obvious that we were working better and
faster. Senior management noticed and decided that the new Project Management
group should report directly to the CIO. Production was just one phase of a project,
so why should the project managers report to Production? It was official: Project
Management was a success!

The consolidated Production team made huge strides. No longer working in
isolation, they mentored and brainstormed with each other to implement solid
solutions. As the new process made their efforts more efficient, they were able to
focus on building things well, not just quickly. Over time, they reworked and
reduced the code base, vastly improved the content publishing UIs, addressed the
performance and maintenance issues, and created a shared knowledge base.

As projects began moving smoothly through the pipeline, a few business owners
were effectively acting as their own project managers. This resulted in an increased
level of efficiency, and it became an important objective for everyone to
"internalize" the process. Once everyone learned the methodology, there would be
no need for project managers— right? Wrong. Even the business owners with the
required skills had fatal flaws. Some could not refrain from making changes that
they thought of at the last minute and just had to have. Others just did not have the
time to track all of the details. Then of course there were others who just didn't
have the skill set or interest in project management. After all, that's not what they
were hired for.

Lessons Learned

The lessons from this case study are:

• Birds of a feather. People perform better when they have access to others
who perform the same functions. This facilitates learning and the adoption
of standards and best practices. The centralization of developers into a single
pool accelerated learning curves and created a fun, collaborative
environment.

• Pooling resources made simple. Everyone is worried about losing dedicated
resources. Convincing arguments include access to more resources as

needed, reduced risk from employee turnover, and the increased ability to
respond to company priorities.

• Project management can mean many things. Ensure that your definition of
project management is explicit and meets your company's project needs.
Expectations of what project management is all about run the gamut from
"schedule managers" and "meeting notetakers" to senior architects and
consultants.

• Focus on the immediate benefits. When selling the concept of project
management, focus on the most immediate, tangible benefits to your
audience.

• This is a cultural change. This kind of change is stressful and difficult. It
will take a while for process change to take root. Be prepared to support
people emotionally, and give them a forum to voice their concerns. Turnover
can accelerate the acceptance of change.

• Try a grass-roots approach. The more buy-in you have from the front line,
the better. Introducing project management by fiat is problematic, in part
because senior management may not understand the benefits or impact.
Make sure the people "in the trenches" receive immediate benefits from
having a project manager on their team.

• Attack from the inside. Relying primarily on an outsider, unfamiliar with the
people and existing process, is not the best way to introduce the sweeping
process change that project management can be. A trusted insider will likely
have a much easier time of it.

• Not for everyone. Not everyone has the temperament and ability to be an
effective project manager. Technical and communication skills are required
but not sufficient. Take your prospective project manager for a "test run"
project if you can. Furthermore, not every project manager can effectively
introduce project management into his organization. He may be able to work
well within a structured environment but not have the patience to set one up.

Priorities Meeting ROI Worksheet

A streamlined prioritization process is key to a successful consolidation of
production and project management resources. At the moment that
resources are pulled away from the direct ownership of business units and
placed in a "pool," departments begin to squabble over who gets the
biggest share of the pie.

A high-level priorities meeting where department heads present resource
requests is the obvious answer. However, disorganized priorities meetings

can degenerate into a chaotic state of "committee rule," wherein nothing is
decided and open-ended feuding ensues.

The Chapter 13 folder on the CD-ROM contains a "Priorities Meeting ROI
Work sheet," which forces project sponsors to state their case before the
committee, using a consistent return-on-investement calculation. This
small document can play a crucial role in the consolidation of production
and project management resources at your company.

An up-to-date version of this documentation is maintained on this book's
Web site at http://www.realwebprojects.com.

Summary

Junior project managers may not be able to issue edicts that can change their
organizational structure overnight, but during a project they are the masters of their
domain. Once the project is underway, functional specialists will have their heads
down as they focus all their energies on creating designs, writing code, and testing
their work. This climate presents an opportunity to create customized rules,
structures, and procedures that can be adopted by the rest of the company. Don't
underestimate the potential of a model project, which can provide enough
momentum to overcome the fear, politics, and endless debates that plague
organizational reform initiatives. A well-executed project is the most powerful
argument for change. The best place to validate your proposed reforms is at the
project postmortem, not the corporate boardroom. Lead by example!

Appendix A. Project Quick-Start Guide

Brochureware

Business-to-Business Portals ("Vortals")

E-Commerce Web Sites

E-Marketing Projects

International Web Sites

Intranets

Brochureware

A graphic designer's dream? A low-tech cakewalk? Not so fast. Brochure sites look
easy on paper. Their sole objective is to communicate a "quick hit" of brand
identity through the use of a design-heavy splash page or home page. Their only
informational function is to display a basic company profile and contact info. They
usually contain a few brief pages: "About Us," "Our Products," and "Contact Us."
Brochureware sites have anemic back ends, usually composed of a simple mail
script for shooting off a fill-in form from the "Contact Us" page.

While Brochureware sites are simple from a functional standpoint, they conceal an
Achilles' heel with regard to scope creep: low-budget graphic design. Clients
expect brochureware sites to be slapped together quickly on a shoestring budget,
yet they have high expectations when it comes to visual impact. Beware runaway
design revisions!

Protect yourself before you take this "easy" bait.

• Tie the graphic design closely to the client's print marketing materials.
• Obtain an inventory of art assets that can be repurposed so that you do not

have to purchase stock art or replicate the client's print marketing materials
from scratch.

• If the client does not have a corporate identity, execute on this as a separate
project. Do not try to wrap logo design and corporate image into a low-
budget HTML job unless you are being paid for it.

• Structure your design fees in installments. Protect yourself from endless
design revisions by including the first three treatments in the initial
concepting fee and then bill the client for each additional revision on a pay-
as-you-go basis.

• Identify the branding/design decision makers and establish a clear approval
process up front, or the project deadline may get killed in endless committee
deliberations.

• Insist on having the bulk of the editorial content up front. Continuous
content tweaks can be the death of a low-budget project.

• Have a low-cost content management solution ready in your back pocket so
that when the client begins making the inevitable manual edits and content
tweaks you can up-sell them to the convenience of making their own
changes.

Business-to-Business Portals ("Vortals")

Business-to-Business commerce sites (also called vertical portals, or "vortals")
provide information and services to a specific industry. B2B portals are gathering
places for members of a specific industry that serve as a resource for news and
research. In addition to this content function they also support business-to-business
services by uniting buyers and sellers and enabling transactions. The features
provided by these specialized communities usually focus on supply chain
management. They all perform the same function of bringing buyers and sellers
together, increasing market liquidity, and reducing the cost of doing business
online.

The scope and complexity of B2B portals are daunting. If you are managing a large
B2B project (gulp!), get some experienced help now! While you are hiring an
industry-specific project team, keep the following tips in mind.

• Set standards. B2B portals are marketplaces where numerous trading
partners can gather and exchange business documents. Adhere to XML-
based standards for Web services (SOAP, etc.) and make sure your project
contains activities for defining common DTDs (document type definitions)
and other shared protocols. Java 2 Enterprise Edition (J2EE) is the

framework of choice for platform independence and interoperability,
although .NET provides some excellent support for XML-based Web
services.

Portal Partners

Ariba— http://www.ariba.com

Commerce One— http://www.commerceone.com

Epicentric— http://www.epicentric.com

IBM— http://www-3.ibm.com/e-business/i

Microsoft— http://www.microsoft.com

VerticalNet— http://www.verticalnet.com

• Outsource. Vortals are extremely complicated sites provide XML-based
approaches that work well in this heterogenous environment.

• Use industry experts. As you select outsourcing partners, realize that specific
industry ("domain") expertise is central in determining the right mix of
content, services, and transactions that will reflect real business practices.

• Don't skimp on information architecture. Since they contain both industry
content and supply-chain transactions, vortals require a complex navigation
structure.

E-Commerce Web Sites

A discussion of e-commerce and the many important details and tasks that
comprise an e-commerce Web site project are beyond the scope of this book. In
this section we will highlight some of the important points you need to be
cognizant of when beginning an e-commerce initiative. There are many good
books that cover e-commerce exclusively, and some of these titles are listed in our
Recommended Reading section.

Putting the "E" in E-Commerce

During your career as a Web project manager you will participate in an e-
commerce project of one type or another. It could be a full-blown catalog site for a

large retailer, it could be the addition of commerce functionality to a brochure site,
or it could be a subscription offering or special for-fee promotion on a corporate
site. You may even end up working at an agency that specializes in e-commerce
initiatives.

One of the original tenets of the Web was that commerce, electronically enabled
and easy to implement and manage, was going to make those clever enough to get
in on the action filthy rich. While the dreams of many turned out to be the reality
of a very few, the Web still offers business an alternative channel for commerce.
Many still believe e-commerce should be, and one day will be, the Web's primary
function.

What Kind of E-Commerce?

The term e-commerce has grown in scope over the last few years to encompass
practically every aspect of doing business online. E-commerce here refers to Web
sites that allow the users to purchase goods or services online.

The online shopping universe breaks down into two large categories: B2C and
B2B. B2C, or business-to-consumer, sites run the gamut from behemoths like
buy.com to tiny one- or two-item mom-and-pop shops using a service like Yahoo!
stores.

B2B, or business-to-business, sites also run the gamut from great to small. B2B e-
commerce sites, like the name implies, sell goods or services to businesses as
opposed to individual consumers. The B2B side of e-commerce has proven to date
to be a more successful model than B2C sites. B2B sites have allowed businesses
to purchase stock and supplies from vendors without the need for a dedicated EDI
(electronic data interchange) system in place.

The E-Commerce Project Plan

An e-commerce project plan contains all of the same elements as a non commerce
Web development project plan, such as creative briefs, functional specifications,
timelines, and so forth. However, e-commerce project plans also contain
specifications and scope documents for additional elements such as the commerce
engine functionality that includes the "shopping cart" Web pages and the payment
capture and authorization process. Another area of the project plan that requires
more attention than that of a noncommerce initiative is the customer service plan
and the required functionality both online and off to support it.

The Business Components

E-commerce projects require the financial and business components of the project
to be thoroughly researched and completed early in the development. The
marketing, sales, and senior executives will all be involved in building the business
case for the project. If the client is a startup, then the business case should be well
documented in their business plan. However, if this is an internal undertaking and a
new venture for your company, be sure the business people take the time to
perform the due diligence necessary to validate the project. The following
documents are especially important in any e-commerce project and will comprise
the majority of the business cases for the project.

• The feasibility study. This document is about taking a good, long, and
objective look at the project and making a clear, unequivocal decision on
whether the project should be undertaken or not. Is this project worth doing?
Will people buy our widgets online when they can get them just as easily at
every widget store in the country? Can we really sell our widgets online for
a lower price than our competitors? Do we know anything about selling
widgets online?

• The creative brief. The creative brief should provide a high-level detailing of
the site and is an important document in the business case. The creative brief
should describe the desired shopping, order taking, and checkout processes
as well as what products will be featured on the site and how they will be
displayed. The creative brief should also describe how the commerce aspects
of the site will be supported, such as new items added, prices changed,
shipping costs calculated, and so on. Will there be an online tool that allows
a person to maintain the site? How many people will this require? How
technical should these people be? Describe any editorial content that may
run in tandem with the products or on a separate area of the site. Also,
describe the type of functionality that may be required to support these areas
as well.

• Return on investment. One of the outcomes of the feasibility study should be
the raw data that will allow the business people involved in the project to
determine the ROI on the project. The questions that should be answered by
the ROI document are How much will it cost us to sell our widgets online?
How many widgets will we have to sell in order to recoup our investment?
How long will this take? How much does it cost to acquire a customer? How
much does it cost to keep a customer? How much does it cost to fulfill the
order?

• The marketing plan. Just building the site is not enough. To be successful
you must have in place a marketing plan that details the marketing activities
for the following: how the site or brand will be established in the public eye,
how customers will be acquired or driven to the site, the types of media to be
used to market the site, what new products will be developed for the site,
and the cost of the total marketing mix.

The marketing plan may actually require additional online functionality to be
developed, implemented, or outsourced. E-marketing initiatives such as e-mail
campaigns may require separate development projects but should still be included
as tasks and milestones in the overall e-commerce project plan.

Be sure that when the business case is complete, it is formally presented to the
client or executive who will be funding the project and liable for its success or
failure. Be sure to receive sign-off on the business case before moving forward
with any aspect of the project build. Don't settle for a middle manager telling you
the plan will be approved "eventually" because nine times out of ten, what is
finally signed off by the executive committee or client will not be what was
originally presented.

E-Commerce Nuts and Bolts

The common components of an e-commerce system and the associated
deliverables are described in this section.

The Commerce System

At the heart of any "commerce-enabled" Web site is functionality that allows users
to choose items, add them to an electronic shopping cart, and pay for the chosen
items. Easily the most common piece of prepackaged Web software available,
commerce applications vary widely in levels of sophistication, functionality, and
cost. Commerce functionality is also one of the most available outsourced pieces of
functionality as well. There are many application service providers who can
provide every aspect of the shopping functionality for your Web site. Again, the
features, functionality, and cost vary widely.

In the early stages of the project you may be required to select a vendor for the
commerce functionality of the site. More than likely it will take you several days,
if not weeks, to narrow down the field of potential vendors. The first thing you
need to decide is whether the commerce functionality of the site will be developed
in-house using a programming language such as Java, JSP, or Microsoft Active

Server Pages, or if you will be implementing a prepackaged software solution that
requires little more than loading it onto your servers. Or you may be outsourcing
all of this functionality to an e-commerce service provider. Before you can make a
qualified decision, you need to know the basic moving parts of any commerce
engine. Here are some of them.

• The "store." How the store or shopping area of the site is categorized is an
important part of the early planning process. A store that features one or two
items does not need a complicated categorization scheme, but a site that is
going to feature hundreds of items across hundreds of categories, many of
these overlapping, needs to carefully consider how the categories and
associated items will be laid out. The commerce system must allow for easy
categorization for both the person who is entering the product data and the
shopper who will eventually be searching the site for the widget they so
desire.

• The product pages. An important element of the store is how the product is
displayed within its category. Does the commerce functionality allow for
each item to be displayed and ordered from its own individual page, or is the
product grouped together on one master page? How lengthy is each product
description? Does the commerce system allow for easy maintenance of these
pages? The product pages are where the sale is actually made, so these pages
must be easy to find, use, and order from.

• The shopping cart. The shopping cart functionality must be intuitive and
easy for shoppers to use. The shopping cart functionality not only allows
users to add items to their virtual cart but it must follow the user as he trolls
the virtual aisles of the store, always just a click away for the user to modify
his order. Shopping carts come with a variety of bells and whistles such as
the ability to suggest complementary items or supplies for the products being
purchased.

• Payment functionality. In addition to giving shoppers the ability to store
their goods in one place, the commerce system must also allow users an
easy, intuitive, and fast payment or checkout process. This is where many
commerce systems fail. Often it is more work to go through the payment
process than the shopper perceives the item as being worth. The notion "time
is money" has never been more apt. The competition is only a click away,
and if their checkout system is easier to use, guess who will win the return
business?

• Credit card/payment authorization. Most online retailers require credit cards
as the primary method of payment. Behind the scenes there is usually more
than one player involved in the online payment process. The commerce

system provides the first step: secure capture of the credit card information.
This information is then either stored securely on the retailer's server or
encrypted and electronically handed off to a partner that provides the credit
card validation and authorization. If the retailer has the capability to process
credit cards in-house using a preexisting system, it may choose to do this
process manually at a later date. If the retailer only conducts business online,
then it will more than likely choose to have the credit cards processed in
real-time.

Real-time processing normally consists of the encrypted credit card information
being handed off to a vendor providing the authorization service. This vendor
decrypts the data and validates the credit card using a zip code or address lookup
process to be sure the card holder information matches the credit card information.
The validation may also include contacting the card-issuing bank to validate that
the funds are in place. Once the validation process is completed, the authorization
vendor responds to the retailer's server with either an accepted or denied
authorization.

The outcome of the validation process is displayed to the user on a Web page.

Fulfillment— the Achilles' Heel of E-Commerce

One of the greater distinguishing components of an e-commerce project, besides
the shopping and ordering functionality, is the actual order fulfillment process.
Again, complete coverage of the fulfillment process is beyond the scope of this
book, but it's important to discuss having a plan for order fulfillment as part of the
overall project plan.

Many e-commerce sites, both large and small, were undone by not having a well-
thought-out and feasible order-fulfillment plan in place. Success often spelled
doom for many early e-commerce sites as orders poured in day and night without
any chance of the retailer having the inventory or capability to fill all the orders.

Besides having the necessary inventory on hand to support a new sales channel, the
online retailer must decide if it has the capability in-house to "pick, pack, and ship"
orders or if this function should be outsourced. Developing the business processes,
hardware, physical space, manpower— in short, the infrastructure— necessary to
handle a large volume of orders introduces tremendous costs into the ROI
equation. Many large retailers that already have a catalog or direct mail sales
channel more than likely have the fulfillment capabilities already established.

However, a bricks and mortar retailer making the switch to bricks and clicks will
have to carefully consider its fulfillment options and plan accordingly.

Never Underestimate Customer Service

A common omission by many e-commerce projects is a customer service plan.
What many businesses performing commerce online have learned— some too
late— is that the customer service aspect of the business is every bit as important as
the quality of the Web site, the commerce system, and quality of the goods for sale.
Customer service has evolved into a completely separate and massive industry
called customer relationship management (CRM), complete with million-dollar
software packages and consultants ready to teach you how to manage your
customers and turn them into return visitors.

Customer service for an e-commerce project, at its most basic, consists of helping
customers find and purchase goods from your site. Once the goods are purchased,
customers must be able to interact with the retailer should a problem develop with
the sale transaction or the goods themselves.

Most successful e-commerce sites employ online customer service or help links
that take users to how-to or FAQ pages as well as provide toll-free numbers for
customers to call and speak to a human customer service representative, usually
during business hours. Both of these types of customer service functions need to be
thoroughly planned for and documented in the specifications of the project. How
robust these processes are will be dictated by the project budget as well as the
scope of the overall site.

Managing customers once they have purchased items from your store is as
important as helping them to do so. Will the Web site contain a customer service
area where customers can fill out a form to request help or describe a problem?
Will a toll-free number be provided to customers wishing to contact the retailer?
Who will answer the customer inquiries? These are important parts of the project
plan that need to be figured out long before the site is launched.

Security

Because e-commerce sites are dealing directly with sensitive credit card or other
types of payment data, the security aspects of the site are of extreme importance.
Will the credit card information be stored on the retailer's servers or simply
encrypted and handed off to the authorization vendor? How robust is the
encryption scheme? What level of browser security should the shopping cart allow

for? These are only a few of the security issues that must be worked out with the
technical developers of the site, the authorization vendor, and the ISP hosting the
Web site.

This is a very detailed aspect of e-commerce Web sites that should not be taken
lightly, and again, due to its extreme breadth and scope of detail and functionality,
is beyond the scope of this book. That being said, the security aspects of the Web
site should be major milestones on your project plan, with the tech lead on the
project helping you establish the required details.

E-Marketing Projects

While there are many types of e-marketing initiatives available to the marketer,
this section focuses on e-mail marketing projects.

The Message IS the Medium

E-mail marketing is an exploding industry, with everyone from Joe's Garage to
General Electric having at least one mailing list it markets to on a regular basis.
The odds are pretty good that at some point in your career as a Web project
manager you will manage an e-mail marketing campaign.

Running an e-mail list management campaign or project can be relatively
straightforward once you know the steps involved. These are the basic components
of an e-mail campaign.

• The list
• The database
• The list management software
• The message
• The metrics

The List

The list is the most important deliverable you will have to manage. The list can be
rented from a list provider, supplied by the client, or captured on your Web site via
an opt-in form. The list is the heart of your campaign or project and needs constant
maintenance to keep it up to date and free of dead e-mail addresses. All the
marketing components will be executed against the list. These include mailing,
segmenting, testing message components, testing of fers, and measuring response.

KEY POINT

One of the most important aspects of the mailing list is that all the
list members have opted in to receive contact from your client or
company. There is no point in executing an e-marketing campaign
if you are simply spamming a list of people who have not given
you permission to contact them. As everyone knows firsthand, our
e-mail inboxes are cluttered daily with unwanted, unsolicited
spam. Don't join the fray just because it's easy.

The Database

Every professional list management system has a powerful database back end that
stores the mailing list as well as all the necessary demographic data about the list
members. The tables in the database allow the list management software to "slice
and dice" the data to arrive at the necessary measuring metrics. In addition to the
list and demographic data, the database will store information generated by the e-
mailing campaign such as amount of messages sent, number of messages that
"bounced" or were undeliverable, and even how many clicked on links embedded
within the message.

The List Management Software

The software that is used to create and manage e-mail marketing campaigns is
known as list management software. The software's primary function is to manage
the information in the database that impacts or is derived from the list. List
management systems come in a variety of sizes and with different feature sets.
There is a list management system for every budget and size of list. There are also
many application service provider list management systems on the market that can
save a company money by avoiding the cost of purchasing and hosting the list
management system, not to mention the bandwidth costs for sending millions of
pieces of e-mail.

The following is the basic feature set on a good list management system.

• A robust database
• A simple GUI for creating campaigns and messages
• The ability to send multiple message formats, such as MIME, ASCII, AOL

• The ability to segment the list into subsets for testing purposes
• The ability to run complex queries against the database for marketing

purposes
• A simple GUI for generating metrics analysis reports on the list as well as on

mailing campaigns
• A robust engine capable of pumping out large quantities of e-mail within a

short timeframe

Generally, a professional class list management system will require either a DBA
or a system administrator to maintain the back-end functionality. The person
responsible for managing the back end of the system will add or delete entire lists;
create and delete database fields, rows, and tables as required; and monitor the
system's performance.

If the list management system provides a simple, intuitive GUI for creating and
managing campaigns, then the project stakeholder or client is usually the person
who will be managing the campaign creation and reporting. However, if these
aspects of the campaign are provided by your company or department, then you
may be the resource who mans the GUI.

The Message

What good is all this hardware and software without a compelling message to
send? The message is at the heart of any e-marketing campaign and is another
important deliverable to manage. A good list management system will be able to
send messages in the following formats.

• MIME. Stands for Multipurpose Internet Mail Extensions. This standard
allows messages to be formatted for a variety of e-mail systems. Not all e-
mail systems and e-mail clients can handle HTML-formatted e-mail and can
only display text. Typically, a MIME-formatted e-mail file contains both
message formats, HTML, and ASCII text. The message is typically encoded
in base64 encoding, which wraps the entire message in text. If the e-mail
system or client can handle encoded MIME messages, then the system will
display either the HTML portion of the message or the ASCII text portion of
the message. However, this is far from foolproof. There are some e-mail
systems that will only display part of the message in HTML, and the rest of
the message will be displayed as "garbage characters." This can be very
frustrating for the e-mail marketer, but unfortunately it's something that is
beyond control unless you relegate yourself to only sending out ASCII text

messages or use a separate encoding and decoding program to ensure proper
functionality.

• HTML. E-mail formatted in HTML is becoming almost standard for e-
marketing campaigns and e-mail newsletters. The response rate on messages
formatted in HTML is much higher than simple ASCII text messages.
Besides allowing for fancy formatting and attractive design using images
and even style sheets, HTML e-mail allows the marketer to embed links into
the message that can be tracked by the list management system and provide
performance metrics.

• ASCII text. The original standard. All e-mail systems and clients are capable
of handling messages formatted in ASCII text. The advantage of using
ASCII for your messages is that you will experience very few, if any,
broken, corrupt, or unreadable messages. The drawbacks are that the
response rate for ASCII messages is appreciably lower than HTML and it is
difficult to track URLs placed in the message body. The placed URLs must
be copied and pasted into a Web browser by the user instead of simply being
clicked on as they would in an HTML-formatted message.

• AOL. Version 7 of the AOL software is supposed to be able to handle
HTML e-mail better than past versions. The AOL e-mail software has
traditionally only been able to handle the most basic HTML formatting, such
as bold or italic tags. HTML tables did not work with the AOL e-mail client
nor did link tags. Many marketers simply created a subset or segment of
their list for AOL users and sent them a text message. Even with the new
version of AOL, the rule of thumb should be to test your HTML message
before sending it out to your list. You may want to create a text message that
contains very basic HTML formatting for your AOL recipients regardless of
what version of the software they are using. Or send your AOL list as ASCII
text, just to be safe.

The message may be created by the marketing department, a producer, a
copywriter, or the client. If the message is being sent in multiple formats, then
there will be some workflow involved, and more than one resource group may be
involved in the production. If the marketing campaign is managed by a marketing
person using the list management GUI, then it may be only a single person who is
involved in the message creation and workflow.

The Metrics

The goal of every e-marketing campaign, besides accomplishing a sale, is to
measure the response to the message or the offer. Normally the same person who is

responsible for the mailing campaign creation is also reponsible for this
deliverable. The metrics reports allow the marketer to fine-tune the message or
offer, which will increase response rates, click-throughs, or sales on ensuing
campaigns. Most list management systems come with metrics-reporting
functionality. The most common metrics reports are the number of messages sent
and the number of messages bounced. The system will be able to track these
metrics for each subset of the list or lists. More advanced metrics reporting
includes number of messages opened and number of clicks on links embedded in
the HTML messages.

The Campaign Process

The basic process involved in most mailing campaigns, from weekly news letters
to one-time-only e-mail marketing blasts, consists of the following tasks.

• The business case and campaign goals
• Generating or acquiring the opt-in list
• Setting up the database fields
• Message production
• Campaign mailing production
• Generating reports

The Business Case and Campaign Goals

Before your company or your client begins an e-marketing campaign initiative, be
sure the business case— the "Why are we doing this?"— has been documented. Part
of the business case is establishing at the outset what the goals of the campaign
will be and how success will be measured. Some goals of campaigns are customer
acquisition, branding, product sales, product launches, CRM, and research. Success
metrics could include increased sales, increased membership, brand awareness
measured by open rates, and response rates to offers or survey questions. The client
or project stakeholder should be the person responsible for creating the business
case. This should be the first deliverable on your project plan.

Generating or Acquiring the Opt-in List

It's imperative that you only mail to people who have opted in to be contacted by
your client or your company. If the project you are working on does not already
have a list, there are several reputable companies that provide list rental for just
about every demographic group and segment imaginable. If you are working with a
list that was generated in-house using an opt-in form on a Web site or via another

marketing initiative, the mailing may be more successful because the message is
expected and relevent to the recipient.

The list is an important deliverable in the process. If it is coming from a third
party, it will be delivered to you either on disk or as a compressed file via e-mail.
You will have to be sure the list is handed off to the DBA or system administrator
so it can be loaded into the list management database. If the list has been generated
in-house, then the data should already be in the list management system, and if not,
a task for importing the data into the list management system needs to be added to
your project plan.

Setting up the Database Fields

Before the list is imported into the database, the DBA must set up the proper
profile and demographic fields. These fields are used by the list management
system for segmenting the list, measuring response, and personalizing the
messages. The following are the most common user fields.

• First name
• Last name
• E-mail address
• Home address
• Zip code
• Phone number
• Opt-in status (yes, no)

Business demographic fields could include the following.

• Current customer (yes, no)
• Current member (yes, no)
• Favorite product

Depending on the size and complexity of your list management system, the profile
field creation could take anywhere from an hour to a full day. Be sure to check
with your DBA to establish how much time this task will take.

Message Production

The message production can happen concurrently with the database setup and list
import. If your campaign calls for messages to be created in HTML, AOL, and
ASCII formats, then you will have to add a design effort to your project plan. The

design effort is managed exactly as a Web design effort, and the deliverables will
be the same: page maps, color palettes, type specifications, graphic images
optimized, and design mockups and specifications. The client or stakeholder
should be allowed at least one round of revisions as well.

Once the design elements of the message have been created, they are handed off to
the HTML developer. Again, the process is exactly the same as it is for designing a
Web page. The HTML developer will build the files, and they will then be handed
off to the person or resource group responsible for importing the messages into the
list management system.

Campaign Mailing Production

The campaign mailing production tasks will vary, depending on how automated
your list management system is. These are the basic tasks in building the mailing
campaign.

• Segmenting the list. The most basic type of list segmentation is for the type
of message format the user can receive— for example, AOL, ASCII, or
MIME. A separate subset of your list will be created for each of these, and
the list management software will allow you to be sure the people in each
segment receive the correct message type. Other common types of list
segmenting are different subject lines, different offers, and geographic
segmenting.

• Importing the message. The message files (AOL, ASCII, MIME) are
imported into the list management system through the GUI. This is a
relatively straightforward task. Once the message is imported into the list
management system, the campaign may call for link tracking in the HTML-
formatted messages. The list management system should allow you to create
the special URLS or redirects necessary to tally clicks on embedded links.

• Reply-to and bounce e-mail addresses. The list management system will
require you to provide it with two e-mail addresses. The reply-to address is
the address e-mail is sent to should a recipient of the message hit the reply
button in her e-mail client. The bounce e-mail address is the destination
folder where bounced or undeliverable messages are collected. These
addresses are later removed from the master list as part of the list
maintenance process.

• Opt-in and opt-out Web pages. An important part of any e-mail campaign is
the provision of Web pages where users can choose to join (opt in), be
removed (opt out), or update their profile information. These page are often

served by the list management system and run off of the same database that
keeps the data loop closed and efficient. If your opt-in and opt-out pages are
served outside of the list management system, then a data transfer or import
functionality or task must be added to your process.

• Scheduling the mailing. Once all the preceding pieces of the campaign are in
place, you will schedule the date and time the mailing will occur. This is a
common automated feature of list management systems. Once the date and
time are set, the system will send out the messages to the appropriate list and
list segments at the scheduled time.

Generating Reports

Measuring the response of the mailing campaign is one of the most important tasks
in the campaign. Most marketers pull reports at different intervals once the
campaign has been mailed. These intervals are usually 48 hours, one week, and
then from two to three weeks out. The biggest response occurs within the first 24
to 48 hours of the mailing. Every list management system generates reports
differently. Some make exporting the data easy, and others only generate the
reports within their own GUI. The better systems will allow you to run custom
queries against the database to measure more granular metrics, such as how many
people in a certain geographical area responded.

E-Marketing Resources

There are several excellent online resources to learn more about e-
marketing. Two of our favorites are http://www.clickz.com, which
provides information, how-tos, and many articles on this subject; and
http://www.internet.com/sections/marketing.html, which provides many
links to various e-marketing sites.

Conclusion

Successful management of e-mail marketing campaigns is not difficult once you
understand the steps involved. The most crucial element of this type of marketing
at the professional level is the type of list management system you use. These
systems run the gamut from low-priced packages that run from a desktop machine
to full-blown systems requiring their own set of servers for the software and
database. It may be easiest to get into e-mail marketing by using one of the many
ASP list management vendors on the market today.

Like any Web initiative, an e-marketing campaign is time and labor intensive. Be
sure you have all the basics covered, such as a business case, the necessary staff
resources, and the opt-in list before you launch the campaign. Create a project plan
for your e-marketing initiative just like you would for any Web development
project, and manage the milestones just as stringently.

International Web Sites

Going global with your Web site requires familiarity with two concepts:
internationalization (commonly shortened to "I18N" because of the 18 letters
between the I and the N) and localization (similarly, L10N).

Internationalization

Internationalization is the process of reengineering your back end so that it can
recognize and process any language. It also involves making source code changes
so the software can understand different currency, measurement, and date formats.
Once the back end has been internationalized, it's not too difficult to translate
content into the target language.

Localization

Localization refers to the process of translating and culturally adapting any front-
end content, including user interfaces, help files, and other documentation. The
concept of a "locale" is important because it captures the notion of regional culture.
Culturally specific content includes image iconography, color, and fonts, as well as
plain text.

Back-end Inventory

As you embark on a globalization project, take an inventory of all the back-end
systems used by your Web site. The purpose is to identify any points of failure
between systems that are communicating with each other by relying on a common
character set. Make sure that all of your systems can handle multiple language
character sets, currencies, and so on. These systems should be able to support 16-
bit Unicode, which is capable of representing over 65,000 characters (think
Japanese!).

Code Cleansing

Internationalizing code means stripping out any hard-coded references that are
locale-specific. Hard-coded text strings (such as "click here") should be stripped
out and placed in an external file or database where they can be translated. The
code should then reference the database to pull in any locale-specific items.
Typically developers on an I18N project will create custom search/replace tools
and utilities that comb through the code and pull out text strings.

Content Management

The key to localization is to strip out hard-coded items from your Web site
templates and export them into a content management system. Publish- ing tools
should be built for local editors so that they can tweak the trans- lated copy for
cultural relevance. Content may be categorized into three tiers: global (to be shared
across all sites— such as company logos), regional (within one language grouping),
and local (subject to cultural nuances in presentation).

Graphics

In addition to a graphic redesign that takes into account the cultural meanings of
colors and icons, a review of your functional images is necessary. This art review
is crucial to rooting out graphical "submit" buttons and other text that appears as a
graphic.

Editorial Muscle

Many project managers make the mistake of treating I18N as a technical problem
when it is really all about taking a thorough inventory of your content assets and
applying editorial manpower. The planning phase during which you will take this
inventory is particularly laborious. During localization you will need to use a
combination of machine and human translation. Automated scripts can do the
heavy lifting and seek out hidden strings, but human editors will need to review the
final product. This labor-intensive activity requires in-country content teams to
perform legal reviews, marketing impact studies, and so on. This effort is usually
underestimated, and many I18N projects suffer a manpower crisis as the true scope
of the content effort emerges. Make an exhaustive inventory effort before
committing to a launch date, and you may find yourself on an exotic trip with an
expense account when it's time to "oversee" the launch.

Intranets

Building an intranet is analogous to building a Web site. The tasks and the process
are the same as many of those already covered in this book. Whether you are
managing the project internally or you are building the intranet for a client, you
will soon find that the biggest challenge of an intranet project is not managing the
actual build but managing the various interpersonal and interdepartmental
relationships. The technical aspects of a large corporate intranet can be every bit as
complex, if not more so, than a large corporate Web site. In this section we will
outline some of the key differences of intranet development and Web site
development as well as some of the tasks you will need to concentrate on through
the lifecycle of this type of project. We'll also cover the important features a
corporate intranet should include.

It Doesn't Get Much More Political than This

The biggest challenge you will face on an intranet project is smoothly and
delicately managing the political battles that will inevitably be raging around you.
Intranet projects suffer from multiple internal owners with competing agendas. A
Web site build may have multiple owners, but all of them tend to be focused on the
business goals of the site, not their own agendas. Whether you are working on an
internal intranet project or you are working for a client, you will have to establish
from the very beginning of the project who the primary stakeholders are and who
makes the final call on important, critical decisions.

Traditional intranet project stakeholders are the IT group, the corporate
communications group, or human resources. Due to increased functionality in Web
and intranet technology, corporate intranets can now be effectively utilized by
many groups within the organization. This is a blessing and a curse because now
the stakeholder pool has grown and with it the number of competing agendas.

What many companies and agencies have learned is that the best way to manage
decisions on a large-scale internal communications project, such as an intranet
build, is to create a governing body or steering committee. Representatives from
each stakeholder group sit on the committee and represent their group's interests.
Because large-scale corporate intranets represent many large internal groups such
as finance, legal, and HR, each of these groups may end up with their own
individually branded site or channel within the intranet. Therefore, a stakeholder
from each group must sit on the committee to enable fair representation across the
company. This model has proven very successful for many companies and reduces
the level of political infighting.

Whose Site Is It Really?

The answer, of course, is the employees who work at the organization. Keep this
thought in the front of your mind during the intranet build, especially in the early
planning stages. The goal of an intranet is not to entertain but to provide
information quickly and easily. Finding out in the early planning stages what time-
saving features the rank and file employees of the organization want in the intranet
will save the company a great deal of money by improving and increasing
productivity.

A successful method for gathering requirements for corporate intranets is to
conduct user surveys. The survey can be sent out via e-mail or an intracorporate
office memo. Whatever the method, collect as much data as possible before your
company blows a million dollars on an intranet that is never fully embraced by the
intended users and is bloated with useless features.

Who's Going to Take Care of It?

It's rare when a company will hire staff just to maintain the intranet from a content
and technical perspective. Because intranets are typically developed and hosted by
the IT group, this group is often also responsible for updating the site and adding
new features and content areas. This situation leads to an intranet site that only gets
updated or properly maintained when the people in the IT department have the
time to do so, which is not very often.

Be sure to include in your project plan a comprehensive content and maintenance
plan, and identify the necessary roles. Decide whether the intranet will require a
content management system or editorial tool and, if so, who will be responsible for
updating the content. If the intranet is going to be maintained with an editorial tool,
will this tool be used by a single group such as the communications department or
will it be distributed across all departments who require regular content updates?

If your company or your client's company does require a dedicated team to
maintain the intranet, the roles are the same as those of a Web development team.

• Developer. If the intranet is an integral and important part of the company
culture, the IT department should dedicate a full-time person to the intranet
team.

• Designer. If the company has an internal design team, then it may be
possible to dedicate a person to the intranet. If there are no designers on

staff, a person can be hired to provide design support for the intranet, or this
work can be farmed out to an agency.

• Project manager. If you are an internal project manager, you should be
ready to devote some time each month, or maybe even each week, to
managing new intranet initiatives. If you work for an agency and you are
managing the intranet build for a client, identify who in the client
organization will be managing the intranet and provide some basic project
management training.

• Content team. Because the bulk of the content displayed on a corporate
intranet is developed across many departments, it may be hard to bring in an
outside team to take over these tasks. However, an intra net producer can be
the primary contact for all content created within the organization.

Features

The discovery work you do early in the project, such as interviewing the
stakeholders and conducting user surveys, will shape many or most of the features
that will be incorporated in the intranet. These are some of the more common
features found on corporate intranets.

• Access to documentation. This is the most common feature of most
corporate intranets, especially from an HR perspective. The intranet provides
the ability for employees to download HR and financial forms easily.

• Calendaring functionality. This feature could increase the number of repeat
visitors to the intranet. Allow users to maintain their own schedules on the
intranet, as well as post meeting invitations and other events on specific days
and times. This feature may be already available on the company e-mail
system, but if not, make it a useful part of the intranet.

• Search. Like any text- or content-heavy site, an intelligent search engine is a
crucial piece of functionality. Some people prefer to search for information,
whereas other people like to drill. Be sure to have a good search scheme in
place for the people who like to locate information by searching.

• Time management. Many intranet or corporate portal packages contain
functionality that allows employees to maintain their timesheets for the
week, month, and year. This is a convenient feature for both the user and the
HR and payroll departments.

• Security. Generally, intranets provide gateways or links out to the internet,
but there is rarely access into an intranet from outside without user ID and
password authentication. Because there is normally a great deal of sensitive

information contained on the corporate intra net, security is one of the most
important features on an intra- net project.

• Message boards. Message boards give employees a place to interact and
voice their opinions about various work- and nonwork-related issues. While
being a great feature for fostering communication and release among the
staff, in order to be successful the message boards need to be moderated on
as regular a basis as possible, just like any other electronic community.
Rules of play should be established and posted on the intranet.

You'll Need a Marketing Plan Too

Work with the marketing department to create an internal promotional campaign
for the intranet that will not only announce the launch of the intranet but will
motivate employees to use the features available there. If necessary, create an
incentive campaign to get the staff to begin using the site. Remember: The most
important goals of management for the corporate intranet are to increase
productivity and reduce costs, but the employees may need some help getting into
the habit of using the intranet, and incentives are a great way to jump-start
enthusiasm.

Intranet Resources

There are some great resources for learning more about intranet and corporate
portal development online. One outstanding site is IntranetJournal.com, which is
packed with useful articles and reviews of the latest intranet technology.

An oft-cited book about intranet development and features is The Elements of
Intranet Style by Eric Brown and James W. Candler. The content of this book is
not tech-heavy nor full of corporate business jargon. It's a good primer on the
basics for any intranet project.

Appendix B. Technology for the Web Project Manager

What You Really Need to Know— Frameworks

Object-Oriented Design

Web Services with XML

Content Management Systems

Digital Rights Management

What You Really Need to Know— Frameworks

Web software development is more than just programming languages. Web sites
are supported by complex systems made up of disparate software components and
hardware tied together with numerous protocols. The environment that allows all
of these moving parts to communicate with each other and the outside world is
referred to as a Framework. Frameworks determine the hardware, programming
languages, and protocols that form the life-support system of a Web site. The
organization of the hardware, software, and protocol environment into Frameworks
provides several benefits.

• A complete environment for Web site development, hosting,
interoperability, security, and maintenance so that developers do not have to
build customized systems from the ground up every time they launch a new
site

• Standards, consistency, and predictability across enterprises
• Software components or building-blocks so that developers can share and

reuse code without having to reinvent the wheel for every bit of functionality
• A model or standard architecture that allows us to easily visualize how the

entire system works

Without standardized frameworks, the Web would dissolve into a useless Tower of
Babel, as a myriad of one-off systems attempted to communicate, both internally
and externally, through customized interfaces. The need for standardization of
systems, languages, and protocols is a major force behind industry consolidation.
This consolidation has yielded several major Web development frameworks:
Microsoft's .NET, Sun's Java 2 Enterprise Edition, Open Source, and CORBA.

While making software development efficient and easy, Frameworks also limit the
parameters of what is possible. Each Frame work has benefits and drawbacks that
organizations must carefully weigh before they embrace the system of their choice.

Where to Get Framed

• JavaBeans Component Architecture—
http://java.sun.com/products/ejb

• What Is Java?— http://java.sun.com/java2/whatis/
• New Architect Magazine, May 2001. "Choosing Between .NET and

J2EE Frameworks" by Al Williams—
http://www.newarchitectmag.com/documents/s=4419/new10136363
74/

• Open Source–LINUX— http://www.linux.com
• Open Source–PHP— http://www.php.net
• The Open Source Initiative— http://www.opensource.org/
• O'Reilly Publishing's Web site: "Microsoft .NET vs. J2EE: How Do

They Stack Up?" by Jim Farley—
http://java.oreilly.com/news/farley_0800.html

Microsoft .NET

Microsoft's .NET Framework accommodates many programming languages and
provides powerful tools for integrating XML-based Web services. The main
limitation of .NET is that it will only operate on Windows platforms. The .NET
Framework is composed of four major features.

• The Common Language Runtime (CLR), a compiler that translates many
different program languages into a kind of "mother tongue" that is
universally understood by any .NET application.

• A prepackaged library of classes and services that developers can use. For
example, .NET has excellent support for XML-based Web services.

• A new version of Active Server Pages called ASP+.
• A new object-oriented programming language called C# ("C-Sharp").

At the center of .NET is the CLR "virtual machine," which compiles many
different programming languages into a universal interpreted language (IL). The IL
will only run on Windows. With the IL, .NET goes a step beyond traditional

Active Server Pages. Traditional Active Server Pages had to be interpreted by the
server individually for every request. This placed a heavy performance burden and
disguised some programming errors.

With .NET, every page is compiled into an IL file. The IL serves as a kind of
universal intermediary language. Since all .NET components and services
understand IL, it is possible to code dynamic Web pages using many different
programming languages. .NET also introduced C# as a master programming
language for this new environment. C# closely resembles Java. Like Java, C#
requires that every program be defined as a class.

Sun Microsystems' Java 2 Enterprise Edition

Sun's Framework relies on the Java programming language. With its Java Virtual
Machine (JVM), a universal language compiler that can be run on top of
practically any operating system, Sun makes the claim that Java is a "write once,
run anywhere" programming language. The J2EE Framework is known for its two
unique features.

• JavaServer Pages (JSP). On the presentation side, JSP allows Java code to
be embedded in HTML pages. When compiled, the JSP draws dynamically
generated HTML pages and sends them to the browser. JSPs let you create
Web pages that contain server-side Java but gen- erate ordinary HTML and
display it directly to the client.

• JavaBeans. The logic of J2EE applications is encapsulated into reusable
components called Enterprise JavaBeans (EJBs). These components
maintain state (by storing data) and carry out logical functions (called
methods). Enterprise JavaBeans also reduce the complexity of developing
middleware by providing automatic support for services like database
connectivity.

The Open Source Initiative

Open Source frameworks use software that is freely distributed, freely modifed,
and may not be tied to a particular product. Special software licenses (most
famously, the General Public License, or GPL) are used to ensure that the
development and distribution of the source code is in keeping with these principles.

The Great Debate in a Nutshell

Passionate techies can easily come to blows over the ".NET versus J2EE"

debate. Keep these concepts in mind during your attempt to make sense of
the flying jargon.

• .NET is language-neutral and Windows-dependent.
• J2EE is Java-dependent and platform- neutral.

Is it really that simple? Of course not, but these pithy lines will sound
good at a job interview, and they may help keep your head from spinning
as the debate rages on.

Open Source epitomizes the idea of collaborative development within a
community of volunteers. The basic idea is that with a global community of
programmers constantly making improvements, the software should evolve at a
very high speed. Members of the open source community believe that this rapid
evolutionary process produces better software than the traditional closed model, in
which only a very few programmers can work on the source. For example, the
open source database system PostgreSQL adds major features every few months,
whereas major upgrades to commercial software products can take years to
introduce. This unprecedented rate of revision stems from a worldwide army of
loyal and enthusiastic developers who brainstorm fixes and test the latest tweaks,
quickly reporting results from all kinds of applications, configurations, and
platforms.

Open Source does not mean that the software cannot be used in commercial
applications. For example, several companies like RedHat sell Linux-based
products by creating "brands" of Linux, called distributions. They can charge
money for these packages as long as the product is distributed along with its source
code and as long as anyone who buys the product is allowed to make changes and
share their modifications. This means that it is okay for you to make copies of
Linux and give them to your friends, and you can even tweak a few lines of the
source code while you're at it— as long as you make your improvements publicly
available to anyone who might ask. Here are some examples of successful Open
Source products that are in widespread commercial use.

• Apache HTTP Server, which runs more than 50 percent of the world's Web
servers

• Perl, which is still the most common programming language used by server-
side applications

• Linux, a successful Open Source operating system

Dropping Knowledge on Yourself

W3Schools— http://www.w3schools.com. Inside W3Schools you will find
a large number of free Web building tutorials, from basic HTML and
XHTML tutorials, to advanced XML, XSL, and WAP tutorials. The
tutorials are presented in a clear, no-nonsense, "just what you really need
to know" format.

Webmonkey— http://www.webmonkey.com. This site offers a how-to
library and a quick-reference guide that have been teaching people how to
build Web sites on their own since 1996. The tutorials are presented as
articles written in a breezy, conversational style.

Web Developer's Virtual Library— http://www.wdvl.com. For those with
some hands-on experience, this site takes a slightly more technical
approach. The WDVL offers in-depth tutorials on available software
technology and suggests pointers to additional resources.

• PHP, a general-purpose scripting language that is especially suited for Web
development and can be embedded into HTML

• PostgreSQL, an object-relational database system that is Open Source

Object-Oriented Design

Object-oriented (OO) design is a way of thinking about software that organizes
everything into objects. An object is a software model of some real-world entity,
like a customer or an invoice. Objects are organized into classes, collections of
objects that share common attributes and behaviors. Objects can inherit
characteristics from their parent classes. In order to design an OO system, your
team must take an inventory of the objects that the system will contain and identify
the behaviors and responsibilities of those objects, as well as how the objects will
interact with each other.

To understand objects, classes, and inheritance, we can use the simple example of
a dog named Roark. If we were to think about Roark in object-oriented terms, he is
a particular "instance" of the class "Dog." As a member of the Dog class, Roark
inherits certain attributes and behaviors. For example, he has fur and four legs. He
also has behaviors, or methods, such as eat, sleep, and fetch.

There are many advantages to thinking about Web applications as collections of
objects rather than lines of coded instructions. Most of these advantages have to do
with inheritence, reusability, and modularity. For example, by simply saying that
Roark is a member of the Dog class, you know quite a bit about him already, like
the fact that Roark doesn't talk, but he can bark. You also know that if you send
him certain instructions that are understood by all members of his class (like the
command "Roark, sit!"), he will probably understand you.

When working with your team to model an object-oriented application, the class
diagram is an extremely useful tool. This modeling technique describes each object
along with its methods (behaviors) and attributes. These models can also define the
relationships that exist between the objects in the system. A typical relationship
between objects is the "parent–child" relationship. An example of a parent–child
hierarchy can be seen in the class progression: Animal > Vertebrates > Mammals >
Dog. If we were to write a simple class definition diagram for our new Dog class,
it might look something like Figure B.1.

Figure B.1. Class Definition Diagram

CRC Cards

CRC stands for "class–responsibility–collaborator." As you work with your team
to design an object-oriented system, CRC cards provide a convenient format for
expressing complex information about classes. The goal of this technique is to
come up with a set of 3 x 5 index cards that describe all of the classes that make up
the application. Each card lists the name of the class, the responsibilities of the
class, and a list of collaborator classes that provide information or services. The
idea is to obtain brief, high-level descriptions. There are many excellent Web
tutorials on how to conduct a CRC session.

The UML

Software development methodologies use graphical notation schemes to express
the relationship of classes within an object-oriented system. The Unified Modeling
Language (UML) is the industry standard for graphical representation of object-
oriented systems. The UML specification is coordinated by the Object
Management Group (http://www.omg.org). UML diagrams show object
relationships, such as the following.

• One–to–one
• Many–to–one
• One–to–many
• Parent–child
• Composition and aggregation ("is a member of" and "has a" relationships)

Modeling is a crucial phase in large software projects. With sophisticated software
models, you can be more assured that the functionality will be complete before
implementation begins. UML modeling allows your team to visualize the software
design and check it against requirements prior to the costly development phase.

Web Services with XML

A Web service is an application that exposes itself to the world, allowing its
features to be utilized by any other program through standard protocols over the
Internet. Web services can be automatically invoked by other programs over the
Internet. Programs that invoke a Web service are referred to as clients. There are
several different protocols that are used to enable a Web service to communicate
with a client. The most common method is SOAP, which stands for "Simple
Object Access Protocol." SOAP sets the rules of engagement that govern the
transactions between a Web service and a client.

By exposing their data and functionality, Web services make it easy to integrate
disparate applications that may reside on multiple platforms and networks. The
beauty of Web services is that they can be built as a "layer" on top of existing
systems without disrupting the underlying code. Web services provide a
mouthpiece for any Web-enabled application, allowing it to share its data and
functionality with the rest of the world using XML as the common denominator.
Web services have several major uses.

• Application integration. Running on intranets, Web services within an
intranet can integrate business applications running on disparate platforms.
For example, a .NET client running on Windows 2000 can easily invoke a
Web service that allows it to interface with a legacy order entry system that
could be running AS/400.

• Business-to-business integration. B2B Web services allow commerce
partners to conduct transactions regardless of their native systems. For
example, a supplier's inventory management Web service might permit its
buyers to automatically check inventory levels before an order is sent by the
system.

• Commercial transactions. These Web services allow vendors to sell content
and data directly to clients over the Internet. With Web services, the
"customer" is actually another application instead of a human end-user. For
example, a news organization creates a Web service to allow other Web sites
to automatically pull the latest news stories for a transaction-based fee.

Content Management Systems

A content management system (CMS) allows content to be published intelligently
to large Web sites. Web sites that use a CMS are usually database driven, in that all
of the content is published dynamically to Web pages from a database where it
resides. A CMS generally provides the following features.

• Editorial workflow tools
• Content creation tools (creating, editing, archiving, and so on)
• Content publishing
• Content personalization
• Web page templates

By using a CMS, editors can do the following.

• Create content with desktop applications and Web-based interfaces
• Aggregate digital assets

• Integrate with applications developed in-house
• Automate and manage the authoring, approval, and publishing of digital

assets
• Define personalization rules to better target content delivery
• Modify content taxonomy to create a more intelligent and responsive site
• Stage content and manage versions to improve integrity and security
• Enable a consistent look and feel of the information architecture to Web

sites across the enterprise

Leading CMS Technology Vendors

• BroadVision— http://www.broadvision.com
• Interwoven— http://www.interwoven.com
• Macromedia ColdFusion—

http://www.macromedia.com/software/coldfusion
• Microsoft Content Management Server—

http://www.microsoft.com/cmserver/
• Vignette— http://www.vignette.com

Digital Rights Management

Leading-edge content sites provide multiple levels of membership and access,
segregating content into several buckets.

• Free content (often advertising-supported, with paid areas ad-free)
• Free members-only (membership is free and is used as a vehicle to promote

opt-in newsletter sign-ups)
• Premium membership
• Subscription-based (provided in various combinations or bundles)
• Pay-per-use (usually supported by a robust search engine that delivers

synopses or samples of the paid content and shopping cart mechanism)

"Premium" or paid content sites rely heavily on Web site metrics to evaluate and
tweak pricing models. There are several digital rights management (DRM) vendors
providing a layer of content servers that protect content and allow bundling of
users and groups. This software facilitates information commerce, the controlled
distribution and sale of information online. DRM systems allow business owners to
easily "package" content offerings, change pricing and business models on the fly,
and administer complicated access rights across multiple types of users and groups.

Appendix C. Useful Web Sites

Rather than list the tremendous number of sites devoted to project management, we
have selected our favorites. These sites are the most useful for the job.

Project Management Sites

Gantthead: A content and community portal specifically for project managers.

http://www.gantthead.com

PMBoulevard: A resource center offering access to a virtual project management
office (PMO), online training center, extensive knowledge center, and personalized
online consulting services.

http://www.pmboulevard.com

Project Management Institute: The leading nonprofit professional association for
project managers. PMI establishes project management standards and provides
seminars, educational programs, and professional certification.

http://www.pmi.org

The Project Management Center: A portal to online project management
resources.

http://www.infogoal.com/pmc

ALLPM: Forums, jobs, templates, and other resources.

http://www.allpm.com

4PM.com: An extensive free library, including articles, tools, and techniques.

http://www.4pm.com

Web Development and Technology Sites

CNET's Builder.com: A fairly technical portal dedicated to bringing software
developers a fresh, real-world perspective. The management section contains
excellent project management tips.

http://www.builder.com

Internet.com: For the "hands-on," everything you need to know about Web
technologies, aggregated.

http://www.internet.com

Tech Republic: A content and community portal for IT professionals with
excellent e-newsletters. We recommend the IT Consultant newsletter.

http://www.techrepublic.com

Graphic Design and Information Architecture Sites

Design Management Institute: Articles and techniques for managing designers as
well as articles devoted to the design process.

www.dmi.org

Jakob Nielson's Web Site: The blurb at the top of the usability guru's Web site
says, "Usable Information Technology." Well put!

http://www.useit.com

Glossaries

Whatis.com: A great reference site for technical information, and it also features
an excellent searchable glossary of technical terms.

http://whatis.techtarget.com

Wideman Comparative Glossary of Project Management Terms: Don't laugh.
Pay this site a visit to bone up on all the latest PM geek-speak, and you'll be the life
of the next launch party.

http://www.pmforum.org/library/glossary

Hybrids

A List Apart: For people who make Web sites. A fresh, always frank, and often
hilarious collection of articles covering everything "from pixels to prose, coding to
content." Updated monthly.

http://www.alistapart.com

Webmonkey: Now part of the Terra Lycos network, Webmonkey is one of the
first Web development "how-to" sites. Reading a cross section of Web monkey
articles is like getting a lesson in the evolution of Web design and development.

http://www.webmonkey.com

Recommended Reading

In our advocacy of an interdisciplinary approach to Web project management, we
recommend the following reading list for those of you who find yourselves
marooned on a desert island populated by natives who have no concept of software
development process.

Brink, Tom, Darren Gergle, and Scott Wood. 2001. Usability for the Web:
Designing Web Sites that Work. San Francisco: Morgan Kaufmann— ISBN: 1-558-
60658-0.

Burdman, Jessica. 1999. Collaborative Web Development: Strategies and Best
Practices for Web Teams. Reading, MA: Addison-Wesley— ISBN: 0-201- 43331-
1.

Castro, Elizabeth. 1999. HTML 4 for the World Wide Web: Visual QuickStart
Guide, Fourth Edition. Berkeley, CA: Peachpit Press— ISBN: 0-201-35493-4.

Cato, John. 2001. User-Centered Web Design. Boston: Addison-Wesley— ISBN:
0-201-39860-5.

Doucette, Martin. 1999. Microsoft Project 2000 for Dummies. Boston:
International Data Group— ISBN: 0-764-50517-3.

Fields, Duane K. 2001. Web Development with JavaServer Pages, Second Edition.
Greenwich, CT: Manning Publications— ISBN: 1-930-11012-X.

Friedlein, Ashley. 2000. Web Project Management: Delivering Successful
Commercial Web Sites. San Francisco: Morgan Kaufmann— ISBN: 1-558-60678-
5.

Nakano, Russell. 2002. Web Content Management: A Collaborative Approach.
Boston: Addison-Wesley— ISBN: 0-201-65782-1.

Project Management Institute. 1996. A Guide to the Project Management Body of
Knowledge. Upper Darby, PA: Project Management Institute— ISBN: 1-880-
41023-0.

Shneiderman, Ben. 2002. Designing the User Interface: Strategies for Effective
Human-Computer Interaction, Third Edition. Boston: Addison-Wesley— ISBN: 0-
201-69497-2.

Siegel, David. 1997. Secrets of Successful Web Sites: Project Management on the
World Wide Web. Indianapolis: Hayden Books— ISBN: 1-568-30382-3.

Taylor, Allen G. 2001. SQL For Dummies, Fourth Edition. New York: Wiley
Publishing— ISBN: 0-764-50737-0.

Tufte, Edward R. 1990. Envisioning Information. Cheshire, CT: Graphics Press—
ISBN: 0-961-39214-2.

Tufte, Edward R. 2001. The Visual Display of Quantitative Information, Second
Edition. Cheshire, CT: Graphics Press— ISBN: 0-961-39214-2

Wysocki, Robert K., Robert Beck, Jr., and David B. Crane. 2000. Effective Project
Management, Second Edition. New York: Wiley— ISBN: 0-471-36028-7.

Yourdon, Edward. 1999. Death March. Upper Saddle River, NJ: Prentice Hall—
ISBN: 0-130-14659-5.

	Cover
	Table of Contents
	Copyright
	Forward
	Preface
	Acknowledgments
	About the Authors
	Chapter 1. The Project Manager: Who You Are and What You Do
	Who You Are
	What You Do
	Summary

	Chapter 2. Web Team Roles
	Common Web Team Roles
	Common Team Problems
	Case Study: Startup Breakdown
	Summary

	Chapter 3. Communication Cues
	Communication: What It Is
	Communication: What It Isn't
	Communication Best Practices
	Case Study: Peeling the Corporate Onion
	Summary
	The Voice of Experience

	Chapter 4. Defining the Project
	The Creative Brief
	Project Documentation
	Case Study: Defining the Project with HTML "Shells"
	Summary

	Chapter 5. Managing Change
	A New Perspective on Scope
	Classic Scope Control
	Managing Scope Change
	Common Scope Headaches
	Summary

	Extreme Programming
	Chapter 6. The Art of Planning
	The Project Schedule
	Infatuation with Planning Software
	Planning by the Numbers
	Planning Pitfalls
	Case Study: Planning Software Overload
	Summary

	Chapter 7. Learning to Love Meetings
	Why Are We Here?
	Common Project Meetings
	Case Study: The Exploding Meeting
	Summary

	Chapter 8. Workflow
	Workflow for the Web
	Creating Workflow Standards
	Content Production Workflow
	Summary

	Chapter 9. Managing the Design Phase
	Is Information Architecture the Designer's Job?
	Design Production
	Design Production Phases
	Internal and External Design Groups
	How Technical Do Designers Need to Be?
	Summary
	The Information Architect Role in Practice
	How We Manage Design

	Chapter 10. The Technical Build
	Anxiety over the Technical Build
	Model–View–Controller
	A Generic Technical Build
	Code Review Guidelines
	Case Study: A Recipe for Disaster
	Summary

	Chapter 11. Surviving Quality Assurance
	A Common Scenario
	Quality Assurance for the Web
	What Does QA Test For?
	How Does QA Test Web Sites?
	The Testing Process
	The Politics of QA
	Case Study: Burning QA
	Summary

	Chapter 12. Getting It Out the Door
	The Final QA Phase
	Launch Deliverables
	Going Live
	Case Study: The Most Expensive Launch that Never Happened
	Summary

	Chapter 13. Leading Organizational Change
	The Invisible Team Member
	Common Organizational Structures
	Early Stages of Project Management
	The Project Management Office
	Case Study: Establishing Web Project Management at a Media
Company
	Summary

	Appendix A. Project Quick-Start Guide
	Brochureware
	Business-to-Business Portals ("Vortals")
	E-Commerce Web Sites
	E-Marketing Projects
	International Web Sites
	Intranets

	Appendix B. Technology for the Web Project Manager
	What You Really Need to Know— Frameworks
	Object-Oriented Design
	Web Services with XML
	Content Management Systems
	Digital Rights Management

	Appendix C. Useful Web Sites
	Project Management Sites
	Web Development and Technology Sites
	Graphic Design and Information Architecture Sites
	Glossaries
	Hybrids

	Recommended Reading

		2003-03-25T23:03:01+0800
	Joy

