
Summary of Contents
Preface .. xi
1. AJAX: the Overview ... 1
2. Basic XMLHttpRequest .. 13
3. The “A” in AJAX ... 41
4. AJAX and POST Requests .. 85
5. Broader AJAX with Edit-in-place ... 129
6. Web Services and Slide-and-hide .. 167
7. More Web Services and a Back Button ... 199
8. Drag and Drop with AJAX Chess .. 243
A. AJAX Toolkits .. 283
Index ... 287

Build Your Own AJAX Web
Applications

by Matthew Eernisse

Build Your Own AJAX Web Applications
by Matthew Eernisse

Copyright © 2006 SitePoint Pty. Ltd.

Editor: Georgina LaidlawExpert Reviewer: Stuart Langridge
Index Editor: Bill JohncocksManaging Editor: Simon Mackie
Cover Design: Jess BentleyTechnical Editor: Craig Anderson
Cover Layout: Alex WalkerTechnical Director: Kevin Yank
Latest Update: October 2006Printing History:

First Edition: June 2006

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the
case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by
the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-
ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood
VIC Australia 3066.

Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 0–9758419–4–7
Printed and bound in the United States of America

About the Author

Matthew lives in Houston, Texas, USA, and works for the Open Source Applications
Foundation building the web UIs for Scooby, a next-generation web-based calendar client,
and Cosmo, a calendar server. In his abundant free time, he writes about AJAX, JavaScript,
Ruby, and PHP at Fleegix.org, and operates EpiphanyRadio, a webcast radio station.
Matthew plays drums and speaks fluent Japanese.

About the Expert Reviewer

Stuart Langridge has been playing with the Web since 1994, and is quite possibly the
only person in the world to have a BSc in Computer Science and Philosophy. He invented
the term “unobtrusive DHTML” and has been a leader in the quest to popularize this
new approach to scripting. When not working on the Web, he’s a keen Linux user and
part of the team at open-source radio show LUGRadio, and likes drinking decent beers,
studying stone circles and other ancient phenomena, and trying to learn the piano.

About the Technical Director

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-
tions—books, articles, newsletters, and blogs. He has written over 50 articles for SitePoint,
but is best known for his book, Build Your Own Database Driven Website Using PHP &
MySQL. Kevin lives in Melbourne, Australia, and enjoys performing improvised comedy
theatre and flying light aircraft.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web
professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles,
and community forums.

http://www.sitepoint.com/

To my wife, Masako, and my
three little boys—Hiromasa,
Akira, and Yoshiki—for all

their love, patience, and
support.

Table of Contents
Preface ... xi

1. AJAX: the Overview ... 1
AJAX Web Applications ... 2

The Bad Old Days ... 3
Prehistoric AJAX .. 3

What Makes AJAX Cool ... 4
AJAX Technologies ... 8

Data Exchange and Markup: XML ... 8
W3C Document Object Model .. 10
Presentation: CSS .. 11
Communication: XMLHttpRequest .. 11
Putting it All Together: JavaScript ... 12

Summary ... 12

2. Basic XMLHttpRequest .. 13
A Simple AJAX Library .. 14

Starting our Ajax Class .. 14
Creating an XMLHttpRequest Object ... 16
Sending a Request .. 18
Processing the Response ... 23
Aborting the Request ... 28
Wrapping it Up .. 29
Example: a Simple Test Page ... 29

Example: a Simple AJAX App ... 33
Laying the Foundations .. 33
Handling the Result with showPoll .. 34
Starting the Process Over Again .. 36
Full Example Code ... 36
Running the App .. 38

Further Reading ... 38
JavaScript’s Object Model .. 38
XMLHttpRequest .. 39

Summary ... 39

3. The “A” in AJAX .. 41
Planned Application Enhancements .. 42
Organizing the Code .. 43

Loss of Scope with setTimeout .. 44
Creating the Monitor Object .. 47

Configuring and Initializing our Application 48
Setting Up the UI .. 49

The toggleButton Method .. 50
The toggleStatusMessage Method ... 51
Checking your Work In Progress ... 52

Polling the Server ... 53
Handling Timeouts .. 57
The Response Times Bar Graph .. 58

The Running List in pollArray .. 58
Displaying the Results .. 59
Stopping the Application ... 66

Status Notifications ... 67
The Status Animation .. 68
Setting Up Status ... 70
Internet Explorer Memory Leaks .. 71
The displayOpacity Method .. 72
Running the Animation .. 75

Styling the Monitor ... 80
Summary ... 83

4. AJAX and POST Requests ... 85
Review: Sending Data with GET .. 86
Sending Data with POST ... 86

A Quick Form POST .. 88
Using formData2QueryString .. 88

An Application Login ... 90
Accessibility and Backward Compatibility 90
Markup and CSS ... 91
Creating the Login Class .. 94
Setting it Up with init .. 95
Setting the Login Prompt ... 97
Ensuring Valid Input .. 99
Submitting the Form Data ... 103
Processing the Submission .. 104
Showing Processing Status ... 107
Handling the Server Response .. 109
Dealing with Login Failures .. 110

AJAX and Screen Readers ... 112
Thinking “Linearly” ... 112
Skip Navigation Links .. 115
Notification for Dynamic Content .. 117
Testing in Multiple Readers .. 118

iv

Build Your Own AJAX Web Applications

The Screen Reader Code .. 121
Setting Up Notification .. 122
Showing Notifications .. 123
Enabling the Submit Button ... 125
Adding Instructions to a Form Element 126

Further Reading ... 127
Summary ... 128

5. Broader AJAX with Edit-in-place ... 129
Page Markup .. 130

Accessibility and Backward Compatibility 132
The Blog Class ... 133
The init Method .. 134
Edit-in-place .. 134
Editing an Entry .. 137

The getSrcElem Method ... 138
Getting the Entry’s ID ... 139
Changing the State .. 140
Turning on Editable State ... 140
Enabling and Disabling Other Input ... 145
Returning to Display State ... 146

Saving Changes .. 148
The Status Animation .. 149

Starting the Animation ... 150
The doStatusAnim Method .. 151

The Fake Back-end Page ... 152
Using YAML .. 152
The PHP Code ... 154
Response Examples .. 154
Parsing YAML in JavaScript .. 155

Handling the Response ... 156
Stopping the Status Animation .. 157

Cleaning Up with stopReset .. 157
Adding a New Entry .. 158

Adding the New Entry divs ... 159
Canceling the New Entry ... 161
The Placeholder ID .. 162

Future Enhancements ... 163
Loading Existing Entries ... 163
Concurrency and Locking ... 164
Errors and Timeouts ... 165

Summary ... 165

v

6. Web Services and Slide-and-hide .. 167
Slide-and-hide Window .. 168
Web Services: an Overview ... 168
APIs and Protocols ... 169

REST ... 169
XML-RPC .. 170
SOAP .. 171
Network-centric vs Application-centric 171

Amazon Web Services Client .. 172
Amazon Web Services Accounts ... 173
Amazon E-Commerce Service ... 174

The Client Class ... 175
Initial Setup ... 176

Cross-site AJAX .. 177
XMLHttpRequest and Security .. 177
An AJAX Relay ... 178
The Proxy Script .. 179

Sending the Request to Amazon Web Services 182
Getting the Search Text .. 183
Sending the Request .. 183

Handling the Results from Amazon .. 184
Using xml2ObjArray .. 185

Formatting the Results ... 187
Performing the Slide-and-hide .. 188

The Slide-and-hide Effect ... 190
AJAX Fat-client Code ... 191

Legacy Browsers and Accessibility .. 191
Usability: the Back Button Problem .. 192
Debugging Client-side AJAX ... 194

Further Reading ... 196
Cross-site Scripting (XSS) .. 196
Mashups .. 197

Summary ... 197

7. More Web Services and a Back Button ... 199
The Search Application .. 200

Accessibility and Backward Compatibility 201
Fixing the Back Button ... 201

Setting Up the Search Class ... 202
The init Method .. 202

Disabling and Enabling Buttons ... 205
Enabling Search ... 205

vi

Build Your Own AJAX Web Applications

The submitSearch Method .. 206
Passing to the Proxy Script ... 207
Submitting the Search .. 207

The Proxy Script .. 208
Requirements ... 209
Initial Setup ... 209

Amazon Web Services .. 210
Printing the Response .. 211
Google Web APIs ... 211

Using a SOAP Library .. 211
The eBay Platform ... 214

A Few Hurdles ... 215
The Code ... 216

Testing the Proxy Script .. 217
Handling the Results .. 218

Amazon ... 218
Google ... 220
eBay .. 223
Displaying the Results .. 223
Fallback for Non-JavaScript Browsers 223

Screen Reader Code ... 225
Alerting Users to Page Changes .. 226

The Back Button Problem .. 227
The Two Options ... 227
SearchHistory Class ... 228
Adding to the History .. 229
Navigating the History ... 231
Displaying the History Entry ... 232

Building your own Back Button .. 233
Adding the Buttons .. 233

Using the Browser’s Back Button .. 234
Using the Location Hash .. 235
Setting Up the Fix .. 235
Setting the Hash .. 237
Watching the Hash .. 238
Displaying the Entry .. 239
Decisions, Decisions ... 240

Search App Enhancements ... 240
Paging .. 240
History Menu .. 240

Further Reading ... 241
Apache2 and OpenSSL on Linux .. 241

vii

Apache2 and OpenSSL on Windows .. 241
WSDL ... 241

Summary ... 242

8. Drag and Drop with AJAX Chess ... 243
AJAX Chess .. 243

Problems to Solve .. 244
The Chess Class ... 245
Starting the Application ... 246
Setting Up the Board ... 247

The Status Panel .. 249
Loading a Game ... 250
Using JSON ... 251

Encoding an Object with JSON .. 251
Decoding JSON Strings .. 252

Displaying Game State ... 253
The handleLoadGame Method .. 253
The displayGame Method .. 255

Global Event Handlers ... 258
Going Global ... 259
Handling Mouse Clicks .. 259

Moving Pieces .. 261
The mousemove Handler ... 262
The mouseup Handler ... 262

The Draggable Class .. 263
The Click Offset ... 264
Viewport Positions and Board Positions 264
The move Method .. 265
The drop Method .. 266

The doMove Method ... 269
Making a Backup ... 270
Error Checking ... 270
Aborting the Move on Error ... 271
Saving the Move .. 272

The handleMove Method ... 274
Polling for Server State ... 276
Wiping the Board ... 278
AJAX Chess Back End .. 280
Future Enhancements ... 280
Summary ... 281

viii

Build Your Own AJAX Web Applications

A. AJAX Toolkits .. 283
Index ... 287

ix

x

Preface
In the ten years or so since I made my first static web page, it’s been amazing to
see the evolution of the Web as a platform—first for the exchange of information,
and then for actual applications, running right in the browser. And now the AJAX
explosion is taking web development to the next level. Using the power of AJAX-
style development, you can create applications that rival desktop apps in their
power and responsiveness and, best of all, you don’t have to rely on ugly hacks
and kludges to get there.

What is AJAX? The acronym originally stood for “Asynchronous JavaScript and
XML”—quite a mouthful—but it has since come to refer to a style of development
that uses web technologies like XML, DOM, CSS, and JavaScript to create uber-
interactive web documents that behave like full-blown applications. None of
these AJAX technologies are actually all that new (even the AJAX “secret sauce,”
XMLHttpRequest, has been around for years), but not a lot of people really knew
how to use them to the fullest. Now, with the proliferation of “Web 2.0” applic-
ations that push the web-app envelope, and its cool, easy-to-remember name,
the AJAX style of development is really starting to take off.

In the early days, web apps used server-side scripting like CGI, as well as simple
web forms and image rollovers in the browser. Now we’re seeing developers take
major steps forward to enhance the user experience with the ability to update
the UI in pieces, instead of requiring a single, enormous redraw, and client-side
functionality like drag-and-drop and edit-in-place. Today’s web applications are
more interconnected as well, and are sometimes made up of data from multiple
services or sources. A browser-based AJAX app is a fantastic platform for providing
this kind of super-interactive, networked app experience to users. And the best
part is that the AJAX revolution is still just getting started, so now’s a great time
to jump in.

This book gives me a chance to show some cool ways in which you can use AJAX
techniques to add real power and responsiveness to your web applications while
supporting accessibility and backward compatibility. The beauty of AJAX is that
it lets you do all this using straightforward, standards-based code, so you won’t
be seeing weird hacks or browser-specific code in this book. So, roll up your
sleeves—I hope you’re ready to get your hands dirty in some AJAX code!

Who Should Read this Book?
This book is aimed primarily at web application developers who are already fa-
miliar with basic client-side web technologies like CSS and JavaScript.

If that’s not you, don’t be put off: this book will suit you if you’re willing to do
some learning as you go. JavaScript syntax is pretty straightforward, and we’re
using plain, vanilla code that’s pretty much free of browser-specific workarounds.
We also provide links to valuable resources that you can use to learn more about
the technologies used in AJAX development.

Some traditional applications programmers may also find this book of interest
for seeing how they can create a real desktop-app-style user interface that runs
in a browser. More and more of these guys will be looking to dip their toes into
the AJAX pool as “web application development” and plain “application develop-
ment” continue to converge.

What’s In this Book?
This book contains eight chapters. Each chapter builds on the concepts and
techniques introduced in the previous ones, so if you’re still fairly new to web
development, you’re probably better off to take the chapters step by step, in order.
If you’re a battle-hardened veteran, it might make more sense for you to jump
around among the topics that interest you.

Chapter 1: AJAX: The Overview
This chapter takes you through a quick overview of AJAX and the technolo-
gical building blocks that work together to make an AJAX web application.
It also looks back briefly on the ugly coding gymnastics that web developers
had to use back in the Bad Old Days before AJAX, to help explain why AJAX
is such a massive step forward. If you’re not an old hand at web development,
this chapter will provide an introduction to the basic technologies you’ll need
in order to embark upon modern client-side web development with AJAX.

Chapter 2: Basic XMLHttpRequest
XMLHttpRequest is the heart and soul of AJAX. It makes AJAX web devel-
opment possible by allowing browsers to make HTTP requests to a server
without reloading the page. This chapter takes you through the process of
putting together a very simple AJAX JavaScript library; it will give you a good
grounding in how XMLHttpRequest makes requests, and an understanding
of the different ways you can access the results returned from the server.

xii

Preface

With the under-the-hood knowledge of XMLHttpRequest you’ll get from
this chapter, you’ll be able to work with almost any JavaScript XMLHttpRe-
quest library, and confidently diagnose and debug issues with XMLHttpRe-
quest in your web application.

Chapter 3: The “A” in AJAX
A is for “asynchronous.” Asynchronicity is what makes AJAX so cool: XML-
HttpRequest gives you the power to pull content from the server any time
you want, without reloading the entire web page. In this chapter, you’ll build
your first real AJAX app—a web app monitor that uses XMLHttpRequest to
poll a server with basic HTTP GET requests, and reports the time it takes to
get a response. This app demonstrates some of the complexity we must deal
with in a browser-based AJAX app, including the timing of events, timeouts,
and keeping users continuously informed about what the application is doing
with the help of animations and status messages.

Chapter 4: AJAX and POST Requests
We move to the grown-ups’ table in this chapter, which focuses on AJAX
HTTP POST requests. POST is the bread-and-butter of web forms, and the
process of sending packages of data back to the server. Combining it with
some tasty AJAX can make your app a lot more palatable to users. The
demonstration code in this chapter shows off one of the optimal uses for
AJAX: it’s a web app login that uses XMLHttpRequest to pass user authen-
tication data back to the server, and displays status messages inline on the
page. You’ll also learn how to create this kind of AJAX-y UI without breaking
the app’s accessibility or backwards compatibility.

Chapter 5: Broader AJAX with Edit-in-place
When non-developer types talk about AJAX web applications, they usually
mean more than just XMLHttpRequest. In this chapter, we’ll demonstrate
a little of what those people are talking about as we discuss edit-in-place. The
demo code for this chapter creates a basic blog page that lets you edit the
entries right on the page, instead of having to go to a separate web form. It
displays a nice, fading color animation effect to let users know when the ap-
plication is busy processing their edits.

Chapter 6: Web Services and Slide-and-hide
This chapter moves us into the interconnected Web 2.0 world with a basic
overview of web services and a demonstration that shows how you can wire
up your AJAX web app to them. The application we’ll work with in this
chapter plugs into Amazon’s ECS (E-Commerce Service) web service with
some simple REST-style HTTP requests to perform book searches. Unlike a

xiii

boring old web form submission that loads the results in a new page, this app
pulls down the XML results, formats them nicely, then uses a cool slide-and-
hide effect to insert them right into the page.

Chapter 7: More Web Services and a Back Button
There’s more to web services than REST. This chapter goes into more depth
on the topic of web services, providing example code for an accessible AJAX
search application that talks to the Google Web APIs, Del.icio.us, and the
EBay platform using more sophisticated methods such as SOAP and XML-
RPC. We also discuss two separate ways to fix the classic AJAX Back Button
Problem—one that builds navigation for the search history into the applica-
tion, and a hack that forces the browser’s real Back button to behave properly.

Chapter 8: Drag and Drop with AJAX Chess
This final chapter uses an in-the-browser game of AJAX Chess to demonstrate
a sophisticated drag-and-drop interface in which absolute-positioned UI ele-
ments are placed relative to the window size, drag constraints are used, and
drop functionality triggers XMLHttpRequest requests to the server to save
each move in the game. The complex interactivity of this app is managed
through a global event listener setup that routes all user input through a
single point, but gives you the flexibility to process events the way you want.
The AJAX Chess game also shows a basic way to synchronize the application
state between browsers with polling, and how to abort and revert to a previous
state in the event of a server error.

This Book’s Web Site
Located at http://www.sitepoint.com/books/ajax1/, the web site supporting this
book will give you access to the following facilities.

The Code Archive
As you progress through the text, you’ll note a number of references to the code
archive. This is a downloadable ZIP archive that contains complete code for all
the examples presented in this book. You can download the code archive from
http://www.sitepoint.com/books/ajax1/code.php

Updates and Errata
The Corrections and Typos page on the book’s web site, at
http://www.sitepoint.com/books/ajax1/errata.php will always have the latest in-

xiv

Preface

http://www.sitepoint.com/books/ajax1/
http://www.sitepoint.com/books/ajax1/code.php
http://www.sitepoint.com/books/ajax1/errata.php

formation about known typographical and code errors, and necessary updates
for changes to technologies.

The SitePoint Forums
While I’ve made every attempt to anticipate any questions you may have, and
answer them in this book, there is no way that any book could cover everything
there is to know about AJAX. If you have a question about anything in this book,
the best place to go for a quick answer is SitePoint’s Forums1—SitePoint’s vibrant
and knowledgeable community.

The SitePoint Newsletters
In addition to books like this one, SitePoint offers free email newsletters. The
SitePoint Tech Times covers the latest news, product releases, trends, tips, and
techniques for all technical aspects of web development. The long-running SitePoint
Tribune is a biweekly digest of the business and moneymaking aspects of the Web.
Whether you’re a freelance developer looking for tips to score that dream contract,
or a marketing major striving to keep abreast of changes to the major search en-
gines, this is the newsletter for you. The SitePoint Design View is a monthly com-
pilation of the best in web design. From new CSS layout methods to subtle
Photoshop techniques, SitePoint’s chief designer shares his years of experience
in its pages. Browse the archives or sign up to any of SitePoint’s free newsletters
at http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or you wish to contact me for
any other reason, the best place to write is books@sitepoint.com. SitePoint has
a well-manned email support system set up to track your inquiries, and if the
support staff are unable to answer your question, they send it straight to me.
Suggestions for improvement as well as notices of any mistakes you may find are
especially welcome.

Acknowledgements
Any author is only as good as his editors. I’d like to extend a sincere and heartfelt
thanks for the great work done by Simon Mackie, my editor, and Stuart Langridge,

1 http://www.sitepoint.com/forums/

xv

http://www.sitepoint.com/forums/
http://www.sitepoint.com/newsletter/

my expert reviewer. Their advice and feedback have made this book immeasurably
better. Much appreciation also goes to Georgina Laidlaw, my language editor,
and Craig Anderson, my tech editor, for their hard work keeping the train on the
tracks.

I’d also like to express a word of thanks to a few other people who had a hand
in the creation of this book either directly or indirectly: Mitch Kapor and everyone
at OSAF, for being so incredibly brilliant, and giving me such a great opportunity
to learn; RMS and Linus, for all the open-source goodness; all the folks in
#javascript on Freenode, from the clueless to the cranky to the crazy-smart, for
providing endless hours of both education and entertainment; Robbie and Will,
for opportunity; Ed and Hugh, for early programming help; and Neil, Geddy,
and Alex, for giving a geeky kid some inspiration back in the day, and producing
some great music to write a book to.

xvi

Preface

AJAX: the Overview1
He’s escaping, idiot! Dispatch War Rocket Ajax! To bring back his body!
—General Kala, Flash Gordon

So here you are, book in hand, ready to learn all about this thing called AJAX.
But, what exactly is it? The term AJAX refers to a loose grouping of technologies
that are used to create dynamic, interactive web content.

The term AJAX, originally coined by Jesse James Garrett of Adaptive Path in his
essay AJAX: A New Approach To Web Applications,1 is an acronym for “Asynchron-
ous JavaScript And XML.” That’s a bit of a mouthful, but it’s simply describing
a technique that uses JavaScript to refresh a page’s contents from a web server
without having to reload the entire page. This is different from the traditional
method of updating web pages, which requires the browser to refresh the entire
page in order to display any changes to the content.

Similar techniques have been around in one form or another (often achieved with
the help of some clever hacks) for quite a while. But the increasing availability
of the XMLHttpRequest class in browsers, the coining of the catchy term AJAX,
and the advent of a number of high-profile examples such as Google Maps,2

1 http://adaptivepath.com/publications/essays/archives/000385.php
2 http://maps.google.com/

http://adaptivepath.com/publications/essays/archives/000385.php
http://maps.google.com/

Gmail,3 Backpack,4 and Flickr,5 have allowed these kinds of highly interactive
web applications to begin to gain traction in the development world.

As the term AJAX has become more widespread, its definition has expanded to
refer more generally to browser-based applications that behave much more dy-
namically than old-school web apps. This new crop of AJAX web applications
make more extensive use of interaction techniques like edit-in-place text, drag-
and-drop, and CSS animations or transitions to effect changes within the user
interface. This book will explain those techniques, and show you how to develop
AJAX web applications of your own.

AJAX Web Applications
AJAX can be a great solution for many web development projects—it can empower
web apps to step up and take over a lot of the ground that previously was occupied
almost exclusively by desktop applications.

All the same, it’s important to keep in mind that AJAX is not a sort of magic fairy
dust that you can sprinkle on your app to make it whizzy and cool. Like any
other new development technique, AJAX isn’t difficult to mis-use, and the only
thing worse than a horrible, stodgy, old-school web app is a horrible, poorly ex-
ecuted AJAX web app.

When you apply it to the right parts of your web application, in the right ways,
AJAX can enhance users’ experience of your application significantly. AJAX can
improve the interactivity and speed of your app, ultimately making that applica-
tion easier, more fun, and more intuitive to use.

Often, AJAX applications are described as being “like a desktop application in
the browser.” This is a fairly accurate description—AJAX web apps are significantly
more responsive than traditional, old-fashioned web applications, and they can
provide levels of interactivity similar to those of desktop applications.

But an AJAX web app is still a remote application, and behaves differently from
a desktop application that has access to local storage. Part of your job as an AJAX
developer is to craft applications that feel responsive and easy to use despite the
communication that must occur between the app and a distant server. Fortunately,

3 http://mail.google.com/
4 http://www.backpackit.com/
5 http://flickr.com/

2

Chapter 1: AJAX: the Overview

http://mail.google.com/
http://www.backpackit.com/
http://flickr.com/

the AJAX toolbox gives you a number of excellent techniques to accomplish exactly
that.

The Bad Old Days
One of the first web development tasks that moved beyond serving simple, static
HTML pages was the technique of building pages dynamically on the web server
using data from a back-end data store.

Back in the “bad old days” of web development, the only way to create this dy-
namic, database-driven content was to construct the entire page on the server
side, using either a CGI script (most likely written in Perl), or some server com-
ponent that could interpret a scripting language (such as Microsoft’s Active
Server Pages). Even a single change to that page necessitated a round trip from
browser to server—only then could the new content be presented to the user.

In those days, the normal model for a web application’s user interface was a web
form that the user would fill out and submit to the server. The server would
process the submitted form, and send an entirely new page back to the browser
for display as a result. So, for example, the completion of a multi-step, web-based
“wizard” would require the user to submit a form—thereby prompting a round-
trip between the browser and the server—for each step.

Granted, this was a huge advance on static web pages, but it was still a far cry
from presenting a true “application” experience to end-users.

Prehistoric AJAX
Early web developers immediately began to look for tricks to extend the capabil-
ities of that simple forms-based model, as they strove to create web applications
that were more responsive and interactive. These hacks, while fairly ad hoc and
crude, were the first steps web developers took toward the kind of interactivity
we see in today’s AJAX applications. But, while these tricks and workarounds
often provided serviceable, working solutions, the resulting code was not a pretty
sight.

Nesting Framesets

One way to get around the problem of having to reload the entire page in order
to display even the smallest change to its content was the hideous hack of nesting
framesets within other framesets, often several levels deep. This technique allowed

3

The Bad Old Days

developers to update only selected areas of the screen, and even to mimic the
behavior of tab-style navigation interfaces in which users’ clicking on tabs in one
part of the screen changed content in another area.

This technique resulted in horrible, unmaintainable code with profusions of pages
that had names like EmployeeEditWizardMiddleLowerRight.asp.

The Hidden iframe

The addition of the iframe in browsers like Internet Explorer 4 made things
much less painful. The ability to hide the iframe completely led to the develop-
ment of another neat hack: developers would make HTTP requests to the server
using a hidden iframe, then insert the content into the page using JavaScript
and DHTML. This provided much of the same functionality that’s available
through modern AJAX, including the ability to submit data from forms without
reloading the page—a feat that was achieved by having the form submit to the
hidden iframe. The result was returned by the server to the iframe, where the
page’s JavaScript could access it.

The big drawback of this approach (beyond the fact that it was, after all, a hack)
was the annoying burden of passing data back and forth between the main docu-
ment and the document in the iframe.

Remote Scripting

Another early AJAX-like technique, usually referred to as remote scripting, in-
volved setting the src attribute of a <script> tag to load pages that contained
dynamically generated JavaScript.

This had the advantage of being much cleaner than the hidden iframe hack, as
the JavaScript generated on the server would load right into the main document.
However, only simple GET requests were possible using this technique.

What Makes AJAX Cool
This is why AJAX development is such an enormous leap forward for web devel-
opment: instead of having to send everything to the server in a single, huge mass,
then wait for the server to send back a new page for rendering, web developers
can communicate with the server in smaller chunks, and selectively update spe-
cific areas of the page based on the server’s responses to those requests. This is
where the word asynchronous in the AJAX acronym originated.

4

Chapter 1: AJAX: the Overview

It’s probably easiest to understand the idea of an asynchronous system by con-
sidering its opposite—a synchronous system. In a synchronous system, everything
occurs in order. If a car race was a synchronous system, it would be a very dull
affair. The car that started first on the grid would be the first across the finish
line, followed by the car that started second, and so on. There would be no
overtaking, and if a car broke down, the traffic behind would be forced to stop
and wait while the mechanics made their repairs.

Traditional web apps use a synchronous system: you must wait for the server to
send you the first page of a system before you can request the second page, as
shown in Figure 1.1.

5

What Makes AJAX Cool

Figure 1.1. A traditional web app is a synchronous system

An asynchronous car race would be a lot more exciting. The car in pole position
could be overtaken on the first corner, and the car that starts from the back of
the grid could weave its way through the field and cross the finish line in third
place. The HTTP requests from the browser in an AJAX application work in ex-
actly this way. It’s this ability to make lots of small requests to the server on a
needs-basis that makes AJAX development so cool. Figure 1.2 shows an AJAX
application making asynchronous requests to a web server.

6

Chapter 1: AJAX: the Overview

Figure 1.2. An AJAX web app is an asynchronous system

The end result is an application that feels much more responsive, as users spend
significantly less time waiting for requests to process, and don’t have to wait for
an entire new web page to come across the wire, and be rendered by their browsers,
before they can view the results.

7

What Makes AJAX Cool

AJAX Technologies
The technologies that are used to build AJAX web applications encompass a
number of different programming domains, so AJAX development is neither as
straightforward as regular applications development, nor as easy as old-school
web development.

On the other hand, the fact that AJAX development embraces so many different
technologies makes it a lot more interesting and fun. Here’s a brief listing of the
technologies that work together to make an AJAX web application:

❑ XML

❑ the W3C DOM

❑ CSS

❑ XMLHttpRequest

❑ JavaScript

Through the rest of this chapter, we’ll meet each of these technologies and discuss
the roles they play in an AJAX web application.

Data Exchange and Markup: XML
XML6 is where AJAX gets its letter “X.” This is fortunate, because tech acronyms
are automatically seen as being much cooler if they contain the letter “X.” (Yes,
I am kidding!)

Data Exchange Lingua Franca

XML often serves as the main data format used in the asynchronous HTTP re-
quests that communicate between the browser and the server in an AJAX applic-
ation. This role plays to XML’s strengths as a neutral and fairly simple data ex-
change format, and also means that it’s relatively easy to reuse or reformat content
if the need arises.

6 XML stands for Extensible Markup Language—not that anyone ever calls it that outside of textbooks.

8

Chapter 1: AJAX: the Overview

There are, of course, numerous other ways to format your data for easy exchange
between the browser and the server,7 but XML is one of the most common.

XML as Markup

The web pages in AJAX applications consist of XHTML markup, which is actually
just a flavor of XML. XHTML, as the successor to HTML, is very similar to it.
It’s easily picked up by any developer who’s familiar with old-school HTML, yet
it boasts all the benefits of valid XML. There are numerous advantages to using
XHTML:

❑ It offers lots of standard tools and script libraries for viewing, editing, and
validating XML.

❑ It’s forward-compatible with newer, XML-compatible browsers.

❑ It works with either the HTML Document Object Model (DOM) or the XML
DOM.

❑ It’s more easily repurposed for viewing in non-browser agents.

Some of the more pedantic folks in the development community insist that people
should not yet be using XHTML. They believe very strongly that XHTML, since
it is actual XML, should not be used at all unless it can be served with a proper
HTTP Content-Type header of application/xhtml+xml,8 for which, at present,
there is still limited browser support. (Internet Explorer 6 and 7 do not support
it at all.)

In practice, you can serve XHTML to the browser with a Content-Type of
text/html, as all the mainstream browsers render correctly all XHTML documents
served as text/html. Although browsers will treat your code as plain old HTML,
other programs can still interpret it as XML, so there’s no practical reason not
to “future-proof” your markup by using it.

If you happen to disagree with me, you can choose instead to develop using the
older HTML 4.01 standard. This is still a viable web standard, and is a perfectly
legitimate choice to make in developing your web application.

7 Such as CSV (comma separated values), JSON (JavaScript object notation), or simply plain text.
8 text/xml and application/xml would also be okay, though they’re less descriptive.

9

Data Exchange and Markup: XML

XHTML and this Book

Most of the code examples in this book will use XHTML 1.0 Strict. The
iframe element is not available in Strict, so the few code examples we show
using the iframe will be XHTML 1.0 Transitional.

The World Wide Web Consortium maintains an FAQ on the differences
between HTML and XHTML.9

W3C Document Object Model
The Document Object Model (DOM) is an object-oriented representation of
XML and HTML documents, and provides an API for changing the content,
structure, and style of those documents.

Originally, specific browsers like Netscape Navigator and Internet Explorer
provided differing, proprietary ways to manipulate HTML documents using
JavaScript. The DOM arose from efforts by the World Wide Web Consortium
(W3C) to provide a platform- and browser-neutral way to achieve the same tasks.

The DOM represents the structure of an XML or HTML document as an object
hierarchy, which is ideal for parsing by standard XML tools.

DOM Manipulation Methods

JavaScript provides a large API for dealing with these DOM structures, in terms
of both parsing and manipulating the document. This is one of the primary ways
to accomplish the smaller, piece-by-piece changes to a web page that we see in
an AJAX application.10

DOM Events

The other important function of the DOM is that it provides a standard means
for JavaScript to attach events to elements on a web page. This makes possible
much richer user interfaces, because it allows you to give users opportunities to
interact with the page beyond simple links and form elements.

A great example of this is drag-and-drop functionality, which lets users drag pieces
of the page around on the screen, and drop them into place to trigger specific

9 http://www.w3.org/MarkUp/2004/xhtml-faq
10 Another method is simply to change the innerHTML property of an element. This method is not
well documented in any standard, though it’s widely supported by mainstream browsers.

10

Chapter 1: AJAX: the Overview

http://www.w3.org/MarkUp/2004/xhtml-faq
http://www.w3.org/MarkUp/2004/xhtml-faq

pieces of functionality. This kind of feature used to exist only in desktop applic-
ations, but now it works just as well in the browser, thanks to the DOM.

Presentation: CSS
CSS (Cascading Style Sheets) provides a unified method for controlling the ap-
pearance of user interface elements in your web application. You can use CSS to
change almost any aspect of the way the page looks, from font sizes, colors, and
spacing, to the positioning of elements.

In an AJAX application, one very good use of CSS is to provide user-interface
feedback (with CSS-driven animations and transitions), or to indicate portions
of the page with which the user can interact (with changes to color or appearance
triggered, for example, by mouseovers). For example, you can use CSS transitions
to indicate that some part of your application is waiting for an HTTP request
that’s processing on the server.

CSS manipulation figures heavily in the broader definition of the term AJAX—in
various visual transitions and effects, as well as in drag-and-drop and edit-in-place
functionality.

Communication: XMLHttpRequest
XMLHttpRequest, a JavaScript class with a very easy-to-use interface, sends and
receives HTTP requests and responses to and from web servers. The
XMLHttpRequest class is what makes true AJAX application development possible.
The HTTP requests made with XMLHttpRequest work just as if the browser were
making normal requests to load a page or submit a form, but without the user
ever having to leave the currently loaded web page.

Microsoft first implemented XMLHttpRequest in Internet Explorer 5 for Windows
as an ActiveX object. The Mozilla project provided a JavaScript-native version
with a compatible API in the Mozilla browser, starting in version 1.0. (It’s also
available in Firefox, of course.) Apple has added XMLHttpRequest to Safari since
version 1.2.

The response from the server—either an XML document or a string of text—can
be passed to JavaScript to use however the developer sees fit—often to update
some piece of the web application’s user interface.

11

Presentation: CSS

Putting it All Together: JavaScript
JavaScript is the glue that holds your AJAX application together. It performs
multiple roles in AJAX development:

❑ controlling HTTP requests that are made using XMLHttpRequest

❑ parsing the result that comes back from the server, using either DOM manip-
ulation methods, XSLT, or custom methods, depending on the data exchange
format used

❑ presenting the resulting data in the user interface, either by using DOM ma-
nipulation methods to insert content into the web page, by updating an ele-
ment’s innerHTML property, or by changing elements’ CSS properties

Because of its long history of use in lightweight web programming (and at the
hands of inexperienced programmers), JavaScript has not been seen by many
traditional application developers as a “serious programming language,” despite
the fact that, in reality, it’s a fully-featured, dynamic language capable of support-
ing object-oriented programming methodologies.

The misperception of JavaScript as a “toy language” is now changing rapidly as
AJAX development techniques expand the power and functionality of browser-
based applications. As a result of the advent of AJAX, JavaScript now seems to
be undergoing something of a renaissance, and the explosive growth in the
number of JavaScript toolkits and libraries available for AJAX development is
proof of the fact.

Summary
In this chapter, we had a quick overview of AJAX and the technologies that make
it tick. We looked at some of the horrible coding contortions that developers had
to endure back in the bad old days to create something resembling an interactive
UI, and we saw how AJAX offers a huge improvement on those approaches. With
a decent command of the building blocks of AJAX—XML, the DOM, CSS, XM-
LHttpRequest, and JavaScript, which ties them all together—you have everything
you need to start building dynamic and accessible AJAX sites.

12

Chapter 1: AJAX: the Overview

Basic XMLHttpRequest2
I can’t wait to share this new wonder, The people will all see its light, Let them all make
their own music, The priests praise my name on this night.
—Rush, Discovery

It’s XMLHttpRequest that gives AJAX its true power: the ability to make asyn-
chronous HTTP requests from the browser and pull down content in small chunks.

Web developers have been using tricks and hacks to achieve this for a long time,
while suffering annoying limitations: the invisible iframe hack forced us to pass
data back and forth between the parent document and the document in the
iframe, and even the “remote scripting” method was limited to making GET re-
quests to pages that contained JavaScript.

Modern AJAX techniques, which use XMLHttpRequest, provide a huge improve-
ment over these kludgy methods, allowing your app to make both GET and POST
requests without ever completely reloading the page.

In this chapter, we’ll jump right in and build a simple AJAX web application—a
simple site-monitoring application that pings a page on a web server to a timed
schedule. But before we start making the asynchronous HTTP requests to poll
the server, we’ll need to simplify the use of the XMLHttpRequest class by taking
care of all of the little browser incompatibilities, such as the different ways
XMLHttpRequest objects are instantiated, inside a single, reusable library of code.

A Simple AJAX Library
One approach to simplifying the use of the XMLHttpRequest class would be to
use an existing library of code. Thanks to the increasing popularity of AJAX de-
velopment, there are literally dozens of libraries, toolkits, and frameworks available
that make XMLHttpRequest easier to use.

But, as the code for creating an instance of the XMLHttpRequest class is fairly
simple, and the API for using it is easy to understand, we’ll just write a very
simple JavaScript library that takes care of the basic stuff we need.

Stepping through the process of creating your own library will ensure you know
how the XMLHttpRequest class works, and will help you get more out of those
other toolkits or libraries when you do decide to use them.

Starting our Ajax Class
We’ll start by creating a basic class, called Ajax, in which we’ll wrap the function-
ality of the XMLHttpRequest class.

I’ve Never done Object Oriented Programming in
JavaScript—Help!

In this section, we’ll start to create classes and objects in JavaScript. If you’ve
never done this before, don’t worry—it’s quite simple as long as you know
the basics of object oriented programming.

In JavaScript, we don’t declare classes with complex syntax like we would in
Java, C++ or one of the .NET languages; we simply write a constructor
function to create an instance of the class. All we need to do is:

❑ provide a constructor function—the name of this function is the name
of your class

❑ add properties to the object that’s being constructed using the keyword
this, followed by a period and the name of the property

❑ add methods to the object in the same way we’d add properties, using
JavaScript’s special function constructor syntax

Here’s the code that creates a simple class called HelloWorld:

14

Chapter 2: Basic XMLHttpRequest

function HelloWorld() {
 this.message = 'Hello, world!';
 this.sayMessage = function() {
 window.alert(this.message);
 };
}

JavaScript’s framework for object oriented programming is very lightweight,
but functions surprisingly well once you get the hang of it. More advanced
object oriented features, such as inheritance and polymorphism, aren’t
available in JavaScript, but these features are rarely needed on the client side
in an AJAX application. The complex business logic for which these features
are useful should always be on the web server, and accessed using the
XMLHttpRequest class.

In this example, we create a class called HelloWorld with one property
(message) and one method (sayMessage). To use this class, we simply call
the constructor function, as shown below:

var hw = new HelloWorld();
hw.sayMessage();
hw.message = 'Goodbye';
hw.sayMessage();

Here, we create an instance of HelloWorld (called hw), then use this object
to display two messages. The first time we call sayMessage, the default
“Hello, world!” message is displayed. Then, after changing our object’s
message property to “Goodbye,” we call sayMessage and “Goodbye” is
displayed.

Don’t worry if this doesn’t make too much sense at the moment. As we
progress through the building of our Ajax class, it will become clearer.

Here are the beginnings of our Ajax class’s constructor function:

File: ajax.js (excerpt)

function Ajax() {
 this.req = null;
 this.url = null;
 this.method = 'GET';
 this.async = true;
 this.status = null;
 this.statusText = '';
 this.postData = null;
 this.readyState = null;
 this.responseText = null;
 this.responseXML = null;

15

Starting our Ajax Class

 this.handleResp = null;
 this.responseFormat = 'text', // 'text', 'xml', or 'object'
 this.mimeType = null;
}

This code just defines the properties we’ll need in our Ajax class in order to work
with XMLHttpRequest objects. Now, let’s add some methods to our object. We
need some functions that will set up an XMLHttpRequest object and tell it how
to make requests for us.

Creating an XMLHttpRequest Object
First, we’ll add an init method, which will create an XMLHttpRequest object for
us. Unfortunately, XMLHttpRequest is implemented slightly differently in Firefox,1

Safari, and Opera than it was in Internet Explorer’s original implementation,2 so
you’ll have to try instantiating the object in a number of different ways if you’re
not targeting a specific browser. Firefox and Safari create XMLHttpRequest objects
using a class called XMLHttpRequest, while Internet Explorer versions 6 and
earlier use a special class called ActiveXObject that’s built into Microsoft’s
scripting engine. Although these classes have different constructors, they behave
in the same way.

Cross-browser Code

Fortunately, most modern browsers3 adhere to web standards fairly well
overall, so you won’t have to do lots of browser-specific branching in your
AJAX code.

This usually makes a browser-based AJAX application faster to develop and
deploy cross-platform than a desktop application. As the power and capabil-
ities available to AJAX applications increase, desktop applications offer fewer
advantages from a user-interface perspective.

The init method looks like this:

File: ajax.js (excerpt)

this.init = function() {
 if (!this.req) {

1 In this book, whenever I explain how something works in Firefox, I’m referring to all Mozilla-based
browsers, including Firefox, Mozilla, Camino, and SeaMonkey.
2 Interestingly, Internet Explorer version 7 now supports the same interface as Firefox, which promises
to simplify AJAX development in the future.
3 Internet Explorer 6, Firefox 1.0, Safari 1.2, and Opera 8, or later versions of any of these browsers.

16

Chapter 2: Basic XMLHttpRequest

 try {
 // Try to create object for Firefox, Safari, IE7, etc.
 this.req = new XMLHttpRequest();
 }
 catch (e) {
 try {
 // Try to create object for later versions of IE.
 this.req = new ActiveXObject('MSXML2.XMLHTTP');
 }
 catch (e) {
 try {
 // Try to create object for early versions of IE.
 this.req = new ActiveXObject('Microsoft.XMLHTTP');
 }
 catch (e) {
 // Could not create an XMLHttpRequest object.
 return false;
 }
 }
 }
 }
 return this.req;
};

The init method goes through each possible way of creating an XMLHttpRequest
object until it creates one successfully. This object is then returned to the calling
function.

Degrading Gracefully

Maintaining compatibility with older browsers4 requires a lot of extra code
work, so it’s vital to define which browsers your application should support.

If you know your application will receive significant traffic via older browsers
that don’t support the XMLHtmlRequest class (e.g., Internet Explorer 4 and
earlier, Netscape 4 and earlier), you will need either to leave it out completely,
or write your code so that it degrades gracefully. That means that instead
of allowing your functionality simply to disappear in less-capable browsers,
you code to ensure that users of those browsers receive something that’s
functionally equivalent, though perhaps in a less interactive or easy-to-use
format.

It’s also possible that your web site will attract users who browse with
JavaScript disabled. If you want to cater to these users, you should provide

4 By “older” I mean anything older than the “modern browsers” I mentioned in the previous note.

17

Creating an XMLHttpRequest Object

an alternative, old-school interface by default, which you can then modify
on-the-fly—using JavaScript—for modern browsers.

Sending a Request
We now have a method that creates an XMLHttpRequest. So let’s write a function
that uses it to make a request. We start the doReq method like this:

File: ajax.js (excerpt)

this.doReq = function() {
 if (!this.init()) {
 alert('Could not create XMLHttpRequest object.');
 return;
 }
};

This first part of doReq calls init to create an instance of the XMLHttpRequest
class, and displays a quick alert if it’s not successful.

Setting Up the Request

Next, our code calls the open method on this.req—our new instance of the
XMLHttpRequest class—to begin setting up the HTTP request:

File: ajax.js (excerpt)

this.doReq = function() {
 if (!this.init()) {
 alert('Could not create XMLHttpRequest object.');
 return;
 }
this.req.open(this.method, this.url, this.async);

};

The open method takes three parameters:

Method This parameter identifies the type of HTTP request
method we’ll use. The most commonly used methods
are GET and POST.

Methods are Case-sensitive

According to the HTTP specification (RFC
2616), the names of these request methods are
case-sensitive. And since the methods described

18

Chapter 2: Basic XMLHttpRequest

in the spec are defined as being all uppercase,
you should always make sure you type the
method in all uppercase letters.

URL This parameter identifies the page being requested (or
posted to if the method is POST).

Crossing Domains

Normal browser security settings will not allow
you to send HTTP requests to another domain.
For example, a page served from ajax.net would
not be able to send a request to remotescript-
ing.com unless the user had allowed such re-
quests.

Asynchronous Flag If this parameter is set to true, your JavaScript will
continue to execute normally while waiting for a re-
sponse to the request. As the state of the request
changes, events are fired so that you can deal with the
changing state of the request.

If you set the parameter to false, JavaScript execution
will stop until the response comes back from the server.
This approach has the advantage of being a little simpler
than using a callback function, as you can start dealing
with the response straight after you send the request in
your code, but the big disadvantage is that your code
pauses while the request is sent and processed on the
server, and the response is received. As the ability to
communicate with the server asynchronously is the
whole point of an AJAX application, this should be set
to true.

In our Ajax class, the method and async properties are initialized to reasonable
defaults (GET and true), but you’ll always have to set the target URL, of course.

Setting Up the onreadystatechange Event Handler

As the HTTP request is processed on the server, its progress is indicated by
changes to the readyState property. This property is an integer that represents

19

Sending a Request

one of the following states, listed in order from the start of the request to its
finish:

0: uninitialized
open has not been called yet.

1: loading
send has not been called yet.

2: loaded
send has been called, but the response is not yet available.

3: interactive
The response is being downloaded, and the responseText property holds
partial data.

4: completed
The response has been loaded and the request is completed.

An XMLHttpRequest object tells you about each change in state by firing an
readystatechange event. In the handler for this event, check the readyState
of the request, and when the request completes (i.e., when the readyState changes
to 4), you can handle the server’s response.

A basic outline for our Ajax code would look like this:

File: ajax.js (excerpt)

this.doReq = function() {
 if (!this.init()) {
 alert('Could not create XMLHttpRequest object.');
 return;
 }
 this.req.open(this.method, this.url, this.async);
var self = this; // Fix loss-of-scope in inner function

 this.req.onreadystatechange = function() {
 if (self.req.readyState == 4) {
 // Do stuff to handle response
 }
 };
};

We’ll discuss how to “do stuff to handle response” in just a bit. For now, just
keep in mind that you need to set up this event handler before the request is
sent.

20

Chapter 2: Basic XMLHttpRequest

Sending the Request

Use the send method of the XMLHttpRequest class to start the HTTP request,
like so:

File: ajax.js (excerpt)

this.doReq = function() {
 if (!this.init()) {
 alert('Could not create XMLHttpRequest object.');
 return;
 }
 this.req.open(this.method, this.url, this.async);
 var self = this; // Fix loss-of-scope in inner function
 this.req.onreadystatechange = function() {
 if (self.req.readyState == 4) {
 // Do stuff to handle response
 }
 };
this.req.send(this.postData);

};

The send method takes one parameter, which is used for POST data. When the
request is a simple GET that doesn’t pass any data to the server, like our current
request, we set this parameter to null.

Loss of Scope and this

You may have noticed that onreadystatechange includes a weird-looking
variable assignment:

File: ajax.js (excerpt)

var self = this; // Fix loss-of-scope in inner function

This new variable, self, is the solution to a problem called “loss of scope”
that’s often experienced by JavaScript developers using asynchronous event
handlers. Asynchronous event handlers are commonly used in conjunction
with XMLHttpRequest, and with functions like setTimeout or
setInterval.

The this keyword is used as shorthand in object-oriented JavaScript code
to refer to “the current object.” Here’s a quick example—a class called
ScopeTest:

function ScopeTest() {
 this.message = 'Greetings from ScopeTest!';

21

Sending a Request

 this.doTest = function() {
 alert(this.message);
 };
}
var test = new ScopeTest();
test.doTest();

This code will create an instance of the ScopeTest class, then call that ob-
ject’s doTest method, which will display the message “Greetings from Sco-
peTest!” Simple, right?

Now, let’s add some simple XMLHttpRequest code to our ScopeTest class.
We’ll send a simple GET request for your web server’s home page, and, when
a response is received, we’ll display the content of both this.message and
self.message.

function ScopeTest() {
 this.message = 'Greetings from ScopeTest!';
 this.doTest = function() {
 // This will only work in Firefox, Opera and Safari.
 this.req = new XMLHttpRequest();
 this.req.open('GET', '/index.html', true);
 var self = this;
 this.req.onreadystatechange = function() {
 if (self.req.readyState == 4) {
 var result = 'self.message is ' + self.message;
 result += '\n';
 result += 'this.message is ' + this.message;
 alert(result);
 }
 }
 this.req.send(null);
 };
}
var test = new ScopeTest();
test.doTest();

So, what message is displayed? The answer is revealed in Figure 2.1.

We can see that self.message is the greeting message that we’re expecting,
but what’s happened to this.message?

Using the keyword this is a convenient way to refer to “the object that’s
executing this code.” But this has one small problem—its meaning changes
when it’s called from outside the object. This is the result of something called
execution context. All of the code inside the object runs in the same execu-
tion context, but code that’s run from other objects—such as event hand-

22

Chapter 2: Basic XMLHttpRequest

lers—runs in the calling object’s execution context. What this means is that,
when you’re writing object-oriented JavaScript, you won’t be able to use the
this keyword to refer to the object in code for event handlers (like
onreadystatechange above). This problem is called loss of scope.

If this concept isn’t 100% clear to you yet, don’t worry too much about it.
We’ll see an actual demonstration of this problem in the next chapter. In
the meantime, just kind of keep in mind that if you see the variable self
in code examples, it’s been included to deal with a loss-of-scope problem.

Figure 2.1. Message displayed by ScopeTest class

Processing the Response
Now we’re ready to write some code to handle the server’s response to our HTTP
request. Remember the “do stuff to handle response” comment that we left in
the onreadystatechange event handler? We’ll, it’s time we wrote some code to
do that stuff! The function needs to do three things:

1. Figure out if the response is an error or not.

2. Prepare the response in the desired format.

3. Pass the response to the desired handler function.

Include the code below in the inner function of our Ajax class:

File: ajax.js (excerpt)

this.req.onreadystatechange = function() {
var resp = null;

 if (self.req.readyState == 4) {
switch (self.responseFormat) {

 case 'text':
 resp = self.req.responseText;
 break;
 case 'xml':

23

Processing the Response

 resp = self.req.responseXML;
 break;
 case 'object':
 resp = req;
 break;
 }
 if (self.req.status >= 200 && self.req.status <= 299) {
 self.handleResp(resp);
 }
 else {
 self.handleErr(resp);
 }
 }
};

When the response completes, a code indicating whether or not the request suc-
ceeded is returned in the status property of our XMLHttpRequest object. The
status property contains the HTTP status code of the completed request. This
could be code 404 if the requested page was missing, 500 if an error occurred in
the server-side script, 200 if the request was successful, and so on. A full list of
these codes is provided in the HTTP Specification (RFC 2616).5

No Good with Numbers?

If you have trouble remembering the codes, don’t worry: you can use the
statusText property, which contains a short message that tells you a bit
more detail about the error (e.g., “Not Found,” “Internal Server Error,”
“OK”).

Our Ajax class will be able to provide the response from the server in three dif-
ferent formats: as a normal JavaScript string, as an XML document object access-
ible via the W3C XML DOM, and as the actual XMLHttpRequest object that was
used to make the request. These are controlled by the Ajax class’s responseFormat
property, which can be set to text, xml or object.

The content of the response can be accessed via two properties of our
XMLHttpRequest object:

responseText This property contains the response from the server as a normal
string. In the case of an error, it will contain the web server’s
error page HTML. As long as a response is returned (that is,

5 http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

24

Chapter 2: Basic XMLHttpRequest

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

readyState becomes 4), this property will contain data, though
it may not be what you expect.

responseXML This property contains an XML document object. If the re-
sponse is not XML, this property will be empty.

Our Ajax class initializes its responseFormat property to text, so by default,
your response handler will be passed the content from the server as a JavaScript
string. If you’re working with XML content, you can change the responseFormat
property to xml, which will pull out the XML document object instead.

There’s one more option you can use if you want to get really fancy: you can re-
turn the actual XMLHttpRequest object itself to your handler function. This gives
you direct access to things like the status and statusText properties, and might
be useful in cases in which you want to treat particular classes of errors differ-
ently—for example, completing extra logging in the case of 404 errors.

Setting the Correct Content-Type

Implementations of XMLHttpRequest in all major browsers require the HTTP
response’s Content-Type to be set properly in order for the response to be handled
as XML. Well-formed XML, returned with a content type of text/xml (or ap-
plication/xml, or even application/xhtml+xml), will properly populate the
responseXML property of an XMLHttpRequest object; non-XML content types
will result in values of null or undefined for that property.

However, Firefox, Safari, and Internet Explorer 7 provide a way around
XMLHttpRequest’s pickiness over XML documents: the overrideMimeType
method of the XMLHttpRequest class. Our simple Ajax class hooks into this with
the setMimeType method:

File: ajax.js (excerpt)

this.setMimeType = function(mimeType) {
 this.mimeType = mimeType;
};

This method sets the mimeType property.

Then, in our doReq method, we simply call overrideMimeType inside a try …
catch block, like so:

25

Processing the Response

File: ajax.js (excerpt)

req.open(this.method, this.url, this.async);
if (this.mimeType) {
 try {
 req.overrideMimeType(this.mimeType);
 }
 catch (e) {
 // couldn't override MIME type -- IE6 or Opera?
 }
}
var self = this; // Fix loss-of-scope in inner function

Being able to override Content-Type headers from uncooperative servers can be
very important in environments in which you don’t have control over both the
front and back ends of your web application. This is especially true since many
of today’s apps access services and content from a lot of disparate domains or
sources. However, as this technique won’t work in Internet Explorer 6 or Opera
8, you may not find it suitable for use in your applications today.

Response Handler

According to the HTTP 1.1 specification, any response that has a code between
200 and 299 inclusive is a successful response.

The onreadystatechange event handler we’ve defined looks at the status
property to get the status of the response. If the code is within the correct range
for a successful response, the onreadystatechange event handler passes the re-
sponse to the response handler method (which is set by the handleResp property).

The response handler will need to know what the response was, of course, so
we’ll pass it the response as a parameter. We’ll see this process in action later,
when we talk about the doGet method.

Since the handler method is user-defined, the code also does a cursory check to
make sure the method has been set properly before it tries to execute the method.

Error Handler

If the status property indicates that there’s an error with the request (i.e., it’s
outside the 200 to 299 code range), the server’s response is passed to the error
handler in the handleErr property. Our Ajax class already defines a reasonable
default for the error handler, so we don’t have to make sure it’s defined before
we call it.

26

Chapter 2: Basic XMLHttpRequest

The handleErr property points to a function that looks like this:

File: ajax.js (excerpt)

this.handleErr = function() {
 var errorWin;
 try {
 errorWin = window.open('', 'errorWin');
 errorWin.document.body.innerHTML = this.responseText;
 }
 catch (e) {
 alert('An error occurred, but the error message cannot be '
 + 'displayed. This is probably because of your browser\'s '
 + 'pop-up blocker.\n'
 + 'Please allow pop-ups from this web site if you want to '
 + 'see the full error messages.\n'
 + '\n'
 + 'Status Code: ' + this.req.status + '\n'
 + 'Status Description: ' + this.req.statusText);
 }
};

This method checks to make sure that pop-ups are not blocked, then tries to
display the full text of the server’s error page content in a new browser window.
This code uses a try … catch block, so if users have blocked pop-ups, we can
show them a cut-down version of the error message and tell them how to access
a more detailed error message.

This is a decent default for starters, although you may want to show less inform-
ation to the end-user—it all depends on your level of paranoia. If you want to
use your own custom error handler, you can use setHandlerErr like so:

File: ajax.js (excerpt)

this.setHandlerErr = function(funcRef) {
 this.handleErr = funcRef;
}

Or, the One True Handler

It’s possible that you might want to use a single function to handle both successful
responses and errors. setHandlerBoth, a convenience method in our Ajax class,
sets this up easily for us:

27

Processing the Response

File: ajax.js (excerpt)

this.setHandlerBoth = function(funcRef) {
 this.handleResp = funcRef;
 this.handleErr = funcRef;
};

Any function that’s passed as a parameter to setHandlerBoth will handle both
successful responses and errors.

This setup might be useful to a user who sets your class’s responseFormat
property to object, which would cause the XMLHttpRequest object that’s used
to make the request—rather than just the value of the responseText or
responseXML properties—to be passed to the response handler.

Aborting the Request
Sometimes, as you’ll know from your own experience, a web page will take a very
long time to load. Your web browser has a Stop button, but what about your Ajax
class? This is where the abort method comes into play:

File: ajax.js (excerpt)

this.abort = function() {
 if (this.req) {
 this.req.onreadystatechange = function() { };
 this.req.abort();
 this.req = null;
 }
};

This method changes the onreadystate event handler to an empty function,
calls the abort method on your instance of the XMLHttpRequest class, then des-
troys the instance you’ve created. That way, any properties that have been set
exclusively for the request that’s being aborted are reset. Next time a request is
made, the init method will be called and those properties will be reinitialized.

So, why do we need to change the onreadystate event handler? Many imple-
mentations of XMLHttpRequest will fire the onreadystate event once abort is
called, to indicate that the request’s state has been changed. What’s worse is that
those events come complete with a readyState of 4, which indicates that
everything completed as expected (which is partly true, if you think about it: as
soon as we call abort, everything should come to a stop and our instance of
XMLHttpRequest should be ready to send another request, should we so desire).

28

Chapter 2: Basic XMLHttpRequest

Obviously, we don’t want our response handler to be invoked when we abort a
request, so we remove the existing handler just before we call abort.

Wrapping it Up
Given the code we have so far, the Ajax class needs just two things in order to
make a request:

❑ a target URL

❑ a handler function for the response

Let’s provide a method called doGet to set both of these properties, and kick off
the request:

File: ajax.js (excerpt)

this.doGet = function(url, hand, format) {
 this.url = url;
 this.handleResp = hand;
 this.responseFormat = format || 'text';
 this.doReq();
};

You’ll notice that, along with the two expected parameters, url and hand, the
function has a third parameter: format. This is an optional parameter that allows
us to change the format of the server response that’s passed to the handler func-
tion.

If we don’t pass in a value for format, the responseFormat property of the Ajax
class will default to a value of text, which means your handler will be passed the
value of the responseText property. You could, instead, pass xml or object as
the format, which would change the parameter that’s being passed to the response
handler to an XML DOM or XMLHttpRequest object.

Example: a Simple Test Page
It’s finally time to put everything we’ve learned together! Let’s create an instance
of this Ajax class, and use it to send a request and handle a response.

Now that our class’s code is in a file called ajax.js, any web pages in which we
want to use our Ajax class will need to include the Ajax code with a <script

29

Wrapping it Up

type="text/javascript" src="ajax.js"> tag. Once our page has access to the
Ajax code, we can create an Ajax object.

File: ajaxtest.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>A Simple AJAX Test</title>
 <script type="text/javascript" src="ajax.js"></script>
 <script type="text/javascript">
 var ajax = new Ajax();
 </script>
 </head>
 <body>
 </body>
</html>

This script gives us a shiny, new instance of the Ajax class. Now, let’s make it
do something useful.

To make the most basic request with our Ajax class, we could do something like
this:

File: ajaxtest.html (excerpt)

<script type="text/javascript">
 var hand = function(str) {
 alert(str);
 }
 var ajax = new Ajax();
 ajax.doGet('/fakeserver.php', hand);
</script>

This creates an instance of our Ajax class that will make a simple GET request to
a page called fakeserver.php, and pass the result back as text to the hand
function. If fakeserver.php returned an XML document that you wanted to
use, you could do so like this:

File: ajaxtest.html (excerpt)

<script type="text/javascript">
 var hand = function(str) {
 // Do XML stuff here
 }

30

Chapter 2: Basic XMLHttpRequest

 var ajax = new Ajax();
 ajax.doGet('/fakeserver.php', hand);
</script>

You would want to make absolutely sure in this case that fakeserver.php was
really serving valid XML and that its Content-Type HTTP response header was
set to text/xml (or something else that was appropriate).

Creating the Page

Now that we have created the Ajax object, and set up a simple handler function
for the request, it’s time to put our code into action.

The Fake Server Page

In the code above, you can see that the target URL for the request is set to a page
called fakeserver.php. To use this demonstration code, you’ll need to serve
both ajaxtest.html and fakeserver.php from the same PHP-enabled web
server. You can do this from an IIS web server with some simple ASP, too. The
fake server page is a super-simple page that simulates the varying response time
of a web server using the PHP code below:

File: fakeserver.php

<?php
header('Content-Type: text/plain');
sleep(rand(3, 12));
print 'ok';
?>

That’s all this little scrap of code does: it waits somewhere between three and 12
seconds, then prints ok.

The fakeserver.php code sets the Content-Type header of the response to
text/plain. Depending on the content of the page you pass back, you might
choose another Content-Type for your response. For example, if you’re passing
an XML document back to the caller, you would naturally want to use text/xml.

This works just as well in ASP, although some features (such as sleep) are not
as easily available, as the code below illustrates:

File: fakeserver.asp

<%
Response.ContentType = "text/plain"

31

Example: a Simple Test Page

' There is no equivalent to sleep in ASP.
Response.Write "ok"
%>

Throughout this book, all of our server-side examples will be written in PHP, al-
though they could just as easily be written in ASP, ASP.NET, Java, Perl, or just
about any language that can serve content through a web server.

Use the setMimeType Method

Imagine that you have a response that you know contains a valid XML
document that you want to parse as XML, but the server insists on serving
it to you as text/plain. You can force that response to be parsed as XML
in Firefox and Safari by adding an extra call to setMimeType, like so:

var ajax = new Ajax();
ajax.setMimeType('text/xml');
ajax.doGet('/fakeserver.php', hand, 'xml');

Naturally, you should use this approach only when you’re certain that the
response from the server will be valid XML, and you can be sure that the
browser is Firefox or Safari.

Hitting the Page

Now comes the moment of truth! Hit your local web server, load up
ajaxtest.html, and see what you get. If everything is working properly, there
will be a few moments’ delay, and then you’ll see a standard JavaScript alert
like the one in Figure 2.2 that says simply ok.

Figure 2.2. Confirmation that your Ajax class is working as
expected

Now that all is well and our Ajax class is functioning properly, it’s time to move
to the next step.

32

Chapter 2: Basic XMLHttpRequest

Example: a Simple AJAX App
Okay, so using the awesome power of AJAX to spawn a tiny little JavaScript
alert box that reads “ok” is probably not exactly what you had in mind when
you bought this book. Let’s implement some changes to our example code that
will make this XMLHttpRequest stuff a little more useful. At the same time, we’ll
create that simple monitoring application I mentioned at the start of this chapter.
The app will ping a web site and report the time it takes to get a response back.

Laying the Foundations
We’ll start off with a simple HTML document that links to two JavaScript files:
ajax.js, which contains our library, and appmonitor1.js, which will contain
the code for our application.

File: appmonitor1.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>App Monitor</title>
 <script type="text/javascript" src="ajax.js"></script>
 <script type="text/javascript" src="appmonitor1.js"></script>
 </head>
 <body>
 <div id="pollDiv"></div>
 </body>
</html>

You’ll notice that there’s virtually no content in the body of the page—there’s
just a single div element. This is fairly typical of web apps that rely on AJAX
functions. Often, much of the content of AJAX apps is created by JavaScript dy-
namically, so we usually see a lot less markup in the body of the page source than
we would in a non-AJAX web application for which all the content was generated
by the server. However, where AJAX is not an absolutely essential part of the
application, a plain HTML version of the application should be provided.

We’ll begin our appmonitor1.js file with some simple content that makes use
of our Ajax class:

33

Example: a Simple AJAX App

File: appmonitor1.js (excerpt)

var start = 0;
var ajax = new Ajax();

var doPoll = function() {
 start = new Date();
 start = start.getTime();
 ajax.doGet('/fakeserver.php?start=' + start, showPoll);
}

window.onload = doPoll;

We’ll use the start variable to record the time at which each request starts—this
figure will be used to calculate how long each request takes. We make start a
global variable so that we don’t have to gum up the works of our Ajax class with
extra code for timing requests—we can set the value of start immediately before
and after our calls to the Ajax object.

The ajax variable simply holds an instance of our Ajax class.

The doPoll function actually makes the HTTP requests using the Ajax class.
You should recognize the call to the doGet method from our original test page.

Notice that we’ve added to the target URL a query string that has the start
value as a parameter. We’re not actually going to use this value on the server;
we’re just using it as a random value to deal with Internet Explorer’s overzealous
caching. IE caches all GET requests made with XMLHttpRequest, and one way of
disabling that “feature” is to append a random value into a query string. The
milliseconds value in start can double as that random value. An alternative to
this approach is to use the setRequestHeader method of the XMLHttpRequest
class to set the If-Modified-Since header on the request.

Finally, we kick everything off by attaching doPoll to the window.onload event.

Handling the Result with showPoll
The second parameter we pass to doGet tells the Ajax class to pass responses to
the function showPoll. Here’s the code for that function:

File: appmonitor1.js (excerpt)

var showPoll = function(str) {
 var pollResult = '';
 var diff = 0;

34

Chapter 2: Basic XMLHttpRequest

 var end = new Date();
 if (str == 'ok') {
 end = end.getTime();
 diff = (end - start) / 1000;
 pollResult = 'Server response time: ' + diff + ' seconds';
 }
 else {
 pollResult = 'Request failed.';
 }
 printResult(pollResult);
 var pollHand = setTimeout(doPoll, 15000);
}

This is all pretty simple: the function expects a single parameter, which should
be the string ok returned from fakeserver.php if everything goes as expected.
If the response is correct, the code does the quick calculations needed to figure
out how long the response took, and creates a message that contains the result.
It passes that message to pollResult for display.

In this very simple implementation, anything other than the expected response
results in a fairly terse and unhelpful message: Request failed. We’ll make our
handling of error conditions more robust when we upgrade this app in the next
chapter.

Once pollResult is set, it’s passed to the printResult function:

File: appmonitor1.js (excerpt)

function printResult(str) {
 var pollDiv = document.getElementById('pollDiv');
 if (pollDiv.firstChild) {
 pollDiv.removeChild(pollDiv.firstChild);
 }
 pollDiv.appendChild(document.createTextNode(str));
}

The printResult function displays the message that was sent from showPoll
inside the lone div in the page.

Note the test in the code above, which is used to see whether our div has any
child nodes. This checks for the existence of any text nodes, which could include
text that we added to this div in previous iterations, or the text that was contained
inside the div in the page markup, and then removes them. If you don’t remove
existing text nodes, the code will simply append the new result to the page as a

35

Handling the Result with showPoll

new text node: you’ll display a long string of text to which more text is continually
being appended.

Why Not Use innerHTML?

You could simply update the innerHTML property of the div, like so:

document.getElementById('pollDiv').innerHTML = str;

The innerHTML property is not a web standard, but all the major browsers
support it. And, as you can see from the fact that it’s a single line of code
(as compared with the four lines needed for DOM methods), sometimes it’s
just easier to use than the DOM methods. Neither way of displaying content
on your page is inherently better.

In some cases, you may end up choosing a method based on the differences
in rendering speeds of these two approaches (innerHTML can be faster than
DOM methods). In other cases, you may base your decision on the clarity
of the code, or even on personal taste.

Starting the Process Over Again
Finally, showPoll starts the entire process over by scheduling a call to the original
doPoll function in 15 seconds time using setTimeout, as shown below:

File: appmonitor1.js (excerpt)

var pollHand = setTimeout(doPoll, 15000);

The fact that the code continuously invokes the doPoll function means that
once the page loads, the HTTP requests polling the fakeserver.php page will
continue to do so until that page is closed. The pollHand variable is the interval
ID that allows you to keep track of the pending operation, and cancel it using
clearTimeout.

The first parameter of the setTimeout call, doPoll, is a pointer to the main
function of the application; the second represents the length of time, in seconds,
that must elapse between requests.

Full Example Code
Here’s all the code from our first trial run with this simple monitoring application.

36

Chapter 2: Basic XMLHttpRequest

File: appmonitor1.js

var start = 0;
var ajax = new Ajax();

var doPoll = function() {
 start = new Date();
 start = start.getTime();
 ajax.doGet('/fakeserver.php?start=' + start, showPoll);
}

window.onload = doPoll;

var showPoll = function(str) {
 var pollResult = '';
 var diff = 0;
 var end = new Date();
 if (str == 'ok') {
 end = end.getTime();
 diff = (end - start)/1000;
 pollResult = 'Server response time: ' + diff + ' seconds';
 }
 else {
 pollResult = 'Request failed.';
 }
 printResult(pollResult);
 var pollHand = setTimeout(doPoll, 15000);
}

function printResult(str) {
 var pollDiv = document.getElementById('pollDiv');
 if (pollDiv.firstChild) {
 pollDiv.removeChild(pollDiv.firstChild);
 }
 pollDiv.appendChild(document.createTextNode(str));
}

In a bid to follow good software engineering principles, I’ve separated the
JavaScript code from the markup, and put them in two different files.

I’ll be following a similar approach with all the example code for this book, sep-
arating each example’s markup, JavaScript code, and CSS into separate files. This
little monitoring app is so basic that it has no CSS file. We’ll be adding a few
styles to make it look nicer in the next chapter.

37

Full Example Code

Running the App
Try loading the page in your browser. Drop it into your web server’s root directory,
and open the page in your browser.

If the fakeserver.php page is responding properly, you’ll see something like the
display shown in Figure 2.3.

Figure 2.3. Running the simple monitoring application

Further Reading
Here are some online resources that will help you learn more about the techniques
and concepts in this chapter.

JavaScript’s Object Model
http://docs.sun.com/source/816-6409-10/obj.htm
http://docs.sun.com/source/816-6409-10/obj2.htm

Check out these two chapters on objects from the Client-Side JavaScript Guide
for version 1.3 of JavaScript, hosted by Sun Microsystems. The first chapter
explains all the basic concepts you need to understand how to work with
objects in JavaScript. The second goes into more depth about JavaScript’s
prototype-based inheritance model, allowing you to leverage more of the
power of object-oriented coding with JavaScript.

38

Chapter 2: Basic XMLHttpRequest

http://docs.sun.com/source/816-6409-10/obj.htm
http://docs.sun.com/source/816-6409-10/obj2.htm

http://www.crockford.com/javascript/private.html
This is a brief introduction to creating private instance variables with JavaS-
cript objects. It will help you get a deeper understanding of JavaScript’s pro-
totype-based inheritance scheme.

XMLHttpRequest
http://developer.apple.com/internet/webcontent/xmlhttpreq.html

Here’s a good reference page from the Apple Developer Connection. It gives
a nice overview of the XMLHttpRequest class, and a reference table of its
methods and properties.

http://jibbering.com/2002/4/httprequest.html
This article, originally posted in 2002, continues to be updated with new
information. It includes information on making HEAD requests (instead of
just GET or POST), as well as JavaScript Object Notation (JSON), and SOAP.

http://www.xulplanet.com/references/objref/XMLHttpRequest.html
This is XULPlanet’s exhaustive reference on the XMLHttpRequest implement-
ation in Firefox.

http://kb.mozillazine.org/XMLHttpRequest
Here’s another nice overview, which also shows some of the lesser-used
methods of the XMLHttpRequest object, such as overrideMimeType, setRe-
questHeader, and getResponseHeader. Again, this reference is focused on
implementation in Firefox.

http://msdn.microsoft.com/library/en-us/xmlsdk/html/xmobjxmlhttprequest.asp
This is Microsoft’s documentation on MSDN of its implementation of
XMLHttpRequest.

Summary
XMLHttpRequest is at the heart of AJAX. It gives scripts within the browser the
ability to make their own requests and get content from the server. The simple
AJAX library we built in this chapter provided a solid understanding of how
XMLHttpRequest works, and that understanding will help you when things go
wrong with your AJAX code (whether you’re using a library you’ve built yourself,
or one of the many pre-built toolkits and libraries listed in Appendix A). The
sample app we built in this chapter gave us a chance to dip our toes into the
AJAX pool—now it’s time to dive in and learn to swim.

39

XMLHttpRequest

http://www.crockford.com/javascript/private.html
http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://jibbering.com/2002/4/httprequest.html
http://www.xulplanet.com/references/objref/XMLHttpRequest.html
http://kb.mozillazine.org/XMLHttpRequest
http://msdn.microsoft.com/library/en-us/xmlsdk/html/xmobjxmlhttprequest.asp

40

The “A” in AJAX3
It's flying over our heads in a million pieces.
—Willy Wonka, Willy Wonka & the Chocolate Factory

The “A” in AJAX stands for “asynchronous,” and while it’s not nearly as cool as
the letter “X,” that “A” is what makes AJAX development so powerful. As we
discussed in Chapter 1, AJAX’s ability to update sections of an interface asyn-
chronously has given developers a much greater level of control over the inter-
activity of the apps we build, and a degree of power that’s driving web apps into
what was previously the domain of desktop applications alone.

Back in the early days of web applications, users interacted with data by filling
out forms and submitting them. Then they’d wait a bit, watching their browser’s
“page loading” animation until a whole new page came back from the server.
Each data transaction between the browser and server was large and obvious,
which made it easy for users to figure out what was going on, and what state their
data was in.

As AJAX-style development becomes more popular, users can expect more inter-
active, “snappy” user interfaces. This is a good thing for users, but presents new
challenges for the developers working to deliver this increased functionality. In
an AJAX application, users alter data in an ad hoc fashion, so it’s easy for both
the user and the application to become confused about the state of that data.

The solution to both these issues is to display the application’s status, which
keeps users informed about what the application is doing. This makes the applic-
ation seem very responsive, and gives users important guidance about what’s
happening to their data. This critical part of AJAX web application development
is what separates the good AJAX apps from the bad.

Planned Application Enhancements
To create a snappy user interface that keeps users well-informed of the applica-
tion’s status, we’ll take the monitoring script we developed in the previous chapter,
and add some important functionality to it. Here’s what we’re going to add:

❑ a way for the system administrator to configure the interval between polls
and the timeout threshold

❑ an easy way to start and stop the monitoring process

❑ a bar graph of response times for previous requests; the number of entries in
the history list will be user-configurable

❑ user notification when the application is in the process of making a request

❑ graceful handling of request timeouts

Figure 3.1 shows what the running application will look like once we’re done
with all the enhancements.

The code for this application is broken up into three files: the markup in
appmonitor2.html, the JavaScript code in appmonitor2.js, and the styles in
appmonitor2.css. To start with, we’ll link all the required files in to appmonit-
or2.html:

File: appmonitor2.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>App Monitor</title>
 <script type="text/javascript" src="ajax.js"></script>
 <script type="text/javascript" src="appmonitor2.js"></script>
 <link rel="stylesheet" href="appmonitor2.css"

42

Chapter 3: The “A” in AJAX

 type="text/css" />
 </head>
 <body>
 </body>
</html>

Figure 3.1. The running application

Organizing the Code
All this new functionality will add a lot more complexity to our app, so this is a
good time to establish some kind of organization within our code (a much better
option than leaving everything in the global scope). After all, we’re building a
fully functional AJAX application, so we’ll want to have it organized properly.

43

Organizing the Code

We’ll use object-oriented design principles to organize our app. And we’ll start,
of course, with the creation of a base class for our application—the Monitor class.

Typically, we’d create a class in JavaScript like this:

function Monitor() {
 this.firstProperty = 'foo';
 this.secondProperty = true;
 this.firstMethod = function() {
 // Do some stuff here
 };
}

This is a nice, normal constructor function, and we could easily use it to create
a Monitor class (or a bunch of them if we wanted to).

Loss of Scope with setTimeout
Unfortunately, things will not be quite so easy in the case of our application.
We’re going to use a lot of calls to setTimeout (as well as setInterval) in our
app, so the normal method of creating JavaScript classes may prove troublesome
for our Monitor class.

The setTimeout function is really handy for delaying the execution of a piece of
code, but it has a serious drawback: it runs that code in an execution context
that’s different from that of the object. (We talked a little bit about this problem,
called loss of scope, in the last chapter.)

This is a problem because the object keyword this has a new meaning in the
new execution context. So, when you use it within your class, it suffers from a
sudden bout of amnesia—it has no idea what it is!

This may be a bit difficult to understand; let’s walk through a quick demonstration
so you can actually see this annoyance in action. You might remember the
ScopeTest class we looked at in the last chapter. To start with, it was a simple
class with one property and one method:

function ScopeTest() {
 this.message = "Greetings from ScopeTest!";
 this.doTest = function() {
 alert(this.message);
 };
}

44

Chapter 3: The “A” in AJAX

var test = new ScopeTest();
test.doTest();

The result of this code is the predictable JavaScript alert box with the text
“Greetings from ScopeTest!”

Let’s change the doTest method so that it uses setTimeout to display the message
in one second’s time.

function ScopeTest() {
 this.message = "Greetings from ScopeTest!";
 this.doTest = function() {
 var onTimeout = function() {
 alert(this.message);
 };
 setTimeout(onTimeout, 1000);
 };
}
var test = new ScopeTest();
test.doTest();

Instead of our greeting message, the alert box that results from this version of
the code will read “undefined.” Because we called onTimeout with setTimeout,
onTimeout is run within a new execution context. In that execution context, this
no longer refers to an instance of ScopeTest, so this.message has no meaning.

The simplest way to deal with this problem of loss of scope is by making the
Monitor class a special kind of class, called a singleton.

Singletons with JavaScript

A “singleton” is called that because only a “single” instance of that class exists at
any time. Making a class into a singleton is surprisingly easy:

var ScopeTest = new function() {
 this.message = "Greetings from ScopeTest!";
 this.doTest = function() {
 var onTimeout = function() {
 alert(this.message);
 };
 setTimeout(onTimeout, 1000);
 };
}

45

Loss of Scope with setTimeout

Using the keyword new before function creates a “one-shot” constructor. It creates
a single instance of ScopeTest, and it’s done: you can’t use it to create any more
ScopeTest objects.

To call the doTest method of this singleton object, you must use the actual name
of the class (since there’s only the one instance of it):

ScopeTest.doTest();

That’s all well and good, but we haven’t solved our loss of scope problem. If you
were to try the code now, you’d get the same “undefined” message you saw before,
because this doesn’t refer to an instance of ScopeTest. However, using a singleton
gives us an easy way to fix the problem. All we have to do is use the actual name
of the object—instead of the keyword this—inside onTimeout:

var ScopeTest = new function() {
 this.message = "Greetings from ScopeTest!";
 this.doTest = function() {
 var onTimeout = function() {
 alert(ScopeTest.message);
 };
 setTimeout(onTimeout, 1000);
 };
}

There’s only one instance of ScopeTest, and we’re using its actual name instead
of this, so there’s no confusion about which instance of ScopeTest is being re-
ferred to here.

When you execute this code, you’ll see the expected value of “Greetings from
ScopeTest!” in the JavaScript alert box.

Now, I get tired of using the actual object name throughout my object code, and
I like to use a shortcut keyword like this wherever I possibly can. So, usually I
create a variable self that I can use in place of this, and point it to the object
name at the top of each method, like so:

var onTimeout = function() {
 var self = ScopeTest;
 alert(self.message);
};

This looks a bit silly in a method that’s as short as that, but in longer chunks of
code it’s nice to have a shorthand solution similar to this that you can use to

46

Chapter 3: The “A” in AJAX

refer to your object. I use self, but you could use me, or heyYou, or darthVader
if you wanted to.

Creating the Monitor Object
Now that we have a plan for code organization that will fix the loss-of-scope
problem from setTimeout, it’s time to create our base Monitor class:

File: appmonitor2.js (excerpt)

var Monitor = new function(){
 this.targetURL = null;
 this.pollInterval = null;
 this.maxPollEntries = null;
 this.timeoutThreshold = null;
 this.ajax = new Ajax();
 this.start = 0;
 this.pollArray = [];
 this.pollHand = null;
 this.timeoutHand = null;
 this.reqStatus = Status;
}

The first four properties, targetURL, pollInterval, maxPollEntries, and
timeoutThreshold, will be initialized as part of the class’s initialization. They
will take on the values defined in the application’s configuration, which we’ll
look at in the next section.

Here’s a brief rundown on the other properties:

ajax The instance of our Ajax class that makes the HTTP requests
to the server we’re monitoring.

start Used to record the time at which the last request was sent.

pollArray An array that holds the server response times; the constant
MAX_POLL_ENTRIES determines the number of items held in this
array.

pollHand Interval IDs returned by the setTimeout calls for two different
processes—the main polling process, and the timeout watcher,
which controls a user-defined timeout period for each request.

timeoutHand

reqStatus Used for the status animation that notifies the user when a re-
quest is in progress. The code that achieved this is fairly complic-

47

Creating the Monitor Object

ated, so we’ll be writing another singleton class to take care of
it. The reqStatus property points to the single instance of that
class.

Configuring and Initializing our
Application

A webmaster looking at this application may think that it was quite cool, but
one of the first things he or she would want is an easy way to configure the app’s
polling interval, or the time that elapses between requests the app makes to the
site it’s monitoring. It’s easy to configure the polling interval using a global con-
stant.

To make it very simple for any user of this script to set the polling interval, we’ll
put this section of the code in a script element within the head of appmonit-
or2.html:

File: appmonitor2.html (excerpt)

<script type="text/javascript">
 // URL to monitor
 var TARGET_URL = '/fakeserver.php';
 // Seconds between requests
 var POLL_INTERVAL = 5;
 // How many entries bars to show in the bar graph
 var MAX_POLL_ENTRIES = 10;
 // Seconds to wait for server response
 var TIMEOUT_THRESHOLD = 10;
</script>

You’ll notice that these variable names are written in all-caps. This is an indication
that they should act like constants—values that are set early in the code, and
do not change as the code executes. Constants are a feature of many programming
languages but, unfortunately, JavaScript is not one of them.1 Note that these
constants relate directly to the first four properties of our class: targetURL,
pollInterval, maxPollEntries, and timeoutThreshold. These properties will
be initialized in our class’s init method:

1 Newer versions of JavaScript allow you to set real constants with the constkeyword, but this fa-
cility isn’t widely supported (even by many modern browsers).

48

Chapter 3: The “A” in AJAX

File: appmonitor2.js (excerpt)

this.init = function() {
 var self = Monitor;
 self.targetURL = TARGET_URL;
 self.pollInterval = POLL_INTERVAL;
 self.maxPollEntries = MAX_POLL_ENTRIES;
 self.timeoutThreshold = TIMEOUT_THRESHOLD;
 self.toggleAppStatus(true);
 self.reqStatus.init();
};

As well as initializing some of the properties of our class, the init method also
calls two methods: toggleAppStatus, which is responsible for starting and stop-
ping the polling, and the init method of the reqStatus object. reqStatus is
the instance of the Status singleton class that we discussed a moment ago.

This init method is tied to the window.onload event for the page, like so:

File: appmonitor2.js (excerpt)

window.onload = Monitor.init;

Setting Up the UI
The first version of this application started when the page loaded, and ran until
the browser window was closed. In this version, we want to give users a button
that they can use to toggle the polling process on or off. The toggleAppStatus
method handles this for us:

File: appmonitor2.js (excerpt)

this.toggleAppStatus = function(stopped) {
 var self = Monitor;
 self.toggleButton(stopped);
 self.toggleStatusMessage(stopped);
};

Okay, so toggleAppStatus doesn’t really do the work, but it calls the methods
that do: toggleButton, which changes Start buttons into Stop buttons and vice
versa, and toggleStatusMessage, which updates the application’s status message.
Let’s take a closer look at each of these methods.

49

Setting Up the UI

The toggleButton Method
This method toggles the main application between its “Stop” and “Start” states.
It uses DOM-manipulation methods to create the appropriate button dynamically,
assigning it the correct text and an onclick event handler:

File: appmonitor2.js (excerpt)

this.toggleButton = function(stopped) {
 var self = Monitor;
 var buttonDiv = document.getElementById('buttonArea');
 var but = document.createElement('input');
 but.type = 'button';
 but.className = 'inputButton';
 if (stopped) {
 but.value = 'Start';
 but.onclick = self.pollServerStart;
 }
 else {
 but.value = 'Stop';
 but.onclick = self.pollServerStop;
 }
 if (buttonDiv.firstChild) {
 buttonDiv.removeChild(buttonDiv.firstChild);
 }
 buttonDiv.appendChild(but);
 buttonDiv = null;
};

The only parameter to this method, stopped, can either be true, indicating that
the polling has been stopped; or false, indicating that polling has started.

As you can see in the code for this method, the button is created, and is set to
display Start if the application is stopped, or Stop if the application is currently
polling the server. It also assigns either pollServerStart or pollServerStop as
the button’s onclick event handler. These event handlers will start or stop the
polling process respectively.

When this method is called from init (via toggleAppStatus), stopped is set to
true so the button will display Start when the application is started.

As this code calls for a div with the ID buttonArea, let’s add that to our markup
now:

50

Chapter 3: The “A” in AJAX

File: appmonitor2.html (excerpt)

<body>
<div id="buttonArea"></div>

</body>

The toggleStatusMessage Method
Showing a button with the word “Start” or “Stop” on it might be all that program-
mers or engineers need to figure out the application’s status, but most normal
people need a message that’s a little clearer and more obvious in order to work
out what’s going on with an application.

This upgraded version of the application will display a status message at the top
of the page to tell the user about the overall state of the application (stopped or
running), and the status of the polling process. To display the application status,
we’ll place a nice, clear message in the application’s status bar that states App
Status: Stopped or App Status: Running.

In our markup, let’s insert the status message above where the button appears.
We’ll include only the “App Status” part of the message in our markup. The rest
of the message will be inserted into a span with the ID currentAppState:

File: appmonitor2.html (excerpt)

<body>
<div id="statusMessage">App Status:

 </div>
 <div id="buttonArea"></div>
</body>

The toggleStatusMessage method toggles between the words that can display
inside the currentAppState span:

File: appmonitor2.js (excerpt)

this.toggleStatusMessage = function(stopped) {
 var statSpan = document.getElementById('currentAppState');
 var msg;
 if (stopped) {
 msg = 'Stopped';
 }
 else {
 msg = 'Running';
 }

51

The toggleStatusMessage Method

 if (statSpan.firstChild) {
 statSpan.removeChild(statSpan.firstChild);
 }
 statSpan.appendChild(document.createTextNode(msg));
};

Once the UI is set up, the application is primed and ready to start polling and
recording response times.

Checking your Work In Progress
Now that you’ve come this far, it would be nice to be able to see your work in
action, right? Well, unfortunately, we’ve still got a lot of loose ends in our applic-
ation—we’ve briefly mentioned a singleton class called Status but we haven’t
created it yet, and we still have event handlers left to write. But never fear! We
can quickly get the application up and running with a few class and function
stubs.

We’ll start by creating that Status singleton class with one empty method.

File: appmonitor2.js (excerpt)

var Status = new function() {
 this.init = function() {
 // don't mind me, I'm just a stub ...
 };
}

Since the Status class is used by the Monitor class, we must declare Status before
Monitor.

Then, we’ll add our button’s onclick event handlers to the Monitor class. We’ll
have them display alert dialogs so that we know what would be going on if there
was anything happening behind the scenes.

File: appmonitor2.js (excerpt)

this.pollServerStart = function() {
 alert('This will start the application polling the server.');
};
this.pollServerStop = function() {
 alert('This will stop the application polling the server.');
};

With these two simple stubs in place, your application should now be ready for
a test-drive.

52

Chapter 3: The “A” in AJAX

Figure 3.2. Humble beginnings

When you click the Start button in the display shown in Figure 3.2, you’re
presented with an alert box that promises greater things to come. Let’s get started
making good on those promises.

Polling the Server
The first step is to flesh out the Start button’s onclick event handler, pollServer-
Start:

File: appmonitor2.js (excerpt)

this.pollServerStart = function() {
 var self = Monitor;
 self.doPoll();
 self.toggleAppStatus(false);
};

53

Polling the Server

This code immediately calls the doPoll method, which, like the app monitor we
built in Chapter 2, will be responsible for making an HTTP request to poll the
server. Once the request has been sent, the code calls toggleAppStatus, passing
it false to indicate that polling is underway.

Where’s the Poll Interval?

You might wonder why, after all this talk about setting a poll interval, our
code jumps right in with a request to the server; where’s the time delay? The
answer is that we don’t want a time delay on the very first request. If users
click the button and there’s a ten-second delay before anything happens,
they’ll think the app is broken. We want delays between all the subsequent
requests that occur once the application is running, but when the user first
clicks that button, we want the polling to start right away.

The only difference between doPoll in this version of our app monitor and the
one we saw in the last chapter is the use of self to prefix the properties of the
class, and the call to setTimeout. Take a look:

File: appmonitor2.js (excerpt)

this.doPoll = function() {
 var self = Monitor;
 var url = self.targetURL;
 var start = new Date();
 self.reqStatus.startProc();
 self.start = start.getTime();
 self.ajax.doGet(self.targetURL + '?start=' + self.start,
 self.showPoll);
 self.timeoutHand = setTimeout(self.handleTimeout,
 self.timeoutThreshold * 1000);
};

Our call to setTimeout instructs the browser to call handleTimeout once the
timeout threshold has passed. We’re also keeping track of the interval ID that’s
returned, so we can cancel our call to handleTimeout when the response is received
by showPoll.

Here’s the code for the showPoll method, which handles the response from the
server:

File: appmonitor2.js (excerpt)

this.showPoll = function(str) {
 var self = Monitor;
 var diff = 0;
 var end = new Date();

54

Chapter 3: The “A” in AJAX

 clearTimeout(self.timeoutHand);
 self.reqStatus.stopProc(true);
 if (str == 'ok') {
 end = end.getTime();
 diff = (end - self.start) / 1000;
 }
 if (self.updatePollArray(diff)) {
 self.printResult();
 }
 self.doPollDelay();
};

The first thing this method does is cancel the delayed call to handleTimeout that
was made at the end of doPoll. After this, we tell our instance of the Status
class to stop its animation (we’ll be looking at the details of this a little later).

After these calls, showPoll checks to make sure that the response is ok, then
calculates how long that response took to come back from the server. The error
handling capabilities of the Ajax class should handle errors from the server, so
our script shouldn’t return anything other than ok … though it never hurts to
make sure!

Once it has calculated the response time, showPoll records that response time
with updatePollArray, then displays the result with printResult. We’ll look
at both of these methods in the next section.

Finally, we schedule another poll in doPollDelay—a very simple method that
schedules another call to doPoll once the poll interval has passed:

File: appmonitor2.js (excerpt)

this.doPollDelay = function() {
 var self = Monitor;
 self.pollHand = setTimeout(self.doPoll,
 self.pollInterval * 1000);
};

To check our progress up to this point, we’ll need to add a few more stub methods.
First, let’s add startProc and stopProc to the Status class:

File: appmonitor2.js (excerpt)

var Status = new function() {
 this.init = function() {
 // don't mind me, I'm just a stub ...
 };
this.startProc = function() {

55

Polling the Server

 // another stub function
 };
 this.stopProc = function() {
 // another stub function
 };
}

Let’s also add a few stub methods to our Monitor class:

File: appmonitor2.js (excerpt)

this.handleTimeout = function() {
 alert("Timeout!");
};
this.updatePollArray = function(responseTime) {
 alert("Recording response time: " + responseTime);
};
this.printResult = function() {
 // empty stub function
};

Now we’re ready to test our progress. Open appmonitor2.html in your web
browser, click Start, and wait for fakeserver.php to wake from its sleep and send
ok back to your page.

You can expect one of two outcomes: either a response is received by your page,
and you see a dialog similar to the one shown in Figure 3.3, or you see the timeout
message shown in Figure 3.4.

Figure 3.3. A response received by your AJAX application

Don’t worry if you receive the timeout message shown in Figure 3.4. Keep in
mind that in our AJAX application, our timeout threshold is currently set to ten
seconds, and that fakeserver.php is currently sleeping for a randomly selected
number of seconds between three and 12. If the random number is ten or greater,
the AJAX application will report a timeout.

56

Chapter 3: The “A” in AJAX

Figure 3.4. Your AJAX application giving up hope

At the moment, we haven’t implemented a way to stop the polling, so you’ll need
to stop it either by reloading the page or closing your browser window.

Handling Timeouts
If you’ve run the code we’ve written so far, you’ve probably noticed that even
when a timeout is reported, you see a message reporting the request’s response
time soon afterward. This occurs because handleTimeout is nothing but a simple
stub at the moment. Let’s look at building on that stub so we don’t get this side-
effect.

handleTimeout is basically a simplified version of showPoll: both methods are
triggered by an asynchronous event (a call to setTimeout and an HTTP response
received by an XMLHttpRequest object respectively), both methods need to record
the response time (in a timeout’s case, this will be 0), both methods need to up-
date the user interface, and both methods need to trigger the next call to doPoll.
Here’s the code for handleTimeout:

File: appmonitor2.js (excerpt)

this.handleTimeout = function() {
 var self = Monitor;
 if (self.stopPoll()) {
 self.reqStatus.stopProc(true);
 if (self.updatePollArray(0)) {
 self.printResult();
 }
 self.doPollDelay();
 }
};

Here, handleTimeout calls stopPoll to stop our application polling the server.
It records that a timeout occurred, updates the user interface, and finally sets up
another call to doPoll via doPollDelay. We moved the code that stops the

57

Handling Timeouts

polling into a separate function because we’ll need to revisit it later and beef it
up. At present, the stopPoll method merely aborts the HTTP request via the
Ajax class’s abort method; however, there are a few scenarios that this function
doesn’t handle. We’ll address these later, when we create the complete code to
stop the polling process, but for the purposes of handling the timeout, stopPoll
is fine.

File: appmonitor2.js (excerpt)

this.stopPoll = function() {
 var self = Monitor;
 if (self.ajax) {
 self.ajax.abort();
 }
 return true;
};

Now, when we reload our application, the timeouts perform exactly as we expect
them to.

The Response Times Bar Graph
Now, to the meat of the new version of our monitoring app! We want the applic-
ation to show a list of past response times, not just a single entry of the most re-
cent one, and we want to show that list in a way that’s quickly and easily readable.
A running bar graph display is the perfect tool for the job.

The Running List in pollArray
All the response times will go into an array that’s stored in the pollArray property
of the Monitor class. We keep this array updated with the intuitively named
updatePollArray method. It’s a very simple method that looks like this:

File: appmonitor2.js (excerpt)

this.updatePollArray = function(pollResult) {
 var self = Monitor;
 self.pollArray.unshift(pollResult);
 if (self.pollArray.length > self.maxPollEntries) {
 self.pollArray.pop();
 }
 return true;
};

58

Chapter 3: The “A” in AJAX

The code is very straightforward, although some of the functions we’ve used in
it have slightly confusing names.

The unshift method of an Array object puts a new item in the very first element
of the array, and shifts the rest of the array’s contents over by one position, as
shown in Figure 3.5.

Figure 3.5. Inserting fruit using unshift

When the array exceeds the user-defined maximum length, updatePollArray
truncates it by “popping” an item off the end. This is achieved by the pop method,
which simply deletes the last item of an array.2 The reason why we append items
to the top and remove items from the bottom of the array is that, in our display,
we want the most recent entries to appear at the top, and older entries to
gradually move down to the bottom.

Displaying the Results
Once we’ve updated the results in pollArray, we can display them using the
printResult method. This is actually the cool part: the user will experience first-

2 The method name pop may seem quite odd, but it makes more sense once you understand a data
structure called a stack, which stores a number of items that can be accessed only in the reverse of
the order in which they were added to the stack. We “push” an item onto a stack to add it, and “pop”
an item from a stack to retrieve it. The pop method was originally designed for developers who were
using arrays as stacks, but here we’ve repurposed it simply to delete the last item in an array.

59

Displaying the Results

hand the difference between our AJAX application and an older-style app that
requires an entire page refresh to update content.

Rendering Page Partials

In AJAX jargon, the chunk of the page that holds the list of response times
is called a page partial. This refers to an area of a web page that’s updated
separately from the rest of the page.

Updating a chunk of a web page in response to an asynchronous request to
the server is called “rendering a page partial.”

The printResult method iterates through pollArray, and uses DOM methods
to draw the list of poll results inside a div with the ID pollResults. We’ll start
by adding that div to our markup:

File: appmonitor2.html (excerpt)

<body>
 <div id="statusMessage">App Status:

 </div>
<div id="pollResults"></div>

 <div id="buttonArea"></div>
</body>

Now we’re ready for the printResult method:

File: appmonitor2.js (excerpt)

this.printResult = function() {
 var self = Monitor;
 var polls = self.pollArray;
 var pollDiv = document.getElementById('pollResults');
 var entryDiv = null;
 var messageDiv = null;
 var barDiv = null;
 var clearAll = null;
 var msgStr = '';
 var txtNode = null;
 while (pollDiv.firstChild) {
 pollDiv.removeChild(pollDiv.firstChild);
 }
 for (var i = 0; i < polls.length; i++) {
 if (polls[i] == 0) {
 msgStr = '(Timeout)';
 }

60

Chapter 3: The “A” in AJAX

 else {
 msgStr = polls[i] + ' sec.';
 }
 entryDiv = document.createElement('div');
 messageDiv = document.createElement('div');
 barDiv = document.createElement('div');
 clearAll = document.createElement('br');
 entryDiv.className = 'pollResult';
 messageDiv.className = 'time';
 barDiv.className = 'bar';
 clearAll.className = 'clearBoth';
 if (polls[i] == 0) {
 messageDiv.style.color = '#933';
 }
 else {
 messageDiv.style.color = '#339';
 }
 barDiv.style.width = (parseInt(polls[i] * 20)) + 'px';
 messageDiv.appendChild(document.createTextNode(msgStr));
 barDiv.appendChild(document.createTextNode('\u00A0'));
 entryDiv.appendChild(messageDiv);
 entryDiv.appendChild(barDiv);
 entryDiv.appendChild(clearAll);
 pollDiv.appendChild(entryDiv);
 }
};

There’s quite a bit here, so let’s look at this method step by step.

File: appmonitor2.js (excerpt)

while (pollDiv.firstChild) {
 pollDiv.removeChild(pollDiv.firstChild);
}

After initializing some variables, this method removes everything from pollDiv:
the while loop uses removeChild repeatedly to delete all the child nodes from
pollDiv.

Next comes a simple for loop that jumps through the updated array of results
and displays them.

We generate a message for the result of each item in this array. As you can see
below, timeouts (which are recorded as a 0) generate a message of (Timeout).

61

Displaying the Results

File: appmonitor2.js (excerpt)

if (polls[i] == 0) {
 msgStr = '(Timeout)';
}
else {
 msgStr = polls[i] + ' sec.';
}

Next, we use DOM methods to add the markup for each entry in the list dynam-
ically. In effect, we construct the following HTML in JavaScript for each entry
in the list:

<div class="pollResult">
 <div class="time" style="color: #339;">8.031 sec.</div>
 <div class="bar" style="width: 160px;"> </div>
 <br class="clearBoth"/>
</div>

The width of the bar div changes to reflect the actual response time, and timeouts
are shown in red, but otherwise all entries in this list are identical. Note that you
have to put something in the div to cause its background color to display. Even
if you give the div a fixed width, the background color will not show if the div
is empty. This is annoying, but it’s easy to fix: we can fill in the div with a non-
breaking space character.

Let’s take a look at the code we’ll use to insert this markup:

File: appmonitor2.js (excerpt)

entryDiv = document.createElement('div');
messageDiv = document.createElement('div');
barDiv = document.createElement('div');
clearAll = document.createElement('br');
entryDiv.className = 'pollResult';
messageDiv.className = 'time';
barDiv.className = 'bar';
clearAll.className = 'clearBoth';
if (polls[i] == 0) {
 messageDiv.style.color = '#933';
}
else {
 messageDiv.style.color = '#339';
}
barDiv.style.width = (parseInt(polls[i] * 20)) + 'px';
messageDiv.appendChild(document.createTextNode(msgStr));
barDiv.appendChild(document.createTextNode('\u00A0'));

62

Chapter 3: The “A” in AJAX

entryDiv.appendChild(messageDiv);
entryDiv.appendChild(barDiv);
entryDiv.appendChild(clearAll);
pollDiv.appendChild(entryDiv);

This code may seem complicated if you’ve never used DOM manipulation func-
tions, but it’s really quite simple. We use the well-named createElement method
to create elements; then we assign values to the properties of each of those element
objects.

Just after the if statement, we can see the code that sets the pixel width of the
bar div according to the number of seconds taken to generate each response. We
multiply that time figure by 20 to get a reasonable width, but you may want to
use a higher or lower number depending on how much horizontal space is available
on the page.

To add text to elements, we use createTextNode in conjunction with
appendChild, which is also used to place elements inside other elements.

createTextNode and Non-breaking Spaces

In the code above, we create a non-breaking space using \u00A0. If we try
to use the normal entity here, createTextNode will attempt to be
“helpful” by converting the ampersand to &; the result of this is that
 is displayed on your page. The workaround is to use the escaped
unicode non-breaking space: \u00A0.

63

Displaying the Results

Figure 3.6. The application starting to take shape

64

Chapter 3: The “A” in AJAX

The last piece of the code puts all the div elements together, then places the
pollResult div inside the pollResults div. Figure 3.6 shows the running ap-
plication.

“Hold on a second,” you may well be thinking. “Where’s the bar graph we’re
supposed to be seeing?”

The first bar is there, but it’s displayed in white on white, which is pretty useless.
Let’s make it visible through our application’s CSS:

File: appmonitor2.css (excerpt)

.time {
 width: 6em;
 float: left;
}
.bar {
 background: #ddf;
 float: left;
}
.clearBoth {
 clear: both;
}

The main point of interest in the CSS is the float: left declarations for the
time and bar div elements, which make up the time listing and the colored bar
in the bar graph. Floating them to the left is what makes them appear side by
side. However, for this positioning technique to work, an element with the
clearBoth class must appear immediately after these two divs.

This is where you can see AJAX in action. It uses bits and pieces of all these dif-
ferent technologies—XMLHttpRequest, the W3C DOM, and CSS—wired together
and controlled with JavaScript. Programmers often experience the biggest problems
with CSS and with the practicalities of building interface elements in their code.

As an AJAX programmer, you can either try to depend on a library to take care
of the CSS for you, or you can learn enough to get the job done. It’s handy to
know someone smart who’s happy to answer lots of questions on the topic, or
to have a good book on CSS (for example, SitePoint’s The CSS Anthology: 101
Essential Tips, Tricks & Hacks3).

3 http://www.sitepoint.com/books/cssant1/

65

Displaying the Results

http://www.sitepoint.com/books/cssant1/
http://www.sitepoint.com/books/cssant1/

Figure 3.7. The beginnings of our bar graph

Now that our CSS is in place, we can see the bar graph in our application display,
as Figure 3.7 illustrates.

Stopping the Application
The final action of the pollServerStart method, after getting the app running,
is to call toggleAppStatus to toggle the appearance of the application.
toggleAppStatus changes the status display to App Status: Running, switches the
Start button to a Stop button, and attaches the pollServerStop method to the
button’s onclick event.

The pollServerStop method stops the ongoing polling process, then toggles the
application back so that it looks like it’s properly stopped:

66

Chapter 3: The “A” in AJAX

File: appmonitor2.js (excerpt)

this.pollServerStop = function() {
 var self = Monitor;
 if (self.stopPoll()) {
 self.toggleAppStatus(true);
 }
 self.reqStatus.stopProc(false);
};

This code reuses the stopPoll method we added earlier in the chapter. At the
moment, all that method does is abort the current HTTP request, which is fine
while we’re handling a timeout. However, this method needs to handle two other
scenarios as well.

The first of these scenarios occurs when the method is called during the poll in-
terval (that is, after we receive a response to an HTTP request, but before the
next request is sent). In this scenario, we need to cancel the delayed call to doPoll.

The second scenario that this method must be able to handle arises when
stopPoll is called after it has sent a request, but before it receives the response.
In this scenario, the timeout handler needs to be canceled.

As we keep track of the interval IDs of both calls, we can modify stopPoll to
handle these scenarios with two calls to clearTimeout:

File: appmonitor2.js (excerpt)

this.stopPoll = function() {
 var self = Monitor;
clearTimeout(self.pollHand);

 if (self.ajax) {
 self.ajax.abort();
 }
clearTimeout(self.timeoutHand);

 return true;
};

Now, you should be able to stop and start the polling process just by clicking the
Start/Stop button beneath the bar graph.

Status Notifications
The ability of AJAX to update content asynchronously, and the fact that updates
may affect only small areas of the page, make the display of status notifications

67

Status Notifications

a critical part of an AJAX app’s design and development. After all, your app’s
users need to know what the app is doing.

Back in the old days of web development, when an entire page had to reload in
order to reflect any changes to its content, it was perfectly clear to end users when
the application was communicating with the server. But our AJAX web apps can
talk to the server in the background, which means that users don’t see the com-
plete page reload that would otherwise indicate that something was happening.

So, how will users of your AJAX app know that the page is communicating with
the server? Well, instead of the old spinning globe or waving flag animations that
display in the browser chrome, AJAX applications typically notify users that
processing is under way with the aid of small animations or visual transitions.
Usually achieved with CSS, these transitions catch users’ eyes—without being
distracting!—and provide hints about what the application is doing. An important
aspect of the good AJAX app design is the development of these kinds of notific-
ations.

The Status Animation
Since we already have at the top of our application a small bar that tells the user
if the app is running or stopped, this is a fairly logical place to display a little
more status information.

Animations like twirling balls or running dogs are a nice way to indicate that an
application is busy—generally, you’ll want to display an image that uses movement
to indicate activity. However, we don’t want to use a cue that’s going to draw
users’ attention away from the list, or drive people to distraction as they’re trying
to read the results, so we’ll just go with the slow, pulsing animation shown in
Figure 3.8.

This animation has the added advantages of being lightweight and easy to imple-
ment in CSS—no Flash player is required, and there’s no bulky GIF image to
download frame by tedious frame.

The far right-hand side of the white bar is unused space, which makes it an ideal
place for this kind of notification: it’s at the top of the user interface, so it’s easy
to see, but it’s off to the right, so it’s out of the way of people who are trying to
read the list of results.

68

Chapter 3: The “A” in AJAX

Figure 3.8. Our pulsing status animation

To host this animation, we’ll add a div with the ID pollingMessage just below
the status message div in our document:

File: appmonitor2.html (excerpt)

<body>
 <div id="statusMessage">App Status:

 </div>
<div id="pollingMessage"></div>

 <div id="pollResults"></div>
 <div id="buttonArea"></div>
</body>

Add a CSS rule to your style sheet to position this div:

File: appmonitor2.css (excerpt)

#pollingMessage {
 float: right;
 width: 80px;
 padding: 0.2em;
 text-align: center;
}

This animation is now positioned to the right of the page.

When you open the page in your browser, you won’t be able to see the anima-
tion—it’s nothing but a white box on a white background at the moment. If you’d
like to, add some content to pollingMessage to see where it’s positioned.

69

The Status Animation

setInterval and Loss of Scope

The JavaScript setInterval is an obvious and easy way to handle a task
that occurs repeatedly—for instance, to control a pulsing animation.

All the CSS gyrations with setInterval result in some fairly interesting
and bulky code. So, as I mentioned before, it makes sense to put the code
for the status animation into its own class—Status—that we can reference
and use from the Monitor class.

Some of the clever developers reading this may already have guessed that
setInterval suffers from the same loss-of-scope problems as setTimeout:
the object keyword this becomes lost. Since we have to deal with only one
status animation in our monitoring application, it makes sense to take the
expedient approach, and make our Status class a singleton class, just as we
did for the Monitor class.

Setting Up Status
Let’s start by adding some properties to the Status stub we’ve already written,
in order to get the previous code working:

File: appmonitor2.js (excerpt)

var Status = new function() {
 this.currOpacity = 100;
 this.proc = 'done'; // 'proc', 'done' or 'abort'
 this.procInterval = null;
 this.div = null;
 this.init = function() {
 // don't mind me, I'm just a stub ...
 };
 this.startProc = function() {
 // another stub function
 };
 this.stopProc = function() {
 // another stub function
 };
}

The Status object has four properties:

❑ The currOpacity property tracks the opacity of the pollingMessage div.
We use setInterval to change the opacity of this div rapidly, which produces
the pulsing and fading effect.

70

Chapter 3: The “A” in AJAX

❑ The proc property is a three-state switch that indicates whether an HTTP
request is currently in progress, has been completed successfully, or was
aborted before completion.

❑ The procInterval property is for storing the interval ID for the setInterval
process that controls the animation. We’ll use it to stop the running animation.

❑ The div property is a reference to the pollingMessage div. The Status class
manipulates the pollingMessage div’s CSS properties to create the animation.

Initialization

An init method is needed to bind the div property to pollingMessage:

File: appmonitor2.js (excerpt)

this.init = function() {
 var self = Status;
 self.div = document.getElementById('pollingMessage');
 self.setAlpha();
};

The init method also contains a call to a method named setAlpha, which is
required for an IE workaround that we’ll be looking at a bit later.

Internet Explorer Memory Leaks
DOM element references (variables that point to div, td, or span elements and
the like) that are used as class properties are a notorious cause of memory leaks
in Internet Explorer. If you destroy an instance of a class without clearing such
properties (by setting them to null), memory will not be reclaimed.

Let’s add to our Monitor class a cleanup method that handles the window.onun-
load event, like so:

File: appmonitor2.js (excerpt)

window.onunload = Monitor.cleanup;

This method cleans up the Status class by calling that class’s cleanup method
and setting the reqStatus property to null:

File: appmonitor2.js (excerpt)

this.cleanup = function() {
 var self = Monitor;

71

Internet Explorer Memory Leaks

 self.reqStatus.cleanup();
 self.reqStatus = null;
};

The cleanup method in the Status class does the IE housekeeping:

File: appmonitor2.js (excerpt)

this.cleanup = function() {
 Status.div = null;
};

If we don’t set that div reference to null, Internet Explorer will keep the memory
it allocated to that variable in a death grip, and you’ll see memory use balloon
each time you reload the page.

In reality, this wouldn’t be much of a problem for our tiny application, but it can
become a serious issue in large web apps that have a lot of DHTML. It’s good to
get into the habit of cleaning up DOM references in your code so that this doesn’t
become an issue for you.

The displayOpacity Method
The central piece of code in the Status class lives in the displayOpacity method.
This contains the browser-specific code that’s necessary to change the appropriate
CSS properties of the pollingMessage div. Here’s the code:

File: appmonitor2.js (excerpt)

this.displayOpacity = function() {
 var self = Status;
 var decOpac = self.currOpacity / 100;
 if (document.all && typeof window.opera == 'undefined') {
 self.div.filters.alpha.opacity = self.currOpacity;
 }
 else {
 self.div.style.MozOpacity = decOpac;
 }
 self.div.style.opacity = decOpac;
};

The currOpacity property of the object represents the opacity to which the
pollingMessage div should be set. Our implementation uses an integer scale
ranging from 0 to 100, which is employed by Internet Explorer, rather than the
fractional scale from zero to one that’s expected by Mozilla and Safari. This

72

Chapter 3: The “A” in AJAX

choice is just a personal preference; if you prefer to use fractional values, by all
means do.

In the method, you’ll see a test for document.all—a property that’s supported
only by IE and Opera—and a test for window.opera, which, unsurprisingly, is
supported only by Opera. As such, only IE should execute the if clause of this
if statement. Inside this IE branch of the if statement, the proprietary
alpha.opacity property is used to set opacity, while in the else clause, we use
the older MozOpacity property, which is supported by older Mozilla-based
browsers.

Finally, this method sets the opacity in the standards-compliant way: using the
opacity property, which should ultimately be supported in all standards-compliant
browsers.

IE Gotchas

Internet Explorer version 6, being an older browser, suffers a couple of issues
when trying to render opacity-based CSS changes.

Fortunately, the first of these is easily solved by an addition to our
pollingMessage CSS rule:

File: appmonitor2.css (excerpt)

#pollingMessage {
 float: right;
 width: 80px;
 padding: 0.2em;
 text-align: center;
background: #fff;

}

The addition of the background property fixes the first specific problem
with Internet Explorer. We must set the background color of an element if
we want to change its opacity in IE, or the text will display with jagged edges.
Note that setting background to transparent will not work: it must be
set to a specific color.

The second problem is a little trickier if you want your CSS files to be valid.
IE won’t let you change the style.alpha.opacity unless it’s declared in
the style sheet first. Now, if you don’t mind preventing your style sheets
from being passed by the W3C validator, it’s easy to fix this problem by
adding another declaration:

73

The displayOpacity Method

File: appmonitor2.css (excerpt)

#pollingMessage {
 float: right;
 width: 80px;
 padding: 0.2em;
 text-align: center;
 background: #fff;
filter: alpha(opacity = 100);

}

Unfortunately, this approach generates CSS warnings in browsers that don’t
support that proprietary property, such as Firefox 1.5, which displays CSS
warnings in the JavaScript console by default. A solution that’s better than
inserting IE-specific style information into your global style sheet is to use
JavaScript to add that declaration to the pollingMessage div’s style
attribute in IE only. That’s what the setAlpha method that’s called in init
achieves. Here’s the code for that method:

File: appmonitor2.js (excerpt)

this.setAlpha = function() {
 var self = Status;
 if (document.all && typeof window.opera ==
 'undefined') {
 var styleSheets = document.styleSheets;
 for (var i = 0; i < styleSheets.length; i++) {
 var rules = styleSheets[i].rules;
 for (var j = 0; j < rules.length; j++) {
 if (rules[j].selectorText ==
 '#pollingMessage') {
 rules[j].style.filter =
 'alpha(opacity = 100)';
 return true;
 }
 }
 }
 }
 return false;
};

This code, which executes only in Internet Explorer, uses the
document.styleSheets array to iterate through each style sheet that’s
linked to the current page. It accesses the rules in each of those style sheets
using the rules property, and finds the style we want by looking at the
selectorText property. Once it has the right style in the rules array, it
gives the filter property the value it needs to change the opacity.

74

Chapter 3: The “A” in AJAX

Opacity in Opera?

Unfortunately, at the time of writing, even the latest version of Opera (version
8.5) doesn’t support CSS opacity, so such an animation does not work in
that browser. However, this feature is planned for Opera version 9.

Running the Animation
The code for the processing animation consists of five methods: the first three
control the “Processing …” animation, while the remaining two control the “Done”
animation. The three methods that control the “Processing …” animation are:

❑ startProc, which sets up the “Processing …” animation and schedules re-
peated calls to doProc with setInterval

❑ doProc, which monitors the properties of this class and sets the current frame
of the “Processing …” animation appropriately

❑ stopProc, which signals that the “Processing …” animation should cease

The two that control the “Done” animation are:

❑ startDone sets up the “Done” animation and schedules repeated calls to
doDone with setInterval

❑ doDone sets the current frame of the “Done” animation and terminates the
animation once it’s completed

Starting it Up

Setting the animation up and starting it are jobs for the startProc method:

File: appmonitor2.js (excerpt)

this.startProc = function() {
 var self = Status;
 self.proc = 'proc';
 if (self.setDisplay(false)) {
 self.currOpacity = 100;
 self.displayOpacity();
 self.procInterval = setInterval(self.doProc, 90);
 }
};

75

Running the Animation

After setting the proc property to proc (processing), this code calls the
setDisplay method, which sets the color and content of the pollingMessage
div. We’ll take a closer look at setDisplay next.

Once the code sets the color and content of the pollingMessage div, it initializes
the div’s opacity to 100 (completely opaque) and calls displayOpacity to make
this setting take effect.

Finally, this method calls setInterval to schedule the next step of the animation
process. Note that, as with setTimeout, the setInterval call returns an interval
ID. We store this in the procInterval property so we can stop the process later.

Both the “Processing …” and “Done” animations share the setDisplay method:

File: appmonitor2.js (excerpt)

this.setDisplay = function(done) {
 var self = Status;
 var msg = '';
 if (done) {
 msg = 'Done';
 self.div.className = 'done';
 }
 else {
 msg = 'Processing...';
 self.div.className = 'processing';
 }
 if (self.div.firstChild) {
 self.div.removeChild(self.div.firstChild);
 }
 self.div.appendChild(document.createTextNode(msg));
 return true;
};

Since the only differences between the “Processing …” and “Done” states of the
pollingMessage div are its color and text, it makes sense to use this common
function to toggle between the two states of the pollingMessage div. The colors
are controlled by assigning classes to the pollingMessage div, so we’ll need to
add CSS class rules for the done and processing classes to our style sheet:

File: appmonitor2.css (excerpt)

.processing {
 color: #339;
 border: 1px solid #339;
}

76

Chapter 3: The “A” in AJAX

.done {
 color:#393;
 border:1px solid #393;
}

Making it Stop

Stopping the animation smoothly requires some specific timing. We don’t want
the animation to stop abruptly right in the middle of a pulse. We want to stop
it in the natural break, when the “Processing …” image’s opacity is down to zero.

So the stopProc method for stopping the animation doesn’t actually stop it per
se—it just sets a flag to tell the animation process that it’s time to stop when it
reaches a convenient point. This is a lot like the phone calls received by many
programmers at the end of the day from wives and husbands reminding them to
come home when they get to a logical stopping point in their code.

Since very little action occurs here, the method is pretty short:

File: appmonitor2.js (excerpt)

this.stopProc = function(done) {
 var self = Status;
 if (done) {
 self.proc = 'done';
 }
 else {
 self.proc = 'abort';
 }
};

This method does have to distinguish between two types of stopping: a successfully
completed request (done) and a request from the user to stop the application
(abort).

The doProc method uses this flag to figure out whether to display the “Done”
message, or just to stop.

Running the Animation with doProc

The doProc method, which is invoked at 90 millisecond intervals, changes the
opacity of the pollingMessage div to produce the pulsing effect of the processing
animation. Here’s the code:

77

Running the Animation

File: appmonitor2.js (excerpt)

this.doProc = function() {
 var self = Status;
 if (self.currOpacity == 0) {
 if (self.proc == 'proc') {
 self.currOpacity = 100;
 }
 else {
 clearInterval(self.procInterval);
 if (self.proc == 'done') {
 self.startDone();
 }
 return false;
 }
 }
 self.currOpacity = self.currOpacity - 10;
 self.displayOpacity();
};

This method is dead simple—its main purpose is simply to reduce the opacity of
the pollingMessage div by 10% every time it’s called.

The first if statement looks to see if the div has completely faded out. If it has,
and the animation is still supposed to be running, it resets the opacity to 100
(fully opaque). Executing this code every 90 milliseconds produces a smooth effect
in which the pollingMessage div fades out, reappears, and fades out again—the
familiar pulsing effect that shows that the application is busy doing something.

If the animation is not supposed to continue running, we stop the animation by
calling clearInterval, then, if the proc property is done, we trigger the “Done”
animation with a call to startDone.

Starting the “Done” Animation with startDone

The startDone method serves the same purpose for the “Done” animation that
the startProc method serves for the “Processing …” animation. It looks remark-
ably similar to startProc, too:

File: appmonitor2.js (excerpt)

this.startDone = function() {
 var self = Status;
 if (self.setDisplay(true)) {
 self.currOpacity = 100;
 self.displayOpacity();

78

Chapter 3: The “A” in AJAX

 self.procInterval = setInterval(self.doDone, 90);
 }
};

This time, we pass true to setDisplay, which will change the text to “Done”
and the color to green.

We then set up calls to doDone with setInterval, which actually performs the
fadeout.

The Final Fade

The code for doDone is significantly simpler than the code for doProc. It doesn’t
have to process continuously until told to stop, like doProc does. It just keeps
on reducing the opacity of the pollingMessage div by 10% until it reaches zero,
then stops itself. Pretty simple stuff:

File: appmonitor2.js (excerpt)

this.doDone = function() {
 var self = Status;
 if (self.currOpacity == 0) {
 clearInterval(self.procInterval);
 }
 self.currOpacity = self.currOpacity - 10;
 self.displayOpacity();
};

79

Running the Animation

Figure 3.9. The application with a pulsing status indicator

Finally, we’re ready to test this code in our browser. Open appmonitor2.html in
your browser, click the Start button, and you should see a pulsing Processing ...
message near the top right-hand corner of the browser’s viewport, like the one
shown in Figure 3.9.

Be Careful with that Poll Interval!

Now that we have an animation running in the page, we need to be careful
that we don’t start the animation again before the previous one stops. For
this reason, it’s highly recommended that you don’t set POLL_INTERVAL to
anything less than two seconds.

Styling the Monitor
Now that we’ve got our application up and running, let’s use CSS to make it look
good. We’ll need to add the following markup to achieve our desired layout:

80

Chapter 3: The “A” in AJAX

File: appmonitor2.html (excerpt)

<body>
<div id="wrapper">

 <div id="main">
 <div id="status">
 <div id="statusMessage">App Status:

 </div>
 <div id="pollingMessage"></div>

<br class="clearBoth" />
 </div>
 <div id="pollResults"></div>
 <div id="buttonArea"></div>

</div>
 </div>
</body>

As you can see, we’ve added three divs from which we can hang our styles, and
a line break to clear the floated application status message and animation. The
completed CSS for this page is as follows; the styled interface is shown in Fig-
ure 3.10:

File: appmonitor2.css

body, p, div, td, ul {
 font-family: verdana, arial, helvetica, sans-serif;
 font-size:12px;
}
#wrapper {
 padding-top: 24px;
}
#main {
 width: 360px;
 height: 280px;
 padding: 24px;
 text-align: left;
 background: #eee;
 border: 1px solid #ddd;
 margin:auto;
}
#status {
 width: 358px;
 height: 24px;
 padding: 2px;
 background: #fff;
 margin-bottom: 20px;

81

Styling the Monitor

 border: 1px solid #ddd;
}
#statusMessage {
 font-size: 11px;
 float: left;
 height: 16px;
 padding: 4px;
 text-align: left;
 color: #999;
}
#pollingMessage {
 font-size: 11px;
 float: right;
 width: 80px;
 height: 14px;
 padding: 4px;
 text-align: center;
 background: #fff;
}
#pollResults {
 width: 360px;
 height: 210px;
}
#buttonArea {
 text-align: center;
}
.pollResult {
 padding-bottom: 4px;
}
.time {
 font-size: 11px;
 width: 74px;
 float: left;
}
.processing {
 color: #339;
 border: 1px solid #333399;
}
.done {
 color: #393;
 border: 1px solid #393;
}
.bar {
 background: #ddf;
 float: left;
}

82

Chapter 3: The “A” in AJAX

.inputButton {
 width: 8em;
 height: 2em;
}
.clearBoth {
 clear: both;
}

Figure 3.10. The completed App Monitor

Summary
Our first working application showed how AJAX can be used to make multiple
requests to a server without the user ever leaving the currently loaded page. It
also gave a fairly realistic picture of the kind of complexity we have to deal with
when performing multiple tasks asynchronously. A good example of this complex-

83

Summary

ity was our use of setTimeout to time the XMLHttpRequest requests. This example
provided a good opportunity to explore some of the common problems you’ll
encounter as you develop AJAX apps, such as loss of scope and connection
timeouts, and provided practical solutions to help you deal with them.

84

Chapter 3: The “A” in AJAX

AJAX and POST Requests4
I do not sit at the kiddie table. Now you either give me the big toys or you send me home.
—John Crichton, Farscape

We spent the last two chapters working with AJAX and basic HTTP GET requests.
We built a very simple monitoring application that pings a web site and reports
the server’s response time. In this chapter, we’ll move up to the next level as we
begin to work with POST requests. Here, we’ll build a web application login screen
that uses AJAX to send users’ login information back to the server in a POST re-
quest.

Generally, a login page for a web application involves only two form fields, so
it’s legitimate to ask if there’s any real advantage in using AJAX techniques to
build such a form. Why wouldn’t we just keep things basic and use a normal
form? Actually, this is a very important question. AJAX development is fairly
new, and right now the biggest problem with it seems to be that people immedi-
ately begin to ask how to achieve a task using AJAX when they should first ask if
they should achieve that task using AJAX.

You should only pull AJAX out of your web development toolbox if it’s going to
provide tangible value for the end user. In the case of a web application login
system, AJAX can deliver some real benefits in terms of efficiency and ease of
use. With the login form we’ll be building in this chapter, incomplete form sub-
missions are near-impossible, and incorrect logins can be reported in as little time

as it takes to send and receive a few hundred bytes of data. This is a big improve-
ment on the tens of thousands of bytes that would need to be sent and received
in an non-AJAX web application.

But, before we dive into the process of POSTing data, let’s review how we work
with query strings, and how we send data back to the server with the request.

Review: Sending Data with GET
An easy way to send a little data back to the server involves sending a simple GET
request with a query string tacked onto the end of the target URL. Doing so using
our Ajax library is easy:

var ajax = new Ajax();
var handlerFunc = function(str) {
 // Do something with the response
}
ajax.doGet('/some_url.php?bass=Geddy&guitar=Alex&drums=Neil',
 handlerFunc);

Using GET makes it very easy to send a little extra information to the web server.

Sending Data with POST
Let’s have a look at how our Ajax class sends POST requests, then apply that to
our web application login.

The POST method sends the extra data in a package that’s separate from the page
location, so it’s not as easy to use as GET. However, it’s the preferred option in
the following types of situations:

❑ You need to send a large amount of data back to the server.

❑ The data needs to be formatted in a very specific way (e.g., XML-RPC).

❑ You’re sending sensitive data such as passwords.

We need to take the following, additional steps in order to use our Ajax class to
send POST requests:

❑ Set the request method for our instance of XMLHttpRequest to POST (of
course).

86

Chapter 4: AJAX and POST Requests

❑ Pass the POST data to the send method of the XMLHttpRequest object.

❑ Set the Content-Type header for the request to application/x-www-form-
urlencoded.

To perform these actions, we’ll add to the Ajax class a method called doPost,
which will be very similar to doGet:

File: ajax.js (excerpt)

this.doPost = function(url, postData, hand, format) {
 this.url = url;
 this.handleResp = hand;
 this.responseFormat = format || 'text';
 this.method = 'POST';
 this.postData = postData;
 this.doReq();
};

The first three lines of this method are the same as those in the doGet method,
and should be familiar to you by now. The fourth line sets the value of the method
property, which is used in the call to the XMLHttpRequest class’s open method
in doReq:

File: ajax.js (excerpt)

this.req.open(this.method, this.url, this.async);

In order to set the POST data for this request, we simply set the postData property.
This data should consist of a string that’s formatted in variable-value pairs and
is URL-encoded—just like a normal query string.

Finally, we need to set the ContentType of the request to application/x-www-
form-urlencoded. We’ll add this to the doReq method using the
setRequestMethod method:

File: ajax.js (excerpt)

this.doReq = function() {
 if (!this.init()) {
 alert('Could not create XMLHttpRequest object.');
 return;
 }
 this.req.open(this.method, this.url, this.async);
if (this.method == "POST") {

 this.req.setRequestHeader('Content-Type',
 'application/x-www-form-urlencoded');

87

Sending Data with POST

 }
 var self = this; // Fix loss-of-scope in inner function
 this.req.onreadystatechange = function() {
 if (self.req.readyState == 4) {
 ⋮
 }
 };
 this.req.send(this.postData);
};

Now, let’s look at a quick example that pulls data from an actual form.

A Quick Form POST
Imagine that you have a web page that displays the following form, which contains
information about 80s-era progressive rock bands:

<form id="band" action="/handle_input.php">
 <input type="text" name="bass" id="bass" value="Geddy"/>
 <input type="text" name="guitar" id="guitar" value="Alex"/>
 <input type="text" name="drums" id="drums" value="Neil"/>
</form>

You could pull out the form data and POST it with our Ajax object, like this:

var bandForm = document.getElementById('band');
var ajax = new Ajax();
var handlerFunc = function(str) {
 // Do something with the response
}
var formData = '';
formData += 'bass=' + escape(bandForm.bass.value);
formData += '&guitar=' + escape(bandForm.guitar.value);
formData += '&drums=' + escape(bandForm.drums.value);
ajax.doPost('/handle_input.php', formData, handlerFunc);

This seems fairly easy. The only difference between this and the doGet method
is the extra parameter, which passes the query string-formatted data for POSTing.

Using formData2QueryString
When you’re working with more complicated forms, you’re not very likely to
want to craft query strings laboriously, pulling in the data from form elements.

88

Chapter 4: AJAX and POST Requests

This is where formData2QueryString1 comes in handy. formData2QueryString,
an external library, contains a handy function that scrapes a web form of all its
data and creates a string of name-value pairs; we can use formData2QueryString
for our POST.

Using formData2QueryString is easy: just pass it a reference to the form from
which you want to pull data, and it returns a properly formatted string that
contains the values of all the elements in the form.

Using formData2QueryString, we could modify the previous example to look
like this:

var bandForm = document.getElementById('band');
var ajax = new Ajax();
var handlerFunc = function(str) {
 // Do something with the input
}
var formData = '';
formData = formData2QueryString(bandForm);
ajax.doPost('/handle_input.php', formData, handlerFunc);

By simplifying the process of packaging data for POST requests,
formData2QueryString allows you to continue to use web forms as you always
have, while taking advantage of the power of AJAX.

1 formData2QueryString is available under the Apache License, Version 2.0, at
http://www.fleegix.org/downloads/formdata2querystring.js.

89

Using formData2QueryString

http://www.fleegix.org/downloads/formdata2querystring.js

An Application Login
Figure 4.1. The web application login

By AJAX-ifying a web application’s login form you can provide your users an ex-
perience that’s much closer to that of a traditional desktop application than a
typical web application. AJAX improves the developer’s ability to insert notifica-
tions—such as processing animations or error messages—inline into the page,
which quickly and conveniently lets users know what’s happening with the login
process. Figure 4.1 shows what the login page will look like.

Accessibility and Backward Compatibility
In some cases, AJAX web application code is so complicated that it makes sense
to maintain two separate versions—a “hi-fi” version that contains all the AJAX
bells and whistles for modern browsers, and a low-fi version, made up of text-
only web pages generated on the server side, for users of older browsers, text
browsers, and low-end mobile devices. This all-or-nothing approach is less than
optimal, because it requires us to relegate all users who don’t have the ideal
browser configuration to the text-only “ghetto,” even though many of their systems
may support a lot of the app’s functionality.

That’s why the principle of progressive enhancement (which, in the web applic-
ation context, is also known as “unobtrusive DHTML”) should underpin the
design of our code. This principle proposes that we should build our app’s more

90

Chapter 4: AJAX and POST Requests

advanced features on top of a foundation that will support less-capable clients,
enabling the same code to function in the widest possible range of client apps.
Actually, this approach can save you work—if you adopt it, you’ll avoid needing
to maintain two separate versions of your application.

We’ll apply the principle of progressive enhancement to the AJAX code in this
login form, as we work to ensure that it degrades gracefully in less-capable clients.

Screen Readers

There’s a common misconception that screen readers can’t use JavaScript or read
dynamic content. Actually, most screen readers work along similar lines to a
normal web browser, so despite some special limitations, they are capable of
reading DHTML content.

You’ll see a few brief mentions of accessibility and screen readers throughout the
example code that follows, but we’ll save most of that discussion for the section
at the end of the chapter that’s devoted specifically to creating AJAX that works
with screen readers.

Markup and CSS
Let’s take a quick look at the markup and CSS with which we’ll start. Note that,
in this code, we’ve included the formData2QueryString library with another
script element:

File: applogin.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>Application Login</title>
 <script type="text/javascript" src="ajax.js"></script>
 <script type="text/javascript"
 src="formdata2querystring.js"></script>
 <script type="text/javascript" src="applogin.js"></script>
 <link rel="stylesheet" href="applogin.css" type="text/css"/>
 </head>
 <body>
 <div id="uiDiv">
 <form id="loginForm" method="POST" action="applogin.html">

91

Markup and CSS

 <div id="promptDiv" class="basePrompt">

 </div> <!-- promptDiv -->
 <div id="fieldDiv">
 <div class="fieldTitle">Login ID:</div>
 <div class="fieldEntry">
 <input type="text" name="LoginId" id="LoginId"
 size="24" maxlength="100" value=""/>
 </div>
 <div class="fieldTitle">Password:</div>
 <div class="fieldEntry">
 <input type="password" name="Pass" id="Pass"
 size="24" maxlength="100" value=""/>
 </div>
 </div> <!-- fieldDiv -->
 <div id="buttonDiv">
 <input type="submit" id="submitButton"
 name="submitButton" value="Submit"/>
 </div>
 </form>
 </div>
 </body>
</html>

File: applogin.css (excerpt)

body, p, div, td, ul {
 font-family: verdana, arial, helvetica, sans-serif;
 font-size: 12px;
}
form {
 display: inline;
}
#mainDiv {
 padding-top: 24px;
}
#uiDiv {
 width: 360px;
 height: 220px;
 padding: 24px;
 background: #eeeeee;
 border: 1px solid #dddddd;
 margin: auto;
}
#formDiv {
 width: 300px;

92

Chapter 4: AJAX and POST Requests

 height: 200px;
 margin: auto;
}
#promptDiv {
 width: 278px;
 height: 48px;
 padding: 10px;
 margin-bottom: 16px;
 background: #ffffff;
 text-align: left;
 font-size: 11px;
}
#fieldDiv {
 width: 300px;
 text-align: left;
}
#buttonDiv {
 text-align: center;
}
#hintDiv {
 width: 380px;
 padding: 14px;
 border: 1px solid #dddddd;
 color: #666666;
 margin: auto;
 margin-top: 36px;
}
.fieldTitle {
 margin-bottom: 3px;
 font-weight: bold;
 color: #666666;
}
.fieldEntry {
 margin-bottom: 8px;
}
.basePrompt {
 color: #666666;
 border: 1px solid #cccccc;
}
.procPrompt {
 color: #333399;
 border: 1px solid #ccccee;
}
.errPrompt {
 color: #993333;
 border: 1px solid #eecccc;

93

Markup and CSS

}
.inputButtonActive {
 cursor: pointer;
}
.inputButtonDisabled {
 cursor: default;
}
.readerText {
 position: absolute;
 top: -1000px;
 left: -1000px;
 width: 1px;
 height: 1px;
 overflow: hidden;
 z-index: -1000;
}
.clearBoth {
 clear: both;
}

Creating the Login Class
Let’s start off by creating a Login class to organize the code.

We’ll include in our app the code for a processing animation that makes use of
setInterval, so we’re likely to experience those loss-of-scope problems we dis-
cussed in the previous chapter. And, since we’re going to display only one login
form on-screen at any time, it makes sense to make our Login class a singleton
class—a type of class that can only have one instance:

File: applogin.js (excerpt)

var Login = new function() {
 this.ajax = null;
 this.form = null;
 this.promptDiv = null;
 this.dotSpan = null;
 this.button = null;
 this.enabled = true;
 this.dots = '';
 this.promptInterval = null;
};

Remember that, by defining a class with the new keyword, you make that class
a singleton.

94

Chapter 4: AJAX and POST Requests

DOM-element References

Note that promptDiv, dotSpan, and button are DOM-element references, and
remember that when our login page unloads, we need to be sure to clean up these
references to avoid the IE memory leak situation we discussed in Chapter 3. As
with the monitoring application we created in the last chapter, we’ll clean up our
DOM-element references using a cleanup method that’s attached to the win-
dow.onunload event handler:

File: applogin.js (excerpt)

window.onunload = Login.cleanup;

Here’s the cleanup method code:

File: applogin.js (excerpt)

this.cleanup = function() {
 var self = Login;
 self.form = null;
 self.promptDiv = null;
 self.dotSpan = null;
 self.button = null;
};

It’s good to get into the habit of keeping track of your DOM-element references,
and disposing of them when you’re done with them. This may seem like a huge
hassle, but you don’t want to find out halfway through a huge project that your
app leaks like a sieve in IE. There are no good tools for tracking memory leak is-
sues like these, so being proactive as you go can save you serious headaches later
on.

Setting it Up with init
Now that we have our basic properties in place, let’s set up the object with an
init method, which will be pegged to the window.onload event:

File: applogin.js (excerpt)

this.init = function() {
 var self = Login;
 self.ajax = new Ajax();
 self.form = document.getElementById('loginForm');
 self.promptDiv = document.getElementById('promptDiv');
 self.dotSpan = document.getElementById('dotSpan');
 self.button = document.getElementById('submitButton');

95

Setting it Up with init

 self.setPrompt('base', 'Enter a login ID and password, and ' +
 'click the Submit button.');
 self.form.LoginId.focus();
 self.toggleEnabled(false);
 self.form.onsubmit = function() { return false; }
 self.clearCookie('userId');
};

File: applogin.js (excerpt)

window.onload = Login.init;

After setting some references to DOM elements that will be used in the interface,
this code sets up the user interface.

First, it calls the setPrompt method to display the initial login prompt. This text
instructs users to enter their login information and click the Submit button. Next,
the code gives focus to the first field on the form—the Login ID field. This may
seem like a small or unnecessary detail, but it’s the kind of detail that’s important
in using AJAX to develop a truly usable application interface.

Get Focused!

When the page loads in an ideal world, the user should not be forced to click
in the first field to begin typing. Sure, setting the focus to the first form field
will only save the user a tiny amount of time, effort, and inconvenience, but
it will save every user that inconvenience every single time they log in. For
an app that’s to be used by many, many people, over and over again, that
time (and frustration!) can add up.

You can set the focus to a field simply by calling that field’s focus method
from the window.onload event handler. In a lightweight page, this will
prepare the form for user input in the blink of an eye—your users will be
grateful.

However, actions associated with window.onload can sometimes take a
while to trigger, as the event will not fire until all of the HTML, CSS,
JavaScript, and images associated with a page have loaded. On a page with
a number of images, quite some time can pass before the event is fired. And
in the case of a login form, it’s quite possible that users have seen the login
form, entered their usernames, and are halfway through entering their pass-
words by the time your pretty background graphics have loaded. If we shift
the focus to the username field while the user is interacting with the form,
the user is going to be annoyed.

As our login form is very lightweight, we’ll set the focus to the username
field without concerning ourselves with the users’ own focus—they’re not

96

Chapter 4: AJAX and POST Requests

likely to have begun to type by the time we set focus. However, this is an
issue that you’ll need to consider as you develop your own AJAX applications.

Next, init calls toggleEnabled to disable the Submit button—we’ll take a look
at that method shortly—and sets a dummy onsubmit event handler for the form.
This event handler does nothing but return false, which disables form submission.
This allows our form to do double-duty for people who come to this page without
JavaScript support. For such users, the page will behave like a normal, old-school
web form. For users with JavaScript, this scrap of code preempts that normal
submission process and, instead, allows us to send the data using AJAX.

Finally, init calls a method called clearCookie to wipe the userId cookie, which
we’ll use to keep track of an authenticated user. clearCookie uses
document.cookie to set the cookie’s expiration date to January 1, 1970, which
causes the browser to remove it as an expired cookie. Here’s the code:

File: applogin.js (excerpt)

this.clearCookie = function(name) {
 var expireDate = new Date(0);
 document.cookie = name + '=; expires=' +
 expireDate.toGMTString() + '; path=/';
};

January 1, 1970

JavaScript Date objects can be initialized with a single millisecond value,
instead of separate values for the year, month, and so on. Initializing an in-
stance of the Date class to zero milliseconds sets the date to January 1, 1970.
This convention started in the Unix world and is common to a number of
programming languages and operating systems, including JavaScript and
Mac OS X. A date that’s measured in milliseconds like this is often referred
to as a “Unix timestamp.”

Setting the Login Prompt
As we saw above, the init method calls the setPrompt method to set a message
at the top of the login form. This prompt is an example of a page partial that our
Login class can render separately from the rest of the page, making it an easy
and convenient way to keep the user informed of what the application is doing.
Here’s the code for setPrompt:

97

Setting the Login Prompt

File: applogin.js (excerpt)

this.setPrompt = function(stat, msg) {
 var self = Login;
 var promptDiv = self.promptDiv;
 var msgSpan = document.getElementById('msgSpan');
 var statusClass = '';
 promptDiv.className = stat + 'Prompt'; // base, proc or err
 if (msgSpan.firstChild) {
 msgSpan.removeChild(msgSpan.firstChild);
 }
 msgSpan.appendChild(document.createTextNode(msg));
};

The setPrompt method can display three different kinds of color-coded prompts
to emphasize the status of the login process. Each prompt type is tied to a CSS
class in applogin.css:

❑ The basePrompt class is gray, and indicates the default status of the login
page. This is the color of the initial prompt that the user sees when the page
first loads.

❑ The procPrompt class is blue. It indicates that the login has submitted the
user’s authentication information to the server, and is waiting for a response.
We can add an animation effect to a div to which this class is applied, to
emphasize the fact that the application is “busy.” Instead of the pulsing CSS
opacity effects we used in our monitoring application, we’ll create this anim-
ation using an all-text effect: an animated line of dots that looks a bit like a
string of Christmas lights.

❑ The errPrompt class is red, and indicates an error of some kind.

The classes are made up of simple CSS declarations:

File: applogin.css (excerpt)

.basePrompt {
 color: #666;
 border: 1px solid #ccc;
}
.procPrompt {
 color: #339;
 border: 1px solid #cce;
}
.errPrompt {
 color: #933;

98

Chapter 4: AJAX and POST Requests

 border: 1px solid #ecc;
}

The setPrompt method accepts two parameters. The first is stat, which specifies
the state of the message as base, proc, or err. The other parameter is msg—the
message to be displayed.

Having set the style of the message, the code uses DOM-manipulation methods
to delete the current contents of the message box and display the message inside
the span with the ID msgSpan.

Ensuring Valid Input
In old-fashioned web applications, the server was the only place we could reliably
validate user input. The user had to submit the form, wait for it to be processed
on the server, then wait to see whether the submission was a success, or had in-
cluded some bad data such as a missed field or incorrectly formatted number.

While the server remains the only reliable place to validate user input, we can
greatly reduce the likelihood of a user submitting invalid data with some clever
use of AJAX techniques. With modern browsers and solid JavaScript support,
it’s much easier to make an initial pass at input validation right there on the client,
to save the user from waiting. However, this approach still puts users in a poten-
tially irritating position: they have to click the Submit button to find out that the
input they entered was wrong in some way.

In our login form, we’ll disable the Submit button by default, and enable it when
the user types something into both of the form fields. This is a different—and
much more user-friendly—way to ensure proper input than the more common
method of validating inputs after the user submits the form. Ours is a more active
approach to providing feedback to users—they can’t even click the Submit button
until they’ve entered data into both form fields.

Always Validate Input on the Server Side

Never assume that client-side validation will make data input from the client
safe. You should think of client-side validation purely as a convenience for
end-users—something to reduce the likelihood of errors as they enter form
data. Always validate data inputs on the server side to make sure that the
data you’re processing is safe. Make sure you don’t end up being the victim
of an attack!

99

Ensuring Valid Input

Capturing and Using Keyboard Input

In order to capture changes to the text in each field, we’ll add a method called
keyup to handle the document.onkeyup event.

File: appmonitor.js (excerpt)

document.onkeyup = Login.keyup;

keyup will watch the user’s typing and activate the Submit button when the user
has entered data into both fields. Here’s the code:

File: appmonitor.js (excerpt)

this.keyup = function(e) {
 var self = Login;
 if (!e) {
 e = window.event;
 }
 if (e.keyCode != 13) {
 self.evalFormFieldState();
 }
 else {
 if (self.enabled) {
 self.submitData();
 }
 }
};

Notice that this method takes one parameter called e. In Firefox, Safari, and
Opera, this parameter contains information about the source of the event, such
as the key that was pressed to trigger it. In Internet Explorer, the same information
can be accessed via window.event.

To check which key was pressed to trigger this event, we check e’s keyCode
property, which contains the key’s unicode value. In keyup, we check to see if
the Enter key (which has a unicode value of 13) was pressed. If it was, we send
the data off to the server (more on this later). Otherwise, keyup calls
evalFormFieldState to check the state of the form fields and set the Submit
button to its appropriate state.

File: appmonitor.js (excerpt)

this.evalFormFieldState = function() {
 var self = Login;
 if (self.form.LoginId.value.length > 0 &&
 self.form.Pass.value.length > 0) {

100

Chapter 4: AJAX and POST Requests

 self.toggleEnabled(true);
 }
 else {
 self.toggleEnabled(false);
 }
};

If the code determines that the user has properly entered some data into both
fields, it calls the toggleEnabled method we originally used in init, and passes
it a value of true to enable the Submit button. Similarly, on every keystroke, if
the code sees that either form field is empty, it deactivates the Submit button by
calling toggleEnabled with a value of false.

Incidentally, if we wanted to, we could create conditions about the kinds of data
we wanted users to enter into the field, and perform much more complicated
validation (for example, using regular expressions) for things like telephone
numbers or email addresses.

Screen Readers and onkeyup

Screen readers may interfere with the functioning of the onkeyup event
when users of these devices enter data into form fields, so you shouldn’t de-
pend on code triggered by onkeyup alone to determine whether to enable
or disable important elements of the UI. Later in the chapter, we’ll attach
the evalFormFieldState method directly to the onchange event for the
password form field, to make sure that the button is properly turned on for
people using screen readers.

Here’s the toggleEnabled method:

File: appmonitor.js (excerpt)

this.toggleEnabled = function(able) {
 var self = Login;
 if (able) {
 self.button.onclick = self.submitData;
 self.button.disabled = false;
 self.button.className = 'inputButtonActive';
 self.enabled = true;
 }
 else {
 self.button.onclick = null;
 self.button.disabled = true;
 self.button.className = 'inputButtonDisabled';
 self.enabled = false;

101

Ensuring Valid Input

 }
};

Passing this method a value of true enables the Submit button: it assigns an on-
click event handler, sets the button’s disabled property to false and its class
property to inputButtonActive, and, finally, sets the Login class’s enabled
property to true.

If toggleEnable is passed a value of false, the reverse of all this will occur. So,
if the user fills out the form—enabling the button—but then deletes one of the
form field entries, the Submit button will revert to its original state.

At this point, we should be able to check our progress simply by adding the empty
stub for submitData shown below, then loading the page in a web browser.

File: applogin.js (excerpt)

this.submitData = function() { };

Figure 4.2. The login user interface

Once the page has loaded, and you’ve entered something in the Login ID and
Password fields, the Submit button should be enabled, signifying that you’ve
entered all the details that the application needs, and we’re ready to check the
login ID and password against our list of users on the server.

102

Chapter 4: AJAX and POST Requests

Submitting the Form Data
Now that the Submit button is active, it’s time for the user to take a shot at logging
in to our web app. We’ll use our Ajax class to send the user’s login information
to the server via an HTTP POST request. Here’s the code:

File: applogin.js (excerpt)

this.submitData = function() {
 var self = Login;
 var postData = '';
 postData = formData2QueryString(self.form);
 self.ajax.doPost('/applogin.php', postData,
 self.handleLoginResp);
 self.showStatusPrompt();
 self.toggleEnabled(false);
};

This method uses formData2QueryString to pull the values out of the form and
put them into a string, which we then pass to the Ajax class for POSTing. Next,
the code sends the POST request that contains the data string using the Ajax
class’s doPost method. This method takes three parameters:

❑ the target URL

❑ the data string

❑ the function that you want to handle the response

After the POST request has gone off to the server, the code switches on the pro-
cessing animation in the prompt box, and deactivates the Submit button to prevent
multiple submissions.

Securing your Login Details

As we’re not submitting real login details to a real web application, we’re not
too concerned about securing users’ data at this point. However, with a real-
world login, it’s vital to make sure that malicious snoopers can’t peek at your
users’ personal data, including their login IDs and passwords. In fact, many
users won’t use applications that don’t encrypt personal or sensitive data
with SSL.

Submitting your data using SSL (secure sockets layer), an industry-standard
encryption technology, is the most common way to lock down your users’

103

Submitting the Form Data

precious personal information. Pages that are served over an SSL connection
have URLs that begin with https: instead of http:.

A wealth of information that explains how to set up your web server to use
SSL is available online. Free implementations of SSL, such as OpenSSL,2

also mean that you can set up a web server with industrial-strength encryp-
tion—the same encryption that the big boys use—with no cost other than
the price of a digital certificate.

Submitting Data without Touching the Mouse

Obviously, clicking the Submit button is a good bet for kicking off the submit
process, and for those who prefer to use the mouse, clicking that little button is
no big deal. But let’s pause for a moment to take some pity on the poor keyboard
junkies who also want to log in to our fake application. We’ve got some extra
mojo up our sleeves that we can apply to make things even easier for those guys
and girls. Remember: users like it when we make things easier for them. And if
your users are happy, you’re happy.

Remember when we wrote the keyup method? You’ll recall that we treated the
Enter key as a special case. When the Enter key is pressed and the Submit button
is enabled, the submitData method is called.

This is a nicety akin to the results of our work with the init method, which gave
focus to the login ID field on initial page load. These may seem like quite small
things, but for people who use the keyboard a lot, some extra effort on your part
can save your users significant time and effort in the long run. Indeed, it’s this
kind of attention to usability detail that separates the good AJAX applications
from the mediocre and even bad ones. Take the time to get these details right!

Processing the Submission
Normally, a web application login form submits the login ID and password to
the web server, which checks the data against a list of login IDs and encrypted
passwords. To fake this process with our processing page, applogin.php, we’ll
simply hard-code some values against which the login ID and password can be
checked. To make it seem like the server is having to think about this validation
a little, we’ll also add a call to sleep for three seconds.

2 http://www.openssl.org

104

Chapter 4: AJAX and POST Requests

http://www.openssl.org

Here’s how our fake back-end code looks in PHP. Again, remember that this code
could be written in any server-side language; we’ve chosen to use PHP here only
because it’s freely available for most popular web servers.

File: applogin.php (excerpt)

<?php
$loginId = $_POST['LoginId'];
$password = $_POST['Pass'];
$respType = '';
$respMsg = '';
$separator = ',';
sleep(3);
if ($loginId == 'user' && $password == 'password') {
 setcookie('userId', 12345);
 $respType = 'success';
 $respMsg = '/appmainpage.php';
}
else {
 $respType = 'error';
 $respMsg = 'Could not verify your login information.';
}
header('Content-Type: text/plain');
print $respType;
print $separator;
print $respMsg;
?>

The first two variables hold the inputs from our login screen, which were extracted
from the POST request. When XMLHttpRequest submits POST data with its request,
the data behaves exactly like any data that might be submitted through a normal
web form, even though it’s originally packed to look like a query string.

Validate your Data!

In this login demonstration, we’re not doing anything to validate the data
that’s coming from the client. If this were the login to a production applica-
tion, you would, of course, run any input from the browser through some
sort of validation process to ensure that it was safe, and was the type of data
you were expecting. Unvalidated data could give malicious hackers a way to
attack your application, and incorrect data types or formats could do serious
damage to your app. Always validate data from the client.

105

Processing the Submission

CSV Data Format

The last three variables—$respType, $respMsg, and $separator—come into
play when we print out the response for the client.

The response can be pretty brief: all the client needs from this page is a notice
of success or failure, and a short message. And, since XMLHttpRequest can work
happily with a range of data formats other than XML (despite its name), we’ll
use something a lot more lightweight: CSV (comma separated values).

CSV is a good choice for small or simple sets of data. It provides a nice, easy way
to break information into multiple fields when you don’t really need the extra
complexity that XML provides, and comes with an added bonus in that it works
well with popular spreadsheet and database programs.

In this case, we have only two data fields. The $respType variable tells us
whether the login process worked or not, and $respMsg contains either the error
message that we’ll display to the user, or the redirect path for a successful login.
The $separator variable contains the character we’ll use as the delimiter to
separate the two fields (in this case, a comma).

Setting the Values

Once the variables are declared, and the program insists on resting for a few
seconds, the user’s login ID and password are checked against a hard-coded pair
of values. Then, $respType and $respMsg are set. If the values match, $respType
is set to success and $respMsg is set to the address of the page to which the login
form will redirect; if the values do not match, $respType is set to error and
$respMsg is set to a message that explains the error.

Upon successful login, the code also sets a cookie called userId that indicates
that the user is actually logged into the app. In our page, the code sets the cookie
to a fictitious number, but a real application would set it to something use-
ful—such as a user identifier.

Printing the Response

Lastly, our fake back-end code prints out the response, which goes back to the
client. This page is very simple, and there are only two possible outputs:

❑ success,/appmainpage.php

106

Chapter 4: AJAX and POST Requests

❑ error,Could not verify your login information.

Our client-side code parses this result and either redirects to the main application
page, or displays the error message for the user.

Also note that we set Content-Type to text/plain, so XMLHttpRequest won’t
expect the response to contain valid XML.

Of course, this is a really basic example. You could certainly expand it to return
different error messages or codes, or to direct different classes of users to different
parts of the application (for example, logging administrative users into an admin
console). You could also choose a different separator character. Sometimes, your
data will contain commas, so using a comma as a separator may not be a good
idea. The pipe character (|) is another popular choice.

The CSV format is simple, yet flexible enough to deal with a wide range of
uses—any case in which you have a limited number of data fields and you control
the code on both the back end and the front. XML is better suited to more
complicated types of data, and situations in which your application has to com-
municate with other applications.

Showing Processing Status
While our fake processing page is pretending to authenticate the submitted data,
users will be staring at the login screen, wondering what the heck is going on.
This is where status notification again comes to the fore. It’s vital to let users
know what’s going on with an application, but it’s particularly important in the
case of an AJAX app, as users have to sit and wait for processes on the server to
finish. If the application is busy performing some task, it should look busy to the
user.

On this login page, we’ll use an animation effect to indicate that the application
is processing the user’s request, but we’ll take a slightly different approach to the
one we used last time. Rather than creating a sense of movement by changing
the animation’s opacity, we’ll use a line of dots similar to an ellipsis (…), animat-
ing them a bit like a line of Christmas lights, as shown in Figure 4.3. This is a
pretty common look for a processing animation, and it has the advantage of being
very lightweight, since it’s all text.

107

Showing Processing Status

Figure 4.3. Creating animation by appending a string of dots

The showStatusPrompt method starts off the status animation. This code sets
the prompt message to “Processing,” then starts up the setInterval process that
animates the dots.

Here’s the code:

File: applogin.js (excerpt)

this.showStatusPrompt = function() {
 var self = Login;
 self.dots = '';
 self.setPrompt('proc', 'Processing');
 self.promptInterval = setInterval(self.showStatusDots, 200);
};

Again, the return value of the setInterval call is the interval ID we’ll need to
turn off the animation, so we save it for future use in the promptInterval
property. The setInterval process is set to call showStatusDots every 200
milliseconds.

Here’s the showStatusDots code:

File: applogin.js (excerpt)

this.showStatusDots = function() {
 var self = Login;
 var dotSpan = self.dotSpan;
 self.dots += '.';
 if (self.dots.length > 4) {
 self.dots = '';
 }
 if (dotSpan.firstChild) {
 dotSpan.removeChild(dotSpan.firstChild);
 }
 dotSpan.appendChild(document.createTextNode(' ' + self.dots));
};

108

Chapter 4: AJAX and POST Requests

The action in this code occurs in two parts. The first part sets up the dot string
for display; the second part displays the string after the word “Processing” in the
prompt box.

The process of animating the dots starts with an empty string; a dot is appended
to this string over and over, so that the line of dots grows. When the number of
dots exceeds four, the code resets the string to be empty, and starts the process
over. These dots appear in a span element that appears immediately to the right
of the word “Processing” in the prompt, so it looks like the entire string of text
is animated. The movement of the dots draws the user’s eye to the word “Pro-
cessing,” which makes it more likely that the user will read and understand the
prompt. The constantly changing row of dots provides another hint to the user
that the application is busy doing something.

Handling the Server Response
When the response arrives back from the server, the result is passed to the
handleLoginResp method as a string. This method parses the CSV-formatted
result string by splitting it at the comma and restoring the respType and respMsg
values we had on the server side in applogin.php:

File: applogin.js (excerpt)

this.handleLoginResp = function(str) {
 var self = Login;
 var respArr = str.split(',');
 var respType = respArr[0].toLowerCase();
 var respMsg = respArr[1];
 if (respType == 'success') {
 location = respMsg;
 }
 else {
 self.showErrorPrompt(respMsg);
 }
};

This provides the status of the response in respType, and the meat of the re-
sponse—either an error message or redirect path—in respMsg.

Once we know whether this response indicates success or an error, we know what
to do with the response content in respMsg.

If the login was successful, the code will redirect the browser to whatever path
the server returned in respMsg. If the response indicates an error, respMsg will

109

Handling the Server Response

instead contain an error message, and handleLoginResp will hand it off to the
showErrorPrompt method for display.

Taking Care of Case-sensitivity

With a string variable like respType that contains some sort of named
status (e.g., success or error), it’s usually a good idea to get into the habit
of converting the string to upper- or lowercase before checking the value.
This takes care of any case-sensitivity issues that might occur if either you,
or someone you work with, use the wrong case or mixed case somewhere else
in the code.

Dealing with Login Failures
The showErrorPrompt method displays an error to users when their logins fail,
and resets the login interface to make it easy for them to try logging in again:

File: applogin.js (excerpt)

this.showErrorPrompt = function(str) {
 var self = Login;
 var dotSpan = self.dotSpan;
 clearInterval(self.promptInterval);
 if (dotSpan.firstChild) {
 dotSpan.removeChild(dotSpan.firstChild);
 }
 self.setPrompt('err', str);
 self.form.Pass.value = '';
};

After declaring and initializing a couple of variables, showErrorPrompt stops the
moving dots animation by calling clearInterval with the animation process’s
interval ID. Then, as the animation may have been stopped while displaying
dots, showErrorPrompt uses removeChild to clear any dots that may be left in
the animation’s span.

The next thing we need to do is to set the prompt to the error text that’s come
back from the server, and to set the prompt type to err so it will display in the
proper style. We achieve this with a call to setPrompt.

Last of all, the code resets the user interface by clearing out the Password field
so that users can quickly and easily re-enter their passwords and attempt another
login. This is another addition that’s important to the usability of the app, as it
saves your users time and irritation. Most often, login errors (for valid users) arise

110

Chapter 4: AJAX and POST Requests

from the mistyping of passwords, so when a login attempt fails, the code empties
the text in the password field, to save the user from having to delete it manually.

Now that we’ve sent the request, set up an animation to indicate that the server
is busy, and handled both successful and unsuccessful login attempts, our basic
login application is ready to go! Open applogin.html in your web browser and
try to log in with bogus details. You should see the animated dots, followed by
the “Could not verify your login information” message shown in Figure 4.4.

Figure 4.4. A failed login attempt

If you log in using the login ID user and the password password, you’ll be redir-
ected away from applogin.html to a page named appmainpage.php—the main
page of your application.

Great! You now have a fully functional application login form. There’s no chance
that users can submit details without filling in both the Login ID and Password
fields, and the app keeps users informed about what’s going on behind the scenes.
It also works in modern versions of Internet Explorer, Firefox, Safari, and Opera.
In fact, the only browsers on which it doesn’t work are screen readers used by
the vision-impaired. However, contrary to popular belief, there’s no reason why
our AJAX can’t work in those browsers, too.

111

Dealing with Login Failures

AJAX and Screen Readers
Making the login page accessible to screen readers requires a little more work
than did the relatively simple task of dealing with non-JavaScript browsers, but
it won’t be much of a chore if you keep some basic principles in mind as you
design your code. Here’s a quick list; we’ll discuss each point in detail in a mo-
ment:

❑ Think “linearly.”

❑ Use “skip navigation” links.

❑ Provide users with notification about dynamic content.

❑ Test the app in multiple readers.

Follow these principles as you develop the app, and you’ll likely find that it’s
surprisingly easy to build support for screen readers into your code. In fact, it
has the potential to be much easier than building and maintaining a separate,
“accessible” version of your app.

Thinking “Linearly”
As you look at the user interface for a web application, you’ll see buttons, links,
and form elements placed all over your browser window. However, view the page’s
source and you’ll see a very different picture—line after line of markup that reads
from top to bottom. That’s exactly how a screen reader views your page: in a
linear fashion, from top to bottom, left to right.

In designing a web app interface, and creating page elements (especially tables
and web forms), for screen reader access, you must think about how your markup
will appear when read from top to bottom. Here’s a quick example.

Example: a Two-column Web Form

Imagine that you want to create a web form that allows users to provide their
names and address information. To save vertical space on the page, you want to
display the inputs in two columns. If you were of the old school of table-based
web design, an obvious way to do that would be to use a big table with columns
for the form field labels and text inputs, like so:

112

Chapter 4: AJAX and POST Requests

<table>
 <tr>
 <th colspan="2">Name Info</th>
 <th colspan="2">Address Info</th>
 </tr>
 <tr>
 <td>First Name:</td>
 <td><input type="text" id="First" name="First" value=""/></td>
 <td>Address:</td>
 <td><input type="text" id="Addr" name="Addr" value=""/></td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td><input type="text" id="Last" name="Last" value=""/></td>
 <td>City:</td>
 <td><input type="text" id="City" name="City" value=""/></td>
 </tr>
</table>

I’m sure you already know where I’m going with this: the form will look fine in
the browser, as shown in Figure 4.5, but a screen reader will read the markup
from top to bottom, so the fields will be out of order: First Name, Address, Last
Name, City.

Figure 4.5. Form with a table-based layout

Instead, you could use two tables and a little CSS “float” magic; you’d see exactly
the same visual result, but the markup would be better suited to linearization.
Here’s the markup:

<div id="formDiv">
 <table class="floatTable">

113

Thinking “Linearly”

 <tr>
 <th colspan="2">Name Info</th>
 </tr>
 <tr>
 <td>First Name:</td>
 <td><input type="text" id="First" name="First" value=""/>
 </td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td><input type="text" id="Last" name="Last" value=""/></td>
 </tr>
 </table>
 <table class="floatTable">
 <tr>
 <th colspan="2">Address Info</th>
 </tr>
 <tr>
 <td>Address:</td>
 <td><input type="text" id="Addr" name="Addr" value=""/></td>
 </tr>
 <tr>
 <td>City:</td>
 <td><input type="text" id="City" name="City" value=""/></td>
 </tr>
 </table>
 <div class="clearBoth"></div>
</div>

Tables Used for this Example Only!

Don’t try this at home, kids! We don’t recommend you mark up forms using
tables unless those forms really are made up of tabular data. Forms should
always be marked up using semantically correct elements, then styled using
CSS.

The floatTable CSS class that creates the two-column layout looks like this:

.floatTable {
 width: 230px;
 float: left;
}

The end result, shown in Figure 4.6, is a form that looks identical to the one built
using a single large table.

114

Chapter 4: AJAX and POST Requests

This is just a single example, but the same top-to-bottom, left-to-right principle
of linearization applies to the layout of any elements on the screen. Fortunately,
CSS gives you plenty of freedom to place on-screen elements wherever you want
them to appear, so if you give your layout a little thought early in the process,
you can create web application interfaces whose elements are logically grouped
top-to-bottom in the markup, but still display in intuitive locations on the screen.

We’ll be talking later about testing your code in screen readers, but of course the
best way to get a visceral feel for the linear way in which a screen reader reads
your site or app is to try using these tools for yourself. You’ll be surprised (and
possibly appalled) at the difference between these and visually-based browsers.

Skip Navigation Links
What usually appears at the very top or far-left of the vast majority of web pages?
That’s right: navigation links. Now, knowing what you know about the top-to-
bottom way a screen reader digests markup, imagine what it must be like for
users of screen readers who, every time they move to a new page, have to sit
through a list of every navigation link on the web site before they can get to the
actual content of the page.

That’s the kind of annoyance that vision-impaired people using screen readers
have to endure when sites don’t implement “skip navigation” links. These are
internal page links that allow the screen reader to jump over the annoying, repet-
itive navigation and get to the content the users are really looking for.

Providing this kind of internal navigation to allow screen reader users to skip
around on the page makes the browsing experience much easier and more enjoy-
able for these users. And your application of these links needn’t be confined to
skipping over page navigation. Many screen readers start off by giving the user
a brief “scan” of the page, and although some readers wrap back to the top from
the bottom of the page, not all do, so it can be a big help to provide an easy way
for users to jump back to the top of the page.

Hiding Screen Reader Content

At this point, you might be curious about the idea of sprinkling internal navigation
links all over your page, and wondering what’s that’s going to do to your nice,
clean design. Well, fear not! CSS can help you out here, as well. All you have to
do is define a class that’s for use by screen readers only, and use CSS to make it
invisible to everyone else.

115

Skip Navigation Links

Figure 4.6. A two-column form built with a table or CSS

The web app login code we’ve been working with in this chapter uses the following
style for its screen reader-only class:

File: applogin.css (excerpt)

.screenReader {
 position: absolute;
 top: -1000px;
 left: -1000px;
 width: 1px;
 height: 1px;
 overflow: hidden;
 z-index: -1000;
}

Applying this class to a div or any other block-level element effectively makes it
invisible, though it’s still readable by screen readers. This is what we use to set
up the internal page navigation anchors that will allow readers to jump from the
bottom of the page to the top.

Avoid Using display: none

Don’t set the CSS display property to none for your screen reader class.
Many screen readers will ignore elements with a display of none, which
is correct behavior, as this property indicates that the element is not to be
“shown.”

Here’s the markup we use as the target link at the top of the login screen:

116

Chapter 4: AJAX and POST Requests

File: applogin.html (excerpt)

<body>
<div class="readerText">

 Page top
 </div>
 <div id="uiDiv">

It doesn’t show up on-screen, but screen readers see this perfectly, and report it
as an internal page link. And at the very bottom of the page, we add this:

File: applogin.html (excerpt)

 </div>
<div class="readerText">

 Back to form top
 End of page
 </div>
</body>

When a screen reader reads this markup, users knows that they’re at the end of
the page, and that there’s an easy way to jump to the top.

Notification for Dynamic Content
A lot of discussion about screen readers assumes that they can’t handle JavaScript
or content that’s created dynamically on the client-side. In reality, screen readers
work in conjunction with a regular browser like Internet Explorer, so they’re de-
pendent on the browser for their JavaScript support.

The problem screen readers have is not with dynamic content itself. The problem
is that with AJAX-style updates to the page, such as those that occur when our
app login page displays an error message that’s returned from the server, the
screen reader has no way to know that the content has changed, or where on the
page the changes have occurred.

Giving an alert

A good solution to this problem is to provide some kind of notification for screen
reader users when content on the page changes. Screen readers will read alert
dialog boxes, so a good technique is to give screen reader users the option to re-
ceive an alert when you perform a partial page refresh with AJAX.

A neat way to give users this option is to add to your form a checkbox that’s
visible only to screen readers, and turns these alerts on and off. This gives users

117

Notification for Dynamic Content

the ability to choose for themselves whether or not they want to be alerted when
page content changes.

Here are a couple of points that you should keep in mind when you implement
this type of solution:

❑ This is probably not an ideal solution for an app in which content is constantly
changing (e.g., a stock ticker application)—you don’t want to bombard users
with alert after alert.

❑ Consider what information should appear in the alert dialog. In the case of
our simple login form, the only content change is a short error message, so
you can put that right there in the alert. If the changed content included a
long list of search results, you’d just want to tell the user that the search had
completed, and direct them to the area on the page where they can find the
results (we’ll see an example of this in Chapter 7).

Without JavaScript, this login form acts like a plain, old-school web form. This
means that we only need to add the notification of dynamic content changes for
people who use their screen readers in conjunction with JavaScript-enabled
browsers. We achieve this using JavaScript as the application loads. You’ll see
how this works in just a moment, when we step through the screen reader-specific
code.

Testing in Multiple Readers
The single most important thing you can do to make your code work in screen
readers is, of course, to sit down and use your app with screen readers. Here’s a
brief list of some commercial screen reader applications you might try:

Home Page Reader from IBM3 This application is a specialized screen reader
that’s used in place of a web browser. The
current version requires Internet Explorer 6 be
installed.

JAWS from Freedom Scientif-
ic4

The most popular screen reader software
worldwide, JAWS works with a variety of pro-
grams including web browsers.

3 http://www.ibm.com/
4 http://www.freedomscientific.com/

118

Chapter 4: AJAX and POST Requests

http://www.ibm.com/
http://www.freedomscientific.com/
http://www.freedomscientific.com/

Window-Eyes from GW Mi-
cro5

Another general screen reader program, Win-
dows-Eyes works with a variety of programs
including web browsers.

Hal from Dolphin Computer
Access6

Hal is another general screen reader program
that works with a variety of programs including
web browsers.

Some screen readers offer trial versions that you can use, so you can take them
for a spin and see how well your application works—or doesn’t—with them. These
trial versions are time-limited (i.e., they’ll run for about half an hour before they
shut down), so they’re not really suitable for serious testing, but the trial versions
are more than sufficient for getting a feel for the ways these tools work, and
learning how to create accessible user interfaces for your AJAX applications.

Just as you wouldn’t develop your site in Firefox and deploy it without testing it
in your other supported browsers (especially if IE was one of those browsers),
you can’t test your app successfully in one screen reader and expect it to work
flawlessly in all the others.

5 http://www.gwmicro.com/
6 http://www.dolphincomputeraccess.com/

119

Testing in Multiple Readers

http://www.gwmicro.com/
http://www.gwmicro.com/
http://www.dolphincomputeraccess.com/
http://www.dolphincomputeraccess.com/

Figure 4.7. Testing the app login in IBM Home Page Reader

In that respect, supporting a specific screen reader is very much like supporting
a new browser. They have differences and individual quirks. For example, IBM’s
Home Page Reader uses IE as its browsing engine, but runs like a separate pro-
gram. Figure 4.7 shows a screen capture of the app login system we developed in
this chapter as accessed through IBM Home Page Reader. The JAWS screen
reader, on the other hand, opens in a small window and runs in the background,
reading the text for the active application. Figure 4.8 shows the JAWS application
window.

120

Chapter 4: AJAX and POST Requests

Figure 4.8. The JAWS application window

I would strongly encourage you to sit down and try this: fire up a screen reader
program, pull up your web application, and literally turn off your monitor while
you use it.

Spend some time fighting with some inaccessible user interfaces in a few screen
reader programs, and you’ll get a very different perspective on the situation; in
fact, that visceral understanding of what it’s like may boost your motivation to
build better accessibility into your AJAX web app.

The Screen Reader Code
Let’s take a quick look at the code that allows our web app login to work with
screen reader programs. Note that these extra features are unnecessary for users
who have no JavaScript support, or have JavaScript turned off, since the markup
for the web form itself is made up of a set of simple, reader-friendly div elements.

The full AJAX version of the display needs these extra features to work with
screen readers, though, so we’ll add them into the mix by calling the
enableScreenReaderFeatures method in the init code at application startup:

File: applogin.js (excerpt)

this.init = function() {
 var self = Login;
 self.ajax = new Ajax();
 self.form = document.getElementById('loginForm');
 self.promptDiv = document.getElementById('promptDiv');
 self.dotSpan = document.getElementById('dotSpan');

121

The Screen Reader Code

 self.button = document.getElementById('submitButton');
 self.setPrompt('base', 'Enter a login ID and password, and ' +
 'click the Submit button.');
 self.form.LoginId.focus();
 self.toggleEnabled(false);
 self.form.onsubmit = function() { return false; }
 self.clearCookie('userId');
self.enableScreenReaderFeatures();

};

This method sets up all the reader-specific functionality for the login code, includ-
ing the notifications for active content. Note that we’re putting all the screen
reader-specific interface elements into the markup with the readerText CSS
class, so they don’t appear in the UI for users without screen readers.

Setting Up Notification
Before we start to notify users with screen readers about partial page refreshes,
they need to know that the page uses dynamic content. Then, they can decide
for themselves whether or not they want to receive alerts when the page content
changes. Let’s add a warning about the dynamic content, alongside the checkbox
that allows them to choose whether or not to receive an alert for AJAX-style
updates of the page. The markup for this warning and checkbox is as follows:

<div class="readerText">
 This web page uses dynamic content. Page content may change
 without a page refresh. Check the following checkbox if you
 would like an alert dialog to inform you of page content
 changes.
</div>
<div class="readerText">
 <label>
 Content Change Alert
 <input type="checkbox" name="ChangeAlert" id="ChangeAlert"
 value="true" title="Content Change Alert"/>
 </label>
</div>

We won’t be adding this code to the actual markup of the page; instead, we’ll
inject it into the page using DOM methods inside the
enableScreenReaderFeatures method. Here’s the code:

122

Chapter 4: AJAX and POST Requests

File: applogin.js (excerpt)

this.enableScreenReaderFeatures = function() {
 var self = Login;
 var fieldDiv = document.getElementById('fieldDiv');
 var msgDiv = null;
 var checkboxDiv = null;
 var label = null;
 var checkbox = null;
 var msg = 'This web page uses dynamic content. Page content' +
 ' may change without a page refresh. Check the following' +
 ' checkbox if you would like an alert dialog to inform' +
 ' you of page content changes.';
 msgDiv = document.createElement('div');
 msgDiv.className = 'readerText';
 msgDiv.appendChild(document.createTextNode(msg));
 self.form.insertBefore(msgDiv, fieldDiv);
 checkboxDiv = document.createElement('div');
 checkboxDiv.className = 'readerText';
 label = document.createElement('label');
 label.appendChild(document.createTextNode('Content Change ' +
 'Alert'));
 checkbox = document.createElement('input');
 checkbox.type = 'checkbox';
 checkbox.id = 'ChangeAlert';
 checkbox.name = 'ChangeAlert';
 checkbox.value = 'true';
 checkbox.title = 'Content Change Alert';
 label.appendChild(checkbox);
 checkboxDiv.appendChild(label);
 self.form.insertBefore(checkboxDiv, fieldDiv);
};

DOM methods can get a little verbose and hard to follow, so I usually do an
initial pass of the markup I want, then translate it into the appropriate DOM
method code, which is what I’ve done here.

Again, since all of these elements are wrapped in div elements that have the
readerText class, they will be “visible” only to users with screen readers.

Showing Notifications
This application displays only one notification: the error that tells users that their
login information couldn’t be verified. If the change to the page content was
more substantial, we’d likely just tell users about the change, and tell them where

123

Showing Notifications

to find it (e.g., “in the main content area,” “below the search form,” or whatever).
But, since this is a nice, short little message, we’ll go ahead and display it right
there in the alert dialog, to save users the trouble of surfing around the page in
an effort to find the message. Figure 4.9 shows this error message popped up in
Home Page Reader.

Figure 4.9. Changed content alert in IBM Home Page Reader

To get this effect, we add the following lines to the showErrorPrompt method:

File: applogin.js (excerpt)

this.showErrorPrompt = function(str) {
 var self = Login;
 var dotSpan = self.dotSpan;
 clearInterval(self.promptInterval);

124

Chapter 4: AJAX and POST Requests

 if (dotSpan.firstChild) {
 dotSpan.removeChild(dotSpan.firstChild);
 }
 self.setPrompt('err', str);
 self.form.Pass.value = '';
if (self.form.ChangeAlert.checked) {

 alert('Error. ' + str);
 }
};

This code checks to see whether or not the user has checked the ChangeAlert
checkbox—an interface element that only screen reader users will know exists—and
dumps the error text into a standard JavaScript alert box.

The same message is written into the main prompt div, and if the screen reader
re-reads the page from the top, it will pick up the changed content. But with the
alert dialog box, a user with a screen reader can enjoy the same instant feedback
received by users of visually-based browsers. When the alert pops up, the screen
reader will read the contents of the dialog box. Then, the user can dismiss the
box and try entering login information again.

Enabling the Submit Button
Having set up the warning and checkbox to provide notifications about AJAX-
style partial page updates, we still have a couple more things to do in
enableScreenReaderFeatures to make the app screen reader-ready.

Earlier, I showed how you can set an event listener to watch users’ keyboard inputs
and call evalFormFieldState to activate the Submit button when values have
been entered into both the Login ID and Password fields. Unfortunately, screen
readers can interfere with the onkeyup event when the user enters text in form
fields, so we can’t count on that event to trigger checks on the form fields’ con-
tents. Figure 4.10 shows Home Page Reader in Text Entry mode. Note that it
opens a completely new dialog box for the entry of text into the form field.

The solution to this problem is to add an explicit onchange handler to the text
input itself, to make sure our button is turned on when text is entered into the
field. Here are the lines in the enableScreenReaderFeatures method:

File: applogin.js (excerpt)

 self.form.insertBefore(checkboxDiv, fieldDiv);
self.form.Pass.onchange = self.evalFormFieldState;

};

125

Enabling the Submit Button

Figure 4.10. Text Entry mode in IBM Home Page Reader

It’s only a single line of code, but without it, this form is completely unusable
for people with screen readers.

Adding Instructions to a Form Element
Lastly, we need to add code to enableScreenReaderFeatures to give screen
reader users some extra instructions about using the form. Since the form starts
off with a disabled Submit button, users with screen readers might be a bit puzzled
about how they are supposed to submit it. They don’t receive visual feedback,
so they can’t see the Submit button change to an enabled state as they type into
the form fields.

126

Chapter 4: AJAX and POST Requests

The solution is simply to add to the password input element a title attribute
that tells screen reader users that filling in that field will activate the Submit
button. Here’s the code:

File: applogin.js (excerpt)

 self.form.insertBefore(checkboxDiv, fieldDiv);
 self.form.Pass.onchange = self.evalFormFieldState;
self.form.Pass.title = 'Password. Enter text to ' +

 'activate the Submit button.';
};

The screen reader will read that title as it reads through the information for
each of the form elements, and users with screen readers will know what they
need to do to activate the Submit button.

Further Reading
Here are some online resources for learning more about the techniques and con-
cepts we’ve covered in this chapter.

http://www.webaim.org/
WebAIM is a non-profit organization within the Center for Persons with
Disabilities at Utah State University.

http://www.w3.org/WAI/
The World Wide Web Consortium’s Web Accessibility Initiative works with
organizations around the world to develop strategies, guidelines, and resources
to help make the Web accessible to people with disabilities.

http://www.section508.gov/
This site is maintained by the US Government General Services Administra-
tion to provide information about Section 508 of the Rehabilitation Act,
which mandates minimum information-technology accessibility requirements
for US government agencies and the companies that do business with them.

http://joeclark.org/book/sashay/serialization/
Building Accessible Websites, by Joe Clark, is available online. Published in
2002, it was updated in 2005.

127

Further Reading

http://www.webaim.org/
http://www.w3.org/WAI/
http://www.section508.gov/
http://joeclark.org/book/sashay/serialization/

Summary
The AJAX-ified login code in this chapter provides good examples of the ways in
which you can use AJAX to improve the usability of your application while still
accommodating screen readers and browsers with limited or no JavaScript support.

Tasks that would normally necessitate trips to multiple pages of the app can now
be done with AJAX in a single, nicely formatted page. POSTing form data with
AJAX is actually pretty painless—and with attention to details like keyboard input,
status messages, and animations, and some basic testing in screen reader programs,
you can use AJAX to craft an accessible user interface that still gives your users
a very “application-like” experience.

128

Chapter 4: AJAX and POST Requests

Broader AJAX with Edit-in-place5
You keep using that word—I do not think it means what you think it means.
—Inigo Montoya, The Princess Bride

Here comes the fun part! It’s now time to get into some of the territory encom-
passed by the broader meaning of “AJAX.” Some of the more dogmatic folks in
the web development and JavaScript communities will jump up and down and
shout that it’s not AJAX if it doesn’t use XMLHttpRequest, but this is pure silliness.
Take, for example, one of the “poster child” applications of AJAX, Google Maps.1

This service uses an old-school hidden iframe to pull content from the server—not
XMLHttpRequest at all.

So, we’ll just accept that the term “AJAX” can refer more generally to next-gener-
ation web applications that boast much richer interactivity and responsiveness
than traditional web apps. Within this broader definition, AJAX can significantly
improve the usability of your web application by allowing users to interact with
data more easily, and making the application’s behavior much more obvious to
users.

One fantastic usability feature that’s particularly handy for users dealing with
text is edit-in-place (also called “typeover text”), which allows users to click or
double-click on areas of text on a page, edit that text content inline, and save

1 http://maps.google.com/

http://maps.google.com/

their changes. Edit-in-place makes changing a page’s text content extremely
convenient, as users don’t have to pop up a separate window or go to a whole
new page just to change one snippet of text. Figure 5.1 shows an example of edit-
in-place functionality in action in an AJAX-powered blog.

Figure 5.1. A blog page on which edit-in-place is activated

A blog is often made up of a number of short chunks of text, so it’s a perfect
candidate for the deployment of edit-in-place functionality. In this chapter, we’ll
create a blog page that uses this functionality; with edit-in-place, you’ll be able
to add new entries to the page, and double-click on any existing entry to edit it.
The application will also include an animation effect that will indicate when the
server is saving a change.

Page Markup
Figure 5.2 shows what the blog page should look like when you first load it in
your browser.

130

Chapter 5: Broader AJAX with Edit-in-place

Figure 5.2. The blog page display on initial page load

There’s not really a lot happening here. You can see how little markup this page
uses:

File: blog.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>Blog</title>
 <script type="text/javascript" src="ajax.js"></script>
 <script type="text/javascript"
 src="formdata2querystring.js"></script>
 <script type="text/javascript" src="blog.js"></script>
 <link rel="stylesheet" href="blog.css" type="text/css"/>
 </head>
 <body>
 <form id="blogForm" method="post" action="">
 <div>
 <input type="hidden" id="editEntryId" name="editEntryId"
 value="" />
 <div id="colDiv">
 <div id="promptDiv">(Double-click any entry to
 edit)</div>
 <div id="newEntryButtonDiv">
 <input type="button" id="newEntryButton"
 name="newEntryButton" class="inputButton"
 value="New Entry" />
 </div>
 <div class="clearBoth"></div>
 <div id="allEntryDiv"></div>
 </div>
 </div>
 </form>
 </body>
</html>

131

Page Markup

CSS is Available for Download

We won’t be discussing the CSS for this application in depth. The CSS file
is available in the code archive, which can be downloaded from this book’s
web site.

This page contains a form that holds all of our form elements, a prompt that
provides the user with some instructions, a New Entry button, and a div with the
ID allEntryDiv, which will contain all of our blog entries.

When loaded with entries, the allEntryDiv div contains the following markup:

<div id="allEntryDiv">
 <div id="main1">
 <div id="title1" class="entryTitle">Stargate
 SG-1</div>
 <div id="body1" class="entryBody"><p>Is that
 actually sci-fi? Or just a bunch of guys in Army
 uniforms?</p></div>
 </div>
 <div id="main2">
 <div id="title2" class="entryTitle">Luxan or
 Klingon?</div>
 <div id="body2" class="entryBody"><p>Who would win
 in a fight between Farscape's Ka D'Argo and Star Trek
 TNG's Worf?</p>
 <p>They both seem like pretty tough guys.</p></div>
 </div>
</div>

Each entry is surrounded by a div with an ID of mainn, where n is the entry’s
ID. This entry ID is repeated in the entry’s title and body divs; it’s used by the
script to access the elements of each entry quickly and easily.

Accessibility and Backward Compatibility
Note that the application we’re building here will not work in older browsers,
mobile devices, or with some screen readers.

To support non-JavaScript browsers and provide better accessibility, you could
take one of two approaches. You could build a separate, non-JavaScript version
of the page that provided equivalent functionality, or you could branch your code
in certain spots using a server-side scripting language like PHP.

132

Chapter 5: Broader AJAX with Edit-in-place

In the case of our New Entry button, we might provide one code branch that in-
cludes the JavaScript-driven button; for non-JavaScript clients, we could provide
a different branch that included a normal hyperlink to a non-AJAX web form
with which the blogger could create new blog entries. The code might look like
this:

<div id="newEntryButtonDiv">
 <?php
 if ($javaScriptBrowser) {
 print('<input type="button" id="newEntryButton" '.
 'name="newEntryButton" class="inputButton" '.
 'value="New Entry"/>');
 }
 else {
 print('New Entry');
 }
 ?>
</div>

The approach you choose will depend on factors such as the complexity of your
client-side code, the kinds of development resources you have available, and the
types of clients your applications need to support.

The Blog Class
Once again, we’ll organize our code by making a Blog class that’s a singleton. By
using a singleton class, we take care of the loss-of-scope problem we saw in previ-
ous chapters when we used setTimeout.

Here’s the initial setup for our Blog class:

File: blog.js (excerpt)

var Blog = new function() {
 this.ajax = null;
 this.form = null;
 this.proc = 'ready'; // 'ready', 'proc' or 'done'
 this.fadeIncr = 0;
 this.statusInterval = null;
 this.isInputDisabled = false;
 this.editId = '';
 this.saveId = '';
 this.origTitle = '';
 this.origBody = '';
};

133

The Blog Class

First, we declare some properties: ajax for the instance of the Ajax class that will
talk to the app’s back end; statusInterval for the status animation interval ID;
isInputDisabled, which will serve as a flag that disables user input; and editId
and saveId, which will store the IDs of the blog entries we’re saving or editing.
We also have origTitle and origBody: two properties that will store a backup
of the edited blog entry content, so we can back out of changes if need be.

The init Method
The Blog object has an init method, which will be triggered by the window.on-
load event handler. It looks like this:

File: blog.js (excerpt)

this.init = function() {
 var self = Blog;
 self.ajax = new Ajax();
 self.form = document.getElementById('blogForm');
 self.form.newEntryButton.onclick = self.addNewEntry;
};

This method performs some basic application setup. It creates an instance of our
Ajax class for submitting data to the server, sets a shortcut reference to the form
on the page, and adds an onclick event handler to the New Entry button.

Event Handlers in the Markup

You can certainly attach event handlers to elements within the markup, but
markup generally looks a lot cleaner when it doesn’t contain JavaScript code.

To trigger this method, attach it to the window.onload event at the end of
blog.js:

File: blog.js (excerpt)

window.onload = Blog.init;

Edit-in-place
Editing Entries and Creating Entries

The process of creating new entries in this blog application leverages much
of the code that controls the app’s editing capabilities. The process of creating
a new entry will make a lot more sense if you understand the process of

134

Chapter 5: Broader AJAX with Edit-in-place

editing, so we’ll jump ahead to discuss edit-in-place now. A little later, we’ll
come back to discuss how we’ll use that same code to create new entries.

Edit-in-place is the ability to make changes to text directly on the page, rather
than having to load a new page or open some sort of pop-up window. This tech-
nique is being used increasingly in AJAX applications, as it makes it very easy for
site owners to implement quick changes to text, and takes full advantage of AJAX’s
ability to update page content in small sections.

Note that being able to type and make changes to text right on the page is still
very new to a lot of people, so it’s a good idea to make really clear exactly how
the feature works. Some sites change the color of editable text on mouseover to
indicate what content uses edit-in-place, but I prefer a really explicit approach:
to display a prompt that tells people what they can do. So I’m going to display
a prompt that says “Double-click any entry to edit” at the top of the page in our
demo app.

We’ll start with a page to which some dummy entries have already been saved.
Add the following markup to the page:

File: blog.html (excerpt)

<div id="allEntryDiv">
<div id="main1">

 <div id="title1" class="entryTitle">Stargate SG-1</div>
 <div id="body1" class="entryBody"><p>Is that actually sci-fi?
 Or just a bunch of guys in Army uniforms?</p></div>
 </div>
 <div id="main2">
 <div id="title2" class="entryTitle">Luxan or Klingon?</div>
 <div id="body2" class="entryBody"><p>Who would win in a fight
 between Farscape's Ka D'Argo and Star Trek TNG's Worf?</p>
 <p>They both seem like pretty tough guys.</p></div>
 </div>
</div>

135

Edit-in-place

Figure 5.3. The blog page to which some entries have been saved

Figure 5.3 shows the page display.

As a temporary measure, we’ll attach event handlers to the ondblclick events
of these two entries in the init method of our Blog class:

File: blog.js (excerpt)

this.init = function() {
 var self = Blog;
 self.ajax = new Ajax();
 self.form = document.getElementById('blogForm');
 self.form.newEntryButton.onclick = self.addNewEntry;
var entry1 = document.getElementById('main1');

 var entry2 = document.getElementById('main2');
 entry1.ondblclick = self.toggleEditInPlace;
 entry2.ondblclick = self.toggleEditInPlace;
};

136

Chapter 5: Broader AJAX with Edit-in-place

We’ll replace this code later, but it will serve our current development purposes
just fine.

If you double-click on any of these entries, you’ll activate the edit-in-place func-
tionality—this swaps the text on the page for editable form elements that contain
the same text. The title becomes a text input, and the body becomes a textarea.

Editing an Entry
By double-clicking an entry, we activate the toggleEditInPlace method; as its
name suggests, this method toggles between the two states of a blog entry: the
edit-in-place state and its natural display state. When you’re in edit-in-place
mode, clicking the Cancel button will toggle the entry’s state back to the display
state.

Here’s the code for the toggleEditInPlace method:

File: blog.js (excerpt)

this.toggleEditInPlace = function(e) {
 var self = Blog;
 var elem = null;
 if (!e) {
 e = window.event;
 }
 elem = self.getSrcElem(e);
 id = elem.id.replace(/main|title|body/, '');
 if (id != 'editCancel' && !self.isInputDisabled) {
 self.editId = id;
 self.editInPlaceOn();
 self.disableEnableMainWinInput(false);
 }
 else if (id == 'editCancel') {
 if (self.editId == 'NewEntryTemp') {
 self.removeEntryDiv();
 }
 else {
 self.editInPlaceOff(false);
 }
 self.editId = '';
 self.disableEnableMainWinInput(true);
 }
};

This code achieves quite a lot, so let’s take a look at it piece by piece.

137

Editing an Entry

Here’s the first half:

File: blog.js (excerpt)

this.toggleEditInPlace = function(e) {
 var self = Blog;
 var elem = null;
 if (!e) {
 e = window.event;
 }
 elem = self.getSrcElem(e);

These first few lines access an object, stored as e, that holds information about
the event that triggered the call to this method. In Firefox, Safari, and Opera,
this object is passed to an event handler as its first parameter; in Internet Explorer,
the same information can be accessed via window.event. The getSrcElem
method uses this object to gain access to the event’s source element.

The getSrcElem Method
The task of identifying the source element of an event requires a little browser-
specific code, so let’s wrap this into a utility function called getSrcElem:

File: blog.js (excerpt)

this.getSrcElem = function(e) {
 var ret = null;
 if (e.srcElement) {
 ret = e.srcElement;
 }
 else if (e.target) {
 ret = e.target;
 }
 while (!ret.id && ret) {
 ret = ret.parentNode;
 }
 return ret;
};

The first part of this method gets a reference to the node that triggered the event;
it obtains this reference either through the srcElement property or the target
property, depending on which browser is executing the code. Internet Explorer
supports the srcElement property, Firefox supports target, and Safari and Opera
support both.

138

Chapter 5: Broader AJAX with Edit-in-place

Next, there’s a while loop, which ensures that we’re returning the element we
expect. Despite the fact that we’ve attached the event handler to the entry’s main
div, the srcElement or target property will contain a reference to the actual
element on which the user clicked. For example, consider the following markup.
If the user clicks on the text in the paragraph, the p element will be returned—not
the main1 div you might have expected.

<div id="main1">
 <div id="title1" class="entryTitle">
 Stargate SG-1
 </div>
 <div id="body1" class="entryBody">
 <p>Is that actually sci-fi? Or just a bunch of guys in Army
 uniforms?</p>
 </div>
</div>

To get around this behavior, we inspect the innermost element to see if it has an
id attribute. If it doesn’t, we check its parent, and if its parent doesn’t, we check
its parent, and so on. The first element we find with an id attribute should be
the main, title, or body div, any of which will be just fine for our purposes in
toggleEditInPlace.

Getting the Entry’s ID
Now that we have one of the entry’s divs in toggleEditInPlace, we use the id
of the returned element to work out the ID of the entry to edit:

File: blog.js (excerpt)

elem = self.getSrcElem(e);
id = elem.id.replace(/main|title|body/, '');

This code pulls out the ID of the entry from the id of the div. To do so, the code
uses replace to strip the main, title, or body prefix from the ID of the div
element, which leaves us with the entry’s ID.

This technique of using event listeners, and taking specific actions according to
the ID of the clicked interface element, is a very powerful one. We’ll expand on
it further a little later in the book.

139

Getting the Entry’s ID

Changing the State
The last chunk of toggleEditInPlace is the part that actually turns the editable
state on and off. The code looks like this:

File: blog.js (excerpt)

if (id != 'editCancel' && !self.isInputDisabled) {
 self.editId = id;
 self.editInPlaceOn();
 self.disableEnableMainWinInput(false);
}
else if (id == 'editCancel') {
 if (self.editId == 'NewEntryTemp') {
 self.removeEntryDiv();
 }
 else {
 self.editInPlaceOff(false);
 }
 self.editId = '';
 self.disableEnableMainWinInput(true);
}

The if clause switches the entry to edit-in-place mode. It saves to editId the
ID value of the entry we want to edit, and activates the editable state for that
double-clicked blog entry. It then uses the disableEnableMainWinInput method
to disable the New Entry button, so the user can’t try to add a new entry while
they’re editing an existing one.

The else clause is executed when the user clicks an entry’s Cancel button while
in edit-in-place mode. You’ll see where the Cancel button comes from in just a
moment. If you hit Cancel while creating a new entry, you’ll remove that new
entry completely. If you hit Cancel while you’re working with an already-saved
entry, the code switches the entry back to a non-editable state by calling
editInPlaceOff with a parameter of false. This call ensures that the entry will
revert to its original state. toggleEditInPlace then clears out the saved ID value
for the entry we were editing, and re-enables the New Entry button, again using
the disableEnableMainWinInput method.

Turning on Editable State
Actually making the entry editable is a fairly easy process. Here’s how we do it:

140

Chapter 5: Broader AJAX with Edit-in-place

1. Store the text in the title and body div elements for the entry.

2. Replace the text in the div elements with form fields.

3. Set the values of the form fields to the saved text.

We use DOM methods (with just a pinch of innerHTML) to achieve all this, which
makes the code a little verbose. However, if you break it into chunks, you’ll find
that it’s still fairly manageable.

File: blog.js (excerpt)

this.editInPlaceOn = function(id) {
 var self = Blog;
 var id = self.editId;
 var entryDiv = null;
 var titleDiv = null;
 var bodyDiv = null;
 var titleInput = null;
 var bodyArea = null;
 var cancelButton = null;
 var saveButton = null;
 var leftButtonDiv = null;
 var rightButtonDiv = null;
 var clearBothDiv = null;
 entryDiv = document.getElementById('main' + id);
 titleDiv = document.getElementById('title' + id);
 bodyDiv = document.getElementById('body' + id);
 self.origTitle = titleDiv.innerHTML;
 self.origBody = bodyDiv.innerHTML;
 while(titleDiv.firstChild) {
 titleDiv.removeChild(titleDiv.firstChild);
 }
 while(bodyDiv.firstChild) {
 bodyDiv.removeChild(bodyDiv.firstChild);
 }
 titleInput = document.createElement('input');
 bodyArea = document.createElement('textarea');
 titleInput.id = 'titleText';
 titleInput.name = 'titleText';
 bodyArea.id = 'bodyText';
 bodyArea.name = 'bodyText';
 bodyArea.cols = "36";
 bodyArea.rows = "8";
 titleInput.className = 'titleInput';
 bodyArea.className = 'bodyArea';
 titleDiv.appendChild(titleInput);

141

Turning on Editable State

 bodyDiv.appendChild(bodyArea);
 titleInput.value = self.origTitle;
 bodyArea.value = self.origBody;
 cancelButton = document.createElement('input');
 saveButton = document.createElement('input');
 leftButtonDiv = document.createElement('div');
 rightButtonDiv = document.createElement('div');
 clearBothDiv = document.createElement('div');
 leftButtonDiv.className = 'leftButton';
 rightButtonDiv.className = 'rightButton';
 clearBothDiv.className = 'clearBoth';
 clearBothDiv.style.paddingBottom = '12px';
 cancelButton.type = 'button';
 cancelButton.className = 'inputButton';
 cancelButton.id = 'editCancel';
 cancelButton.onclick = self.toggleEditInPlace;
 cancelButton.value = 'Cancel';
 saveButton.type = 'button';
 saveButton.className = 'inputButton';
 saveButton.id = 'updateSave';
 saveButton.onclick = self.doSave;
 saveButton.value = 'Save';
 entryDiv.appendChild(leftButtonDiv);
 leftButtonDiv.appendChild(cancelButton);
 entryDiv.appendChild(rightButtonDiv);
 rightButtonDiv.appendChild(saveButton);
 entryDiv.appendChild(clearBothDiv);
};

Well, I did say it was verbose! Let’s break it down and examine what’s going on
here.

Here’s the first chunk, which comes just after our variables are declared and ini-
tialized:

File: blog.js (excerpt)

entryDiv = document.getElementById('main' + id);
titleDiv = document.getElementById('title' + id);
bodyDiv = document.getElementById('body' + id);
self.origTitle = titleDiv.innerHTML;
self.origBody = bodyDiv.innerHTML;
while(titleDiv.firstChild) {
 titleDiv.removeChild(titleDiv.firstChild);
}
while(bodyDiv.firstChild) {

142

Chapter 5: Broader AJAX with Edit-in-place

 bodyDiv.removeChild(bodyDiv.firstChild);
}

The first three lines simply get references to the div elements we want to swap
out for editable form elements. Next, we grab the title and body text from those
divs. Here, we’re using innerHTML instead of DOM methods so that we can in-
clude markup along with the text to preserve our links, paragraphs, and other
nice formatting (DOM methods would treat all of these as separate elements).
We then strip all text and other DOM nodes from the title and body divs using
removeChild with a while loop.

Now we’re ready to add the form elements:

File: blog.js (excerpt)

titleInput = document.createElement('input');
bodyArea = document.createElement('textarea');
titleInput.id = 'titleText';
titleInput.name = 'titleText';
bodyArea.id = 'bodyText';
bodyArea.name = 'bodyText';
bodyArea.cols = "36";
bodyArea.rows = "8";
titleInput.className = 'titleInput';
bodyArea.className = 'bodyArea';
titleDiv.appendChild(titleInput);
bodyDiv.appendChild(bodyArea);
titleInput.value = self.origTitle;
bodyArea.value = self.origBody;

As we’ve seen before, adding elements to a document takes three steps: first, we
create the elements using createElement; then, we set all the element properties
and styles; finally, we stick them into an appropriate place in the document using
appendChild. Once the form elements are there on the page, we can set their
values using the values we recorded before.

We end up with the equivalent of the following markup, the new parts of which
are emphasized in bold:

<div id="main1">
 <div id="title1" class="entryTitle">

<input id="titleText" name="titletext" class="titleInput"
 value="Stargate SG-1" />
 </div>
 <div id="body1" class="entryBody">

<textarea id="bodyText" name="bodyText" cols="36" rows="8"

143

Turning on Editable State

 class="bodyArea"><p>Is that actually sci-fi? Or just a
 bunch of guys in Army uniforms?</p></textarea>
 </div>
</div>

Now we have our edit-in-place form fields on the page, and set with the original
title and body text of that entry. This is nice, but we also need to provide some
way for users to save their changes, or to forget them and leave the entry the way
it was. We need to add some buttons beneath the form fields. We’ll use DOM
methods to add those buttons inside div elements floated left and right, giving
us a proper form layout for the editable entry:

File: blog.js (excerpt)

cancelButton = document.createElement('input');
saveButton = document.createElement('input');
leftButtonDiv = document.createElement('div');
rightButtonDiv = document.createElement('div');
clearBothDiv = document.createElement('div');
leftButtonDiv.className = 'leftButton';
rightButtonDiv.className = 'rightButton';
clearBothDiv.className = 'clearBoth';
clearBothDiv.style.paddingBottom = '12px';
cancelButton.type = 'button';
cancelButton.className = 'inputButton';
cancelButton.id = 'editCancel';
cancelButton.onclick = self.toggleEditInPlace;
cancelButton.value = 'Cancel';
saveButton.type = 'button';
saveButton.className = 'inputButton';
saveButton.id = 'updateSave';
saveButton.onclick = self.doSave;
saveButton.value = 'Save';
entryDiv.appendChild(leftButtonDiv);
leftButtonDiv.appendChild(cancelButton);
entryDiv.appendChild(rightButtonDiv);
rightButtonDiv.appendChild(saveButton);
entryDiv.appendChild(clearBothDiv);

Again, adding the div elements and buttons with DOM methods is a three-step
process. In effect, you’ll end up with the following document:

<div id="main1">
 <div id="title1" class="entryTitle">
 <input id="titleText" name="titletext" class="titleInput"
 value="Stargate SG-1" />

144

Chapter 5: Broader AJAX with Edit-in-place

 </div>
 <div id="body1" class="entryBody">
 <textarea id="bodyText" name="bodyText" cols="36" rows="8"
 class="bodyArea"><p>Is that actually sci-fi? Or just a
 bunch of guys in Army uniforms?</p></textarea>
 </div>
</div>

Note that the CSS declaration clear: both; has been applied to the final div
we added, to clear the left and right button divs.

The Cancel button is assigned an onclick event handler tied to the
toggleEditInPlace method, which reverts the text, putting it back into a normal
state on the page. The Save button’s onclick event handler points to doSave,
which submits the changed text to the server for “saving,” and kicks off the pro-
cessing animation.

Enabling and Disabling Other Input
Our Blog class is capable of keeping track of only a single editable entry at any
one time. It would be possible to design this application to allow multiple entries
to be edited simultaneously, but this would blow out the complexity of the code,
so, for now, we’ll keep it simple. Once an entry is being edited, we don’t want
the user to be able to edit any other entries, so we need to temporarily disable
the double-click event handler’s functionality on all other entries. Similarly, we
don’t want the user to be able to add any entries while they’re in edit mode, so
we need to disable the New Entry button as well. Once the entry returns to its
natural state, these handlers need to be reinstated.

Enabling and disabling these handlers is the responsibility of
disableEnableMainWinInput:

File: blog.js (excerpt)

this.disableEnableMainWinInput = function(enable) {
 var self = Blog;
 var but = document.getElementById('newEntryButton');
 self.isInputDisabled = !enable;
 if (enable) {
 but.onclick = self.addNewEntry;
 but.disabled = false;
 }
 else {
 but.onclick = null;

145

Enabling and Disabling Other Input

 but.disabled = true;
 }
};

After declaring and initializing some variables, this method sets the
isInputDisabled flag, which is checked in toggleEditInPlace before an entry
can be switched to its editable state. If this flag is set to true, toggleEditInPlace
will not allow the entry to be switched.

Next, this method deals with the New Entry button. If enabled is set to true,
the onclick event handler is set and the button is enabled. If enabled is false,
the onclick event handler is removed and the button is disabled.

All this code works together to create a nice, editable form for the editable state
of the blog entry. Once you have it all working, the effect you see when you
double-click on a blog entry is great—it morphs quickly into a little form that
you can edit. This is a huge improvement over having to launch another window
or navigate to some other location to change a small scrap of text. Figure 5.4
shows an entry toggled into its editable state.

Returning to Display State
You can return an entry to its normal state in two ways: by saving a change, or
by canceling a change. The only difference between these two actions is in deciding
whether to use the new text, or to revert back to the original text that was dis-
played previously.

The editInPlaceOff method changes an entry back to its normal, un-editable
state. It takes one parameter: acceptChanges, which tells the method whether
we’re saving or canceling the changes. Here’s the code for this method:

File: blog.js (excerpt)

this.editInPlaceOff = function(acceptChanges) {
 var self = Blog;
 var id = self.editId;
 var entryDiv = null;
 var titleDiv = null;
 var bodyDiv = null;
 var t = null;
 var b = null;
 entryDiv = document.getElementById('main' + id);
 titleDiv = document.getElementById('title' + id);
 bodyDiv = document.getElementById('body' + id);

146

Chapter 5: Broader AJAX with Edit-in-place

Figure 5.4. Blog entry toggled to editable state

 entryDiv.removeChild(entryDiv.lastChild);
 entryDiv.removeChild(entryDiv.lastChild);
 entryDiv.removeChild(entryDiv.lastChild);
 if (acceptChanges) {
 t = titleDiv.firstChild.value;
 b = bodyDiv.firstChild.value;
 }
 else {
 t = self.origTitle;
 b = self.origBody;
 }
 titleDiv.removeChild(titleDiv.firstChild);
 bodyDiv.removeChild(bodyDiv.firstChild);
 titleDiv.innerHTML = t;

147

Returning to Display State

 bodyDiv.innerHTML = b;
};

After declaring and initializing the variables used in this method, and getting
references to the main, title, and body divs, editInPlaceOff strips the last three
elements from the main div. Those three elements are the divs that contain the
Cancel and Save buttons and the float-clearing div. These div elements are ap-
pended to the end of the main div, so we know that they come last. We strip
the last element from the list of children by running removeChild; we run the
method repeatedly to strip all the elements from the list.

Next, the code uses the acceptChanges parameter to decide which text it will
use to replace each form element. If the changes are being saved, the code uses
the changed text in the form fields. If the changes are being canceled, it reverts
to the values stored in origTitle and origBody. Once it knows which text to
use, it removes the form elements from the title and body div elements using
removeChild, and uses innerHTML to replace those elements with the appropriate
text.

Saving Changes
When you click the Save button, you should return to the entry’s display state
and see some kind of notification that indicates that the changes you made to
the entry are being submitted to the server. It’s with the doSave method that we
submit the changes and start up a “processing” animation to notify the user that
the save is in progress:

File: blog.js (excerpt)

this.doSave = function() {
 var self = Blog;
 var postData = '';
 self.form.editEntryId.value = self.editId;
 postData = formData2QueryString(self.form);
 self.ajax.doPost('/blog_process.php', postData, self.handleSave);
 self.editInPlaceOff(true);
 self.proc = 'proc';
 self.startStatusAnim();
};

Since there are only a couple of elements in our form, it would be fairly easy to
pull the data out of the form elements manually and format it for submission,
but it’s even easier to pull data from the form using the formData2QueryString

148

Chapter 5: Broader AJAX with Edit-in-place

function we saw in the last chapter. That function automatically grabs the data
out of the form and formats it into the query string style that we need for POSTing
the data.

Note that just before getting the data from the form, we’re setting the hidden
input, editEntryId, to the value of editId. This is how we place the ID of the
entry that’s being saved into the form data.

Once we have the form data in postData, we send the changes to the server by
calling doPost and passing it the address of the page to POST to, the data, and
the handler handleSave, which will be called when the response is received.

After submitting the changes to the server, we restore the entry to its display
state using the editInPlaceOff method we saw above. We pass it a true value
to tell it that we’re keeping the changes the user has made.

Lastly, the code starts up the animation that indicates the server is busy saving
the changes. It also sets the proc property to proc to indicate that the app is in
processing state. We’ll also be using this value to control the animation.

Let’s take a look at how that status animation works before we move on to discuss
the “saving” process and explore the task of handling the response from the
server.

The Status Animation
As we’ve already discussed, it’s really important to let the user know what the
application is doing. An AJAX application gives users new ways to interact with
the app—ways that are different from what users might expect from an old-
fashioned web application. Those new interactions may be somewhat confusing
to users, so it’s vital that you take the necessary steps to give them good feedback,
and make them feel that the application is responding to them.

This animation works very similarly to the ones we saw in previous chapters,
with a couple of exceptions. First, rather than changing opacity or appending
dots to a string, this animation changes the CSS background color of a div.

The other big difference is that we won’t always animate the same div. We could
animate a div for any of the entries on the page, including a new entry.

149

The Status Animation

Starting the Animation
We start the animation by initializing an incrementing variable, performing the
first step of the animation, and kicking off a setInterval process:

File: blog.js (excerpt)

this.startStatusAnim = function() {
 var self = Blog;
 self.fadeIncr = 0;
 self.doStatusAnim();
 self.statusInterval = setInterval(self.doStatusAnim, 200);
};

The setInterval process calls doStatusAnim once every 200 milliseconds until
the server finishes processing the submission. As before, we save the interval ID
in a property—called statusInterval—so we can stop the process later.

The animation process works by setting the CSS background color of the anima-
tion div with integer RGB values instead of the usual hexadecimal values. The
syntax for this is a bit different from the normal pound-sign-plus-six-character
string you may be used to seeing in web programming—it’s set using rgb and
three numbers between 0 and 255, which occur in parentheses. These numbers
represent values for the red, green, and blue colors, respectively, which will be
used in the animated background.

Table 5.1 a few examples in both RGB and hex values:

Table 5.1. Examples of colors in both RGB and hexadecimal
notation

#ff0000rgb(256, 0, 0)Red

#c8c8ffrgb(200, 200, 255)Light Blue

#808080rgb(128, 128, 128)Gray

I decided to use a nice blue for this animation. One way to achieve a fading blue
color is to set the blue value to the maximum of 255, set both red and green to
a lower number (in this case I used 235), and to increase the red and green values
together in increments of five until each value reaches 255. As the red and green
values get closer to 255 (the maximum value), the blue color grows lighter and
lighter, until it’s completely white. Repeating this process over and over in a tight

150

Chapter 5: Broader AJAX with Edit-in-place

loop creates a nice fading color effect. Figure 5.5 shows, step by step, what this
effect looks like.

Figure 5.5. Creating animation that uses a CSS color fade

The doStatusAnim Method
Here’s the doStatusAnim method that executes the color change:

File: blog.js (excerpt)

this.doStatusAnim = function() {
 var self = Blog;
 var r = 235;
 var g = 235;
 var fadeDiv = null;
 fadeDiv = document.getElementById('main' + self.editId);
 if (self.fadeIncr < 20) {
 self.fadeIncr += 5;
 }
 else {
 if (self.proc == 'proc') {
 self.fadeIncr = 0;
 }
 else {
 self.fadeIncr = 20;
 self.stopReset();
 }
 }
 r += self.fadeIncr;
 g += self.fadeIncr;
 fadeDiv.style.background = 'rgb(' + r + ', ' + g + ', 255)';
};

151

The doStatusAnim Method

The top part of the code retrieves a reference to the div that we’re going to an-
imate so that we can manipulate that div’s properties. The editId property will
either have as its value an ID number (for existing entries), or NewEntryTemp (for
new entries). We’ll discuss the use of NewEntryTemp as a placeholder for the entry
ID in more detail later, when we talk about creating new entries.

Once we have a reference to the div to be animated, we calculate the value of
fadeIncr, which controls the value of the red and green components of the div’s
color. fadeIncr cycles through the values 0, 5, 10, and 20 each time doStatusAnim
is called, until the value of the proc property is changed.

Finally, the value of fadeIncr is added to 235 to produce the value of both the
red and green components of the div’s color; this value is then applied to the
div using the CSS rgb(red, green, blue) syntax.

The Fake Back-end Page
In most blog applications, new entries, or changes to existing entries, are posted
to some processing code that saves your text on the back end (often in a database
such as MySQL or PostgreSQL). For the purposes of our simple blog page, we’re
going to use a fake back-end page called blog_process.php. Though it doesn’t
really save anything, it does return to the browser the same kind of data that a
real page would return after any content changes were saved.

Using YAML
Since we’re using the same page to handle both new entries and edits to existing
ones, the response from the page will need to be a bit more complicated than the
plain text response we’ve seen in previous chapters.

Our needs are still not complex enough to need all the extra overhead of XML,
though, so for this page I chose a structured data format called YAML (this stands
for YAML Ain’t Markup Language, and rhymes with “camel”), which is simple,
easily parsed, and human-readable.

Here’s an example of some YAML data—the summary information for an episode
of the sci-fi TV show Farscape:

title: Throne for a Loss
order: season 1, episode 2
airdate: 1999-04-09

152

Chapter 5: Broader AJAX with Edit-in-place

actors:
 - name: Ben Browder
 character: John Crichton
 - name: Claudia Black
 character: Aeryn Sun
 - name: Anthony Simcoe
 character: Ka D'Argo
synopsis: >
 Rygel is abducted by Tavleks, aggressive soldiers with
 gauntlet weapons on their forearms that inject them full of
 stimulants.
quote: >
 That's your plan? Wile E. Coyote would come up with a better
 plan than that!
...

Read more about YAML’s syntax rules on the YAML web site.2

You can see how easy it is to read, and how little “ink” it uses on the page.
Compare it with the XML markup for the same data, which uses more characters
and is less readable than it’s YAML counterpart:

<episode>
 <title>Throne for a Loss</title>
 <order>season 1, episode 2</order>
 <airdate>1999-04-09</airdate>
 <actors>
 <actor>
 <name>Ben Browder</name>
 <character>John Crichton</character>
 </actor>
 <actor>
 <name>Claudia Black</name>
 <character>Aeryn Sun</character>
 </actor>
 <actor>
 <name>Anthony Simcoe</name>
 <character>Ka D'Argo</character>
 </actor>
 </actors>
 <synopsis><![CDATA[Rygel is abducted by Tavleks, aggressive
 soldiers with gauntlet weapons on their forearms that
 inject them full of stimulants.]]></synopsis>
 <quote><![CDATA[That's your plan? Wile E. Coyote would come up

2 http://www.yaml.org/

153

Using YAML

http://www.yaml.org/

 with a better plan than that!]]></quote>
</episode>

The PHP Code
Here’s the code for the back-end page:

File: blog_process.php (excerpt)

<?php
$editEntryId = $_POST["editEntryId"];
sleep(3);
header("Content-Type: text/plain");
print "---\n";
print "status: success\n";
if ($editEntryId == "NewEntryTemp") {
 print "type: new\n";
 print "id: " . time() . "\n";
}
else {
 print "type: edit\n";
 print "id: " . $editEntryId . "\n";
}
print "...";
?>

This fairly short chunk of PHP basically does the same thing whether you’re
saving a new entry or editing an existing one.

In both cases, it returns the ID of the entry—either the ID for an edited entry
that’s passed in from the browser, or a pretend ID that’s generated by the PHP
time function to mimic the value that would be returned if this code were actually
saving something to a database (like a MySQL auto_increment field, or a Post-
greSQL serial). The main difference is whether the type is set to new or edit.

Response Examples
Here’s an example of the response for a newly-created entry:

status: success
type: new
id: 1138946552
...

154

Chapter 5: Broader AJAX with Edit-in-place

And an example of a response for an edit:

status: success
type: edit
id: 1138946597
...

These plain text results are handed back to the response handler function,
handleSave, for parsing.

Parsing YAML in JavaScript
The first thing we’ll need to do in our AJAX app is parse the YAML result text
into a form that JavaScript can use. We could use a parsing library like YAML
JavaScript3 to take care of this step for us, but in this case, the returned result is
very simple—it doesn’t seem to make much sense to include an entire library just
for that!

Instead, we’ll just write a small method, parseYamlResult, which will parse into
an associative array the name-value pair results that appear in the returned text:

File: blog.js (excerpt)

this.parseYamlResult = function(str) {
 var arr = [];
 var res = [];
 var pat = /(\S+): (\S+)\n/g;
 while (arr = pat.exec(str)) {
 res[arr[1]] = arr[2];
 }
 return res;
};

parseYamlResult receives the YAML document as a string in the str parameter.

Since we know our result string contains only the header and footer lines, and a
few lines of name-value pairs separated by a colon and a space, it’s pretty easy
to parse it into an associative array using the exec method of a regular expression
and two sets of capturing parentheses. The keys of the hash will be the names
that start each line of the result, and the values will be the values that appear
after the colon. For example, type: new will result in an array item res['type']
with a value of new.

3 http://sourceforge.net/projects/yaml-javascript

155

Parsing YAML in JavaScript

http://sourceforge.net/projects/yaml-javascript
http://sourceforge.net/projects/yaml-javascript

If you use the g flag with the regular expression, you can use exec multiple times
on a string to find all the matches of a certain pattern. Each time you call exec,
it starts its search immediately after the position of the last match (which is stored
in the lastIndex property of the regular expression object). Doing this in a while
loop lets you pull out all the matches for your desired pattern.

Handling the Response
Because so much of the code is the same whether you’re adding a new entry or
editing an existing entry, we’ll use the same method, handleSave, to deal with
the server response in both cases.

Here’s the code for handleSave:

File: blog.js (excerpt)

this.handleSave = function(str) {
 var self = Blog;
 var res = [];
 var err = '';
 res = self.parseYamlResult(str);
 switch (res['type']) {
 case 'new':
 if (res['status'] != 'success') {
 err = 'Could not save the new entry.';
 }
 else {
 self.saveId = res['id'];
 }
 break;
 case 'edit':
 if (res['status'] != 'success') {
 err = 'Could not save changes to entry.';
 }
 break;
 default:
 err = 'Unknown error.';
 break;
 }
 self.proc = 'done';
 if (err) {
 alert(err);
 }
};

156

Chapter 5: Broader AJAX with Edit-in-place

The str parameter is the result that’s passed back to our page from the server;
we pass it straight to parseYamlResult for parsing into an associative array.

Next, we handle the different response types using a switch statement. When
type has a value of new and the response’s status property is success, we record
the new entry’s ID in the saveId property, which we can use to replace the
placeholder ID we set originally. You’ll see more about how this works when we
talk about creating a new entry. However, if an error is returned from the server,
or the value of type is unrecognized or missing, we record an error message and
move on.

Next, we disable the processing notification animation by setting proc to done,
then display any error that was recorded in a simple alert box. If this were a
real application, you’d want to present the error in a more attractive and helpful
way, for instance, writing it out to a specially formatted div element on the page.

Stopping the Status Animation
Once the edits have been saved on the server, it’s time to stop the status anima-
tion. The process works much the same as the status animation code we saw in
previous chapters.

Just as before, our application checks the processing status of the request between
each completed cycle of the animation by looking at one of the object’s proper-
ties—in this case, the proc property. Having the animation check status between
cycles like this ensures that it ends smoothly after a request completes, instead
of cutting suddenly, mid-fade.

Once the request comes back from the server, and proc is set to done,
doStatusAnim will call stopReset, which will stop the animation, and perform
some other cleanup that’s needed after a request completes.

Cleaning Up with stopReset
Here’s the code for stopReset:

File: blog.js (excerpt)

this.stopReset = function() {
 var self = Blog;
 clearInterval(self.statusInterval);
 self.disableEnableMainWinInput(true);
 self.editId = '';

157

Stopping the Status Animation

 self.proc = 'ready';
 if (self.saveId) {
 self.setNewEntryRealId();
 }
};

The first thing on the agenda for this method is to kill the processing animation,
which it does by calling clearInterval on the interval ID stored in
statusInterval. Making sure this is called at the end of an animation cycle,
when the color of the animated div is completely white, ensures the animation
appears to stop smoothly.

Once the animation has stopped, we need to re-enable user input in the main
window; we do so with a call to disableEnableMainWinInput. This enables the
New Entry button at the exact moment at which the animation stops.

Next, this method performs some final cleanup, clearing out the value for editId,
and setting the proc property back to ready, which tells us that the app is not
processing any requests and the processing animation has stopped.

For new entries, it also calls setNewEntryRealId, which changes the placeholder
divs’ IDs to their permanent values. We’ll see how this works in the next section.

Adding a New Entry
As I mentioned at the beginning of this chapter, the code we’ll use to add a new
blog entry leverages much of the code we use to editing existing entries, with just
a few differences:

❑ The code must add the div elements for the new entry.

❑ The div elements must be removed if the user cancels the new entry’s addition.

❑ The div elements use a placeholder ID until they receive a real ID from the
server.

Clicking the New Entry button calls the addNewEntry method. That code takes
care of two tasks: it adds the div elements for the new entry and toggles the entry
to edit-in-place mode. Here’s the code:

File: blog.js (excerpt)

this.addNewEntry = function() {
 var self = Blog;

158

Chapter 5: Broader AJAX with Edit-in-place

 if (self.insertEntryDiv()) {
 self.editId = 'NewEntryTemp';
 self.editInPlaceOn();
 self.disableEnableMainWinInput(false);
 }
};

After calling insertEntryDiv to add the new div elements to the page, the
method sets editId to NewEntryTemp—a placeholder value for the ID. When
this new entry is submitted back to the server, the server will use that placeholder
value to identify the submission as a brand-new blog entry, rather than an edit
to an existing entry.

Next, addNewEntry goes through the steps we saw in the toggleEditInPlace
method: it calls editInPlaceOn to make the entry editable, and
disableEnableMainWinInput to disable the New Entry button.

Adding the New Entry divs
The insertEntryDiv method puts the div elements for the new entry onto the
page. As it uses DOM methods to add the divs, it’s quite verbose, but despite
its length, it’s fairly simple. Here’s the code:

File: blog.js (excerpt)

this.insertEntryDiv = function() {
 var self = Blog;
 var allEntryDiv = null;
 var entryFirst = null;
 var newEntryDiv = null;
 var titleDiv = null;
 var bodyDiv = null;
 allEntryDiv = document.getElementById('allEntryDiv');
 newEntryDiv = document.createElement('div');
 titleDiv = document.createElement('div');
 bodyDiv = document.createElement('div');
 newEntryDiv.id = 'mainNewEntryTemp';
 titleDiv.id = 'titleNewEntryTemp';
 bodyDiv.id = 'bodyNewEntryTemp';
 titleDiv.className = 'entryTitle';
 bodyDiv.className = 'entryBody';
 titleDiv.appendChild(document.createTextNode('New entry'));
 bodyDiv.appendChild(
 document.createTextNode('Type body here ...'));
 newEntryDiv.appendChild(titleDiv);

159

Adding the New Entry divs

 newEntryDiv.appendChild(bodyDiv);
 entryFirst = allEntryDiv.firstChild;
 if (entryFirst) {
 allEntryDiv.insertBefore(newEntryDiv, entryFirst);
 }
 else {
 allEntryDiv.appendChild(newEntryDiv);
 }
 return true;
};

The bulk of this code sets up all the div elements we need to add to the page for
a new blog entry. Note that all three of the div elements’ ids end in
NewEntryTemp—the placeholder we’re using instead of an actual ID number.
When the server “saves” an entry, it will pass back an actual ID for that entry;
we’ll use this ID to replace the placeholder.

Once we’ve created the elements, we use DOM methods to add the placeholder
text that you’ll see when you create a new blog entry. We’ll use (New entry) for
the title placeholder text and Type body here ... for the body placeholder.
Figure 5.6 shows what a brand-new blog entry looks like.

Next, the code adds the title and body divs as children of the new entry’s main
div.

We want new entries to appear at the top of the page, so we can’t use the
appendChild DOM method to add the main div to the page: this approach would
add the new entry to the end of the list of child nodes, making it appear at the
bottom of the page. If entries already exist on the page, our code uses
insertBefore to place the new div in front of the existing first entry. If there
are no divs inside the allEntryDiv div, we can simply append our new main
div as a child of the allEntryDiv div.

Once the new div is in place, the rest of the editing process is exactly the same
as that for editing an existing blog entry, with one exception: the process for
canceling a new entry is different from canceling an edit.

160

Chapter 5: Broader AJAX with Edit-in-place

Figure 5.6. Entering a new blog entry

Canceling the New Entry
When you cancel a new entry, the only sensible thing to do is to make that new
entry disappear—there’s no “previous state” to which the entry can revert. When
you click the Cancel button after you start to create a new entry, the
removeEntryDiv method is called:

File: blog.js (excerpt)

this.removeEntryDiv = function() {
 var self = Blog;
 var allEntryDiv = document.getElementById('allEntryDiv');
 var entryDiv = document.getElementById('main' + self.editId);
 allEntryDiv.removeChild(entryDiv);
};

161

Canceling the New Entry

It’s very simple. You can see it in action by clicking the Cancel button on a new
entry and watching it vanish.

The Placeholder ID
Each div element in an existing entry has a unique identifier that allows us to
edit it. This ID does two things for us:

❑ It tells us which div elements we’re working with when we toggle edit-in-place
and display the status animation.

❑ It tells the server which blog entry we’re editing when we save changes to the
app’s back end.

However, in the case of new entries, there’s one tiny problem with this scenario.
A newly-created entry has no ID. But, once it’s been saved, we want the div that
contains the entry to be linked to a unique ID, as are all the other existing entries.

The solution is actually fairly simple. When we first create the placeholder div,
we give it a placeholder ID. And, when the server returns a response that contains
the ID of the newly-saved entry, we just replace that entry’s placeholder value
with the real one.

At that point, your placeholder div is no longer just a placeholder: once it has a
real ID, it’s a normal blog entry div among the other existing entries.

Be Careful Messing with the id Attribute

Be aware that changing the id of a DOM element has the potential to cause
problems with code that assumes that the ID will never change. Some external
JavaScript libraries might not deal with changing IDs very well, so exercise
some care and judgement when messing with a DOM element’s id.

The setNewEntryRealId Method

The setNewEntryRealId method that switches the ID is pretty straightforward:

File: blog.js (excerpt)

this.setNewEntryRealId = function() {
 var self = Blog;
 var entryDiv = null;
 var titleDiv = null;
 var bodyDiv = null;

162

Chapter 5: Broader AJAX with Edit-in-place

 entryDiv = document.getElementById('mainNewEntryTemp');
 titleDiv = document.getElementById('titleNewEntryTemp');
 bodyDiv = document.getElementById('bodyNewEntryTemp');
 entryDiv.id = 'main' + self.saveId;
 titleDiv.id = 'title' + self.saveId;
 bodyDiv.id = 'body' + self.saveId;
 entryDiv.ondblclick = self.toggleEditInPlace;
 self.saveId = '';
};

This method grabs references to the div elements to which we need to make
changes, then resets their ids based on the ID values that are passed back from
the server and stored in saveId. Once the div elements have their permanent
id values, the method clears out saveId.

Timing the ID Change

Changing the id this way is really easy; however, we can’t just make this change
as soon as the new entry is saved. (Remember how I said you have to be careful
when you do this?)

The status animation in the new entry div is likely to be in progress when the
result comes back from the server. We’ve chosen to let the animation turn itself
off when it’s finished the current fade cycle, to avoid an abrupt cutoff of the fade
effect; this means that the animation may continue for a few more rounds after
the result comes back.

The animation code is pointed at the div’s original placeholder ID, and if you
change the ID while the animation is in the middle of a cycle, your code will
break. Thus, we perform the ID switch last, after all the other cleanup in the
stopReset method has taken place.

Future Enhancements
This is a pretty basic, bare-bones blog page. The edit-in-place functionality works
pretty well, but there are countless other enhancements you could add to make
this a fully-fledged working application.

Loading Existing Entries
If you were storing real blog entries, you’d want them to load from the applica-
tion’s back end as the page loaded in users’ browsers. You’d need some kind of

163

Future Enhancements

paging model as well, so that you didn’t get all possible entries for all timeframes
on a single page. There are two different approaches you could take to the question
of pagination.

You could load the entries inline, building them into the page markup on the
server, to be served as a normal part of the web page. This is the original, old-
fashioned way to build a page, and is more compatible with older browsers.

Alternatively, you could serve a page with a body that contained nothing but an
empty div to hold the content, and use AJAX to load the text for specific entries
from the server in some sort of structured data format, such as YAML, XML, or
JSON (which we’ll be having a look at later), inserting those entries into the
content area on the page.

This approach has the advantage of being less cumbersome and a little faster,
since you only load the actual text for each page of entries—you don’t have to
rebuild the entire page every time you add or edit an entry.

Your code might also be more reusable in this case than in the first solution: you
could, potentially, use the same code to serve the structured data content to all
devices, instead of coding up a separate version for each one. Of course, you’d
still have to have client-side code that rendered the document into something
that each device could display.

Concurrency and Locking
Editing content in small chunks like this using AJAX makes the application feel
a lot speedier, and as the improved performance begins to make your blog feel
more and more like a desktop app, you may have to work to remind people that
the content they’re editing doesn’t live on their local machines.

This becomes a real problem if multiple people can log into your app and make
changes to the content simultaneously. This problem is one of concurrency—the
issue of multiple things or people wanting simultaneous access to a single resource.
If more than one person can access and change your blog’s content, you’ll need
to create some way to lock the content that’s being edited so that you don’t have
different users overwriting each other’s edits.

A good way to achieve this is to mark the entries as read-only, or to lock out access
to an entire page of text entries when one of the entries is being edited. In such
a system, it can be helpful to indicate who has caused the content to be locked,

164

Chapter 5: Broader AJAX with Edit-in-place

so that others know who to badger if they can’t make changes to content because
of a lock.

Note that this problem is not specific to AJAX applications. Any web app that
provides multiple people with access to the same data will experience concurrency
issues, but using AJAX may magnify its effects in your users’ eyes.

Errors and Timeouts
In the case of an error or timeout—a case in which the changes to the text aren’t
actually saved on the server (not the process of reporting an error to the user)—it’s
a good idea to revert the text to its original state, so the user has an accurate
picture of the content’s state on the server.

This is a bigger issue with AJAX applications than it is with old-fashioned web
apps, because AJAX applications make changes to data in small pieces. Often,
the process of saving a change can occur in the background while the user contin-
ues to perform other work in the app.

If the application does not save that change successfully, you need to alert the
user that there was a problem, and return the application to a state that accurately
reflects the “reality” on the server.

Summary
Often, when people use the term AJAX, they’re referring broadly to super-inter-
active, next-generation web applications built with XHTML, JavaScript, CSS,
and the DOM. Edit-in-place is a perfect example of the kind of feature that you
can add to your web app using AJAX-style development in an effort to improve
the user experience. Of course, given the increased performance and interactivity
of your AJAX application, you have to do more work in the UI, including items
such as clear prompts that make it obvious how users can interact with your app,
and animations that make the state of the data clear to users.

If they’re used in the right places within your application—and in the right
way—AJAX features like edit-in-place can give your users a greatly improved
online experience.

165

Errors and Timeouts

166

Web Services and Slide-and-hide6
I could never understand, The wind at all, Was like a ball of love, And when I'm sad, I
slide
—T-Rex, The Slider

In the brave new AJAX world, everything is supposed to be connected to
everything else. Apps that only talk back to their own server are so Web 1.0.

Within the past couple of years, a surprising number of the large web companies
like Google, Amazon, eBay, and Yahoo! have found that providing outside de-
velopers access to their services gives them a real competitive advantage. People
who sell things online through Amazon’s affiliate program, for example, can keep
track of their sales using Amazon’s E-Commerce Service. There is also an entire
cottage industry made up of people who run businesses through eBay—and the
eBay Platform provides those people with a way to automate their sales, inventory,
and shipping.

Even more buttoned-down business like banks and auto manufacturers are
reaping the benefits of giving their suppliers, partners, and customers easier access
to company data.

Web services provide a standardized way to deliver that access, whether it’s for
some sort of automated back-end process running between two businesses, or a

web “mashup” that displays the location of the best real estate deals in your town
with Google Maps.

Slide-and-hide Window
In this chapter, we’ll learn, first-hand, how to access Amazon’s web services as
we embed into a web page a scrollable window that displays a rotating set of
searches of Amazon books.

As each search completes, the new set of results will slide on-screen, hiding the
previous set. Figure 6.1 shows the slide-and-hide effect in action, with the results
for a search on “Ruby programming” replacing those for “PostgreSQL.”

Figure 6.1. Amazon book search with slide-and-hide

The slide-and-hide is a neat visual effect, but to implement this embedded search
window, we need to get some search results to display. We’ll start with a quick
overview of web services, to make sure you understand what we’re actually using
to get the results to display on the page.

Web Services: an Overview
If you ask a dozen IT professionals to define web services, you’d likely get a dozen
different answers. The definition is kind of vague, and descriptions might involve
everything from specific technologies like Java to a barrage of acronyms like
SOAP, XML-RPC, and WSDL. The reality is not that difficult, though. The term

168

Chapter 6: Web Services and Slide-and-hide

“web services” generally just refers to an application that is available over the
Internet and uses open standards to exchange data.

More and more applications have this kind of open access built in, and the pop-
ularity of this approach to developing apps has given rise to the name service-
oriented architecture (SOA). This term refers to apps that allow other applica-
tions to access their functionality across the network in a standardized way.

APIs and Protocols
Companies that have opened up their services to outside access provide a standard
way of requesting information, and also define a standard way in which the re-
quested information will be returned. This is called an API (application program-
ming interface), and makes it really simple for developers to take advantage of
the services the API providers offer.

Once a company decides on an API for the web service that they want to offer,
they have to decide which protocols they want to support to give users access to
them. The big names in web services protocols are XML-RPC and SOAP (it
wouldn’t be much of a technology without a bunch of fun acronyms to remember,
would it?). There’s also REST, which is simpler than the other two, and isn’t
really a protocol at all—it’s built directly on the HTTP protocol.

REST
REST is the simplest method for accessing a web service’s API. It stands for
Representational State Transfer. It’s a very fancy name for the simple idea that
everything out there on the Web—pages, images, Flash movies, PDFs—are just
resources that are available to us.

The idea of REST is that each these resources can be accessed over HTTP, with
each different HTTP request method giving us the ability to do something differ-
ent to that resource. For example, we might use a GET HTTP request to download
the resource, a PUT or POST to make changes to it, and DELETE to remove it. In
REST jargon, these request methods are called verbs, since they’re actions you
can perform on different items out there on the Web.

According to REST, you locate these things using a URI (Universal Resource
Identifier), which can be acted on by these standard HTTP verbs. In the web
services world, this would be the URI that a company (like Google or Amazon)
publishes to allow people access to their service.

169

APIs and Protocols

Google Search Example

A good example of REST in action is the Google search page. Do a quick Google
search on any topic, and as you do so, have a look in your browser’s location bar.
When you submit your search, you’re performing a GET request of the search
page URI. Here’s an example:

http://www.google.com/search?q=logan%27s+run

The search page’s URI is http://www.google.com/search. Performing a GET
request with the q parameter for the search term allows you to download the re-
source—in this case, a bunch of links about a really cheesy sci-fi movie from the
1970s.

APIs that provide access using REST methods are often described as being REST-
ful.

XML-RPC
XML-RPC stands for XML Remote Procedure Call. It’s a very simple protocol
that allows a computer to call functions on a cooperating machine over a network.
XML-RPC uses HTTP requests (usually POST) to send XML-encoded commands
and responses back and forth between the client and server.

Many web service APIs include support for XML-RPC, and the XML-RPC web
site1 offers a long list of open-source and commercial implementations in a variety
of languages and environments—everything from Perl, Python, Java, and C to
Lisp, PHP, and .NET. XML-RPC is the ancestor of SOAP, and was developed
cooperatively between UserLand Software and Microsoft in 1995.

The idea of XML-RPC is that your code can call functions on another machine,
and get the result back just as if it were calling code inside your own application.
The function calls and results are automatically packaged up as XML and sent
back and forth without your code needing to know anything about it.

1 http://www.xml-rpc.com/

170

Chapter 6: Web Services and Slide-and-hide

http://www.xml-rpc.com/
http://www.xml-rpc.com/

SOAP
SOAP (which originally stood for Simple Object Access Protocol2) is an XML-
based protocol with roots in XML-RPC. As with plain XML-RPC, SOAP relies
on libraries of code to create and decode the XML commands that magically allow
your code to call code on the remote machine.

In theory, you should never have to deal with the complexity of SOAP—your
chosen library should take care of it all for you. However, in reality, getting to a
point where you can actually work with SOAP—getting a library in place, figuring
out its API, and deciphering the cryptic error messages that appear when some-
thing unexpected happens—can prove to be fairly complex and frustrating in its
own right.

WSDL

WSDL (Web Services Description Language) reduces the complexity of SOAP
by providing a description of the web service that your code can use in setting
up its SOAP client. It includes information such as the URI that should be used
to make queries, and the functions and datatypes the service supports.

A WSDL file is an XML-based document that acts something like a remote config
file for your SOAP client. Ideally, you should be able just to pass your SOAP
client the URI of the WSDL file, and have it figure out how to use the service.
Using WSDL with PHP’s SOAP extension looks something like this:

$soapClient =
 new SoapClient("http://badscifi.com/api/MovieSearch.wsdl");
$result = $soapClient->doMovieSearch($key, $movieTitle);

It should be as simple as that—once you get your library set up and figured out,
that is.

Network-centric vs Application-centric
REST is a network-centric protocol, meaning that it was designed with the idea
of making network communication easier, without a heavy focus on the applica-
tions that have to work with it.

2 The SOAP acronym was officially changed by the W3C in version 1.2 of the specification, when it
was realized it wasn’t simple at all. SOAP now stands for … SOAP.

171

SOAP

The pieces of your app are expected to comprise a “resource” with a URI, and to
respond to HTTP request “verbs” like GET, POST, and PUT. This makes the
process simple from the network communication side of things, but forces your
server-side code to figure out what all these simple “verbs” mean to your specific
application. Ultimately, you have to map your app to the network and its com-
munication.

XML-RPC and SOAP take the opposite approach. They are application-centric,
mapping the actual logic of the application into the communication process. The
HTTP request type makes no difference (although POST is most common), and
all the information about how to interact with your server-side code is written
out in the XML data used in the communication process.

This makes things much easier for the application logic, but more difficult for
communication, since the XML needed to transmit all the data is a lot more
verbose and complicated.

In this chapter, we’ll learn how to access web services with REST. We’ll look at
example code that uses XML-RPC and SOAP in the next chapter.

Amazon Web Services Client
Our project for this chapter will be an AJAX client that accesses one of Amazon’s
web services. Our AJAX client will pull down the results of several different
product-listing searches on a rotation, and insert the result into a web page. Fig-
ure 6.2 shows an example of the search results the client gets for the search “Ruby
programming.”

172

Chapter 6: Web Services and Slide-and-hide

Figure 6.2. Amazon web services client showing a set of search
results

Amazon Web Services Accounts
To use this service, you’ll need to have an Amazon Web Services (AWS) account.
This will give you an Access Key ID, which you’ll need in order to make queries
using the service. Many of the large technology companies that offer web services
require you to have this kind of key or token to access their services. This is only
natural—they want good data about who’s using their service, and how they’re
using it. These keys are usually free to set up and use, although sometimes they
may limit the number of queries you can perform per day for free.

173

Amazon Web Services Accounts

Amazon displays a very obvious link on the AWS home page3 (shown in Fig-
ure 6.3) to the information that explains how to create a free AWS account. Once
you have your account set up, and your Access Key ID has been emailed to you,
you’ll be all ready to get started.

Figure 6.3. The link for creating a free AWS account

Amazon E-Commerce Service
We will be using Amazon’s E-Commerce Service (ECS), one of Amazon’s web
services, which provides access to product data and ecommerce functions. This
gives you access to the full range of search functionality that’s available from
Amazon’s main site. Excellent documentation is available on the Amazon web
services site, although it does take a bit of surfing around to find the bits of in-
formation you need.

The first thing for us to do is to pick the method we want to use to access the
ECS web service. Amazon offers access via SOAP and REST. Since our needs are
modest, we’ll go with the REST method, so we can get right to work performing
a search and pulling down some results. With REST access to Amazon ECS, we’ll
be sending AJAX-style GET requests to perform searches. The search details will
be specified on the query string.

3 http://www.amazon.com/aws/

174

Chapter 6: Web Services and Slide-and-hide

http://www.amazon.com/aws/

To make sure the results we receive are easy to parse and work with, Amazon
returns its search results as XML. This will be our first foray into the process of
consuming XML, and you’ll find that, initially, it can be tricky to get it to work.
On the other hand, the nice thing about XML is that it’s very predictable, so
once you get the results you want, it’s fairly easy to make adjustments without
breaking things.

The Client Class
For lack of a better term, we’ll call our client class Client. It’s not terribly inspired,
but it is accurate: it’s a web service client. To keep our rotating searches ticking
over we’ll be using setTimeout and, predictably, we’ll make the class a singleton
so that we don’t have to worry about loss of scope. Here’s the initial code:

File: webservice1.js (excerpt)

var SEARCH_TERMS = ['ajax', 'postgresql', 'ruby programming',
 'php', 'javascript'];
var ACCESS_KEY = 'Access Key ID';

var Client = new function() {
 this.SEARCH_TERMS = null;
 this.ACCESS_KEY = null;
 this.ajax = null;
 this.incr = 0;
 this.containerDiv = null;
 this.currDiv = null;
 this.newDiv = null;
 this.slideInterval = null;
 this.slideIncr = 380;
};

window.onload = Client.init;

At the start of this file, we declare a couple of constants for the application. These
are included so that a webmaster could set up and configure this code without
having to know anything about how it works (in theory, at least). SEARCH_TERMS
is an array of search phrases through which the app will cycle. ACCESS_KEY is
your AWS Access Key ID.

175

The Client Class

What’s the Value of ACCESS_KEY?

Note that the value of ACCESS_KEY is not set in the sample code provided
with this book—you’ll have to sign up for an AWS account and obtain an
access key of your own if you want to see this code in action.

The ajax property is an instance of our familiar Ajax class, which we’ll use to
make the HTTP requests to the Amazon service. The incr property is used to
remember our position within the list of search terms. The rest of the properties
are used in the fancy slide-and-hide effect to show the search results.

Initial Setup
The init method takes care of some setup, then starts up the lookup process:

File: webservice1.js (excerpt)

this.init = function() {
 var self = Client;
 self.ajax = new Ajax();
 self.containerDiv = document.getElementById('containerDiv');
 self.SEARCH_TERMS = SEARCH_TERMS;
 self.ACCESS_KEY = ACCESS_KEY;
 if (!self.ACCESS_KEY) {
 alert('Amazon Web Services Access Key ID is not set. ' +
 'This code will not work without a key.\n' +
 'Sign up for a free key at http://www.amazon.com/aws/.');
 }
 else {
 self.doLookup();
 }
};

This method instantiates the Ajax class for making requests to the AWS service,
sets up a convenient reference to the div element we’ll be using for the slide-and-
hide effect, then initializes the list of search phrases through which the page will
cycle, and the AWS Access Key ID that will be used.

Next, the init method checks to make sure the ACCESS_KEY property is set before
it tries to access the service. Making sure that the value is a valid key is far beyond
the scope of what we’re trying to do here, but at least we can make sure that if
someone fires up this app without setting an AWS key, they know that a key is
needed, and where to go to get one.

Lastly, our code calls doLookup to start the search process.

176

Chapter 6: Web Services and Slide-and-hide

Cross-site AJAX
Up to this point, all of our AJAX pages have talked back to the same server from
which they were served—a very Web 1.0-style approach to development. As AJAX
increases the power of browsers as a platform for application development, web
application developers can get in on the action of accessing content from multiple
locations and mixing it together in interesting ways.

A popular source of data for these web apps—which are referred to as
“mashups”—is Google Maps, where users have their own data applied on top of
a map. A classic example of this kind of application is the range of maps available
at chicagocrime.org,4 which shows reported crime incidents in Chicago overlaid
on a map of the city.

XMLHttpRequest and Security
There’s one small hurdle that we’ll have to deal with before our AJAX app can
join the great interconnectedness party—browser security. Due to the very real
problem of malicious code usage—yes, sometimes it’s even JavaScript!—browsers
will not allow XMLHttpRequest to send requests to any domain other than the
one from which the page originated. This is called a cross-site request, and
means that if you serve your AJAX application page from www.example.com, re-
quests made from XMLHttpRequest to any other domain will result in an error.

As an example, you can take the simple monitoring app from Chapter 3, and
change its TARGET_URL to something like http://www.yahoo.com/ or ht-
tp://maps.google.com/. When you hit that Start button, your request will fail
with a “permission denied” error. Figure 6.4 shows the resulting error as it displays
in the JavaScript console (which is part of the Web Developer Toolbar Firefox
extension).

4 http://www.chicagocrime.org/map/

177

Cross-site AJAX

http://www.chicagocrime.org/map/
http://www.chicagocrime.org/map/

Figure 6.4. A cross-site security exception thrown by
XMLHttpRequest

This is a reasonable security precaution. Cross-site scripting exploits are among
the most common browser security problems, and giving people a scripted way
to make HTTP requests is something that could be abused very easily.

An AJAX Relay
There is a fairly easy solution to this problem. Your browser can’t make AJAX
requests directly to another site, but it’s very easy to set up a simple proxy script
that runs on your server and relays requests from your browser to those other
sites. A proxy is simply a go-between—a piece of code or a process that relays
information between two things that can’t interact directly.

In this case, the proxy script on your server will receive the cross-site HTTP re-
quests from the AJAX code in the browser, and pass those requests along to the
desired destination. When that other server hands back a response to your server,
your server will pass it back to the browser as-is. Figure 6.5 shows how this
communication works.

178

Chapter 6: Web Services and Slide-and-hide

Figure 6.5. Cross-site AJAX communication with proxy scripts

To the browser, it looks a lot like we’re making requests directly to the other site;
all your server has to do is relay the requests and responses back and forth.

All communication between your browser and the other site occurs through your
server. This means that sometimes, although the AJAX code that’s running in
the browser may be able to reach your server, for some reason your server may
not be able to reach the other site’s server. For cases like this, in which requests
relayed from your server to the other site time out or fail, you need to build in
some kind of decent fallback mechanism; for instance, you may have your proxy
script return an error code or message that your client-side AJAX script is equipped
to address. For our web service client, we’re going to use the most basic proxy
script possible. This exercise in intended to show you how this process works, so
we’re not building in any fancy error-handling or fallback here.

The Proxy Script
We’re going to use the excellent HTTP_Request package available from the PHP
Extension and Application Repository (PEAR) for our proxy. The HTTP_Request

179

The Proxy Script

package is a bundle of code that makes it really easy to make HTTP requests
using PHP.

Installing HTTP_Request

This isn’t a tutorial on PHP or PEAR, but the process of installing HTTP_Re-
quest on most Unix-like systems with an up-to-date PHP installation should
be as simple as running pear install HTTP_Request from the command
line. If you’re using Windows, or running pear install doesn’t do the
trick for you on a Unix-like system (including Mac OS X), there are literally
dozens of places online at which you can find help. Check out the Support
section of the PEAR web site for info about mailing lists, tutorials, and the
IRC channel for PEAR.

Assuming you have PEAR and get HTTP_Request installed, the following code is
all you need to run the most basic server-side proxy script:

File: ecs_proxy.php

<?php
require_once "HTTP/Request.php";
$uri = "http://webservices.amazon.com/onca/xml" .
 "?Service=AWSECommerceService" .
 "&AWSAccessKeyId=" . urlencode($_REQUEST["key"]) .
 "&Operation=ItemSearch" .
 "&SearchIndex=Books" .
 "&Keywords=" . urlencode($_REQUEST["search"]) .
 "&Sort=relevancerank";
$req =& new HTTP_Request($uri);
if (!PEAR::isError($req->sendRequest())) {
 header("Content-Type: text/xml");
 print $req->getResponseBody();
}
?>

Note that this page sets the response’s Content-Type header to text/xml, as we
know that the response from Amazon is going to be in XML. Issues can arise on
the client side if these headers aren’t set properly—we’ll look at that in detail
later.

As I said, this is a really basic proxy—it reads the key and search parameters
from the query string, constructs a URI to access Amazon’s E-Commerce Service,
then spits out whatever response the other site’s server sends back. You can test
this by loading the page in your browser and supplying the required parameters
manually. For example, you could use the following URL:

180

Chapter 6: Web Services and Slide-and-hide

http://localhost/ecs_proxy.php?key=AccessKeyID&search=ajax

ecs_proxy.php then forwards this request to Amazon and, provided everything
works as expected, the following XML is returned:

<?xml version="1.0" encoding="UTF-8"?>
<ItemSearchResponse xmlns="http://webservices.amazon.com/
 AWSECommerceService/2005-10-05">
 <OperationRequest>
 <HTTPHeaders>
 <Header Name="UserAgent" Value="PEAR HTTP_Request class
 (http://pear.php.net/)"></Header>
 </HTTPHeaders>
 <RequestId>ReturnedRequestID</RequestId>
 <Arguments>
 <Argument Name="Keywords" Value="ajax"></Argument>
 <Argument Name="Operation" Value="ItemSearch"></Argument>
 <Argument Name="Service"
 Value="AWSECommerceService"></Argument>
 <Argument Name="AWSAccessKeyId"
 Value="AccessKeyID"></Argument>
 <Argument Name="SearchIndex" Value="Books"></Argument>
 <Argument Name="Sort" Value="relevancerank"></Argument>
 </Arguments>
 <RequestProcessingTime>0.21</RequestProcessingTime>
 </OperationRequest>
 <Items>
 <Request>
 <IsValid>True</IsValid>
 <ItemSearchRequest>
 <Keywords>ajax</Keywords>
 <SearchIndex>Books</SearchIndex>
 <Sort>relevancerank</Sort>
 </ItemSearchRequest>
 </Request>
 <TotalResults>155</TotalResults>
 <TotalPages>16</TotalPages>
 <Item>
 <ASIN>1234567890</ASIN>
 <DetailPageURL>http://www.amazon.com/…</DetailPageURL>
 <ItemAttributes>
 <Author>Arthur Frayn</Author>
 <ProductGroup>Book</ProductGroup>
 <Title>Xtreme AJAX to the Max</Title>
 </ItemAttributes>
 </Item>

181

The Proxy Script

 ⋮
 </Items>
</ItemSearchResponse>

In a few moments we’ll take this raw XML output, pull out the pieces we want,
then format it and insert it into a web page.

Sending the Request to Amazon Web
Services

Now that we’ve set up our proxy middleman, we’re ready to make some web
service requests, and perform some searches. Here’s the doLookup method that
sends the search request:

File: webservice1.js (excerpt)

this.doLookup = function() {
 var self = Client;
 var searchStr = '';
 var uri = '';
 var dt = new Date();
 searchStr = self.getSearchItem();
 uri = '/ecs_proxy.php?key=' + escape(self.ACCESS_KEY) +
 '&search=' + escape(searchStr) +
 '&d=' + escape(dt.getTime());
 self.ajax.doGet(uri, self.handleResp, 'xml');
};
this.doLookupDelay = function() {
 var self = Client;
 setTimeout(self.doLookup, 10000);
};

There’s not a lot going on here until the point at which we get the search term
for this request from the getSearchItem method, and the part where we append
the current date to the query string. The date is appended to the query string to
keep Internet Explorer’s implementation of XMLHttpRequest from caching the
result. By constantly changing the value on the query string, Internet Exploreris
forced always to grab a new version of the page.

Just after doLookup is doLookupDelay, which simply calls setTimeout to schedule
another call to doLookup in ten seconds. As we won’t be canceling this call, there’s
no need to keep track of its interval ID.

182

Chapter 6: Web Services and Slide-and-hide

Getting the Search Text
The getSearchItem method is a small chunk of code that pulls an item out of
the array of search terms, then increments the counter so that we know which
one to get the next time:

File: webservice1.js (excerpt)

this.getSearchItem = function() {
 var self = Client;
 var str = self.SEARCH_TERMS[self.incr];
 self.incr++;
 if (self.incr >= self.SEARCH_TERMS.length) {
 self.incr = 0;
 }
 return str;
};

We use incr to keep track of the next search phrase that’s to be returned. If incr
reaches the end of the array of search phrases, it’s reset to 0, which makes the
search rotate continuously through the list of search terms.

Sending the Request
The last step of the doLookup method uses our instance of the Ajax class to send
the request through our proxy script.

The call to Ajax’s doGet method should be familiar from previous chapters, but
in addition to the two normal parameters of the target page and response handler
function, there’s a third parameter, xml. Adding that parameter indicates that
we want to get the results back from the XMLHttpRequest object as an XML
document object, instead of the normal text. You’ll see how we parse this different
type of result in the next section.

XML Results and Content-Type

XML has some definite advantages, but compared to plain text, it can be a bit
finicky. As such, we generally have to be a bit more careful when working with
XML.

Remember that if the Content-Type of the response is not text/xml or applic-
ation/xml, the responseXML property of the XMLHttpRequest object will be set
to null, even if the response contains a valid XML document. Firefox and Safari

183

Getting the Search Text

offer the overrideMimeType method, which you can call to force the browser to
recognize the results as XML, but if you need to support more than these two
browsers, you’re out of luck.

Fortunately, we can control the Content-Type of our response by inserting the
following line into ecs_proxy.php:

File: ecs_proxy.php (excerpt)

header("Content-Type: text/xml");

Handling the Results from Amazon
Once we have the XML document element back from Amazon, we hand it off
to the handleResp method to be parsed, formatted, and inserted into the web
page:

File: webservice1.js (excerpt)

this.handleResp = function(xml) {
 var self = Client;
 var res = [];
 var mainDiv = document.getElementById('mainDiv');
 var resultsDiv = null;
 var itemDiv = null;
 var imageDiv = null;
 var titleDiv = null;
 var authorDiv = null;
 var clearBoth = null;
 var im = '';
 var ti = '';
 var au = '';
 var bookImg = null;
 res = XMLParse.xml2ObjArray(xml, 'Item');
 resultsDiv = document.createElement('div');
 resultsDiv.className = 'resultsDiv';
 for (var i = 0; i < res.length; i++) {
 itemDiv = document.createElement('div');
 imageDiv = document.createElement('div');
 titleDiv = document.createElement('div');
 authorDiv = document.createElement('div');
 clearBoth = document.createElement('div');
 itemDiv.className = 'itemDiv';
 imageDiv.className = 'imageDiv';
 titleDiv.className = 'titleDiv';
 authorDiv.className = 'authorDiv';

184

Chapter 6: Web Services and Slide-and-hide

 clearBoth.className = 'clearBoth';
 as = res[i].ASIN;
 ti = res[i].ItemAttributes.Title;
 au = res[i].ItemAttributes.Author;
 bookImg = document.createElement('img');
 bookImg.src = 'http://images.amazon.com/images/P/' + as +
 '.01.THUMBZZZ.jpg';
 imageDiv.appendChild(bookImg);
 titleDiv.appendChild(document.createTextNode(ti));
 authorDiv.appendChild(document.createTextNode(au));
 itemDiv.appendChild(imageDiv);
 itemDiv.appendChild(titleDiv);
 itemDiv.appendChild(authorDiv);
 itemDiv.appendChild(clearBoth);
 resultsDiv.appendChild(itemDiv);
 }
 if (!self.currDiv) {
 self.containerDiv.appendChild(resultsDiv);
 self.currDiv = resultsDiv;
 self.doLookupDelay();
 }
 else {
 self.newDiv = resultsDiv;
 self.slideAndHide();
 }
};

As you can see, this is a pretty long method, so we’ll discuss it piece by piece.

After declaring and initializing the variables we’ll be using, there’s a deceptively
simple-looking call to XMLParse.xml2ObjArray:

File: webservice1.js (excerpt)

res = XMLParse.xml2ObjArray(xml, 'Item');

XMLParse is a library of functions available under the Apache License, Version
2.0, at http://www.fleegix.org/downloads/xmlparse.js.

Using xml2ObjArray
The xml2ObjArray method deserializes the XML, which means that it transforms
the XML into data structures that a programming language can use easily—in
this case, it’s transforming the XML into an array of JavaScript objects.

185

Using xml2ObjArray

http://www.fleegix.org/downloads/xmlparse.js

The xml2ObjArray method does the hard parsing work for you, but to be able
to work with the results, you’ll need to know what’s in the array it returns. Let’s
have a look at what happens when we pass in the search result XML that’s re-
turned by Amazon.

Example XML Document

We’ve already seen what the XML returned by Amazon looks like: a bunch of
data about the search appears at the top, followed by all of the search result items,
each of which is wrapped inside <Item> and </Item> tags. Here’s an example of
what the XML for one item might look like:

<Item>
 <ASIN>1234567890</ASIN>
 <DetailPageURL>http://www.amazon.com/…</DetailPageURL>
 <ItemAttributes>
 <Author>Arthur Frayn</Author>
 <ProductGroup>Book</ProductGroup>
 <Title>Xtreme AJAX to the Max</Title>
 </ItemAttributes>
</Item>

The document has one of these Item elements for each result that’s returned. By
default, Amazon limits pages of results to ten items, so you’ll never have to worry
about being inundated with a huge list of results.

The xml2ObjArray method takes two parameters—the XML document element,
and the tag name it should use to create its objects. In this case, we’re telling it
to make an object out of each Item element. The code creates a generic JavaScript
Object for each item. It gives the object a property for each element it finds inside
each item, and assigns the property the value that’s found between the tags.

Example Object

So, if we took the Object that was created from the previous scrap of XML, and
decided to print out all its properties and their values, we’d end up with something
like this:

res[0].ASIN: 1234567890
res[0].DetailPageURL: http://www.amazon.com/…
res[0].ItemAttributes.Author: Arthur Frayn
res[0].ItemAttributes.ProductGroup: Book
res[0].ItemAttributes.Title: Xtreme AJAX to the Max

186

Chapter 6: Web Services and Slide-and-hide

It helps to look back and forth between the XML and the Object to see what
went where.

Notice that the ItemAttributes property itself is actually an Object, with its
own properties. That’s because Author, ProductGroup, and Title are all XML
elements that are nested inside ItemAttributes. The xml2ObjArray function
walks through the XML document tree recursively, creating new Object properties
that correspond to any tags it finds that have subtags.

xml2ObjArray Alternatives

xml2ObjArray is a very simple nonvalidating parser, which means that it
makes no attempt to verify the validity of the XML you load into it. If you
have a need to do something fancier, larger libraries of code, such as Sarissa5

or XML for Script,6 are available online. They offer features such as proper
XML parsing, XSLT, and XPath queries. However, for any kind of serializing
or deserializing that’s more complicated than what we’re doing here, using
a native JavaScript data-exchange format like JavaScript Object Notation
(JSON) will likely make more sense. We’ll be using JSON in a later chapter.

Formatting the Results
Now that we have the results from Amazon in an array, it’s time to make them
look good and insert them into a web page. This is the next part of the handleResp
method. We’ll use DOM manipulation methods for this, so again, the code is a
bit verbose, but it’s likely to be cleaner and more readable than equivalent code
that used innerHTML.

File: webservice1.js (excerpt)

resultsDiv = document.createElement('div');
resultsDiv.className = 'resultsDiv';
for (var i = 0; i < res.length; i++) {
 itemDiv = document.createElement('div');
 imageDiv = document.createElement('div');
 titleDiv = document.createElement('div');
 authorDiv = document.createElement('div');
 clearBoth = document.createElement('div');
 itemDiv.className = 'itemDiv';
 imageDiv.className = 'imageDiv';
 titleDiv.className = 'titleDiv';
 authorDiv.className = 'authorDiv';

5 http://sarissa.sourceforge.net/
6 http://xmljs.sourceforge.net/

187

Formatting the Results

http://sarissa.sourceforge.net/
http://xmljs.sourceforge.net/

 clearBoth.className = 'clearBoth';
 as = res[i].ASIN;
 ti = res[i].ItemAttributes.Title;
 au = res[i].ItemAttributes.Author;
 bookImg = document.createElement('img');
 bookImg.src = 'http://images.amazon.com/images/P/' + as +
 '.01.THUMBZZZ.jpg';
 imageDiv.appendChild(bookImg);
 titleDiv.appendChild(document.createTextNode(ti));
 authorDiv.appendChild(document.createTextNode(au));
 itemDiv.appendChild(imageDiv);
 itemDiv.appendChild(titleDiv);
 itemDiv.appendChild(authorDiv);
 itemDiv.appendChild(clearBoth);
 resultsDiv.appendChild(itemDiv);
}

Basically, the code starts off by creating a main div, with the class resultsDiv,
into which all the results will be placed. It follows that with a really long “for”
loop that creates the markup for each entry and appends it to the main div.
Within each iteration of the loop, res[i] is one of the Objects created from the
Amazon search results XML.

This code follows the same pattern we’ve seen in previous chapters—we create
the elements, set properties, then add content to them. Once we have the div
elements assembled and the content inserted, we need to append them to the
div with the ID resultsDiv. The only thing that’s a little unusual in this section
of code is the creation of an img element. We use the ASIN (Amazon Standard
Identification Number) to calculate where each item’s thumbnail image is. We
then set the img element’s src attribute to this value, and append it to one of
the divs that make up the item’s display.

Performing the Slide-and-hide
Once we have populated resultsDiv with all the items that were returned in the
search, it’s finally time to insert the div into the main page and begin the slide-
and-hide process. The very simple markup for our page is as follows:

File: webservice1.html (excerpt)

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>

188

Chapter 6: Web Services and Slide-and-hide

 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>Web Services, Part 1</title>
 <script type="text/javascript" src="ajax.js"></script>
 <script type="text/javascript" src="xmlparse.js"></script>
 <script type="text/javascript" src="webservice1.js"></script>
 <link rel="stylesheet" href="webservice1.css"
 type="text/css" />
 </head>
 <body>
 <div id="mainDiv">
 <div id="containerDiv"></div>
 </div>
 </body>
</html>

Looking at the markup for the page, you’ll notice that the only thing that appears
in the body of the page is a couple of nested div elements. handleResp will put
the initial set of search results into the inner div element:

File: webservice1.js (excerpt)

 if (!self.currDiv) {
 self.containerDiv.appendChild(resultsDiv);
 self.currDiv = resultsDiv;
 self.doLookupDelay();
 else {
 self.newDiv = resultsDiv;
 self.slideAndHide();
 }
};

If currDiv has not been defined, this code uses appendChild to stick the results
div into the container div we set up in the markup. The code then saves a refer-
ence to the results div element in currDiv, and starts the setTimeout process
for the new search using doLookupDelay.

The next time this code is executed, currDiv would have been defined, and it’s
time to slide in the new results. We save a reference to the second set of search
results in newDiv, and then, given two sets of results to work with, we slide the
new result in and hide the old one with the slideAndHide method.

189

Performing the Slide-and-hide

The Slide-and-hide Effect
The slide-and-hide effect takes place in two steps: the list of results is loaded “off-
camera,” to the right-hand side of the container div, then we slide the list of
search results into view by changing its position using setInterval. Here’s the
code that sets this up:

File: webservice1.js (excerpt)

this.slideAndHide = function(elem) {
 var self = Client;
 self.newDiv.style.left = '380px';
 self.containerDiv.appendChild(self.newDiv);
 self.slideInterval = setInterval(self.doSlide, 50);
};
this.doSlide = function() {
 var self = Client;
 if (self.slideIncr > 0) {
 self.slideIncr -= 10;
 self.newDiv.style.left = self.slideIncr + 'px';
 self.currDiv.style.left = (self.slideIncr - 380) + 'px';
 }
 else {
 self.slideIncr = 380;
 self.containerDiv.removeChild(self.containerDiv.firstChild);
 self.currDiv = self.containerDiv.firstChild;
 clearInterval(self.slideInterval);
 self.doLookupDelay();
 }
};

Within slideAndHide, we stick the new div into the container with its far left
edge at a position of 380 pixels. That’s the same as the width of the container,
so initially, the new div will not actually be visible. Once the new div is in place,
we can call the doSlide method every 50 milliseconds with setInterval. Each
time it’s called, this method will move both the current and new divs a little
further to the left. The slideInterval property holds a reference to the interval
ID for the setInterval that we’ll use to stop the slide when it’s done.

The doSlide method performs the slide, and keeps track of the slide’s progress
using the slideIncr property. Because we’re moving the two divs to the left,
we have to make the divs’ left property progressively smaller. So, with each call
to this method, we drop the value of slideIncr by 10. As long as this number
is greater than zero, we just keep using it to set the positions of the two div ele-

190

Chapter 6: Web Services and Slide-and-hide

ments relative to one another. This creates the nice slide-to-the-left effect that
we want.

As soon as the counter variable hits zero, we’re done sliding; it’s time to reset
everything to get ready for the next slide, and start the process over. After resetting
the counter, we throw away the original div that contains the old results, and
update the currDiv property to point to the new results that just finished sliding
in.

The code stops the slide process by calling clearInterval on the interval ID
that’s stored in the slideInterval property, then starts the entire search process
over again from the beginning by calling doLookupDelay to perform another
search after a brief delay.

AJAX Fat-client Code
The slide-and-hide code provides a good opportunity to talk about a big issue
associated with AJAX development. With AJAX techniques, increasing amounts
of application code and logic end up living on the client, and more and more of
the user interface is built on the client. As I mentioned previously, in many AJAX
apps, markup for whole sections of the page is created dynamically by JavaScript.
This can cause serious problems for the end user, not just in terms of older
browsers and accessibility, but also with the app’s usability, since these more
complicated “fat-client” AJAX applications can make the browser act in ways
that users don’t expect. The good news is that if you’re careful about how and
where you use AJAX in your web application, you can minimize these problems.

Legacy Browsers and Accessibility
This fat-client approach to web app development can cause serious problems for
users with older browsers and screen readers. It’s vital when you’re developing
an application to consider the target audience, and ensure that you make accom-
modations for the parts of your user-base with legacy browsers or special needs.

If you are designing for backward compatibility and accessibility, it might not be
feasible to build your entire app using the latest bleeding-edge AJAX techniques.
By the same token, it may not be possible to provide precisely the same user ex-
perience to all of your users. The key is making sure that equivalent functionality
is available to all of them.

191

AJAX Fat-client Code

Degrading the Search Results

One possible solution we could use to replace the fancy DHTML slide-and-hide
effect in this chapter would be to do more of the work on the server-side, and
pick a random search to display statically in each served page. This approach re-
quires server-side code that processes the XML results from Amazon and embeds
the result as XHTML markup in a normal web page. Each page reload in a non-
JavaScript-capable browser would then display a different set of results. I’ll be
showing an example of this approach in the next chapter.

Usability: the Back Button Problem
Now that you’ve seen a few AJAX applications at work, you might have an idea
of another potential problem with AJAX-style web applications: the process of
making updates to a web page in small pieces breaks the mental model that most
people use to navigate around web sites or web applications. This is typically re-
ferred to as the AJAX Back button problem, because the Back button is the most
obvious example of a point at which users become confused while using AJAX
applications. For example, after watching the search results change on the page,
users may assume that clicking their browsers’ Back button will take them back
to the previous list of search results. Clicking the browser’s Back button and
ending up in an unexpected place is an experience shared by many, many people
who have used AJAX applications. Your goal as an AJAX application developer
should be to eliminate that possibility by using AJAX only in situations in which
it’s unlikely to confuse users. You shouldn’t use AJAX just for the sake of it—and
you should absolutely avoid it in cases where normal page navigation would be
more natural.

Using Warnings as a Safety Net

Granted, the cases in which AJAX should be used aren’t always 100% cut-and-
dried, and there may be some cases where your use of AJAX could cause your
users some confusion. In those cases, you should provide your users with the bare
minimum form of a safety net—some sort of warning that is displayed when they
hit the Back button. Ideally the alert would warn them they’ll be leaving your
application, and gives them the opportunity to cancel their action.

You can provide such alerts in browsers that support the onbeforeunload event
listener. Point this to a function that returns the message you want your users
to see, and it will be displayed in a dialog that asks users if they want to navigate
away from the page.

192

Chapter 6: Web Services and Slide-and-hide

Add the event listener like so:

window.onbeforeunload = function() {
 alert('You will actually go somewhere else. ' +
 'You will not go back to the previous search results.');
};

Figure 6.6 shows what this message will look like to users leaving the page.

Figure 6.6. Warning users before they leave the page

This strategy should, of course, be used as a last resort. You should avoid using
AJAX in ways that make navigation weird or ambiguous. Above all, avoid using
AJAX just because you can. AJAX functionality should always be something that
you add to your application to improve the end user experience.

Fixing the Browser Back Button?

This problem with the Back button is a longstanding issue for AJAX development,
and a lot of very smart people have come up with solutions that may work very
well for you, depending on the situation at hand. One good example is the code
implemented in the Dojo JavaScript toolkit7 to make the browser Back button
behave in a normal way even with page updates that are made using
XMLHttpRequest.

Your decision to use something like this might depend on the browsers you have
to support (it doesn’t work at all in Safari, for example), and your tolerance for
hacks in the code you use. According to the Dojo docs, this Back button work-
around contains “a lot of black magic, browser-specific foo, and general hackery”
to make it work.

If you want the browser Back button to work, and don’t mind code that uses an
iframe and even document.write, the above code may represent a viable solution

7 http://dojotoolkit.org/

193

Usability: the Back Button Problem

http://dojotoolkit.org/

for you. We’ll see an implementation of a similar fix for the browser’s Back button
in the next chapter.

Replacing the Back Button

Another potential solution is to code a Back button replacement right into your
application. If you make your application’s navigation intuitive and obvious, you
may be able to avoid problems with the browser’s Back button by keeping your
users away from it completely.

If it’s implemented properly, this can be a better alternative to the previous fix,
because it allows you to avoid the kinds of hacks needed to make the browser’s
Back button function more-or-less properly, and lets you support all browsers
equally. However, if you do decide to go this route, it’s probably still a good idea
to include a warning dialog when users navigate off the page, just to allow them
to verify their intent.

We’ll also be implementing a Back button replacement like this in the code for
the next chapter, to allow you to see both approaches—using a bit of hackery to
make the browser’s buttons work correctly, and the cleaner approach that creates
navigation buttons right in the app.

Asking the Right Question

With the sorts of gymnastics required to code around the Back button, you can
see that the problem with the Back button is a really good justification for taking
the approach I mentioned in the first chapter: before you start asking the question,
“How can I do this with AJAX?” you should be asking the question, “Should I
be doing this with AJAX?” This approach can help you avoid at least some of the
usability issues right up-front, rather than waiting until it becomes a problem
that you have to deal with in a potentially ad hoc, hacked fashion.

Debugging Client-side AJAX
Complicated client-side code can also create serious headaches for developers.
Many web developers are not well trained in things like application design and
architecture, and the tools for doing this kind of work are still fairly new.

So the first line of defense for you as an AJAX developer is to make sure that you
use AJAX in the right places in your app—points at which it makes your applica-
tion easier and better to use. As you’ve seen, putting more of your code on the

194

Chapter 6: Web Services and Slide-and-hide

client side creates an application that’s far more responsive and dynamic than
apps in which everything is done on the server.

Yet complex client-side JavaScript code is notoriously difficult to debug. And
when things go wrong, you may find yourself scratching your head trying to figure
out what particular piece of your whizzy, new, fat-client AJAX code is failing on
you.

AJAX-style development with XMLHttpRequest is still fairly new, so JavaScript
coders don’t have access to the same wide range of debuggers, IDEs, and refact-
oring tools that developers using other languages have at their disposal. People
moving to JavaScript from other languages are often shocked by how primitive
the tools are.

Fortunately, the increasing popularity of AJAX has encouraged a sort of renais-
sance in JavaScript development, and the quality of available tools is improving
rapidly. Here are some highlights:

Log4JS8

This is a JavaScript class that allows the customized logging of error messages
for debugging JavaScript.

Venkman9

This full-featured JavaScript debugger for Mozilla-based browsers includes
sophisticated features such as breakpoint management, call stack inspection,
and variable/object inspection. The console also allows the execution of
JavaScript code in the current window. Venkman is the oldest of these
tools—it’s been around since 2001.

LiveHTTPHeaders10

This tool displays HTTP headers in real time. It also allows you to edit
headers and record and replay header traffic between the browser and the
server.

FireBug11

A relatively new tool for Firefox (requires version 1.5), FireBug is actually
several tools combined into one: the original JavaScript console from Mozilla-
based browsers, a DOM inspector, a logging tool, and a command-line

8 http://log4js.sourceforge.net/
9 http://developer.mozilla.org/en/docs/Venkman/
10 http://livehttpheaders.mozdev.org/
11 http://www.joehewitt.com/software/firebug/

195

Debugging Client-side AJAX

http://log4js.sourceforge.net/
http://developer.mozilla.org/en/docs/Venkman/
http://livehttpheaders.mozdev.org/
http://www.joehewitt.com/software/firebug/

JavaScript interpreter that lets you execute JavaScript code in the current
window. It also includes XMLHttpRequest Spy, a tool that logs
XMLHttpRequest requests to the console, and allows you to inspect its response
as text or XML.

Using these tools will boost your debugging ability dramatically, and you’ll go
from peppering your code with annoying alert boxes, or keeping special debug
div sections in your UI, to completing proper logging, inspecting objects in your
code, and watching the real-time flow of data between your browser and the
server.

Given the complexity of all the technologies that work together in an AJAX ap-
plication, it’s inevitable that things will break. When that happens, the key to
keeping your sanity is having the ability to see reliably what’s going on at any
point in the round-trip of communication between your client-side code and the
server.

Further Reading
Here are some online resources for learning more about the techniques and con-
cepts we’ve discussed in this chapter.

Cross-site Scripting (XSS)
The Cross Site Scripting FAQ12

This FAQ was written to provide a better understanding of the threat of XSS,
and to give guidance on detection and prevention.

HTML Code Injection and Cross-site scripting13

This paper by Gunter Ollman discusses the cause and effect of CSS (XSS)
vulnerabilities.

XSS Cheat Sheet14

The cheat sheet is ideal for people who already have grasped the basics of
XSS attacks, but want a deeper understanding of the nuances of filter evasion.

12 http://www.cgisecurity.com/articles/xss-faq.shtml
13 http://www.technicalinfo.net/papers/CSS.html
14 http://ha.ckers.org/xss.html

196

Chapter 6: Web Services and Slide-and-hide

http://www.cgisecurity.com/articles/xss-faq.shtml
http://www.technicalinfo.net/papers/CSS.html
http://ha.ckers.org/xss.html

Mashups
Programmable Web15

This site offers news, information, and resources for developing applications
and mashups using the Web 2.0 APIs.

Google Maps Mania16

This unofficial Google Maps blog tracks the web sites, mashups and tools
being influenced by Google Maps.

Summary
In this chapter, we took a quick look at web services and the different ways in
which we can access them, and also showed a slick slide-and-hide effect that
embeds different sets of search data into a web page. We worked through the
browser security issues associated with making cross-site requests to access web
services data, and showed how a simple proxy script can provide a relay over
which your browser-based application can talk to those web services.

15 http://www.programmableweb.com/
16 http://googlemapsmania.blogspot.com/

197

Mashups

http://www.programmableweb.com/
http://googlemapsmania.blogspot.com/

198

More Web Services and a Back
Button7

You go back Jack do it again, Wheel turnin’ ’round and ’round, You go back Jack do it
again
—Steely Dan, Do It Again

In the previous chapter, we had a look a working with web services, and built a
sample application that sent AJAX requests through a proxy page to access
Amazon’s E-Commerce web service. The application used simple REST-style GET
requests to access the service, and inserted the results into a web page.

One of the great things about web services in general is that they provide easy
and open access to the data offered by different sources, so in this next chapter,
we’ll work on tying our application to multiple services. We’ll be building a search
application that accesses the Google API, eBay’s web services, and Amazon using
REST, XML-RPC and SOAP. Figure 7.1 shows the search application in action.

This search application returns sets of results much like a regular search engine,
so it also provides a nice opportunity to demonstrate a fix for a well-known issue
with AJAX—the Back button problem.

Figure 7.1. The search application with a set of results

The Search Application
This multi-source search application will let the user search a number of different
online sources for a desired term or terms. It will have a select box that lets users
choose the service to search, and a text input in which users can enter their search
strings. The application will be able to search the following services:

❑ Amazon

❑ eBay

❑ Google

200

Chapter 7: More Web Services and a Back Button

It will also be very easy to add new services to this list.

Accessibility and Backward Compatibility
It’s important to know up-front which types of users you intend your app to
support, so that you can make sure it’s accessible to all those users, and provide
equivalent non-JavaScript functionality for your AJAX code where it’s needed.

As you saw back in Chapter 4, supporting screen readers doesn’t mean you can’t
use JavaScript. Screen readers work along with a browser, so they’re dependent
on the browser for their JavaScript support. If you design your code carefully,
you can build your application so that users with screen readers can take advantage
of your AJAX code.

On the other hand, there are clients that have limited or no JavaScript support.
In some of these cases, you’ll be able to use progressive enhancement in your
code so that it degrades gracefully; in others, you may have to build and maintain
a separate, simplified version of your app.

In this chapter, we’ll be applying the principle of progressive enhancement to
build the accessibility features and a fallback for non-JavaScript browsers right
into the main code of our application.

Fixing the Back Button
In our sample app, we’ll demonstrate two different ways of dealing with the
classic AJAX Back button problem.

One approach is to build history navigation right into your application interface.
The challenge is to make the navigation so obvious that users are more inclined
to use it than they are to use the browser’s built-in Back button. The advantage
of this approach is that it uses clean, standards-compliant code, and plays nicely
with screen reader software.

The other method we’ll be looking at is very similar to the solution that some
JavaScript and AJAX toolkits use: actually “fixing” the browser’s built-in Back
button to work as users expect. This has the huge advantage of making your ap-
plication behave the way users expect a browser-based app to behave, but this
solution relies on ugly, inefficient, browser-specific hacks and does not work well
with screen reader software.

201

Accessibility and Backward Compatibility

We’ll be using a constant value of BROWSER_BACK to branch the code in the few
places it’s necessary, so it should be very obvious where we’re adding the stuff
for the Back-button fix.

Setting Up the Search Class
As we’ve done in previous chapters, I’m going to create Search as a JavaScript
singleton class because we only need one copy of the object, and creating a
singleton makes it easy for us to deal with the loss-of-scope issues we experience
when using callback functions. Here’s the setup for the Search object:

File: webservices2.js (excerpt)

var Search = new function() {
 this.ajax = null;
 this.form = null;
 this.service = '';
 this.searchText = '';
 this.hist = [];
 this.histIndex = -1;
 this.hand = [];
};

Most of the properties of the Search object will look fairly familiar to you if
you’ve read the previous chapters.

The properties hist and histIndex come into play when we implement the
search history and Back button functionality. We’ll see the hand property in use
in the next section, in the init method.

The init Method
We start the application up with an init method that’s tied to the window’s
onload event listener:

File: webservices2.js (excerpt)

window.onload = Search.init;

Here’s the first chunk of the init method’s code:

File: webservices2.js (excerpt)

this.init = function() {
 var self = Search;

202

Chapter 7: More Web Services and a Back Button

 var enable = false;
 self.ajax = new Ajax();
 self.form = document.getElementById('searchForm');
 document.getElementById('resultsDiv').style.display = 'block';
 self.form.onsubmit = function() { return false; };
 self.hand['searchButton'] = self.submitSearch;
 self.evalSearchTextState();

The init method starts off by doing all your normal app initialization stuff—it
creates the Ajax object for submitting searches and sets up a reference to the web
form.

Next, it “turns on” the results section of the UI. A CSS declaration of display:
none is associated with the div that has the ID resultsDiv; as such, non-JavaS-
cript browsers won’t see the div, but browsers that do support JavaScript will.
This is the div that will contain our AJAX-powered UI. As part of this application,
we’ll be looking at how we could build an alternate UI for non-JavaScript browsers
that will POST to a different page.

Next, init sets up an event handler for the form’s Submit button. We’re using
an input type="submit" element for this button, which allows the form to work
for non-JavaScript-capable clients too. We don’t want our JavaScript clients to
submit the actual form because we’re making our requests with AJAX; thus, we
have to suppress form submission.

Then, the method places a reference to what will become the Submit button’s
onclick event handler into the hand property—an associative array with the
button ID as key.

Then, the method places into the hand property an associative array with the
button ID as its key. The method places into hand a reference to the method
that will become the Submit button’s onclick event handler.

This gives us a convenient way to store all the onclick handlers for the buttons
so we can turn buttons on and off at will. We’ll see how this works in the next
section.

Next is a call to evalSearchTextState, which looks at the SearchText field, and
either enables or disables the Search button based on whether or not it contains
any text. Here’s the code for evalSearchTextState:

203

The init Method

File: webservices2.js (excerpt)

this.evalSearchTextState = function() {
 var self = Search;
 var enableState = 'off';
 if (self.form.SearchText.value.length > 0) {
 enableState = 'on';
 }
 self.setButtonState(self.form.searchButton, enableState);
};

This method prevents users from trying to submit a search without entering any
search terms.

The middle chunk of the init method deals with the Back button code:

File: webservices2.js (excerpt)

if (BROWSER_BACK) {
 self.startHist();
}
else {
 self.addHistoryNav();
}

The first part of the if-else branch is for the browser Back button fix. It fires up
some code that watches for changes to the browser history and the location
bar—we’ll be covering how this works in the section devoted to the browser Back
button fix. The other branch sets up an application navigation panel that has
both Back and Forward buttons. You’ll see how all this works in the section that
explains how to build your own Back button.

The final chunk of code turns on these features for users with screen readers:

File: webservices2.js (excerpt)

 self.enableScreenReaderFeatures();
};

This method is almost identical to the method with the same name that was part
of our login application in Chapter 4. There are a few tweaks that need to be
made to the screen reader code that’s specific to this app. We’ll be going over
these in the section on screen reader code near the end of the chapter.

204

Chapter 7: More Web Services and a Back Button

Disabling and Enabling Buttons
We saw above that the evalSearchTextState method called from init prevents
users from submitting searches with no search text. It does so by calling
setButtonState to enable or disable the Submit button according to whether or
not the SearchText field has a value.

Here’s the code for setButtonState:

File: webservices2.js (excerpt)

this.setButtonState = function(buttonRef, enableState) {
 var self = Search;
 if (enableState == 'on') {
 buttonRef.disabled = false;
 buttonRef.onclick = self.hand[buttonRef.id];
 }
 else {
 buttonRef.disabled = true;
 buttonRef.onclick = null;
 }
};

The method takes two parameters — buttonRef, a reference to the button to be
toggled on and off, and enable, a boolean that says whether we’re turning the
button on or off.

Enabling the button sets its disabled property to false. The code then looks
at the associative array of handler methods stored in hand, and uses the button’s
ID as a key to figure out which method should be attached to that button.

Disabling the button is simple—we just set its disabled property to true so that
it appears properly dimmed out, and set the button’s onclick event handler to
null so that clicking the button will have no effect.

Enabling Search
Now that we’ve got the UI all set up, it’s time to perform some searches. Initially,
the Search button is disabled, because the search text box is empty. This approach,
which is similar to what we did with the application login in Chapter 4, represents
a proactive approach to validating input. In this way, we prevent users from
making mistakes, rather than waiting until they’ve taken some action before we

205

Disabling and Enabling Buttons

tell them “sorry, that was wrong.” When the button is disabled, it’s impossible
for legitimate users to submit an empty search.

Once the user has typed something into the text field, we need to enable the
Search button. We do this in the same way we enabled the Search button in
Chapter 4—via a method attached to the document.onkeyup event for the page:

File: webservices2.js (excerpt)

document.onkeyup = Search.keyup;

That method will fire each time users hit a key, and will check to see whether or
not they’re typing into the search text box. Here’s the code for keyup:

File: webservices2.js (excerpt)

this.keyup = function(e) {
 var self = Search;
 e = e || window.event;
 if (e.keyCode == 13) {
 if (!self.form.searchButton.disabled) {
 self.submitSearch();
 }
 }
 else {
 self.evalSearchTextState();
 }
};

Note that since all keyboard input goes through this method, we’re also using it
to submit the search when the user hits the Enter key (which has a keyCode of
13). If the pressed key was the Enter key, it will submit the search—but only if
the Search button has been enabled.

The submitSearch Method
Once users have typed something into the search text box, and the Search button
is enabled, they can either click the Search button or hit Enter to perform the
search. Both options call the submitSearch method. Here’s the first chunk of
the code for submitSearch:

File: webservices2.js (excerpt)

this.submitSearch = function() {
 var self = Search;
 var service = '';

206

Chapter 7: More Web Services and a Back Button

 var searchText = '';
 var proxyURI = '';
 var dt = new Date();
 service = self.form.SearchService.value;
 searchText = self.form.SearchText.value;
 if (service != self.service || searchText != self.searchText) {
 self.service = service;
 self.searchText = searchText;
 self.setButtonState(self.form.searchButton, 'off');

This code is fairly straightforward. It pulls the form values into some local variables
(service for the web service to use for the search, and searchText for the string
of text to search on), then checks that this isn’t the user’s previous search by
comparing service and searchText against properties of the same names.
Provided at least one of these doesn’t match, we disable the Search button and
store service and searchText in these properties. This stops an impatient user
from repeating the same search over and over again. The service and searchText
properties will be used later as we navigate the user’s search history with the Back
button.

Passing to the Proxy Script
The next chunk of the code looks like this:

File: webservices2.js (excerpt)

 proxyURI = '/webservices2_proxy.php' +
 '?search=' + escape(self.searchText) +
 '&service=' + self.service +
 '&dt=' + dt.getTime;

As in the previous chapter, this application will use a proxy script to relay our
AJAX requests to URIs on a server that’s different from the one on which our
AJAX app lives. Browser security prevents us from making requests directly to
those other servers, so we go through a proxy script on our own server. Note that
we need to escape the service and search terms in order to pass them along on
the query string.

Submitting the Search
Here’s the last chunk of code for the submitSearch method:

207

Passing to the Proxy Script

File: webservices2.js (excerpt)

 document.getElementById('resultsDiv').innerHTML =
 '<div class="resultsPaneDiv">Processing ...</div>';
 self.ajax.doGet(proxyURI, self.handleResp, 'xml');
 }
};

The code clears out the div used to display search results, and sets its displayed
text to “Processing … .”

That’s right, folks: for this application we’re going to take a break from fancy
animated status animations, and just use a plain text notification to let the user
know that the app is busy performing the search. If you have seen the animations
in our other demo applications, you may be surprised to see how effective static
text can be. The really important thing, in any case, is to give your users clear
cues about what the app is doing.

The other thing to notice is the method we’re using to set the processing status
text—the dreaded innerHTML property. Despite the fact that it may make some
of the more dogmatic developers among us hyperventilate, in this app, there are
good reasons to use innerHTML. I’ll explain more about why we’re using it a little
later, in the section that talks about processing the response from the web service.

Finally, we pass the request to the proxy page using the doGet method of our
Ajax object, passing xml as the last parameter so that we get the results back as
an XML document.

You may remember from this chapter’s introduction that this application is
supposed to work with web services by sending XML-RPC and SOAP requests;
XML-RPC and SOAP rely on POST requests that send XML back to the server.
You might be wondering how we’re going to do all that with this simple GET re-
quest and a couple of variables on the query string. Well, sending the POST request
will be a job for our proxy script.

The Proxy Script
Dealing with all the different web services that we want to use for searches is
going to require more complicated server-side code than what we saw in the last
chapter. After all, we’re not just sending simple REST requests with GET any
more—some of these web services use XML-RPC; others use SOAP. As such,
we’ll need to use different libraries of code to talk to the different web services.

208

Chapter 7: More Web Services and a Back Button

The proxy script for this application is webservices2_proxy.php. We’re devel-
oping it in PHP, but you could easily use another language, such as Ruby, Python,
Perl, ASP, or Java.

To make things as clear and easy as possible to follow, I’ve arranged the code as
a bunch of case statements—one for each web service. All the web services we’re
using in our example code return the result as an XML document; we then return
this document to our client-side JavaScript code for parsing and display.

Requirements
Just like with the simple web services example we saw in the last chapter, we’re
using the PHP PEAR module HTTP_Request to perform the HTTP requests in
this app’s proxy script. These code examples will not work unless you have the
HTTP_Request package installed.

Additionally, the SOAP calls to the Google Web APIs will require that you either
use the PEAR SOAP package,1 or that your PHP installation is compiled with
--enable-soap.

Initial Setup
Here’s how the code for the proxy script starts:

File: webservices2_proxy.php (excerpt)

<?php
require_once "HTTP/Request.php";
var $searchText = $_REQUEST['search'];
var $service = $_REQUEST['service'];
var $uri = '';
var $key = null;
var $userToken = '';
var $xml = '';
switch ($service) {

After including the HTTP_Request package, we make some variable declarations.
The first two variables are the inputs passed on the query string—$service, the
web service we want to use to perform the search, and $searchText, the text for
which we’re searching.

1 http://pear.php.net/package/SOAP/

209

Requirements

http://pear.php.net/package/SOAP/

Validate Input from the Client

Because this is only a demonstration app, we’re not doing anything special
to validate the input from the browser. However, if this were a production
application, you would absolutely want to take steps to make sure that the
data coming from the browser was safe before you used it in your code.

The other variables will contain some fairly basic pieces of information that we
need for the request, such as the URI, access keys, and $xml, the variable into
which we’re going to put the response from the server.

In the last line of this code snippet, we start a switch statement that will contain
a case for each of the services that our application can access.

Amazon Web Services
We’ll start with Amazon’s E-Commerce Service, the service we accessed in the
last chapter. Here’s the code we’ll use in our new proxy script to set up a search
with the Amazon E-Commerce Service:

File: webservices2_proxy.php (excerpt)

case 'amazon':
 $key = 'Access Key ID';
 $uri = 'http://webservices.amazon.com/onca/xml'.
 '?Service=AWSECommerceService' .
 '&AWSAccessKeyId=' . urlencode($key) .
 '&Operation=ItemSearch' .
 '&SearchIndex=Books' .
 '&Keywords=' . urlencode($searchText) .
 '&Sort=relevancerank';
 var $req =& new HTTP_Request($uri);
 var $result = $req->sendRequest();
 if (PEAR::isError($result)) {
 die($result->getMessage());
 }
 else {
 $xml = $req->getResponseBody();
 }
 break;

This looks very similar to the code we saw in the last chapter. We set the access
key, then add it to the query string along with our search term. Be sure to URL-
encode the term.

210

Chapter 7: More Web Services and a Back Button

We then use the HTTP_Request module to make the request and put the result
in the $xml variable.

Printing the Response
The code for printing out the result lives at the very bottom of the page, outside
the switch statement.

File: webservices2_proxy.php (excerpt)

}
header('Content-Type: text/xml');
print($xml);
?>

This very simple scrap of code sets the Content-Type header for the response to
text/xml, and prints the result into $xml. Once executed, the code for each web
service puts its results into $xml, which is then returned to our AJAX client.

Google Web APIs
Next, we’ll have a look at how to perform a search using Google’s web service
APIs. To access the Google Web APIs, you need an access key, as was the case
with Amazon Web Services. You can sign up for an account and get your free
key from the Google Web APIs site.2

Unlike Amazon, Google’s web services limit you to 1000 requests per day. If you
attempt to make more than 1000 queries in a day, Google’s server will respond
with a SOAP fault stating that you have exceeded the maximum number of
queries allowed. The Google Web APIs FAQ suggests that in such cases “you
might want to get some sleep and start querying again tomorrow.”

Using a SOAP Library
Google’s web services use SOAP, which we mentioned briefly in the overview of
web services in the previous chapter. The idea with SOAP is that you should be
able to use a library to make simple calls to the service as if you were calling
methods on an object in your own code.

2 http://www.google.com/apis/

211

Printing the Response

http://www.google.com/apis/

However, sometimes getting your library set up and working properly can be a
bit of a challenge. PHP provides SOAP support via an extension, but to use it
you have to compile PHP with the --enable-soap option. The alternative is to
use the SOAP module from PHP’s PEAR repository.3 Since that module is officially
still in beta at the time of writing, installation using the command-line pear
command will not work—you’ll need to download the package, unzip it, and
place the SOAP directory in a place where the webservices2_proxy.php page can
find it.

Here’s the first part of our Google code:

File: webservices2_proxy.php (excerpt)

case 'google':
 var $wsdlURI = 'http://api.google.com/GoogleSearch.wsdl';
 $key = 'Licence Key';

This section sets up your licence key and the location of the WSDL document
for Google’s web service.

We talked about WSDL a little bit in last chapter’s introduction to web services.
A WSDL document provides a description of a SOAP web server. Our SOAP
library uses it kind of like a remote configuration file to set itself up to perform
calls to the Google service.

Code for the SOAP Extension

First comes the section of code that works with the SOAP extension that you
made available by compiling PHP with the --enable-soap option:

File: webservices2_proxy.php (excerpt)

if (extension_loaded('soap')) {
 $soapClient = new SoapClient($wsdlURI, array('trace' => 1));
 $result = $soapClient->doGoogleSearch($key, $searchText, 0, 10,
 false, '', false, '', 'latin', 'latin');
 if (is_soap_fault($result)) {
 trigger_error("SOAP Fault: (faultcode: {$result->faultcode},
 faultstring: {$result->faultstring})", E_ERROR);
 }
 else {
 $xml = $soapClient->__getLastResponse();
 }
}

3 http://pear.php.net/package/SOAP/

212

Chapter 7: More Web Services and a Back Button

http://pear.php.net/package/SOAP/

The code sets up a SOAP client using Google’s WSDL document, makes the call
to doGoogleSearch, and receives the raw XML output of the request.

You’ll notice the call to the doGoogleSearch method is very simple—it looks just
like you’re calling any other normal method in your code, even though it’s actually
making a call to Google’s servers. This is the power of SOAP—once you actually
set everything up so that SOAP can work, the function call is very simple.

The WSDL file describes the methods that the web service offers so the SOAP
client can expose them as if it was just another method of the class. For example,
Google’s WSDL file includes the following description of the doGoogleSearch
method:

<message name="doGoogleSearch">
 <part name="key" type="xsd:string"/>
 <part name="q" type="xsd:string"/>
 <part name="start" type="xsd:int"/>
 <part name="maxResults" type="xsd:int"/>
 <part name="filter" type="xsd:boolean"/>
 <part name="restrict" type="xsd:string"/>
 <part name="safeSearch" type="xsd:boolean"/>
 <part name="lr" type="xsd:string"/>
 <part name="ie" type="xsd:string"/>
 <part name="oe" type="xsd:string"/>
</message>

Here, the parameters for the doGoogleSearch method are defined, including the
Google Web APIs license key, the actual search terms, and so on. What these
parameters actually do is documented on the Google Web APIs site.4 If you’re
interested in learning more about WSDL, the Further Reading section at the end
of this chapter offers some links to get you started.

When you create the SoapClient using the SOAP PHP extension, the second
parameter is an associative array of options for the SOAP client. One option that
we must turn on in order to get access to the response XML is trace. When this
has been set to 1, we can get access to the raw XML response using the
__getLastResponse method.

Code for the PEAR SOAP Module

Here’s the code that uses the PEAR SOAP client module to access Google’s web
service:

4 http://www.google.com/apis/

213

Using a SOAP Library

http://www.google.com/apis/

File: webservices2_proxy.php (excerpt)

else {
 require_once 'SOAP/Client.php';
 $wsdl = new SOAP_WSDL($wsdlURI);
 $soapClient = $wsdl->getProxy();
 $result = $soapClient->doGoogleSearch($key, $searchText, 0, 10,
 false, '', false, '', 'latin', 'latin');
 if (PEAR::isError($result)) {
 die($result->getMessage());
 }
 else {
 $xml = $soapClient->xml;
 }
}
break;

This code is pretty similar to the code for the compiled-in extension. After the
require statement for the SOAP client module, the code sets up the SOAP client,
makes the call to doGoogleSearch, then gets the raw XML output of the response.

Again, once everything is in place, making the call to doGoogleSearch is super-
simple. In fact, the call is exactly the same for both the extension and the PEAR-
module clients, thanks to the WSDL definition.

The PEAR module makes it a bit easier to get the XML from the response. It
provides a built-in xml property for the client object that contains the actual
XML response from the server.

Remember that once we break from this case, the content of $xml will be printed
out, so we’re all done with our Google proxy!

The eBay Platform
eBay also provides a set of web services to application developers.5 It offers a
wide range of ways to access the service, including REST, SOAP, and plain XML.
Since we’ve already seen examples of REST and SOAP, we’ll use XML-RPC to
access eBay’s web services.

5 http://developer.ebay.com/

214

Chapter 7: More Web Services and a Back Button

http://developer.ebay.com/

A Few Hurdles
Since eBay provides full access to buying and selling functions through its web
services, there are a few extra security hurdles you’ll need to jump in order to get
eBay web services working. eBay requires us to use SSL encryption when commu-
nicating with the server, three separate keys (as opposed to Amazon and Google,
which require just one), and a user token that represents the user performing the
transaction. As we’ll only be performing searches, we’ll just set up a single user
and use the same token for every query.

SSL Encryption

Communicating with eBay requires SSL encryption, so please note that the
example code we’ll use to work with the eBay service will only work if your
server can send HTTPS requests. To find out if your server supports SSL,
ask your system administrator. PHP users can run phpinfo and look for
OpenSSL. If OpenSSL is present, you shouldn’t have a problem.

Access Keys and User Tokens

Instead of the single key we’ve used with other web services, eBay requires us to
use three keys, plus a user token, to access the service. You receive the three access
keys when you sign up for the Developers’ Program, but you’ll need to go through
a separate process to obtain the user token. The three keys are:

AppID the unique identifier for the application

DevID the developer’s unique identifier

CertID an authentication certificate that ensures the application really is what
it says it is

To get your own keys, you’ll need to sign up on eBay’s Developers’ Program web
site.6 Once you’ve signed up, instructions on how to get your keys will be emailed
to you.

Once you have your keys, it’s time to create a user token in the eBay Sandbox.

6 http://developer.ebay.com/

215

A Few Hurdles

http://developer.ebay.com/
http://developer.ebay.com/

The Sandbox

Your eBay developer account gives you unlimited access to the eBay Sandbox,7

and the opportunity to self-certify your application to gain limited free access to
the eBay production environment. The eBay Sandbox is a mockup of the real
eBay environment that contains realistic “dummy” data. It gives you a chance
to play around with realistic data without worrying that you might wreak havoc
with actual customer information. Our test code performs its searches using the
Sandbox, which means we won’t be displaying the same results we’d receive from
a search on the actual eBay site.

To create a user in the Sandbox environment, sign in to eBay’s developer program
web site, then click the Sandbox User Registration link to register a dummy user.
Once you’ve registered your dummy user, click the link to generate an authentic-
ation and authorization token. You’ll need to sign in as the dummy user as part
of this process, and eventually you’ll be presented with a user token—a rather
lengthy string of characters.

The Code
Here’s the section of code that creates the request for eBay:

File: webservices2_proxy.php (excerpt)

case 'ebay':
 require_once "eBayXMLRPC.php";
 $key['devID'] = 'Your DevID';
 $key['appID'] = 'Your AppID';
 $key['certID'] = 'Your CertID';
 $userToken = 'Your User Token';
 $xmlRPC = new eBayXMLRPC();
 $xmlRPC->createSession($key, 'GetSearchResults');
 $xml = $xmlRPC->GetSearchResults($userToken, $searchText);
 break;

This code uses a small helper library, eBayXMLRPC.php, which contains a class
for making XML-RPC requests to eBay. The library takes care of creating the
XML message for your search, and sets the eBay-specific HTTP request headers
that set up your eBay session. The library is included in the code archive, so have
a look at it if you’re interested in what XML-RPC is doing behind the scenes.

7 http://sandbox.ebay.com/

216

Chapter 7: More Web Services and a Back Button

http://sandbox.ebay.com/

Our proxy script simply uses the library to create an instance of eBayXMLRPC, an
XML-RPC client for the eBay Platform. Then, it creates a session and performs
the search. As before, we’re sticking the result into $xml so that we can print it
out later.

Testing the Proxy Script
A very simple way to test the proxy code is to enter the proxy page’s address into
your browser’s location bar manually, along with the query string that the client-
side JavaScript would add, and view the results directly in the browser window.
For example, if you were to search Amazon for a certain famous kung fu movie
studio, you might enter an address like this:

http://…/webservices2_proxy.php?search=shaw%20brothers&service=amazon

The browser will display the XML data response inline, without any styling. It’s
a fairly ugly response, but at least you can see what it is. Figure 7.2 shows how
the result from that search will display in the browser.

Figure 7.2. Displaying search results as plain XML in the browser

217

Testing the Proxy Script

Handling the Results
Now that we’re receiving XML results from a few different web services through
our proxy script, it’s time to hop back over to the client side and insert those
results—formatted nicely, of course—into a web page.

We made the original request to the proxy page with this call to our ajax object:

File: webservices2.js (excerpt)

 self.ajax.doGet(proxyURI, self.handleResp, 'xml');

In this case, the handler function for the response is the intuitively named
handleResp, and the xml flag that’s passed last indicates that we’re expecting the
results to come back as XML.

The code for handleResp is broken up into a number of case statements inside
one large switch statement, like the one we used in the proxy script:

File: webservices2.js (excerpt)

this.handleResp = function(xml) {
 var self = Search;
 var res = [];
 var item = '';
 var str = '';
 self.setButtonState(self.form.searchButton, 'on');
 if (!xml) {
 str += '<div class="resultsPaneDiv">' +
 '(Error or no response from the server)</div>';
 }
 else {
 switch (self.service) {

The first thing we need to do is to re-enable the Search button to let the user run
more searches. Then, after a cursory check to make sure we received an XML
result from the server, the code goes on to the cases for each different web service.

Amazon
Let’s start by handling responses from Amazon; the code below is very similar to
that from the previous chapter:

218

Chapter 7: More Web Services and a Back Button

File: webservices2.js (excerpt)

case 'amazon':
 res = XMLParse.xml2ObjArray(xml, 'Item');
 str += self.noResultsCheck(res.length);
 for (var i = 0; i < res.length; i++) {
 item = '<div class="itemDiv">';
 item += '<div><a' +
 ' href="http://www.amazon.com/exec/obidos/tg/detail/-/'
 + res[i].ASIN + '">' +
 res[i].ItemAttributes.Title + '</div>';
 if (res[i].ItemAttributes.Author) {
 item += '<div>' + res[i].ItemAttributes.Author + '</div>';
 }
 item += '</div>';
 str += item;
 }
 break;

The first step in the process for the Amazon service is to get an array of JavaScript
objects from the XML response returned by the server.

The XMLParse library makes this fairly easy—we just call the
XMLParse.xml2ObjArray method, passing it the XML document and the name
of the element in that document that we want transformed. xml2ObjArray returns
an array of JavaScript Objects. In the case of Amazon, we pass xml2ObjArray
Item, because each of the items is in an Item element.

If you’re adding your own services later, note that this parameter is case-sensitive.

Next, we use the noResultsCheck method to make sure we have some results.
This method simply sets the string to display a “no results” message if the returned
array is empty:

File: webservices2.js (excerpt)

this.noResultsCheck = function(len) {
 str = '';
 if (len == 0) {
 str = '<div class="resultsPaneDiv">(No results returned)' +
 '</div>';
 }
 return str;
};

If there are any JavaScript Objects in the res array, the code proceeds to jump
through that array, creating a string of markup that we can display in the results

219

Amazon

pane. We’ll be displaying the results with innerHTML in this application; you’ll
see the reason why in the next section.

Google
Displaying Google’s results is a bit trickier than the process for Amazon’s results.
Let’s take a look:

File: webservices2.js (excerpt)

case 'google':
 var resultsArr = xml.getElementsByTagName('resultElements');
 xml = resultsArr[0];
 res = XMLParse.xml2ObjArray(xml, 'item');
 str += self.noResultsCheck(res.length);
 for (var i = 0; i < res.length; i++) {
 item = '<div class="itemDiv">';
 item += '<div>';
 item += '';
 if (res[i].title) {
 item += res[i].title;
 }
 else {
 item += res[i].URL;
 }
 item += '</div>';
 if (res[i].snippet) {
 item += '<div>' + res[i].snippet + '</div>';
 }
 item += '</div>';
 str += item;
 }
 break;

Google makes it a bit harder on us. In the XML document that Google returns,
there are actually two different sets of elements called item. Figure 7.3 shows
these two different sections within the results.

We’re only interested in the items inside resultElements.

220

Chapter 7: More Web Services and a Back Button

Figure 7.3. Google results with two sections of item elements

221

Google

Getting the resultElements XML

Here, DOM methods save the day, letting us get our hands on the list of item
elements we want. We do so with these two lines:

File: webservices2.js (excerpt)

var resultsArr = xml.getElementsByTagName('resultElements');
xml = resultsArr[0];

We use the getElementsByTagName method to get an array of all the resultEle-
ments in our XML response. In this case, there’s only the one, so the returned
array has only a single item in it. We then set xml to that resultElements ele-
ment, which contains all the items we’re interested in. Once we’ve narrowed
down our document to the element that contains the item elements we want,
we can parse our result the normal way using xml2ObjArray.

After that, we check to make sure that there are some results in res, then we
jump through the array, building a string of HTML that we’ll display using
innerHTML.

Is innerHTML Evil?

Depending on which web developers you talk to, you might get very different
reactions when you talk about using innerHTML. This property is not a
W3C standard, and it’s seen as being somewhat “less clean” than DOM
methods; indeed, putting long strings of markup in your JavaScript code can
make things very sloppy. However, innerHTML is fully supported in all
modern browsers.

Practically speaking, despite the fact that it gives some developers conniption
fits, the question of whether or not to use innerHTML should be decided on
a case-by-case basis, and often is purely a matter of personal taste. In the
case of this web service-based search application, it turns out that using
innerHTML to display our results makes more sense than using DOM
methods, as Google returns formatted HTML (that is, markup such as
tags) in its results.

If we were to insist on using DOM methods like createTextNode to display
Google’s response, we’d have to strip all of the markup out of the results,
which would mean more development work, and see us lose a lot of
presentation information simply because we want to avoid innerHTML.

A good rule thumb for deciding whether to use innerHTML or DOM methods
is this: if you’re dealing with content that contains a lot of HTML or XHTML
markup, using innerHTML is likely the way to go.

222

Chapter 7: More Web Services and a Back Button

eBay
After our battle with Google, parsing the results from eBay seems a breeze. Here’s
the code:

File: webservices2.js (excerpt)

case 'ebay':
 res = XMLParse.xml2ObjArray(xml, 'Item');
 str += self.noResultsCheck(res.length);
 for (var i = 0; i < res.length; i++) {
 item = '<div class="itemDiv">';
 item += '<div><a href="' +
 res[i].ListingDetails.ViewItemURL + '">' +
 res[i].Title + '</div>';
 item += '<div>Started: ' +
 res[i].ListingDetails.StartTime + '</div>';
 item += '<div>End: ' +
 res[i].ListingDetails.EndTime + '</div>';
 item += '<div>Current Bids: ' +
 res[i].SellingStatus.BidCount + '</div>';
 item += '<div>Current Price: ' +
 res[i].SellingStatus.CurrentPrice + '</div>';
 item += '</div>';
 str += item;
 }
 break;

Displaying the Results
Now that we have our search results in an HTML string, displaying the results
is easy—we just set the innerHTML of the results div element to the content string
str that we built for the specific service we used to search:

File: webservices2.js (excerpt)

 }
 }
 document.getElementById('resultsDiv').innerHTML = str;
};

Fallback for Non-JavaScript Browsers
To provide a fallback for browsers that don’t support JavaScript, we have set up
our page to work as an old-fashioned web form that submits directly to a page

223

eBay

with server-side code that’s similar to our client-side AJAX code. Here’s an example
of how we could display results from eBay in PHP (this code assumes that we’ve
already loaded the search result XML into a variable called $xml):

header('Content-Type: text/html');
$resp = new DomDocument();
$resp->loadXML($xml);
print("<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN" .
 "\" \"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\"" .
 ">\n");
 print("<html xmlns=\"http://www.w3.org/1999/xhtml\">\n");
 print("<head>\n");
 print("<title>Search Results</title>\n");
 print("</head>\n");
 print("<body>\n");
 switch ($service) {
 case "ebay":
 $items = $resp->getElementsByTagName("Item");
 if ($items->length > 0) {
 foreach($items as $item) {
 $title = $item->getElementsByTagName("Title");
 $url = $item->getElementsByTagName("ViewItemURL");
 $startTime = $item->getElementsByTagName("StartTime");
 $endTime = $item->getElementsByTagName("EndTime");
 $bidCount = $item->getElementsByTagName("BidCount");
 $currPrice = $item->getElementsByTagName(
 "CurrentPrice");
 print("<div class=\"itemDiv\">\n");
 print("<div>item(0)->nodeValue .
 "\">" . $title->item(0)->nodeValue .
 "</div>\n");
 print("<div>Started: " .
 $startTime->item(0)->nodeValue . "</div>\n");
 print("<div>End: " . $endTime->item(0)->nodeValue .
 "</div>\n");
 print("<div>Current Bids: " .
 $bidCount->item(0)->nodeValue . "</div>\n");
 print("<div>Current Price: " .
 $currPrice->item(0)->nodeValue . "</div>\n");
 print("</div>\n");
 }
 }
 break;
 // Cases for other web services would go here
 }
}

224

Chapter 7: More Web Services and a Back Button

Once you get the values of the properties for each item, it’s fairly easy to display.
The section that prints out the result here is basically a PHP clone of the JavaS-
cript code in the AJAX version.

Screen Reader Code
As you may remember from the login code in Chapter 4, screen readers are capable
of dealing with DHTML content in the browser—you simply have to observe
some basic principles that allow screen readers to take advantage of your AJAX
code.

Much of the screen reader code for this application is identical to the code we
saw in Chapter 4. There are just a few specific tweaks we need to make for the
code to work with this search app.

File: webservices2.js (excerpt)

this.enableScreenReaderFeatures = function() {
 var self = Search;
 var appendDiv = document.getElementById('searchForm');
 var beforeDiv = document.getElementById('searchTypeTitleDiv');
 var msg = '';
 var readerDiv = null;
 var innerDiv = null;
 var resultsA = null;
 var changeCheck = null;
 msg = 'This Web page uses dynamic content. Page content may' +
 ' change without a page refresh. Check the following' +
 ' checkbox if you would like an alert dialog to inform' +
 ' you of page content changes.';
 readerDiv = document.createElement('div');
 readerDiv.className = 'screenReader';
 readerDiv.appendChild(document.createTextNode(msg));
 appendDiv.insertBefore(readerDiv, beforeDiv);
 readerDiv = document.createElement('div');
 readerDiv.className = 'screenReader';
 innerDiv = document.createElement('div');
 innerDiv.appendChild(
 document.createTextNode('Content Change Alert'));
 readerDiv.appendChild(innerDiv);
 innerDiv = document.createElement('div');
 changeCheck = document.createElement('input');
 changeCheck.type = 'checkbox';
 changeCheck.id = 'ChangeAlert';
 changeCheck.name = 'ChangeAlert';

225

Screen Reader Code

 changeCheck.value = 'true';
 changeCheck.title = 'Content Change Alert';
 innerDiv.appendChild(changeCheck);
 readerDiv.appendChild(innerDiv);
 appendDiv.insertBefore(readerDiv, beforeDiv);
 appendDiv = document.getElementById('pageTopDiv');
 resultsA = document.createElement('a');
 resultsA.href = '#searchResults';
 resultsA.appendChild(document.createTextNode(
 'Skip to search results'));
 appendDiv.appendChild(resultsA);
 self.form.SearchText.onchange = self.evalSearchTextState;
 self.form.SearchText.title = 'Search Text. Enter text' +
 ' to activate Search button.';
};

The difference between this and the code that we saw in Chapter 4 is that here,
we’ve added a link that can be used to jump straight to the top of the search
results—the link points to a named anchor within the page. We’ll insert this an-
chor into the page in handleResp, just after the switch statement, as shown in
bold below:

File: webservices2.js (excerpt)

str = '<div class="screenReader"><a id="searchResults" ' +
 'name="searchResults">Search results for: ' +
 self.searchText + ' on ' + self.service + '</div>' + str;
 document.getElementById('resultsDiv').innerHTML = str;
};

We’ve also added a prompt just before the results to indicate the terms for which
the user searched, since users with screen readers can’t quickly scan the form to
find this information. This is particularly useful for users who have performed a
number of searches, and begin to page back and forth through their search history.

Alerting Users to Page Changes
The biggest problem that screen reader users experience with AJAX is that if the
whole web page doesn’t refresh, users will remain unaware that the page content
has changed. In this application, we’re using the same strategy we used in
Chapter 4 to let screen reader users know that a partial page refresh has occurred:
we provide the user with a checkbox that gives them the option to receive an
alert dialog box when the page content changes. This checkbox is hidden from
users of regular browsers.

226

Chapter 7: More Web Services and a Back Button

The main difference in this particular case is that rather than placing the changed
content into the alert box, we let the users know the search has completed, and
tell them where on the page they can find the search results. To do this, we add
to the handleResp method some extra code that parses the results from the
server and inserts the content into the page:

File: webservices2.js (excerpt)

 document.getElementById('resultsDiv').innerHTML = str;
if (self.form.ChangeAlert.checked) {

 alert('Search completed. Results are on the page ' +
 'below the search form.');
 }
};

This is fairly straightforward. The alert box tells our screen reader users that
the search is done, and where they can go to find the updated content. Users of
screen reader software will easily be able to find the search results, thanks to the
Skip to search results link.

The Back Button Problem
Users who aren’t used to AJAX-style web applications may not be aware that it
is possible for part of a page to update, so when they see a piece of a web page
change, they may think they have navigated to a new page. They may then try
to click the browser’s Back button to get back to the previous state of the page.
Needless to say, it confuses and frustrates users when they click on the Back
button and end up in a completely unexpected place.

The Two Options
In this section, I’m going to demonstrate two different approaches to fixing the
Back button problem. One method encourages users to avoid the Back button in
favor of Back and Forward buttons we’ll build right into the app, while the other
attempts to coerce the browser’s built-in Back and Forward buttons to work as
the user would expect.

Both options have their pros and cons:

Option 1: building your own Back button

Pros: works in all browsers, including Safari❑

227

The Back Button Problem

❑ uses standards-compliant code

❑ works well with screen readers

Cons: potentially confusing to users❑

❑ Back button is still “broken”

Option 2: “fixing” the Back button

Pros: browser behaves as users may expect❑

Cons: only works in Firefox and IE❑

❑ uses ugly browser-specific hacks and “dummy” requests to the
server

❑ requires “Transitional” markup

❑ doesn’t work well with screen readers

To switch between the two options in this application, you’ll only need to change
the value of the BACK_BUTTON constant: a value of false will tell the code to use
the build-your-own Back button method, but if we change BACK_BUTTON to true,
the code will “fix” the browser’s Back button.

For both of these solutions, we’ll store the page state in a class called
SearchHistory. The only difference between the two methods is the way in
which the user calls up the history entries to be displayed. First, we’ll look at the
shared SearchHistory code; then, we’ll break down the two different methods
we can plug into it.

SearchHistory Class
The first thing we need to do is decide what information we want to keep in the
history when users perform a search. Ideally, when users try to access search
results from their history, you’d like to display every aspect of the UI in the state
that it was in when the user performed that search. This is easy for us, since our
search application is fairly simple. To present the results of a prior search, all we
need are:

❑ the web service that was used for the search

228

Chapter 7: More Web Services and a Back Button

❑ the search terms

❑ the formatted search results

We need somewhere to store this information, so we’ll create class for it, called
SearchHistory:

File: webservices2.js (excerpt)

function SearchHistory(service, search, results) {
 this.service = service;
 this.search = search;
 this.results = results;
};

The hist property of our Search class will contain an array of these
SearchHistory objects, each one holding one of the searches that the user has
performed.

Adding to the History
At the end of the handleResp method, after displaying the search results, we use
the following call to add a new entry for each search that’s performed into the
history:

File: webservices2.js (excerpt)

 document.getElementById('resultsDiv').innerHTML = str;
self.updateHistory(str);

 if (self.form.ChangeAlert.checked) {

The updateHistory method adds each new search to the history list, and performs
a few other tasks to make the history work identically to the browser’s Back button.
Here’s the code:

File: webservices2.js (excerpt)

this.updateHistory = function(str) {
 var self = Search;
 var maxLength = self.histIndex + 1;
 var newHist = null;
 while (self.hist.length > maxLength) {
 self.hist.pop();
 }
 newHist = new SearchHistory(self.service, self.searchText, str);
 self.hist.push(newHist);

229

Adding to the History

 self.histIndex++;
 if (BROWSER_BACK) {
 self.setHash(self.histIndex);
 }
 else {
 if (self.hist.length > 1) {
 self.setButtonState(self.form.backButton, 'on');
 }
 self.setButtonState(self.form.forwardButton, 'off');
 }
};

After declaring and initializing a few variables, the code enters a while loop. This
loop only comes into effect if users run a new search while looking at an entry
somewhere in the middle of the history list. In that case, the new search should
be the new end of the search history, so all entries after that position must be
erased.

This is exactly how the normal browser history works—you can see it in action
yourself. Open a browser window and click a few links from your bookmarks list
to give yourself a history. Then, click the browser’s Back button a few times to
surf back through the history by a few entries. You should see that both the Back
and Forward buttons are active. Now, click another link in your bookmarks list,
and you’ll see that the Forward button becomes disabled. The history list we
stored in the hist array should work in exactly the same way.

Next, we actually update the history list. We create a SearchHistory object,
passing in to the SearchHistory constructor the service and searchText
properties of the Search object, along with the HTML used to display the search
results.

Next, updateHistory adds that SearchHistory object to the hist array, which
holds the search history list, and increments histIndex to show that the new
entry has been added.

The final part of updateHistory is specific to the two different Back button im-
plementations. If BROWSER_BACK is true, we call setHash to “fix” the browser’s
Back button. We’ll go over setHash in detail in a moment

The build-your-own buttons code is a bit simpler—it simply toggles the Back and
Forward buttons on and off appropriately, making them behave in the same way
that the browser’s buttons would when you hit a new location in your browser.

230

Chapter 7: More Web Services and a Back Button

Navigating the History
Navigating back and forth through the history is pretty easy—it works just like
the normal history functionality in your browser. Whether you’re using the build-
your-own option or “fixing” the browser’s Back button, once there are at least
two searches in the history, the Back button becomes active.

Regardless of the method we choose to use, clicking the Back button calls the
goBack method:

File: webservices2.js (excerpt)

this.goBack = function() {
 var self = Search;
 self.histIndex--;
 self.showHistory();
 if (!BROWSER_BACK) {
 self.setButtonState(self.form.forwardButton, 'on');
 if (self.histIndex == 0) {
 self.setButtonState(self.form.backButton, 'off');
 }
 }
};

The Forward button calls the goForward method:

File: webservices2.js (excerpt)

this.goForward = function() {
 var self = Search;
 self.histIndex++;
 self.showHistory();
 if (!BROWSER_BACK) {
 self.setButtonState(self.form.backButton, 'on');
 if (self.histIndex == (self.hist.length - 1)) {
 self.setButtonState(self.form.forwardButton, 'off');
 }
 }
};

If you’ve decided to build your own Back and Forward button, the goBack and
goForward methods are called directly as a result of the onclick events. The
event handlers are attached to the buttons when we enable them. Using the
browser’s built-in buttons requires us to use something of a roundabout approach
to call goBack and goForward, but the end result is the same—Back calls goBack,
and Forward calls goForward.

231

Navigating the History

The two methods work pretty similarly, either incrementing or decrementing
histIndex, which tells us the position of the search we’re viewing within the
history list, and calling showHistory to show that stored search.

With the build-your-own option, these methods perform an additional task: they
always toggle the opposite button on (going forward should always toggle the
Back button on, and going back should toggle the Forward button on), and disable
the Back or Forward buttons if we’re at the end of the list. Clicking back and forth
through the history after you perform a couple of searches should give you a feel
for how this works.

Displaying the History Entry
Showing the saved search from the history is simplicity itself. You just pull the
web service, search terms, and formatted results text out of the SearchHistory
object that corresponds to the desired position in the hist array, and use that
data to update the search box and results areas in the UI:

File: webservices2.js (excerpt)

this.showHistory = function() {
 var self = Search;
 var currHist = null;
 var serviceElem = self.form.SearchService;
 displayHist = self.hist[self.histIndex];
 self.form.SearchText.value = displayHist.search;
 for (var i = 0; i < serviceElem.options.length; i++) {
 if (serviceElem.options[i].value == displayHist.service) {
 serviceElem.selectedIndex = i;
 break;
 }
 }
 document.getElementById('resultsDiv').innerHTML =
 displayHist.results;
};

Navigating back and forth through the history sets the value of the histIndex
property, which tells us which instance of the SearchHistory class we should be
displaying. The hist property is our array of SearchHistory objects, so we just
look up the desired entry using self.hist[self.histIndex].

Once we know which entry we want to display, we update the search box form
elements to display the web service and the search terms for that search, and
update the results area with our stored, formatted results. This is another case

232

Chapter 7: More Web Services and a Back Button

in which using innerHTML simplifies things for us—we use just one line of code
to show those stored results.

Now it’s time to take a look at the two different ways of hooking into the
SearchHistory to go back and forth through the search history.

Building your own Back Button
The most straightforward way to solve the Back button problem is to add your
own navigation right into the application—to put your own Back and Forward
buttons onto the page, and have the goBack and goForward methods handle the
buttons’ onclick events. The only thing that’s remotely tricky about the code
for this option is the task of disabling and re-enabling the buttons at the appro-
priate times, and you’ve actually already seen all of that code in the explanation
of the SearchHistory class above.

This solution uses clean, standards-compliant code that will work in all modern
browsers (including Safari), and plays nicely with assistive technology like screen
readers.

Of course, the downside is that the browser’s built-in buttons still don’t work as
users expect, and the extra navigation may initially confuse users. We need to
provide a safety net for those users who reflexively move their cursor up and click
on the browser’s own Back button.

Adding the Buttons
We don’t want these navigation buttons to display in browsers that can’t handle
JavaScript, so we’ll insert them into the page in the init method by calling
addHistoryNav. This approach gives the AJAX functionality to the people who
can use it, and allows us to serve a plain old web form to everyone else. Here’s
the code:

File: webservices2.js (excerpt)

this.addHistoryNav = function() {
 var self = Search;
 var searchForm = document.getElementById('searchForm');
 var historyNavDiv = document.createElement('div');
 var btn = null;
 historyNavDiv.id = 'historyNavDiv';
 btn = document.createElement('input');
 btn.type = 'button';

233

Building your own Back Button

 btn.id = 'backButton';
 btn.name = 'backButton';
 btn.value = 'Back';
 btn.title = 'Back button for search history';
 btn.className = 'inputButtonDisabled';
 historyNavDiv.appendChild(btn);
 historyNavDiv.appendChild(
 document.createTextNode('\u00A0'));
 historyNavDiv.appendChild(
 document.createTextNode('\u00A0'));
 btn = document.createElement('input');
 btn.type = 'button';
 btn.id = 'forwardButton';
 btn.name = 'forwardButton';
 btn.value = 'Forward';
 btn.title = 'Forward button for search history';
 btn.className = 'inputButtonDisabled';
 historyNavDiv.appendChild(btn);
 searchForm.appendChild(historyNavDiv);
 self.hand['forwardButton'] = self.goForward;
 self.hand['backButton'] = self.goBack;
 self.setButtonState(self.form.forwardButton, 'off');
 self.setButtonState(self.form.backButton, 'off');
};

Most of the code in this method comprises calls to DOM methods that add the
buttons to the form. In the final few lines, addHistoryNav stores the onclick
handlers for those buttons in the hand array, then disables both buttons.

Obviously, users can’t use the Back and Forward buttons to go back and forth
through their history if they haven’t performed any searches, so we disable these
buttons by default. We’ll enable the buttons when users can actually use them.

Using the Browser’s Back Button
Our other option is a fix that allows the browser’s built-in Back button to behave
as users may expect. This is the fix that you may have seen in JavaScript toolkits
such as Dojo and Really Simple History.8

This solution has the huge advantage of making the browser behave the way users
expect. However, as you’ll see, it comes at a pretty significant price in terms of

8 http://codinginparadise.org/projects/dhtml_history/

234

Chapter 7: More Web Services and a Back Button

http://codinginparadise.org/projects/dhtml_history/

the solution’s “hackishness.” The end result will not work well with assistive
technology like screen readers, and won’t work in Safari at all.

In short, the fix works like this:

❑ Store the history position in the page’s address after the hash that’s usually
reserved for internal page navigation (e.g., mypage.html#section1).

❑ Run a process on a timer that synchronizes the page state with what it sees
in the page address.

The Hash

The part of a web address that appears after the pound or hash sign is known
by many names. Here, we’ll refer to it as the hash.

Using the Location Hash
This solution works because the browser history tracks all changes to the page
address, including changes to the hash. So if you set it up right, as you run your
searches, the page URI displayed in the location bar will change like so:

webservices2.html
webservices2.html#0
webservices2.html#1
webservices2.html#2
webservices2.html#3

This allows users to click back and forth in the normal browser history and pull
up the appropriate search history entry.

Breaking Accessibility

Because this fix co-opts the internal navigation hash to store the search-history
position, internal links such as skip navigation links will break this technique.

Setting Up the Fix
Way back when we added the init method to our Search class, we set it up to
call startHist when BROWSER_BACK was set to true. This startHist method
sets up some of the IE-specific stuff for us, and activates the process we’ll be using

235

Using the Location Hash

to synchronize the history state to the one that’s indicated in the browser’s loca-
tion bar. Here’s the code:

File: webservices2.js (excerpt)

this.startHist = function() {
 var self = Search;
 var href = '';
 var ifr = null
 if (document.all) {
 ifr = document.createElement('iframe');
 ifr.name = 'historyFrame';
 ifr.id = 'historyFrame';
 ifr.src = '';
 ifr.style.display = 'none';
 document.body.appendChild(ifr);
 }
 if (location.hash) {
 href = location.href.split('#')[0];
 location = href;
 }
 setInterval(self.watchHist, 100);
};

The first big chunk of code uses DOM methods to create the iframe that allows
this hack to work in IE. Note that this means that our page must be declared as
XHTML 1.0 (or HTML 4.01) Transitional, since iframe is not supported in
Strict.

Supporting Older Versions of IE

If you want this solution to support versions of Internet Explorer that are
older than version 6, you’ll either have to include your iframe in the initial
markup for the page, or use document.write to insert it. This would mean
sticking with HTML 4.01, since XHTML throws out support for
document.write.

I’ll explain more about why this iframe is necessary in the next section.

Next, startHist removes any hash that appears in the page’s address, then uses
setInterval to start up the process that synchronizes the page state with what’s
reported in the page address.

236

Chapter 7: More Web Services and a Back Button

Setting the Hash
Next, we need some code that will set the hash in the page address for each new
search entry. Adding the hash to the page address creates the history trail through
which users can page back and forth using the browser’s built-in Back and Forward
buttons.

In updateHistory, there’s a call to a method named setHash, which we use to
append the search history index to the hash in the location. The code for setHash
looks like this:

File: webservices2.js (excerpt)

this.setHash = function(val) {
 if (val == 0) {
 location.replace('#' + val);
 }
 else {
 location = '#' + val;
 }
 if (document.all) {
 document.getElementById('historyFrame').src = 'blank.txt?'
 + val;
 }
};

In the top part of this code, you can see that it adds the new hash onto the current
location. It’s just as if the user were clicking an internal navigation link on a web
page, except that, in this case, instead of setting the location to something like
#searchResults, we’re just setting it to a number, such as #2 or #37, to indicate
the search history entry we’re looking at.

The iframe Hack for IE

Unfortunately, IE doesn’t make history entries for locations that reflect the page’s
internal navigation, so although you can change the page’s address by adding a
hash, IE won’t keep track of these changes in its history. To get this solution to
work in IE, we need to resort to a hack.

This is where things get a little ugly. It turns out that you can trick IE into making
history entries by creating an invisible iframe andhaving it make requests to a
dummy placeholder page. You stick the history index value onto the query string
of the requested page (in this case, a blank text file) and use this, when you’re
paging through the history, to know which entry to display.

237

Setting the Hash

As you perform searches, the following addresses will be loaded into the iframe:

blank.txt?0
blank.txt?1
blank.txt?2
blank.txt?3

So, for IE, you’re making the actual AJAX request to the server to get the data,
and, at the same time, you’re making a bogus request to a blank document on
the server in order to have the browser store a history entry for that search.

Watching the Hash
At the very beginning of this solution, we started up a process with setInterval
that calls the watchHist method in a tight loop; this method watches for changes
in the location hash as the user clicks Back or Forward, and displays whatever
search history entry the user has selected.

The first half of the method contains all of the IE-specific code that pulls the
history index out of the location in the iframe:

File: webservices2.js (excerpt)

this.watchHist = function() {
 var self = Search;
 var href = '';
 var index = 0;
 var hash = '';
 if (document.all) {
 href = frames['historyFrame'].document.location.href;
 hash = href.split('?')[1];
 if (hash) {
 hash = '#' + hash;
 }
 else {
 hash = '';
 }
 if (hash && location.hash && (hash != location.hash)) {
 location.replace(hash);
 }
 }

The location of the iframe will change as users click back and forth through
the history. The code looks at the current location of the iframe, pulls the
number from the query string, and then compares it to the value on the hash in

238

Chapter 7: More Web Services and a Back Button

the location bar. If there’s been any change—that is, if the user has clicked Back
or Forward since the last cycle through this method—the code synchronizes the
hash in the location bar with the query string value using location.replace.

Now that we have the correct history position loaded in the hash in the location
bar, the code is the same for both browsers from this point forward:

File: webservices2.js (excerpt)

 if (location.hash) {
 index = parseInt(location.hash.substr(1));
 }
 else {
 index = -1;
 }
 if (index != self.histIndex) {
 self.goHistoryEntry(index);
 }
};

This code pulls the search history index off the hash, and compares it with the
value that’s set in the histIndex property of the Search object. Any time there’s
a change—when the user clicks forward or backward through the history—it calls
the goHistoryEntry method to go to that specific entry.

Displaying the Entry
The goHistoryEntry code looks like this:

File: webservices2.js (excerpt)

this.goHistoryEntry = function(val) {
 var self = Search;
 self.histIndex = val;
 self.showHistory();
};

This code is pretty simple—it just sets the histIndex property to the value that
was passed in, then calls the showHistory method. At this point, we’re finally
hooked into the normal code for displaying search-history entries. The rest of
the history navigation process works exactly the same way

239

Displaying the Entry

Decisions, Decisions
It is pretty cool to click the built-in Back and Forward buttons in your browser,
and see your AJAX application change state to match, just as a normal series of
web pages would. However, the weird coding acrobatics needed to produce this
happy state of affairs definitely hark back to the bad old days before we had
widespread support for web standards or AJAX; of course, the solution also isn’t
cross-browser compatible and breaks screen reader support.

Your decision about whether to work around the AJAX Back button problem by
implementing your own set of buttons, or to do the coding gymnastics needed
to make those built-in buttons behave properly, will depend on things like how
easily your users take on and learn new things, which browsers you need to sup-
port, the emphasis you place on accessibility, and your tolerance for having
browser-specific hacks in your code.

Search App Enhancements
This search application is a nice start, but we could implement a few enhancements
that would make it much nicer to use.

Paging
Currently, the application returns only the first page of results at the default page
size set by the selected web service.

Most of the web services allow you to specify within your query how many records
you want per page, and how many pages you want to have in the results set. This
allows you to create the same kind of pagination you’d see on Google, Amazon,
eBay, and any number of other sites that allow searching.

History Menu
It would be fairly easy to extend the history code to include a history menu that
would give the user easier access to previous searches. For instance, you could
maintain a list of previous searches in a drop-down list or a div.

240

Chapter 7: More Web Services and a Back Button

Further Reading
Here are some online resources for learning more about the techniques and con-
cepts we’ve discussed in this chapter.

Apache2 and OpenSSL on Linux
http://www.devside.net/web/server/linux

This is a step-by-step instruction guide to building a web server.

http://www.debian-administration.org/articles/357
These documents explain setting up a LAMP server on Debian Sarge with
Apache2, PHP5, MySQL5, phpMyAdmin, Smarty, and ADODB. The inform-
ation covers installation and just enough sample code to let you test
everything.

http://www.tc.umn.edu/~brams006/selfsign.html
This is a step-by-step guide to creating a self-signed server certificate with
OpenSSL on Linux.

http://czarism.com/debian-ubuntu-apache2-and-openssl-https
This document explains the steps involved in enabling OpenSSL encryption
using the available Apache2 package in the apt-get repositories (for Debian
and Ubuntu Linux).

Apache2 and OpenSSL on Windows
http://www.devside.net/web/server/windows

This provides step-by-step instructions for building a web server.

http://raibledesigns.com/wiki/Wiki.jsp?page=ApacheSSL
This document describes the installation of the Win32 version of Apache
with the mod_ssl extension.

WSDL
http://www.w3schools.com/wsdl/default.asp

This is the WSDL tutorial at the W3 Schools.

241

Further Reading

http://www.devside.net/web/server/linux
http://www.debian-administration.org/articles/357
http://www.tc.umn.edu/~brams006/selfsign.html
http://czarism.com/debian-ubuntu-apache2-and-openssl-https
http://www.devside.net/web/server/windows
http://raibledesigns.com/wiki/Wiki.jsp?page=ApacheSSL
http://www.w3schools.com/wsdl/default.asp

http://www.ibm.com/developerworks/library/ws-soap/index.html
This tutorial explains the ins and outs of using WSDL in SOAP applica-
tions—it’s a solid introduction to WSDL for SOAP programmers.

http://www.w3.org/TR/wsdl
This is a note published by the World Wide Web Consortium (for discussion
purposes only). This draft represents the current thinking within Ariba, IBM,
and Microsoft.

Summary
In this chapter, we built an accessible “Web 2.0”-style application that searches
multiple web services and displays the results in a single search interface. This
app provides a good example of how AJAX makes things more convenient for the
end user by reducing the need for page refreshes, but it also fails to meet user
expectations about the way their browsers’ navigation should work. This issue,
known as the Back button problem, can be fixed either by implementing your
own history navigation within the application, or—if you’re willing to tolerate
some hackishness in your code, and don’t want the app to be accessible to screen
readers—you can hack the browser’s Back button to work as users think it should.

242

Chapter 7: More Web Services and a Back Button

http://www.ibm.com/developerworks/library/ws-soap/index.html
http://www.w3.org/TR/wsdl

Drag and Drop with AJAX Chess8
I’m following your orders, Captain. Queen to queen’s level three.
—Scott, Star Trek, The Original Series Episode 71: Whom Gods Destroy

One of the biggest benefits that AJAX has brought to browser-based programming
is that it gives us the ability to achieve within the user interface tasks that previ-
ously could only be done in a traditional installed desktop application. This is
where a lot of the hype around AJAX comes from: the idea that a web-based ap-
plication can mimic—and sometimes even replace—an application that you would
previously have had to install on your computer.

One of the user interface features that’s very popular in both desktop and AJAX
apps is drag-and-drop—the ability to click on UI elements and drag them around
the screen. Drag-and-drop has been possible for some time in browsers that sup-
port plain DHTML. However, marrying that functionality with the asynchronous
connections that AJAX makes possible gives developers some very powerful pos-
sibilities in terms of the new features we can build into web applications.

AJAX Chess
Games development has always been a forum that encouraged the creation of
new functionality and features within the computer world. And though we won’t
see browser-based versions of Unreal Tournament any time soon, a game is still

a very appropriate way to demonstrate what’s possible when you combine drag-
and-drop with AJAX.

In this chapter, we’re going to develop a multi-player-capable AJAX chess game.
Figure 8.1 shows what the finished product will look like.

Figure 8.1. AJAX Chess in action

Problems to Solve
The chess game will be the most sophisticated application in this book, and
provides the chance to apply a lot of the techniques you’ve learned in previous
chapters. It will also demonstrate real solutions to some of the thorniest problems
that face AJAX application developers as their apps become more and more

244

Chapter 8: Drag and Drop with AJAX Chess

complicated. Here’s a brief list of the functionality we’ll be building into this
application:

❑ placing interface elements relative to browser window size while using absolute
positioning

❑ allowing users to interact with lots of elements on the page without cluttering
up your code with loads of event handlers

❑ implementing drag-and-drop capabilities within the boundaries of the chess
board (i.e., users won’t be able to drag pieces off the board)

❑ aborting drag-and-drop functionality on error (i.e., putting the pieces back
when something goes awry)

❑ using AJAX polling to synchronize the game state between multiple machines
that are running the application

The interface elements for the game are fairly minimal—the board and all of the
pieces in the chess game are absolutely positioned div elements; a bit of CSS
sets the colors of board squares and pieces. Each piece is associated with a single
letter that indicates its type: R for rook, P for pawn, and so on.

Chess Convention

Note that the knight piece uses an N, because the letter K is already taken
by the king.

The Chess Class
We’ll start off as we have in every other chapter, by setting up a main, singleton
class around which we’ll organize our code. Here’s the code that sets up the class,
with some initial properties and a constant:

File: chess.js (excerpt)

var REFRESH_INTERVAL = 5;

var Chess = new function() {
 this.ajax = null;
 this.boardDiv = null;
 this.leftPos = 0;
 this.topPos = 0;
 this.squareSize = 56;

245

The Chess Class

 this.boardSize = this.squareSize * 8;
 this.pieceOffset = 10;
 this.pieceSize = this.squareSize - (this.pieceOffset * 2);
 this.panelHeight = 56;
 this.pieceList = null;
 this.selectPiece = null;
 this.dragPiece = null;
 this.lastMove = null;
 this.pollInterval = null;
 this.xPos = 0;
 this.yPos = 0;
};

This is a long list of properties, but most of them have to do with the maths of
positioning the chess pieces during the execution of drag-and-drop functionality.
There’s quite a bit of math involved in calculating the sizes and positions of our
game elements, so put on your thinking cap and be prepared to do some math
in this chapter. The good news for you is that even though I’m terrible at math,
I can do what’s needed here. And if I can, anyone can!

Starting the Application
We start the application with an init method tied to the window.onload event.
This guarantees that the page is loaded before we start trying to use the elements
in the page to build the user interface.

File: chess.js (excerpt)

window.onload = Chess.init;

Once again, the init method kicks everything off, positioning the game board
and other UI elements, loading the game state, and placing all the pieces where
they need to be located on the board. Here’s the code:

File: chess.js (excerpt)

this.init = function() {
 var self = Chess;
 self.ajax = new Ajax();
 self.boardDiv = document.getElementById('boardDiv');
 self.placeBoard();
 self.placePanel();
 self.loadGame();
 self.doPollDelay();
};

246

Chapter 8: Drag and Drop with AJAX Chess

The last thing this method does is start up the polling process, which hits the
server every five seconds to update the game state. This allows multiple people
to play or watch the game, and ensures that the display in each browser will be
up to date within a few seconds.

Setting Up the Board
Here’s the first half of the code for placeBoard. placeBoard is the method that
sets up the board on which the game will be played:

File: chess.js (excerpt)

this.placeBoard = function() {
 var self = Chess;
 var w = self.getWinWidth();
 var h = self.getWinHeight();
 var sq = null;
 var sqL = 0;
 var sqT = 0;
 var minDiff = 0;
 self.boardDiv.style.width = self.boardSize + 'px';
 self.boardDiv.style.height = self.boardSize + 'px';
 self.leftPos = (parseInt((w - self.boardSize) / 2));
 self.topPos = (parseInt((h - self.boardSize) / 2));
 minDiff = (self.topPos - this.panelHeight);
 if (minDiff < 0) {
 self.topPos = self.topPos - minDiff;
 }
 self.boardDiv.style.left = self.leftPos + 'px';
 self.boardDiv.style.top = self.topPos + 'px';

The getWinWidth and getWinHeight methods return the width and height of
the browser’s viewport. They include some cross-browser code that we need in
order to get IE to give us the measurements we need.

File: chess.js (excerpt)

this.getWinHeight = function() {
 if (document.all) {
 return document.body.clientHeight;
 }
 else {
 return window.innerHeight;
 }
};
this.getWinWidth = function() {

247

Setting Up the Board

 if (document.all) {
 return document.body.clientWidth;
 }
 else {
 return window.innerWidth;
 }
};

We use these measurements along with the size of the board to position the game
in the middle of the browser viewport. The main snippet of math used to determ-
ine the position of the board is this:

File: chess.js (excerpt)

self.leftPos = (parseInt((w - self.boardSize) / 2));
self.topPos = (parseInt((h - self.boardSize) / 2));

For those who want to keep track of the math, the top of the box should be posi-
tioned at the height of the browser viewport, minus the board’s height, then di-
vided by two. The left of the box should be positioned similarly, using the width
of the viewport and the board’s width (remember that the board is square, so its
width and height are the same).There’s also a check to ensure that there’s enough
space at the top of the viewport to allow the control panel to display. If there’s
not enough room, we move the board down just enough to make room.

The less mathematically inclined reader can just plug in the variables and know
that they work.

Once we have the basic board in place, it’s time to lay down the black and white
squares:

File: chess.js (excerpt)

 sqT = 0;
 for (var i = 0; i < 8; i++) {
 sqL = 0;
 for (var j = 0; j < 8; j++) {
 sq = document.createElement('div');
 sq.id = 'square' + i + '_' + j;
 if ((j + 1) % 2 > 0) {
 sq.className = 'boardSquareWhite';
 }
 else {
 sq.className = 'boardSquareBlack';
 }
 sq.style.width = self.squareSize + 'px';
 sq.style.height = self.squareSize + 'px';

248

Chapter 8: Drag and Drop with AJAX Chess

 sq.style.top = sqT + 'px';
 sq.style.left = sqL + 'px';
 self.boardDiv.appendChild(sq);
 sqL += self.squareSize;
 }
 sqT += self.squareSize;
 }
};

This code adds the squares to our board in two loops—an outer loop to create
each row, and an inner loop to lay down the squares in that row. We create a
div for each square, set its size to squareSize, then put it into place. We use
sqT to keep track of the current square’s position from the top of the board and
sqL to keep track of its position from the left. Once we’ve added the square to
the board, we increment sqL by squareSize, and return to the start of the loop
to add the next square in the row. This way, all the squares in the row sit right
next to each other. The same thing happens in the outer loop: we increment sqT
by squareSize and set sqL to 0 to start the next row.

As it turns out, it’s really easy to get the square colors to alternate. We simply
add the inner and outer incrementers (i and j) within the inner loop to get al-
ternating odd and even numbers. Checking the remainder of this number divided
by two (i + j % 2 in the code above) is an easy way to see if a number is odd
or even.

The Status Panel
The user interface also includes a panel at its top, above the game board, as Fig-
ure 8.2 illustrates. We’ll use this panel to display status information about the
game and to show errors. A Wipe Board button is also displayed, to allow users
to start over with a fresh game board that has all the pieces in their original pos-
itions. This panel is created and styled in the placePanel method.

Figure 8.2. The status panel displaying an error message.

File: chess.js (excerpt)

this.placePanel = function() {
 var self = Chess;
 var panelDiv = document.getElementById('panelDiv');

249

The Status Panel

 panelDiv.style.width = this.boardSize + 'px';
 panelDiv.style.left = self.leftPos + 'px';
 panelDiv.style.top = (self.topPos - this.panelHeight) + 'px';
};

Loading a Game
It’s time to start talking to the server. We have the game board set up. Now, let’s
load a game and start playing. We load up a game using the loadGame method:

File: chess.js (excerpt)

this.loadGame = function() {
 var self = Chess;
 var str = '';
 var cmd = new Command('load');
 str = JSON.stringify(cmd);
 self.execCmd(str, self.handleLoadGame);
};

This method is pretty short, and really just sends a single command—load—to
the server. It sends the command using the execCmd method, which is really just
a wrapper around the doPost method of the Ajax object that we’re using to talk
to the server:

File: chess.js (excerpt)

this.execCmd = function(str, handlerFunc) {
 var self = Chess;
 self.ajax.doPost('chess.php', str, handlerFunc);
};

Since all our commands talk to the same processing page on the server in the
same way, it makes sense to put this code in one place.

The command that’s sent to the server is an instance of the very basic Command
class, formatted using JavaScript Object Notation, or JSON, which we’ll look at
in just a moment. The Command class has two properties: cmdName, which identifies
what we want the server to do, and cmdData, which we use to pass any data the
server may need. Here’s what the class looks like:

File: chess.js (excerpt)

function Command(cmdName, cmdData) {
 this.cmdName = cmdName || '';

250

Chapter 8: Drag and Drop with AJAX Chess

 this.cmdData = cmdData || '';
};

The purpose of this class is to make it easy to send the data to the server as a
JSON string.

Using JSON
We’re going to be passing these Command objects back and forth between the
browser and the server using an extremely convenient format for data exchange
called JSON.

JSON stands for JavaScript Object Notation, and it’s basically a really easy and
convenient way to translate a JavaScript object into a string. This makes JSON
perfect for passing data back and forth between the browser and the server in an
AJAX web application.

JSON has become increasingly popular because it’s much more light-weight, and
easier to work with in JavaScript, than XML. Note that JSON does not handle
complex data types like dates, but this isn’t a huge drawback for the kind of data
interchange we’re completing here.

Encoding an Object with JSON
To use JSON in your browser-side JavaScript code, you need the json.js file,
which you can download from the JSON web site.1 Using JSON in JavaScript is
as simple as taking an object and converting it into a string using the JSON
stringify method, like so:

var cmd = new Command('load');
var str = JSON.stringify(cmd);

Voila! Now str contains cmd as a string, and you can pass it around very eas-
ily—you can even pass it back to your web server to use it there.

To decode a JSON string into an object, you can take one of two approaches. If
you trust the source of the data, you can simply run eval on the string, which is
very fast (eval executes JavaScript code stored in a string). This works because
JSON-encoded data is actually valid JavaScript that will work just fine in all
modern browsers.

1 http://www.json.org/

251

Using JSON

http://www.json.org/

On the other hand, if it’s possible that a third party could be inserting malicious
code into your data, you can use the JSON parse method, which is slower, but
much, much safer than eval.

This is how we could make our JSON string into an object:

var cmd = eval(str);

We could also use this:

var cmd = JSON.parse(str);

Decoding JSON Strings
Because JSON is so simple and so useful, you can find libraries in a huge variety
of languages that will encode and decode JSON strings, which means it’s easy to
turn your JSON-encoded string back into an object for use with your back-end
language of choice. The JSON web site2 offers links to a large number of such
libraries.

For our chess game’s PHP back end, we’re using Services_JSON, which, as I write
this, is a proposed addition to PHP’s PEAR repository. It’s not a full PEAR release
yet, but it’s perfectly usable and is currently available for download from the
proposal’s page on the PEAR web site.3

Services_JSON is a single file, JSON.php, which you have to include in your PHP
script to encode and decode JSON strings. Using it is as simple as this:

$cmd = $json->decode($str);

$cmd will be a PHP object that looks just as cmd did in JavaScript. We can
translate that object back into a JSON string like this:

$str = $json->encode($cmd);

Again, you have a nice, portable string that you can pass back to the browser.

Understanding JSON Strings

In this book, we’ve used the following method of creating objects:

2 http://www.json.org/
3 http://pear.php.net/pepr/pepr-proposal-show.php?id=198

252

Chapter 8: Drag and Drop with AJAX Chess

http://www.json.org/
http://pear.php.net/pepr/pepr-proposal-show.php?id=198
http://pear.php.net/pepr/pepr-proposal-show.php?id=198

function Command() {
 this.cmdName = '';
 this.cmdData = '';
}

There is another way JavaScript objects can be represented: in object literal
notation:

var Command = {
 'cmdName': '',
 'cmdData': ''
};

This is fairly easy to understand at a glance: it just declares a bunch of
properties, followed by their values. JSON takes this representation of an
object and makes it into one long string:

str = '{"cmdName":"","cmdData":""}';

Displaying Game State
Once we’ve passed that JSON-encoded command to the back end in order to
load the game, our PHP back end will send us another JSON string of the previ-
ously saved game state.

The handleLoadGame Method
This string comes back to handleLoadGame, which we defined as the handler for
the Ajax doPost call we used to talk to the server. Here’s the code:

File: chess.js (excerpt)

this.handleLoadGame = function(str) {
 var self = Chess;
 var resp = JSON.parse(str);
 if (resp.respStatus == 'ok') {
 self.displayGame(resp.respData);
 }
 else {
 alert(resp.respDatastr);
 }
};

253

Displaying Game State

Here, you can see how truly easy it is to use JSON-encoded data. We simply call
JSON.parse on the string that’s passed in, and it magically gives us a nice
JavaScript object with which to work. The response from the server is a JSON-
encoded Response object. In PHP, the Response class’s definition looks like this:

File: chess.php (excerpt)

class Response {
 function Response($respStatus = "", $respData = "") {
 $this->respStatus = $respStatus;
 $this->respData = $respData;
 }
}

When it’s decoded by JSON.parse in your JavaScript code, it will be as if this
class was declared in JavaScript—it will have respStatus and respData properties,
just like it does on the server side. This Response class looks a lot like the Command
class: it contains a property that communicates the status of the game, and a
property for any data the server is sending back with the response.

After we send the PHP back end a load command, the server will return a
Response object with respStatus set to ok, and respData set to an instance of
a class called GameState, which looks like this:

File: chess.php (excerpt)

class GameState {
 function GameState($lastMove = null, $pieceList = null) {
 $this->lastMove = $lastMove;
 $this->pieceList = $pieceList;
 }
}

This object has the two important pieces of information that we’ll need in order
to build the game board:

❑ the most recent move

❑ the current positions of all the pieces on the board

With JSON, it’s easy to encode and send this data back to the browser, and it’s
even easier to use the information once it gets there.

254

Chapter 8: Drag and Drop with AJAX Chess

The displayGame Method
In handleLoadGame, we receive an instance of GameState in the respData property
of the response, and pass it along to the displayGame method like this:

File: chess.js (excerpt)

self.displayGame(resp.respData);

Here’s the first chunk of the displayGame method:

File: chess.js (excerpt)

this.displayGame = function(gameState) {
 var self = Chess;
 var piece = null;
 var label = '';
 var pieceDiv = null;
 var colX = 0;
 var colY = 0;
 self.lastMove = gameState.lastMove;
 self.pieceList = gameState.pieceList;
 if (self.lastMove.moveTime) {
 self.setStatusMsg(self.lastMove.movePiece.color,
 self.lastMove.moveTime);
 }
 else {
 self.setStatusMsg('(New game)');
 }

After some initial variable setup, which includes setting lastMove and pieceList
to their respective properties (as taken from the GameState object that was passed
in), we display the status message using setStatusMsg, which tells users what’s
going on in the game. If there was a previous move, it displays some information
about that move; otherwise it just says, “New game.”

The pieceList Array

Next, we do the hard work—putting all the pieces into the right spots on the
board. We’re stepping through the items in pieceList, an associative array that
contains a JavaScript Object for each piece. In this array, the number five black
pawn would look like this:

pieceList['black_p5'] = {
 'color': 'black',
 'id': 'black_p5',

255

The displayGame Method

 'pos': [6,4],
 'origPos': []
};

The first thing we need to do is to load all of this data into a series of Piece ob-
jects, which we will use to control the pieces on the board.

The Piece Class

The Piece class offers methods for performing tasks such as informing users that
their move is being processed after they move a chess piece, and determining if
a piece has moved from its original location after it’s been dropped:

File: chess.js (excerpt)

function Piece(color, id, pos) {
 this.color = color;
 this.id = id;
 this.pos = pos;
 this.origPos = [];

 this.backUpPos = function() {
 this.origPos = [this.pos[0], this.pos[1]];
 };

 this.updatePos = function(colX, colY) {
 this.pos = [colX, colY];
 };

 this.restore = function() {
 this.pos = [this.origPos[0], this.origPos[1]];
 };

 this.startProcessing = function() {
 var pieceDiv = document.getElementById(this.id);
 pieceDiv.style.background = '#bbe';
 pieceDiv.style.cursor = 'progress';
 pieceDiv.style.zIndex = 10;
 };

 this.endProcessing = function() {
 var pieceDiv = document.getElementById(this.id);
 if (this.id.indexOf('white') > -1) {
 pieceDiv.style.background = '#fff';
 }
 else {

256

Chapter 8: Drag and Drop with AJAX Chess

 pieceDiv.style.background = '#000';
 }
 pieceDiv.style.cursor = 'move';
 pieceDiv.style.zIndex = 5;
 };

 this.wasMoved = function(colX, colY) {
 if (colX == this.pos[0] && colY == this.pos[1]) {
 return false;
 }
 else {
 return true;
 }
 };
}

You can see that we’ve defined this class with parameters, effectively giving
ourselves a constructor method for this class. We use these parameters to initialize
the properties of each Piece in the list. We do this in the next part of
displayGame:

File: chess.js (excerpt)

 for (var i in self.pieceList) {
 piece = self.pieceList[i];
 self.pieceList[i] = new Piece(piece.color, piece.id,
 [piece.pos[0], piece.pos[1]]);
 piece = self.pieceList[i];
 label = piece.id.split('_')[1];
 label = label.substr(0,1).toUpperCase();
 pieceDiv = document.createElement('div');
 pieceDiv.id = i;
 pieceDiv.className = piece.color + 'PieceDiv';
 pieceDiv.style.width = self.pieceSize + 'px';
 pieceDiv.style.height = self.pieceSize + 'px';
 pieceDiv.style.left = self.calcPosFromCol(piece.pos[0]) +
 'px';
 pieceDiv.style.top = self.calcPosFromCol(piece.pos[1]) + 'px';
 pieceDiv.style.lineHeight = self.pieceSize + 'px';
 pieceDiv.appendChild(document.createTextNode(label));
 self.boardDiv.appendChild(pieceDiv);
 }
 return true;
};

257

The displayGame Method

After adding a new Piece to the pieceList array, we get the letter that identifies
the piece from the piece’s id. Remember that when we first looked at the
pieceList array that was returned from the server, we saw that each piece was
identified with a string, such as black_p5 for the number five black pawn, or
white_k for the white king. The code above extracts the character just after the
first underscore character, converts it to uppercase, and uses it as the label for
this piece.

Finally, we use DOM methods to create the div element for this piece and place
it on the board. Part of this code sets the element’s className to blackPieceDiv
or whitePieceDiv, both of which include the declaration position: absolute
in chess.css. These styles also include the declaration cursor: move; this gives
the pieces a “move” cursor so that, when users move their cursor over the pieces,
the cursor changes to indicate that users can click on and drag those pieces.

Note that, to make a label align vertically in the middle of a div properly, we
have to set the lineHeight property of its style to the same value as its vertical
height. The other interesting part of this code is the calls to the calcPosFromCol
method, which figures out the pixel position of the piece on the board. The
method below shows more of that pixel-pushing math stuff you can ignore if
you’re not mathematically inclined:

File: chess.js (excerpt)

this.calcPosFromCol = function(col) {
 var self = Chess;
 return (col * self.squareSize) + (self.pieceOffset - 1);
};

Pushing One More Pixel

Part of the process of calculating our pieces’ positions is the subtraction of
one pixel. This is due to the slightly screwy CSS specs, which say that a one-
pixel border on a div will make its actual size on the page one pixel larger.
However, despite this addition, the width and height properties of its
style do not change.

Global Event Handlers
Now that we’ve loaded a game, it’s time to start dragging some pieces around
and playing chess.

258

Chapter 8: Drag and Drop with AJAX Chess

By now, you’re very familiar with the concept of DOM events, and using JavaS-
cript to attach handlers to the events supported by the various DOM elements
in your page. Some examples of technique include the ubiquitous window.onload
event we use to start up our applications, and element.onclick, which will
handle a mouse click on just about any element.

Using DOM events like this makes it easy to have your browser-based UI respond
to user input in lots of interesting ways. However, as web applications become
more complicated, so do the user interfaces. The UI needs to do more to give
users the responsive, interactive experience they expect from a modern web app.

And as the interface gets more complicated, it can become increasingly difficult
to keep track of the event handlers you’re using, and what actually happens in
your app when you click, double-click, or mouse over certain parts of your applic-
ation’s user interface.

Going Global
The solution to the handler tracking problems that arise from increased UI
complexity is to use global event handlers. Rather than tying event handlers to
individual elements all over the page, you can create global, top-level handlers
for each type of event that you want your application to handle, then route all
of those events through a single handler. This handler determines what to do
with each event based on the id of the element that triggered it. This process of
routing input to the proper handling code is sometimes called event dispatch.

By using global event handlers, you control the flow of each type of user input
through a single channel. And in the asynchronous world of AJAX programming,
this is hugely helpful in managing your app’s complexity, and in debugging when
things go wrong.

Handling Mouse Clicks
Let’s start with the most basic example of an event dispatch: dispatching mouse
clicks.

To create a mouse click dispatcher, we create a global event handler for mouse
clicks by attaching a handler to document.onmousedown, like so:

File: chess.js (excerpt)

document.onmousedown = Chess.mouseDownHandler;

259

Going Global

Now, every click of the mouse anywhere in the browser window will call the
mouseDownHandler method of our Chess class. Here’s the code for that method:

File: chess.js (excerpt)

this.mouseDownHandler = function(e) {
 var self = Chess;
 var id = '';
 if (self.proc) {
 return false;
 }
 if (!e) {
 e = window.event;
 }
 id = self.getSrcElemId(e);
 pat = /^(white|black)_/;
 if (pat.test(id)) {
 self.selectPiece = self.pieceList[id];
 self.dragPiece = new Draggable(id);
 }
};

The very first thing this code does is check to see if a move is currently processing.
If the application is processing a move, the return statement will prevent users
from moving any of the other pieces on the board. This is another advantage of
centralizing your event handling in the one place—you can disable certain inputs
from users much more easily.

Next comes some code that allows IE to see the event. You might remember from
Chapter 5 that IE doesn’t pass the event details as a parameter like Firefox does.
Instead, it gets the event from the window.event property. The code passes the
event to a method called getSrcElemId, which returns the id of the element on
which the user clicked:

File: chess.js (excerpt)

this.getSrcElemId = function(e) {
 var ret = null;
 if (e.srcElement) {
 ret = e.srcElement;
 }
 else if (e.target) {
 ret = e.target;
 }
 if (ret.nodeType == 3) {
 ret = ret.parentNode;
 }

260

Chapter 8: Drag and Drop with AJAX Chess

 return ret.id
};

This is very similar to the getSrcElem method we saw in Chapter 5. The last if
statement makes sure we’re not dealing with a text node. If ret is a text node,
ret is set to its own parent, which will always be an element.

Once we have the id of the element that the user clicked on, we can decide what
action to take. We use a regular expression to determine whether the id in
question refers to one of our chess pieces. The chess pieces’ ids will always contain
either black or white.

Once mouseDownHandler knows that a piece was actually clicked on, it sets the
selectPiece property to point to the piece that’s currently being moved, and
creates a Draggable object to complete the drag-and-drop procedure.

When users click on a chess piece, we don’t know for sure that they want to drag
the piece. Yet, on each click, we instantiate a Draggable object so that if they
do continue to hold down the mouse button and drag the piece, we’ll be ready
to complete the move. We store this Draggable object in the dragPiece property
of the Chess class so that we can reference it from the global event handlers for
mousemove and mouseup. Let’s take a look at these now.

Moving Pieces
Now it’s time to make our pieces move around on the board. Figure 8.3 shows
a piece being dragged to a new position.

Figure 8.3. Dragging a chess piece

We use three events together to create our drag-and-drop functionality:

261

Moving Pieces

mousedown As we’ve already seen, when a piece is clicked on, the handler for
that event creates a Draggable object for the piece.

mousemove If a Draggable object exists (i.e., the user has pressed the mouse
button while hovering over the piece, but hasn’t released it), this
event’s handler will move the piece’s div around on the board to
reflect the cursor’s movement.

mouseup If the handler for this event sees that a Draggable object exists, it
will drop the piece into place, destroy the Draggable object, and
save the move to the back end.

The mousemove Handler
Every time the user moves the mouse, the mousemove event handler will check
to see if a Draggable object has been created in response to a previous click. If
there is a Draggable object in the dragPiece property, it knows to call the move
method of Draggable, which will move the piece.

Here’s the code for the mouseMoveHandler global event handler:

File: chess.js (excerpt)

this.mouseMoveHandler = function(e) {
 var self = Chess;
 if (e) {
 self.xPos = e.pageX;
 self.yPos = e.pageY;
 }
 else {
 self.xPos = window.event.x;
 self.yPos = window.event.y + document.body.scrollTop;
 }
 if (self.dragPiece) {
 self.dragPiece.move();
 }
};

The other thing we have to do when the mouse moves is to record the pointer’s
pixel position within the browser window in the xPos and yPos properties.

The mouseup Handler
Here’s the code for the mouseUpHandler global event handler:

262

Chapter 8: Drag and Drop with AJAX Chess

File: chess.js (excerpt)

this.mouseUpHandler = function(e) {
 var self = Chess;
 var id = '';
 if (self.dragPiece) {
 self.dragPiece.drop();
 self.dragPiece = null;
 }
};

This code checks to see if a Draggable class has been created and, if so, does the
drop of the piece, placing the piece in the center of the square over which it’s
being held. Finally, the move is saved to the back end.

After this code calls the drop method, it sets dragPiece to null so that the other
handlers will know that we’ve finished dragging the piece.

The Draggable Class
Here’s the beginning of the code that creates our Draggable objects:

File: chess.js (excerpt)

function Draggable(divId) {
 this.div = document.getElementById(divId);
 this.clickOffsetX = (Chess.toBoardX(Chess.xPos) -
 this.div.offsetLeft);
 this.clickOffsetY = (Chess.toBoardY(Chess.yPos) -
 this.div.offsetTop);
 this.div.style.zIndex = 10;

Since we’re going to be moving the piece’s div around the board, we will, of
course, need a reference to that div.

The last thing we need to do is to set that piece’s div’s zIndex CSS property to
a higher number than the other pieces. This makes the piece appear above all
the others as you drag it around the board.

Hyphens in CSS Properties

Some CSS properties, such as z-index and font-family, have hyphens
in their names. When you’re setting these properties in your JavaScript code,
you must remember to change those hyphenated names to camel case. So
z-index becomes zIndex, font-family becomes fontFamily, and so
on.

263

The Draggable Class

The Click Offset
The clickOffsetX and clickOffsetY properties are calculated when the
Draggable object is first instantiated. They record the distance of the mouse
pointer from the left and top edges of the piece when the user first clicks—a figure
that’s important for our pixel-pushing math. Figure 8.4 shows a graphical repres-
entation of the X and Y click offset values.

Figure 8.4. The click offset from the left and top edges

To move a piece to a new location on the screen, you set its left and top style
properties, which, of course, set the position of the top-left corner of the piece’s
div. But if you set these properties to the position of the cursor, you’ll find that
the piece suddenly jumps so that its top left corner is positioned where the cursor
is located.

To avoid this jumping effect, we add the clickOffsetX and clickOffsetY values
to our positioning calculations so that, as the piece moves about, the cursor is
located in the middle of it. This makes it look like your users are “grabbing” the
element with the cursor and dragging it around.

Viewport Positions and Board Positions
It’s important to note that the xPos and yPos measurements are taken from the
top-left corner of the browser viewport, whereas your pieces are positioned in
relation to the top-left corner of the chess board div. Fortunately, it’s very easy
to calculate the mouse’s position within the board based on the location of the
mouse and the location of the board—we just subtract the left position of the

264

Chapter 8: Drag and Drop with AJAX Chess

board from the mouse’s x-axis position, and the top position of the board from
the mouse’s y-axis position. Here are the methods we use to do it:

File: chess.js (excerpt)

this.toBoardX = function(xPos) {
 return xPos - Chess.leftPos;
};

this.toBoardY = function(yPos) {
 return yPos - Chess.topPos;
};

This allows us to take the values reported by the mouse as it moves, and translate
them into the values we need in order to move the pieces around on the board
div.

The move Method
When users move the mouse, the global handler mouseMoveHandler checks to
see if there’s a Draggable object, and, if there is, it starts to move the div of the
piece that’s tied to the Draggable object using Draggable’s move method.

Here’s the move method of the Draggable class:

File: chess.js (excerpt)

this.move = function() {
 var calcX = 0;
 var calcY = 0;
 var xMin = 0;
 var xMax = 0;
 var yMin = 0;
 var yMax = 0;
 calcX = Chess.xPos - this.clickOffsetX;
 calcY = Chess.yPos - this.clickOffsetY;
 xMin = Chess.leftPos - 1;
 xMax = Chess.leftPos + Chess.boardSize - Chess.pieceSize - 1;
 yMin = Chess.topPos - 1;
 yMax = Chess.topPos + Chess.boardSize - Chess.pieceSize - 1;
 if (calcX < xMin) {
 calcX = xMin;
 }
 if (calcX > xMax) {
 calcX = xMax;
 }

265

The move Method

 if (calcY < yMin) {
 calcY = yMin;
 }
 if (calcY > yMax) {
 calcY = yMax;
 }
 this.div.style.left = parseInt(Chess.toBoardX(calcX)) + 'px';
 this.div.style.top = parseInt(Chess.toBoardY(calcY)) + 'px';
};

At the start of this method, we add the offset value that keeps the piece in the
right spot under the pointer as the user drags the piece around the board. If we
didn’t add this offset, the upper-left corner of the div would be sitting right under
the cursor.

Next, we deal with the board constraints, and position the piece on the board.
The left and top constraints are easy—they’re the top and left-hand edges of the
board. For the right-hand and bottom edges, we have to include the size of the
piece as we figure the constraints, since we’re setting the position of the piece
using the left-hand and top of the game piece div elements. Figure 8.5 shows
where the lines for the constraints are located on the board.

Once we set the minimum and maximum values for both the X and Y axes, we
have to make sure the X and Y positions we’re setting actually obey those con-
straints. We confirm this in a series of four if statements. Once we’re sure that
both calcX and calcY are within our constraints, we use those values to set the
left and top properties of the div for the piece.

The drop Method
The mouseUpHandler global handler fires whenever the user releases the mouse
button. If there is a Draggable object, the handler calls the drop method of the
Draggable class, then destroys the Draggable object.

The drop method takes care of two basic functions:

❑ the “snap-to” for the chess pieces when they’re dropped on the board

❑ saving the data about the move to the back end

266

Chapter 8: Drag and Drop with AJAX Chess

Figure 8.5. Drag constraint lines on the game board

Snap-to

You can see snap-to at work when the dragged chess piece “snaps” into place in
the center of the square on which it was dropped. The snap-to happens in the
drop method:

File: chess.js (excerpt)

this.drop = function() {
 var calcX = 0;
 var calcY = 0;
 var deltaX = 0;
 var deltaY = 0;
 var colX = 0;
 var colY = 0;

267

The drop Method

 calcX = this.div.offsetLeft;
 calcY = this.div.offsetTop;
 deltaX = calcX % Chess.squareSize;
 deltaY = calcY % Chess.squareSize;
 calcX = this.getSnap(deltaX, calcX);
 calcY = this.getSnap(deltaY, calcY);
 calcX = calcX + Chess.pieceOffset - 1;
 calcY = calcY + Chess.pieceOffset - 1;
 this.div.style.left = calcX + 'px';
 this.div.style.top = calcY + 'px';
 colX = Chess.calcColFromPos(calcX);
 colY = Chess.calcColFromPos(calcY);
 if (Chess.selectPiece.wasMoved(colX, colY)) {
 Chess.doMove(colX, colY);
 }
 else {
 this.div.style.zIndex = 5;
 }
 this.div = null;
};

The important variables to watch here are deltaX and deltaY. These are the re-
mainders from calculations in which the X and Y mouse positions are divided by
the size of a square (we get these remainders by using the modulo operator, %).
deltaX and deltaY are the distances between the position at which the piece
was dropped and the nearest edge of a square, along the X and Y axes respectively.

Once we have this number, we can figure which direction to “snap” the piece in
by checking whether the number is bigger or smaller than half the height (or
width) of the square. We do this using the getSnap method:

File: chess.js (excerpt)

this.getSnap = function(delta, pos) {
 if (delta > (Chess.squareSize / 2)) {
 pos += (Chess.squareSize - delta);
 }
 else {
 pos -= delta;
 }
 return pos;
};

This makes good sense if you think about it—we can work out which way the
piece should jump by seeing whether it covers another square by more than half.

268

Chapter 8: Drag and Drop with AJAX Chess

Once we’ve got the piece snapping into place, it’s time to save this move to the
back end in drop. We save our piece positions as row and column coordinates
— not pixel positions — inside Piece objects, so we have to translate the piece’s
position into row and column numbers with the calcColFromPos method. Despite
its name, this method calculates both row and column coordinates—the math
involved is exactly the same regardless of whether we’re talking about rows or
columns. This is a short method that just divides the piece’s pixel position by
the size of a board square:

File: chess.js (excerpt)

this.calcColFromPos = function(pos) {
 var self = Chess;
 return parseInt(pos / self.squareSize);
};

Once we know the column numbers for the new piece’s position, we perform a
final check to make sure the player didn’t drag the piece around the board and
drop it right back in its original position. We perform this check with the
wasMoved method of the Piece class.

The column number for each Piece is stored in the pos property. That property
is a two-item array that stores the piece’s coordinates on the board. The wasMoved
method checks to make sure the values in the pos array have changed, like this:

File: chess.js (excerpt)

this.wasMoved = function(colX, colY) {
 if (colX == this.pos[0] && colY == this.pos[1]) {
 return false;
 }
 else {
 return true;
 }
};

If we can verify that yes, the piece is actually in a new spot, then it’s time to go
ahead and save that change to the back end. We do this with the doMove method
in the main Chess class.

The doMove Method
The doMove method actually takes care of updating the pos property of the Piece
object that the user is moving, looks for captured pieces, then saves the changes
to the back end.

269

The doMove Method

Here’s the first chunk of the method:

File: chess.js (excerpt)

this.doMove = function(colX, colY) {
 var self = Chess;
 var occPieceId = '';
 var cmd = null;
 var move = null;
 var err = '';
 self.selectPiece.backUpPos();
 self.selectPiece.updatePos(colX, colY);

Making a Backup
Always back up your data. That’s a lesson many of us have had to learn the hard
way!

Before we save the move, we need to make a backup snapshot of the moved
piece’s original position data. We’ll use this backup to put the piece back where
it originally started if there’s some kind of error. We use the backupPos method
of the Piece to make the backup:

File: chess.js (excerpt)

this.backUpPos = function() {
 this.origPos = [this.pos[0], this.pos[1]];
};

That method just sets the origPos property to the same array values that were
originally in the pos property.

Once we have a backup of the original position info, it’s time to update the pos
property of the Piece so that we can send it along to the back end to be saved.
The updatePos method of the Piece class does this:

File: chess.js (excerpt)

this.updatePos = function(colX, colY) {
 this.pos = [colX, colY];
};

Error Checking
The next section in the doMove method checks for errors, to make sure that users
can’t do something goofy, like capture their own pieces:

270

Chapter 8: Drag and Drop with AJAX Chess

File: chess.js (excerpt)

if ((!self.lastMove.moveTime) &&
 (self.selectPiece.color == 'black')) {
 err = 'White has to go first.';
}
else if ((self.lastMove.moveTime) &&
 (self.selectPiece.color == self.lastMove.movePiece.color)) {
 err = 'Same color as previous move.';
}
else {
 occPieceId = self.getOccupyingPieceId();
 if (occPieceId.indexOf(self.selectPiece.color) > -1) {
 err = 'Cannot capture a piece of your own color.';
 }
}

The last section in the error-checking code also looks to see if any piece was
captured. It uses the getOccupyingPieceId method to put the id of any captured
piece in Chess’s occPieceId property. Here’s the code for that method:

File: chess.js (excerpt)

this.getOccupyingPieceId = function() {
 var self = Chess;
 var p = null;
 for (var i in self.pieceList) {
 p = self.pieceList[i];
 if ((self.selectPiece.pos[0] == p.pos[0] &&
 self.selectPiece.pos[1] == p.pos[1]) &&
 (self.selectPiece.id != p.id)) {
 return p.id;
 }
 }
 return '';
};

If the square is unoccupied, the method just returns an empty string, which tells
us that no piece has been captured.

Aborting the Move on Error
If there is an error, we alert the user and put the piece back where it was. This is
what happens in the next bit of doMove:

271

Aborting the Move on Error

File: chess.js (excerpt)

if (err) {
 self.setErrMsg(err);
 self.abortMove();
}

The abortMove method puts the div for the piece back where it was, and restores
the X and Y column data to the pos property for the piece from its origPos
backup:

File: chess.js (excerpt)

this.abortMove = function() {
 var self = Chess;
 var pieceDiv = document.getElementById(self.selectPiece.id);
 pieceDiv.style.left = self.calcPosFromCol(
 self.selectPiece.origPos[0]) + 'px';
 pieceDiv.style.top = self.calcPosFromCol(
 self.selectPiece.origPos[1]) + 'px';
 self.selectPiece.restore();
};

It’s always good to have a backup of your data. The restore method of the Piece
class restores the pos property values from the backup copy stored in origPos:

File: chess.js (excerpt)

this.restore = function() {
 this.pos = [this.origPos[0], this.origPos[1]];
};

You can see this abortMove action at work if you try to capture one of your own
pieces, or try to move out of turn.

Saving the Move
If there are no errors, we can proceed to save the move to the app’s back end.
This makes up the remainder of doMove:

File: chess.js (excerpt)

 else {
 clearTimeout(self.pollInterval);
 self.ajax.abort();
 self.setErrMsg('');
 move = new Move(self.selectPiece, occPieceId);
 cmd = new Command('move', move);

272

Chapter 8: Drag and Drop with AJAX Chess

 var str = JSON.stringify(cmd);
 self.execCmd(str, self.handleMove);
 self.proc = true;
 self.selectPiece.startProcessing();
 }
};

In the next section, we’ll be talking about the polling process that keeps the game
state displayed in the browser in sync with the back end. It’s a process that runs
continuously, hitting the server every five seconds and looking for the other
player’s moves. We don’t want to be checking for those moves while processing
our own move, so the first step in the process of saving the changes is to turn
that polling process off, using clearTimeout on the pollInterval property that
has the ID for that process.

Then, after clearing out any error messages that might be showing, we can go
ahead and package up the move data to send to the server. Given JSON’s ability
to send objects back and forth between the app and the server easily, it makes
sense to package up the data in a class called Move:

File: chess.js (excerpt)

function Move(movePiece, takePieceId, moveTime) {
 this.movePiece = movePiece || null;
 this.takePieceId = takePieceId || '';
 this.moveTime = moveTime || '';
}

The movePiece property is the Piece object for the moved piece, while
takePieceId is the id of any captured piece. If there’s no captured piece, the
value is an empty string. We leave the moveTime property empty right now. That
property is going to be set by the server, then passed back in another JSON string.
It really is amazing how easy JSON makes it to pass objects back and forth
between the browser and the server.

Once the Move object is all set up, we set it as the cmdData property of the Command
object we’re sending back to the server. It’s then time to encode the Command
object as a JSON string and pass it to the server.

The last thing we need to do is set the proc property of the Chess object to true
so that we know to disable all user input while the move is processing, and to
give the piece an appearance that indicates that it’s in a “processing” state. We
do that with the startProcessing method of the Piece object that’s being
moved:

273

Saving the Move

File: chess.js (excerpt)

this.startProcessing = function() {
 var pieceDiv = document.getElementById(this.id);
 pieceDiv.style.background = '#bbe';
 pieceDiv.style.cursor = 'progress';
 pieceDiv.style.zIndex = 10;
};

The “progress” cursor style lends a very nice effect to the move: when the user
drops a piece onto the board, the cursor turns into the “Just a moment please”
cursor that makes it very obvious that something’s happening to the piece. Fig-
ure 8.6 shows what this cursor looks like.

Figure 8.6. Processing a move with the “progress” cursor

The handleMove Method
The handler for the server response that’s returned after a piece is moved is the
handleMove method. If the server sends back a response with ok in its respStatus
property, the code will look into respData for the updated lastMove object that
the server has passed back.

This is a Move object exactly like the one we just passed to the server; however,
the server has added the moveTime property so that we know when the last move
actually happened. We’re setting moveTime over on the server side so that people
in multiple timezones can play AJAX Chess and all the move times will be correct.
If we let the browser set moveTime, moves made by a girl on the west coast of the
US would appear to have occurred four hours previously to a guy playing on the
east coast.

Here’s the code for handleMove:

274

Chapter 8: Drag and Drop with AJAX Chess

File: chess.js (excerpt)

this.handleMove = function(str) {
 var self = Chess;
 var take = '';
 var takeDiv = null;
 var resp = JSON.parse(str);
 if (resp.respStatus == 'ok') {
 self.lastMove = resp.respData.lastMove;
 self.setStatusMsg(self.lastMove.movePiece.color,
 self.lastMove.moveTime);
 take = self.lastMove.takePieceId;
 if (take) {
 takeDiv = document.getElementById(take);
 self.boardDiv.removeChild(takeDiv);
 delete self.pieceList[take];
 }
 }
 else {
 alert(resp.respDatastr);
 self.abortMove();
 }
 self.selectPiece.endProcessing();
 self.proc = false;
 self.doPollDelay();
};

The handleMove method takes the updated Move object that’s sent from the
server, and uses it to set the status message in the panel above the board; this
way, users know when the last move was made, and which color (or player) took
the last turn.

Next, the code takes care of removing the captured piece (if there was one). We
have to remove both the div that represents the piece on the board, and the
Piece object in the pieceList.

The rest of the code deals with what to do in an error condition—if the server
couldn’t save the move for some reason, for example—and the cleanup that occurs
after the move finishes. Once the move has been successfully saved on the server,
we have to put the appearance of the piece back to normal using the Piece’s
endProcessing method:

File: chess.js (excerpt)

this.endProcessing = function() {
 var pieceDiv = document.getElementById(this.id);
 if (this.id.indexOf('white') > -1) {

275

The handleMove Method

 pieceDiv.style.background = '#fff';
 }
 else {
 pieceDiv.style.background = '#000';
 }
 pieceDiv.style.cursor = 'move';
 pieceDiv.style.zIndex = 5;
};

It also sets the proc property of the Chess object to false so that the global
event handler for mouse clicks knows to start accepting user input again.

Lastly, the handleMove method starts up the polling process to keep the game
state on the browser in sync with what’s happening on the server. When the
other player makes a move, the board will update so that we can see the new
move.

Polling for Server State
Playing chess all by yourself isn’t that fun, and if you want to play with someone
in the same location, you might as well dust off that old board in your closet and
use real pieces. There’s not much point having a web application if you don’t
take advantage of that fact that it’s available over the Web.

AJAX Chess can be played by people in two different locations, as long as they’re
both pointing their browsers to the same server. (Actually, more than just two
players can access the running game at any time, which means you can let your
friends watch you play, or cheat by getting a friend who’s good at chess to help
you out!)

We keep all the browsers that are talking to the game in sync using a doPoll
method that is called on a timer to poll the server and get the updated game
state. The init method in the Chess class sets up this timer by calling the
doPollDelay method.

Just like in the monitoring applications we built in Chapter 2 and Chapter 3, we
only want a polling request to start when the current one completes. We achieve
this by chaining the requests together with setTimeout—when a request finishes,
it calls another setTimeout to perform another request after a short pause.

Here’s the code for doPollDelay:

276

Chapter 8: Drag and Drop with AJAX Chess

File: chess.js (excerpt)

this.doPollDelay = function() {
 var self = Chess;
 self.pollInterval = setTimeout(self.doPoll,
 REFRESH_INTERVAL * 1000);
};

The setTimeout call uses the REFRESH_INTERVAL constant to set the wait time
that will elapse before the doPoll method that polls the server is run. We store
the interval ID for the setTimeout process in the pollInterval property—as
we saw earlier in the discussion of the doMove method, we pass this value to
clearTimeout in order to stop the polling process while we save a move, so that
the browser isn’t trying to sync the game state at the same time as it’s saving a
move.

Here’s the doPoll method:

File: chess.js (excerpt)

this.doPoll = function() {
 var self = Chess;
 var str = '';
 var cmd = new Command();
 cmd.cmdName = 'poll';
 cmd.cmdData = self.lastMove;
 str = JSON.stringify(cmd);
 self.execCmd(str, self.handlePoll);
};

The doPoll method sends a poll Command object to the server, along with the
Move stored in the lastMove property, which the server compares with the most
recent move.

The handlePoll method deals with the response from the server:

File: chess.js (excerpt)

this.handlePoll = function(str) {
 var self = Chess;
 var resp = JSON.parse(str);
 if (resp.respStatus == 'update') {
 self.clearPieces();
 self.displayGame(resp.respData);
 }
 self.doPollDelay();
};

277

Polling for Server State

If the respStatus property of the server’s response is update, we know to clear
the board with the clearPieces method, then update the board using the updated
game state in the respData property of the server’s response. This data is stored
in the format we used in the application’s initial load via the loadGame and
handleLoadGame methods, and we display the updated game state the same
way—with the displayGame method.

Otherwise, if there’s been no change to the state of the game since our last move,
the code does nothing.

The last thing that the handler does here is call the doPollDelay method again;
this will set up another call to this method once the polling interval has passed.

Wiping the Board
If you’re finished with a game—or maybe you’re just losing really badly—you
may want to wipe the board and start over. Figure 8.7 shows the board after it’s
been wiped.

If you click that shiny Wipe Board button at the top of the app, you’ll call the
wipeBoard method that clears the board and resets it for a new game.

Here’s the code for wipeBoard:

File: chess.js (excerpt)

this.wipeBoard = function() {
 var self = Chess;
 var str = '';
 var cmd = new Command('wipe');
 str = JSON.stringify(cmd);
 self.execCmd(str, self.handleWipeBoard);
};

wipeBoard sends back to the server a Command object with the cmdName of wipe,
and sets the handler for the server response to be handleWipeBoard:

File: chess.js (excerpt)

this.handleWipeBoard = function(str) {
 var self = Chess;
 var resp = JSON.parse(str);
 if (resp.respStatus == 'ok') {
 self.clearPieces();
 self.displayGame(resp.respData);

278

Chapter 8: Drag and Drop with AJAX Chess

Figure 8.7. A fresh game on the board after wiping

 }
 else {
 alert(resp.respDatastr);
 }
};

The server responds with a JSON-encoded string of a clean game board. The code
for handleWipeBoard parses it into the list of pieces and positions and we display
it with the displayGame method, just as we do after a move or on initial applic-
ation load.

279

Wiping the Board

AJAX Chess Back End
The back-end processing page included in the code archive is a PHP page, called
chess.php, which stores the game state in a flat text file, chessboard.txt. To
allow the application to save the game state to the text file, you’ll need to make
sure your web server has write permissions for the chessboard.txt file. You’ll
also need the “proposed” PHP PEAR package Services_JSON, which, as of this
writing, is downloadable from the PEAR web site.4 All you’ll need to do is make
the JSON.php file available to your application.

As with all the examples in this book, you could implement a back end for this
chess game in any language for which a JSON library is available—PHP, Ruby,
Perl, Python, Java, or even Lisp. The beauty of using JSON is that your JavaScript
code doesn’t have to know anything about how the back end is implemented—it
just hands off JavaScript objects to the server, and gets JavaScript objects right
back.

The processing page is fairly straightforward PHP, but you might want to have
a look at it if you’re interested to see how you can use JSON to apply the same
objects on both the front and back ends of your web application.

Future Enhancements
If you’ve played around with the code archive, you can see that AJAX Chess is
far from being fully-featured. There are many things that you could do to make
this game more playable:

❑ You could add some pretty graphics to replace the boring letter shortcuts I
used to show which piece is which.

❑ Right now, the app doesn’t care if you jump your bishop over all the pieces
on the board and take your opponent’s king. Error-checking for moves that
are legal for the piece in question, and moves that are blocked on the board,
would be really helpful.

❑ You could have the app keep a record of each move so observers could replay
the game, and you could optimize the synchronization process so that it
doesn’t have to re-send the entire board each time a move is made.

4 http://pear.php.net/pepr/pepr-proposal-show.php?id=198

280

Chapter 8: Drag and Drop with AJAX Chess

http://pear.php.net/pepr/pepr-proposal-show.php?id=198

❑ You could add an “undo move” feature (although we always played by the
rule that once you took your hand off the moved piece, there was no going
back on it).

❑ You could connect the app’s back end to a chess engine like GNU chess.

❑ You could add a chat feature to allow taunting of your opponents!

Summary
This AJAX Chess game provides a good example of how we can create and place
a complex set of user interface elements in the browser window. The global event
handlers we used to implement the drag-and-drop functionality are a smart way
to manage the more complicated interactivity that is inherent in more sophistic-
ated web UIs. We also got a small taste of what it’s like to deal with shared,
browser-based access to data via the AJAX Chess game board, and saw a simple
way of synchronizing your clients using polling, so they can all see the same thing
at roughly the same time.

With the basic techniques you’ve learned here, you’ll be well-equipped to begin
taking your web applications to the next level—creating super-responsive, super-
interactive AJAX apps that push the boundaries of what’s possible on the Web.

281

Summary

282

Appendix A: AJAX Toolkits
Although AJAX is only in its infancy, there are already many useful and stable
JavaScript libraries that can help your AJAX development. This appendix is a list
of some of the best libraries available at the time of writing, but, as with any new
technology, new libraries are bound to appear. To stay up to date with latest
developments, be sure to subscribe to SitePoint’s Tech Times email newsletter1

and Stylish Scripting,2 SitePoint’s DHTML and CSS blog.

AjaxTK3

AjaxTK is an AJAX-toolkit component library that features a very large and
comprehensive widget set. AjaxTK is used in Zimbra, a recently released cli-
ent/server open-source email system.

Dojo4

Dojo lets you build prototype versions of interactive widgets quickly, animate
transitions, and make AJAX requests with powerful and easy-to-use abstrac-
tions. These capabilities are built on top of a lightweight packaging system
and optional build tools that help you develop quickly and optimize trans-
parently.

JSON-RPC5

JSON-RPC is a remote procedure call protocol that’s encoded in JSON. It’s
a very simple protocol, with only a handful of data types and commands.

MochiKit6

“MochiKit makes JavaScript suck less”—so says the MochiKit web site.
MochiKit is a highly documented and well-tested suite of JavaScript libraries
that helps developers get their work done fast. MochiKit incorporates the
best ideas from Python, Objective-C, and others, and adapts them for use in
JavaScript.

1 http://www.sitepoint.com/newsletter/
2 http://www.sitepoint.com/blogs/category/dhtml-css/
3 http://www.zimbra.com/
4 http://dojotoolkit.org/
5 http://json-rpc.org/
6 http://www.mochikit.com/

http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/blogs/category/dhtml-css/
http://www.zimbra.com/
http://dojotoolkit.org/
http://json-rpc.org/
http://www.mochikit.com/

Moo.fx7

Moo.ajax8

Moo.fx is a super-lightweight, ultra-tiny, mega-small JavaScript effects library
written with Prototype. Moo.ajax is a very simple AJAX class designed for
use with Prototype.lite from moo.fx.

Prototype9

Prototype is a JavaScript framework that aims to ease the development of
dynamic web applications. It includes a unique, easy-to-use toolkit for class-
driven development and an AJAX library. Its development is driven heavily
by the Ruby on Rails framework, but it can be used in any environment.

Rico10

Rico is an open-source JavaScript library for creating rich Internet applications.
Rico provides full AJAX support, drag-and-drop management, and a cinematic
effects library. Sabre Airline Solutions is a corporate contributor.

Sajax11

Sajax is an open-source toolkit that aims to make programming web sites
using AJAX as easy as possible. Sajax makes it easy to call PHP, Perl, or Py-
thon functions from your web pages using AJAX.

Sarissa12

Sarissa is a JavaScript library that acts as a cross-browser wrapper for native
XML APIs. It offers various XML-related goodies like document instantiation,
XML loading from URLs or strings, XSLT transformations, XPath queries,
and so on.

Script.aculo.us13

Script.aculo.us is a set of JavaScript libraries, built on top of the Prototype
framework, that provide “Web 2.0”-style interactivity such as visual effects,
auto-completion, drag-and-drop, and in-place editing. A lot of the more ad-
vanced AJAX support in Ruby on Rails uses this library.

7 http://moofx.mad4milk.net/
8 http://www.mad4milk.net/entry/moo.ajax
9 http://prototype.conio.net/
10 http://openrico.org/
11 http://www.modernmethod.com/sajax/
12 http://sarissa.sourceforge.net/
13 http://script.aculo.us/

284

Appendix A: AJAX Toolkits

http://moofx.mad4milk.net/
http://www.mad4milk.net/entry/moo.ajax
http://prototype.conio.net/
http://openrico.org/
http://www.modernmethod.com/sajax/
http://sarissa.sourceforge.net/
http://script.aculo.us/

Spry14

Coming from Adobe Systems’ labs, Spry is a JavaScript AJAX framework
targeted to users of web development tools like Dreamweaver. Even by the
standards of AJAX—which is only just over a year old—Spry is a new player
in the field of AJAX toolkits, but with the backing of a huge corporation in
Adobe it should become a major player in the field.

Yahoo! UI Library15

The Yahoo! UI (YUI) Library is a set of open-source JavaScript widgets you
can use to build AJAX-style web applications. This library comes with some
excellent documentation, and is used extensively in Yahoo!’s Design Pattern
Library, a series of documents that explain how to build highly dynamic user
interfaces.

14 http://labs.adobe.com/technologies/spry/
15 http://developer.yahoo.com/yui/

285

http://labs.adobe.com/technologies/spry/
http://developer.yahoo.com/yui/

286

Index
A
abort method, Ajax class, 58
abort method, XMLHttpRequest class,

28
abortMove method, Chess class, 272
access keys, eBay web services, 215
ACCESS_KEY constant, 175–176
accessibility, 90

AJAX and, 121
blog page example, 132
browser Back button fix, 235
“fat-client” code and, 191
further reading, 127
screen reader support, 112, 201

ActiveXObject class, 16
addNewEntry method, Blog class, 158
Adobe Spry framework, 285
AJAX

definitions of, 129
technologies involved, 8
when to use, 85, 191–192, 194

Ajax class, 14–32
AJAX relays, 178
alert dialogs

Back button problem and, 192
screen readers and, 117, 226

alignment, vertical, 258
all-caps, 48
Amazon ECS

(see also single web service search ex-
ample)

multi web service search, 210
web service response, 218

ampersands, 63
animations, CSS, 68

(see also status notification)
Apache2 resources, 241

APIs (application programming inter-
faces) (see web services)

appendChild method, 63, 143, 189
application busy (see status notification)
application monitoring example, 13,

33–38, 42–83
bar graph, 58
cross-site requests and, 177
enhanced functionality, 42–83
full code, 36
markup, 42, 48
styling the interface, 80

application-centric protocols, 172
arrays

(see also associative arrays)
Amazon ECS results, 187, 219
Amazon ECS search phrases, 183
application monitor response times,

58
search history, 230

ASIN (Amazon Standard Identification
Number), 188

associative arrays
chess pieces, 255
multi web service search, 203, 205
SOAP client options, 213
YAML parsing, 155

asynchronous flag, 19
asynchronous operation, 5, 41

(see also loss of scope)

B
Back button problem, 227–240

AJAX usability and, 192
alternative options, 201, 204, 227,

240
browser Back button fix, 193, 234–

239

build your own Back button, 194,
233–234

BACK_BUTTON constant, 228
background colors

displaying, 62
status animation changing, 149

background property setting, 73
backUpPos method, Piece class, 270
backward compatibility, 90

blog page example, 132
multiple web service search, 201

Blog class, 133
blog page example, 130–165

adding a new entry, 158
contention issues, 140, 145
CSS, 132
editing an entry, 137
fake back-end page, 152
possible enhancements, 163
response handling, 156
returning to the display state, 146
saving changes, 148
status animation, 149, 157

browser Back button fix, 193, 234–239
coding, 204

browser history (see Back Button prob-
lem)

browser security (see security)
browser window sizing, 247
BROWSER_BACK constant, 202, 235
browsers

non-supporting, 17, 90, 191, 223,
233

relaying requests, 178
XML content-types, 25
XMLHttpRequest support, 11, 16

browser-specific code, 72, 138, 236,
238

build your own Back button, 194, 233–
234

coding, 204, 233

button creation, dynamic, 50

C
calcColFromPos method, Chess class,

269
calcPosFromCol method, Chess class,

258
callback functions, 19

(see also loss of scope)
Cancel button, blog page example, 140,

145, 161
capture, chess game, 271
case-sensitivity

HTTP request methods, 18
string variables, 110

Chess class, 245
chess game example, 243–281

back end, 280
displaying the game state, 253
error checking, 270
functionality, 245
loading a game, 250
moving pieces, 261
polling for the server state, 276–278
possible enhancements, 280
setting up the board, 247
wiping the board, 278

classes, CSS, 76, 115
cleanup method, Login class, 95
cleanup method, Status class, 71
clearInterval function, 78, 110, 158,

191
clearTimeout function, 36, 67, 273
Client class, 175
client-side debugging, 194
client-side validation, 99
code branching, 133
color values, 150
color-coding, 98

288

Index

communications protocols (see proto-
cols)

concurrency issues, 164
const keyword, 48
constants, 48
constructor functions, JavaScript, 14–

15, 44, 257
Content-Type headers

fake back-end code, 31, 107
multi web service search printing,

211
proxy scripts, 180, 183
setting, 25, 87
setting for POST requests, 87
XHTML and, 9

cookies, 97, 106
createElement method, 63
createTextNode method, 63
cross-browser code, 16, 247
cross-site requests, 19, 177, 207

online resources, 196
CSS (Cascading Style Sheets)

application monitor bar graph, 65
application monitor interface, 81
pulsing status animation, 69
transitions, 68
treatment of element borders, 258
use with AJAX, 11

CSV (comma separated values) files,
106

D
Date objects, JavaScript, 97
debugging, 194, 259
desktop applications

AJAX compared to, 2
AJAX experience resembling, 90, 243

DHTML, unobtrusive, 90
disableEnableMainWinInput method,

Blog class, 140, 145, 158
display property, CSS, 116, 203

displayGame method, Chess class, 255,
257, 278–279

displayOpacity method, Status class,
72

div elements
fading background effect, 149
identifying by id elements, 139

Document Object Model (DOM), 10
document.all property, 73
document.onkeyup event, 100, 125,

206
document.write property, 193, 236
doGet method, Ajax class, 29, 183, 208
doGoogleSearch method, Search class,

213–214
Dojo JavaScript toolkit, 193, 234, 283
doLookup method, Client class, 176,

182
domains (see cross-site requests)
DOM-element references, 95
doMove method, Chess class, 269–272
doPoll method, Chess class, 277
doPoll method, Monitor class, 54
doPollDelay method, Chess class, 276,

278
doPollDelay method, Monitor class, 55
doPost method, Ajax class, 87, 103,

250, 253
doProc method, 77
doReq method, 87
doSave method, Blog class, 145
doSlide method, Client class, 190
doStatusAnim method, Blog class, 150–

151
drag-and-drop functionality, 10, 261–

274
Draggable class, chess example, 263–

269
drop method, Draggable class, 266, 269
dynamic content

alternatives to AJAX, 3, 192
notification about, 123

289

screen readers and, 91

E
e parameter, 100, 138
eBay web services

multi web service search, 214
web service response, 223

eBayXMLRPC.php library, 216
e-commerce, Amazon, 174
edit-in-place, 135–149
editInPlaceOff method, Blog class, 146
enableScreenReaderFeatures method,

121, 125–126, 204, 225
encryption, 103, 215, 241
endProcessing method, Piece class, 275
Enter key

checking, 100
keyboard forms submission, 104,

206
error handling, 35

chess game moves, 270, 280
proxy scripts, 179
saving blog changes, 165

eval function, JSON, 251
evalFormFieldState method, 100
evalSearchTextState method, Search

class, 203, 205
event dispatch, 259
event handlers

asynchronous, 21
complex user interfaces, 259
this keyword and, 22

example apps
application monitoring example, 33–

38, 42–83
blog page example, 130–165
chess game example, 243–281
login page example, 85–111
multi web service search, 200–240
single web service search, 168–191

execution context, 22

F
fading color effect, 149
fake server pages, 31, 106
fallback mechanisms, 179
“fat-client” code, 191
Firefox browser XMLHttpRequest im-

plementation, 16
float property, CSS, 65, 113
focus, form fields, 96
form element instructions, 126
formData2QueryString library, 88

blog page example, 149
login form example, 91, 103

forms validation, 99
Forward buttons, 230

(see also Back Button problem)
framesets, nested, 3
further reading (see resources)

G
GameState class, chess example, 254
GET requests

caching by IE, 34, 182
Google search page, 170

getElementsByTagName method, 222
getSearchItem method, Client class,

182–183
getSrcElem method, Blog class, 138
getSrcElemId method, Chess class, 260
global constants, 48
global event handlers, 258–261
global variables, 34
goBack method, SearchHistory class,

231
Google Maps, 129, 177, 197
Google search page, 170
Google web service APIs, 211, 220
graceful degradation, 17, 91, 192, 201

290

Index

H
handleErr property, XMLHttpRequest

object, 26
handleLoadGame method, Chess class,

253, 278
handleLoginResp method, 109
handleMove method, Chess class, 274
handlePoll method, Chess class, 277
handleResp method

Client class, 184, 187
Search class, 218, 226–227, 229

handleSave method, Blog class, 156
handleTimeout method, 54–55, 57
handleWipeBoard method, Chess class,

278
hash, web addresses, 235, 237
hidden iframes, 4, 13, 129, 237
history menu, multi web service search,

240
HTML and AJAX, 33
HTTP

(see also GET requests; POST re-
quests)

case-sensitivity of requests, 18
proxy scripts and, 178
REST protocol and, 169
status codes, 24

HTTP_Request module, 179, 209, 211
hyphens, 263

I
IBM Home Page Reader, 118, 120, 125
id attributes

dangers of changing, 162
global event handlers, 259
locating div elements, 139

If-Modified-Since headers, 34
iframe elements, 10, 193, 236

hidden iframes, 4, 13, 129, 237
IIS web servers, 31
images, positioning, 188

inheritance model, JavaScript, 38
init methods

Ajax class, 16
Blog class, 134, 136
Chess class, 246
Client class, 176
Login class, 95, 121
Monitor class, 48
Search class, 202, 235
XMLHttpRequest object, 16

innerHTML property
blog page example, 141, 143, 148
DOM method alternative, 10, 36
multi web service search, 222–223
single web service search, 187
when to use, 208, 222

insertBefore method, Blog class, 160
insertEntryDiv method, Blog class, 159
Internet Explorer

browser Back button fix, 235–237
event handling, 138, 260
GET request caching, 34, 182
IBM Home Page Reader and, 120
memory leaks, 71, 95
opacity setting, 73

J
JavaScript

Date objects, 97
debugging tools, 195
DOM API, 10
hyphen conversion, 263
object creation, 14, 253, 257
object model, 38
objects from XML, 186, 219
role in AJAX, 12
screen readers and, 117
separating code from markup, 37
toolkits, 193, 234, 283
users without, 97, 223, 233
YAML parsing in, 155

291

JAWS screen reader, 118, 120
JSON (JavaScript Object Notation),

187, 251–253, 273
JSON-RPC protocol, 283

K
keyboard operations, 100, 104
keyCode properties, 100, 206
keyup method, Login class, 100
keyup method, Search class, 206

L
libraries

(see also formData2QueryString;
JavaScript, toolkits; JSON;
SOAP protocol; XMLParse)

creating, 14
eBayXMLRPC.php, 216

linearization and screen readers, 112,
115

Linux, web server resources, 241
loadGame method, Chess class, 250,

278
location hash, 235, 237
location.replace method, 239
locking, blog page, 164
Login class, 94
login page example, 85–111

dealing with errors, 110
markup and CSS, 91
PHP code, 105
screen readers and, 121
security, 103

loss of scope, 21–22, 44, 70
(see also singleton classes)

M
markup

(see also HTML; XHTML; XML)
separating script from, 37, 134
YAML, 152, 155

“mashups”, 177, 197
memory leaks, IE, 71, 95
mimeType property, XMLHttpRequest

object, 25
Monitor class, 44, 47

(see also application monitoring ex-
ample)

mouseDownHandler method, Chess
class, 260–261

mouseMoveHandler method, Chess
class, 262

mouseUpHandler method, Chess class,
262

Move class, chess game, 273
move method, Draggable class, 262,

265
Mozilla browser XMLHttpRequest im-

plementation, 16
multi web service search example, 200–

240
Amazon ECS search, 210
eBay web services, 214
formatting results, 218
Google web service, 211
non-supporting browsers, 223, 233
possible enhancements, 240
proxy script test, 217
screen readers, 225
search enabling, 205

N
navigation

(see also Back button problem)
skip navigation links, 115, 235

network-centric protocols, 171
New Entry button, blog page example,

140, 145–146, 158–159
new keyword, 46, 94
non-breaking space characters, 62–63
noResultsCheck method, Search class,

219

292

Index

O
object literal notation, 253
object orientation, 14, 38, 44
onbeforeunload event listener, 192
onkeyup event, 100–101, 125, 206
online resources (see resources)
onreadystate event handler, 28
onreadystatechange event handler, 19,

23, 26
opacity setting, 72
open method, XMLHttpRequest class,

18, 87
OpenSSL encryption, 241
overrideMimeType method, XMLHt-

tpRequest class, 25, 184

P
page partials, 60, 97
pagination, 164, 240
parse method, JSON, 252, 254
parseYamlResult method, Blog class,

155
parsing XML, 186–187
PEAR repository

HTTP_Request module, 179, 209
Services_JSON library, 252, 280
SOAP module, 212–213

PHP code
blog-process.php, 152, 154
chess.php, 280
login page example, 105
Services_JSON and, 252
simulating response delays, 31
use within this book, 32
webservices2_proxy.php, 209–210,

212, 216
PHP Extension and Application Repos-

itory (see PEAR repository)
Piece class, chess example, 256
pixel-based positioning, 258
placeBoard method, Chess class, 247

placeholder IDs, 152, 158, 160, 162
placeholder pages, 237
placePanel method, Chess class, 249
pollArray property, Monitor class, 58
polling process, 273

application monitor example, 48
chess game example, 247, 276–278
processing animation, 80

pollServerStart method, 53, 66
pollServerStop method, 66
pop method, 59
pop-up blocking, 27
positioning images, 188
positioning pieces, chess game, 258,

264, 267
POST requests, 85

formData2QueryString library, 89
login page example, 103
SOAP and, 208
when to use, 86
XMLHttpRequest send method and,

21
XML-RPC and, 170, 208

postData property, 87
printResult method, 35, 59–60
processing animations (see status noti-

fication)
progressive enhancement, 90, 201
promptInterval property, 108
prompts, editable text, 135
properties, adding, 14
properties, CSS, 263
protocols

(see also HTTP)
network-centric and app-centric, 171
web services and, 169–172, 199

prototype-based inheritance, 38
proxy scripts, 178, 207–208, 217
pulsing status animation, 68

293

Q
query strings, 86

Amazon searches, 174
disabling IE GET request caching,

34
formData2QueryString function,

149

R
readyState property, 19
Really Simple History toolkit, 234
REFRESH_INTERVAL constant, 277
regular expressions, 101, 155, 261
remote scripting, 4, 13
removeChild method, 61, 110, 143,

148
resources on

accessibility, 127
Apache2 and OpenSSL, 241
cross-site scripting, 196
JavaScript toolkits, 283
“mashups”, 197
object orientation, 38

Response class, chess example, 254
responseFormat property

Ajax class, 24, 29
XMLHttpRequest class, 28

responseText property
XMLHttpRequest object, 24

responseXML property
XMLHttpRequest object, 25

REST protocol, 169, 171, 174
RGB color values, 150

S
Safari browser, 235
Sandbox, eBay, 216
Save button, blog page example, 145,

148
screen readers

AJAX and, 112–127

alerting to page changes, 226
browser Back button fix, 235
code features for, 121
dynamic content and, 91, 117, 123
“fat-client” code and, 191
hiding content, 115
multi web service search, 225–227
onkeyup event, 101
suggested products for testing, 118

script tags, including classes, 29
Search buttons, 203, 206, 218
Search class, 202
search history display, 226
search window, embedded (see multi

web service search example; single
web service search)

SearchHistory class, 228, 232–233
security

crossing domains, 19, 177
eBay web services, 215
login details, 103

self variable, 21, 23, 46, 54
(see also loss of scope)

send method, XMLHttpRequest class,
21

separator characters, 107
server-side scripting

blog page example, 132
DHTML alternative, 192

server-side validation, 99
service-oriented architecture (SOA),

169
Services_JSON library, 252, 280
setAlpha method, 71, 74
setButtonState method, Search class,

205
setDisplay method, 76
setHash method, SearchHistory class,

230
setInterval function, 70

browser Back button fix, 236, 238

294

Index

loss of scope and, 21, 44
processing animations, 108, 150
slide-and-hide effect, 190

setMimeType method, Ajax class, 32
setNewEntryRealId method, Blog class,

158, 162
setPrompt method, Login class, 96–97
setRequestHeader method, XMLHt-

tpRequest class, 34
setRequestMethod method, 87
setTimeout function, 45, 54, 189, 276

application monitor example, 36
loss of scope and, 21, 44

showErrorPrompt method, 110, 124
showPoll function, 34
showStatusDots function, 108
showStatusPrompt method, 108
simple monitoring app (see application

monitoring example)
single web service search example, 168–

191
formatting results, 187
handling results, 184
sending the request, 182
slide-and-hide process, 188

singleton classes
Blog class as, 133
Chess class as, 245
Client class as, 175
Login class as, 94
Monitor class as, 45
Search class as, 202
Status class as, 52, 70

site-monitoring application (see applica-
tion monitoring example)

skip navigation links, 115, 235
slide-and-hide effect, 168, 188
slideAndHide method, Client class, 189
snapping into place, 267
SOAP module, PEAR, 212–213
SOAP protocol, 171, 174, 208

srcElement property, 138
SSL (Secure Sockets Layer), 103, 215
stacks, 59
startDone method, 78
startHistory method, Search class, 235–

236
startProc method, 75
Status class, 52, 70
status notification

application monitoring example, 51,
67–80, 98, 103

blog page example, 148–152, 157,
163

cursor style change, 273
dots animation, 107
fading color effect, 149
importance, 42, 67
login page example, 107–111
plain text, 208
pulsing animation, 68, 75

status property, XMLHttpRequest ob-
ject, 24, 26

statusText property, XMLHttpRequest
object, 24

stopPoll method, Monitor class, 58, 67
stopProc method, 77
stopReset method, Blog class, 157
stringify method, JSON, 251
stub functions, 52, 55
Submit buttons

activating and deactivating, 100, 103
enabling and disabling, 97, 101–

102, 125, 205
keyboard alternative, 104

submitSearch method, Search class, 206
switch statements, 157

T
table-based layouts, 112, 114
target property, 138
text, adding to elements, 63

295

this keyword
adding properties to an object, 14
loss of scope, 21–22, 44, 70

timeouts
handleTimeout method, 57
proxy scripts and, 179
saving blog changes, 165

timestamps, 97
timezones, 274
title attribute, input elements, 127
toggleAppStatus method, Monitor class,

49, 54, 66
toggleButton method, Monitor class,

50
toggleEditInPlace method, Blog class,

137, 139–140, 146
toggleEnabled method, Login class, 97,

101
toggleStatusMessage method, Monitor

class, 51
toolkits, JavaScript, 193, 234, 283
transitions, CSS, 68
try…catch blocks, 25, 27
typeover text (see edit-in-place)

U
unicode non-breaking spaces, 63
unshift method, Array object, 59
updateHistory method, SearchHistory

class, 229–230, 237
updatePollArray method, Monitor class,

58–59
URIs (Universal Resource Identifiers),

169
usability

edit-in-place feature, 129
“fat-client” code, 191–192

user interfaces
AJAX and, 41
chess game example, 244–245
CSS and, 11

V
validation, 99, 105, 210

W
W3C (World Wide Web Consortium)

DOM and, 10
SOAP protocol and, 171
Web Accessibility Initiative, 127
WSDL and, 241
XHTML and, 10

wasMoved method, Piece class, 269
Web Accessibility Initiative (WAI), 127
web services, 168

Amazon commerce, 172
multi web service search, 200–240
protocols, 169–172
single web service search example,

168–191
window.event property, 100, 138, 260
window.onload event, 134, 259
Windows

installing HTTP_Request, 180
web server resources, 241

Wipe Board button, chess example,
249, 278

WSDL (Web Services Description
Language), 171, 212, 241

X
XHTML

use in AJAX, 9
W3C resource on, 10

XHTML 1.0 Strict, 10
XHTML 1.0 Transitional, 236
XML

AJAX and, 8
Amazon ECS returns, 175, 181, 184
Content-Type headers and, 183
deserializing, 185
JSON alternative, 251
Sarissa library and, 284

296

Index

YAML compared to, 153
xml2ObjArray method, XMLParse,

185–187, 219, 222
XMLHttpRequest class, 11, 13–39

browsers not supporting, 17
IE caching, 34, 182
instantiating an object, 16
methods and properties, 39
other data formats, 106–107
POST request and, 86
readystatechange event, 20
security and, 177

XMLParse library, 185, 219
XML-RPC protocol, 170, 208, 214, 216
XSS (see cross-site requests)

Y
Yahoo! UI Library, 285
YAML, 152, 155

297

	Build Your Own AJAX Web Applications
	Table of Contents
	Preface
	AJAX: the Overview
	AJAX Web Applications
	The Bad Old Days
	Prehistoric AJAX
	Nesting Framesets
	The Hidden iframe
	Remote Scripting

	What Makes AJAX Cool
	AJAX Technologies
	Data Exchange and Markup: XML
	Data Exchange Lingua Franca
	XML as Markup

	W3C Document Object Model
	DOM Manipulation Methods
	DOM Events

	Presentation: CSS
	Communication: XMLHttpRequest
	Putting it All Together: JavaScript

	Summary

	Basic XMLHttpRequest
	A Simple AJAX Library
	Starting our Ajax Class
	Creating an XMLHttpRequest Object
	Sending a Request
	Setting Up the Request
	Setting Up the onreadystatechange Event Handler
	Sending the Request

	Processing the Response
	Setting the Correct Content-Type
	Response Handler
	Error Handler
	Or, the One True Handler

	Aborting the Request
	Wrapping it Up
	Example: a Simple Test Page
	Creating the Page
	The Fake Server Page
	Hitting the Page

	Example: a Simple AJAX App
	Laying the Foundations
	Handling the Result with showPoll
	Starting the Process Over Again
	Full Example Code
	Running the App

	Further Reading
	JavaScript’s Object Model
	XMLHttpRequest

	Summary

	The “A” in AJAX
	Planned Application Enhancements
	Organizing the Code
	Loss of Scope with setTimeout
	Singletons with JavaScript

	Creating the Monitor Object

	Configuring and Initializing our Application
	Setting Up the UI
	The toggleButton Method
	The toggleStatusMessage Method
	Checking your Work In Progress

	Polling the Server
	Handling Timeouts
	The Response Times Bar Graph
	The Running List in pollArray
	Displaying the Results
	Stopping the Application

	Status Notifications
	The Status Animation
	Setting Up Status
	Initialization

	Internet Explorer Memory Leaks
	The displayOpacity Method
	Running the Animation
	Starting it Up
	Making it Stop
	Running the Animation with doProc
	Starting the “Done” Animation with startDone
	The Final Fade

	Styling the Monitor
	Summary

	AJAX and POST Requests
	Review: Sending Data with GET
	Sending Data with POST
	A Quick Form POST
	Using formData2QueryString

	An Application Login
	Accessibility and Backward Compatibility
	Screen Readers

	Markup and CSS
	Creating the Login Class
	DOM-element References

	Setting it Up with init
	Setting the Login Prompt
	Ensuring Valid Input
	Capturing and Using Keyboard Input

	Submitting the Form Data
	Submitting Data without Touching the Mouse

	Processing the Submission
	CSV Data Format
	Setting the Values
	Printing the Response

	Showing Processing Status
	Handling the Server Response
	Dealing with Login Failures

	AJAX and Screen Readers
	Thinking “Linearly”
	Example: a Two-column Web Form

	Skip Navigation Links
	Hiding Screen Reader Content

	Notification for Dynamic Content
	Giving an alert

	Testing in Multiple Readers

	The Screen Reader Code
	Setting Up Notification
	Showing Notifications
	Enabling the Submit Button
	Adding Instructions to a Form Element

	Further Reading
	Summary

	Broader AJAX with Edit-in-place
	Page Markup
	Accessibility and Backward Compatibility

	The Blog Class
	The init Method
	Edit-in-place
	Editing an Entry
	The getSrcElem Method
	Getting the Entry’s ID
	Changing the State
	Turning on Editable State
	Enabling and Disabling Other Input
	Returning to Display State

	Saving Changes
	The Status Animation
	Starting the Animation
	The doStatusAnim Method

	The Fake Back-end Page
	Using YAML
	The PHP Code
	Response Examples
	Parsing YAML in JavaScript

	Handling the Response
	Stopping the Status Animation
	Cleaning Up with stopReset

	Adding a New Entry
	Adding the New Entry divs
	Canceling the New Entry
	The Placeholder ID
	The setNewEntryRealId Method
	Timing the ID Change

	Future Enhancements
	Loading Existing Entries
	Concurrency and Locking
	Errors and Timeouts

	Summary

	Web Services and Slide-and-hide
	Slide-and-hide Window
	Web Services: an Overview
	APIs and Protocols
	REST
	Google Search Example

	XML-RPC
	SOAP
	WSDL

	Network-centric vs Application-centric

	Amazon Web Services Client
	Amazon Web Services Accounts
	Amazon E-Commerce Service

	The Client Class
	Initial Setup

	Cross-site AJAX
	XMLHttpRequest and Security
	An AJAX Relay
	The Proxy Script

	Sending the Request to Amazon Web Services
	Getting the Search Text
	Sending the Request
	XML Results and Content-Type

	Handling the Results from Amazon
	Using xml2ObjArray
	Example XML Document
	Example Object

	Formatting the Results
	Performing the Slide-and-hide
	The Slide-and-hide Effect

	AJAX Fat-client Code
	Legacy Browsers and Accessibility
	Degrading the Search Results

	Usability: the Back Button Problem
	Using Warnings as a Safety Net
	Fixing the Browser Back Button?
	Replacing the Back Button
	Asking the Right Question

	Debugging Client-side AJAX

	Further Reading
	Cross-site Scripting (XSS)
	Mashups

	Summary

	More Web Services and a Back Button
	The Search Application
	Accessibility and Backward Compatibility
	Fixing the Back Button

	Setting Up the Search Class
	The init Method
	Disabling and Enabling Buttons

	Enabling Search
	The submitSearch Method
	Passing to the Proxy Script
	Submitting the Search

	The Proxy Script
	Requirements
	Initial Setup

	Amazon Web Services
	Printing the Response
	Google Web APIs
	Using a SOAP Library
	Code for the SOAP Extension
	Code for the PEAR SOAP Module

	The eBay Platform
	A Few Hurdles
	Access Keys and User Tokens
	The Sandbox

	The Code

	Testing the Proxy Script
	Handling the Results
	Amazon
	Google
	Getting the resultElements XML

	eBay
	Displaying the Results
	Fallback for Non-JavaScript Browsers

	Screen Reader Code
	Alerting Users to Page Changes

	The Back Button Problem
	The Two Options
	SearchHistory Class
	Adding to the History
	Navigating the History
	Displaying the History Entry

	Building your own Back Button
	Adding the Buttons

	Using the Browser’s Back Button
	Using the Location Hash
	Setting Up the Fix
	Setting the Hash
	The iframe Hack for IE

	Watching the Hash
	Displaying the Entry
	Decisions, Decisions

	Search App Enhancements
	Paging
	History Menu

	Further Reading
	Apache2 and OpenSSL on Linux
	Apache2 and OpenSSL on Windows
	WSDL

	Summary

	Drag and Drop with AJAX Chess
	AJAX Chess
	Problems to Solve

	The Chess Class
	Starting the Application
	Setting Up the Board
	The Status Panel

	Loading a Game
	Using JSON
	Encoding an Object with JSON
	Decoding JSON Strings

	Displaying Game State
	The handleLoadGame Method
	The displayGame Method
	The pieceList Array
	The Piece Class

	Global Event Handlers
	Going Global
	Handling Mouse Clicks

	Moving Pieces
	The mousemove Handler
	The mouseup Handler

	The Draggable Class
	The Click Offset
	Viewport Positions and Board Positions
	The move Method
	The drop Method
	Snap-to

	The doMove Method
	Making a Backup
	Error Checking
	Aborting the Move on Error
	Saving the Move

	The handleMove Method
	Polling for Server State
	Wiping the Board
	AJAX Chess Back End
	Future Enhancements
	Summary

	Appendix A: AJAX Toolkits
	Index

