Distributed Systems SDEV4001:11
Security In
Distributed Systems

December 15° 2010

The Security Problem

* Restrict access to information and resources to just
those persons/processes that are authorised to
have access

* Broad classes of computer security threats:

— Data Leakage — loosing control and governance of
confidential information

— Tampering — more than just getting access to bank
accounts, consider voter fraud, guarda records, etc

— Vandalism — making a website more 'attractive’

The Security Problem

* Communications channel particularly susceptible to
attack:

— Eavesdropping (interception) — listening in to
‘conversations'’

— Masquerading (identity substitutuion) — pretending to
be a ligitimate partner

— Message Tampering — man in the middle

— Replaying — using eavesdropped messages to initiate
a session, etc.

— Denial of Service — The attacks on Visa etc. Last week

Security Assumptions

* Interfaces are exposed: Hackers can send a
message to any communicating process

* Networks are insecure: Addresses can be spoofed

* Algorithms are available to hackers: Secrecy
dependent on secrecy of key rather than
algorithm

* Attackers have access to large resources:
computational power will not be a problem for
hackers during the lifetime of the system

Naive security — DVD security methods were easily cracke
through both reverse engineering and brute force
methods.

void CSSdescramble(unsigned char * ;unsigned char *) {
unsigned int ,t2,t3,t4,t5,t6;
unsigned char * +0x8003;

[e1" [0x54] |0x100;

[1]1° [0x55];

(*((unsigned int *)(key+2)))"(*((unsigned int *)(sec+0x56)));

#7408 ;

o +
Il

-— = % @

" L) .
—
zZn o= -

——
——
o
A
P O e p— e me]
-
M

—
—
|“| L]
N
o .

(
(

+

A portion of DeCSS

e CSS Key, 40 bits in principle but in practice closer to 16!!!

Cryptography

* 2 classes

— Symmetric (shared secret key)

— Asymmetric (public / private key pair)
* 2 roles:

— Secrecy and integrity

— Authentication
* Consider

— Scenarios

— Algorithms

Cryptographic Notation

Alice’s secret key

Bob’s secret key

Secret key shared between Alice and Bob

Alice’s private key (known only to Alice)

Alice’s public key (published by Alice for all to read)
Message M encrypted with key K

Message M signed with key K

Cryptographic Examples

e Explain basic usage scenarios

Scenario 1 — Simple Shared Keys

* Alice wishes to send some secret information to Bob. Alice
and Bob share a secret key K.

— Alice encrypts M using agreed encryption algorithm E(K,;, M)
and shared key K, producing {Mi}KAB

— Bob decrypts with decryption algorithm D(K,z, M)

* Problems:
— How do Alice and Bob exchange keys?

— How does Bob know that {M} isn’t a replay of an earlier
message?

Scenario 2 — Authentication Server

* Alice wishes to access files stored by Bob (a file
server).

* Sarais a securely managed authentication server.

* Sara issues users with passwords and holds secret
keys for all the users in the system.
=== e« Sara knows Alice’s key K, and Bob’s key KG.

* Process is described on the next slide.

Scenario 2 — Authentication Server

* Alice sends a message to Sara requesting access to Bob
e Sara sends a message to Alice encrypted with K, consisting of
a Pcket and a new secret key for communication with Bob
— MAB
o The full message is {{Ticket}K;, K,g}K4

* The encrypted ticket contains the identity of Alice and
the shared key K,z i.e. {Alice, K,;}

= ¢ Alice decrypts the response giving her {Ticket}K; and K,

o Alice sends a request R to Bob. The request is {Ticket}Kg,
Alice, R

* Bob decrypts the ticket, giving him Alice’s identity and the
shared secret key. K, is now used by Alice and Bob for the

duration of the session.

Scenario 3 —

|
Using Public Keys

* Bob generates a

public/private key pair

— Asymmetric set of keys where one decrypts a
message encrypted by the other

— Keys are Kg

pub

and Kg

priv

* Alice wants to communicate with Bob using a

shared secret

* Process is descri

ey Kyg.

oed on next slide

Scenario 3 — Using Public Keys

* Alice accesses a key distribution service to obtain a public
key certificate giving Bob’s public key (KBpub) — the

certificate is signed by a trusted authority — a reliably

and well known third party
o Alice creates a new secret key K,z and encrypts it with KBpub
and sends a message to Bob — including an identifier for

the key used to encrypt — in case Bob had more than one

_ keyname, {K,;} b,
pu

o Bob selects K; from his local keystore and decrypts K,

priv

Scenario 4 — Document Signing

* Alice wants to sign a document M so that any subsequent
recipient can verify that she is the originator of it

* Process:
— Alice computes a fixed length digest of the document Digest(M)

— Alice encrypts the digest using her private key and appends it to M
giving
o M, {Digest(M)} Ky
priv
— Bob receives the message, extracts M and computes Digest(M)
_ Bob decrypts {Digest(M)} K using KApub and compares the result

priv

with his computed Digest(M)
« M, {Digest(M)} Ko represents a digital signature

priv

Cryptographic Algorithms

* Symmetric Encryption
— Encryption Function
— Decryption Function
— Shared Secret Key

* Asymmetric Encryption
— Encryption Function
— Decryption Function
— Encryption Key
— Decryption Key

Symmetric Cryptographic Algorithms

* E(K,M)={M}y

e Remember K = key, M = Message,{M}K message encrypted with K

* Basic principles

— Confusion: Non-destructive operations such as XOR
and circular shifting are used to combine blocks of
data with the key

— Diffusion: There is usually repetition and redundancy
in plaintext. Regular patterns should be dissipated
to avoid frequency analysis

|
Tiny Encryption Algorithm (TEA)

Simple and effective

Uses rounds of integer addition, XOR and bitwise
shifts
* These are operations from different types of
math operators — improves effectiveness

Plaintext is 64-bit block. Key is 128-bit.

On each of 32 rounds, 2 halves of text are
repeatedly combined with shifted portions of key
and eachother

Decryption function is the inverse
128 bit key is secure against brute force attack

|
Tiny Encryption Algorithm (TEA)

void encrypt(unsigned long K[], unsigned long text[]) {
unsigned long y = text[0], z = text[1];
unsigned long delta = 0x9e3779b9, sum = 0; Iint n;
for (n=0; n < 32; n++) {
sum += delta;
y +=((z << 4) + K[0]) * (z+sum) " ((z >> 5) + K[1]);
z+=((y << 4) +k[2]) * (y+sum) * ((y >> 5) + K[3]);
}
text[0] = y; text[1] = z;
}

O Ok WDN -

\l

|
Tiny Encryption Algorithm (TEA)

void decrypt(unsigned long k[], unsigned long text[]) {
unsigned long y = text[0], z = text[1];
unsigned long delta = 0x9e3779b9, sum = delta << 5; Int n;
for (n=0; n < 32; n++) {
z-=((y <<4) +K[2]) * (y + sum) ™ ((y >> 5) + K[3]);
y -=((z << 4) + k[0]) * (z + sum) * ((z >> 5) + K[1]);
sum -= delta;
}
text[0] = y; text[1] = z;
}

|
Tiny Encryption Algorithm (TEA)

void tea(char mode, FILE *infile, FILE *outfile, unsigned long k[]) {
[* mode is e’ for encrypt, ’d’ for decrypt, K[] is the key.*/
char ch, Text[8]; int i;
while(!feof(infile)) {
| = fread(Text, 1, 8, infile); /* read 8 bytes from infile into Text */
If (I <= 0) break;
while (i < 8) { Text[i++] =""} /* pad last block with spaces */
switch (mode) {
case 'e".
encrypt(k, (unsigned long*) Text); break;
case 'd"
decrypt(k, (unsigned long*) Text); break;

¥
fwrite(Text, 1, 8, outfile); [* write 8 bytes from Text to outfile */

|
Data Encryption Standard (DES)

* 56-bit key.
* Handles 64-bit blocks.
* 16 key dependent stages — rounds.

* Data is bit rotated by an amount determined by the
key, and 3 key independent transpositions are
carried out.

===¢ (Cracked in 1997 in 12 weeks
* In 1998 a machine was built to crack DES in 3 days

* Triple DES applied DES three times with 2 keys —
112 bit key.

Other Symmetric Algorithms

* Advanced Encryption Standard
* “Rijndael” cypher

* Another example of a block cypher
* 128 bit block size
* Keys up to 256 bit

* RC4

— Ron Rivest

— Keys up to 256 bit

— Easy to implement

— Much faster than AES but less secure
— Stream cypher

— Used in WiFi networks

Asymmetric Algorithms

* Avoiding problem of sharing a private key

* Basic Principles
» Keys K, and K, — both very large numbers

* Encryption function performs exponentiation or some
other mathematical function on M using K..

o Decryption performs similar function on {M}Ke using K..

RSA

Created by Rivest, Shamir, Adelman
Suitable for encryption and document signing

Based on the product of 2 very large prime
numbers — both greater than 10%

Determining prime factors of such large composite
numbers is computationally (almost) impossible

Three steps: key generation, encryption and
decryption

Key generation algorithm is given on next slide

RSA

* We need 6 numbers, P,Q,N,Z,d,e

* Choose two large prime numbers, P and Q and
calculate
N=P*Q
Z=(P-1) * (Q-1)
* Choose any number that is coprime with Zi.e. It

and Z have no common factors bar 1
* Thisis'd'

P=13,Q=17,N=221,7=192,d=5

RSA

* To find e solve
e*d=1modZ
* E.g.

e*d =1 mod 192
=1, 193, 385...

385 divisible by d
E=385/5=77

N, e, and d are the basis for the actual encryption /
decryption process

RSA

* To encrypt using RSA, divide plaintext into equal
blocks of length k bits, where 2k< N

* To encrypt a block of plaintext M,
— E(e, N, M) = M® mod N
* E.g.
{M} =M’ mod 221
* To decrypt a block of ciphertext c,
—D(d, N, c) =c®mod N

Digital Signatures with Pub/Priv Keys

* Requirements
— Authentic
— Unforgeable

Signing

— Non-repudiable

Verifying
Remember

Scenario 4
earlier!!l

signed doc

HM > h E(Kpri,h)’{h}mi |

' J°
|

~—
=
£

D(Kpub 1))

<

H(doc)

Digital Signatures with Shared Secret Keys

r - - 1
| M | signed doc
= r— — "
Signing | —— | HMHQ k s |
= || | |
| | | |
= | =
L —— Jd
I I
| |
L——
r— = "
M
| - | h
| || == || =
Verifying I —— | .
L [—» h=h"?
h
l —— | HwmK) sE
L —/—— 1

Secure Digest Functions / Hashcodes

h =H(M)
Required properties
— Given M h is easy to compute
— Given h, M is hard to compute
— Given M, it is hard to compute another message M’
such that H(M) = H(M’)
Hash function should be one way

Also used in password verification
* We store the hash of the password, not the
password

Birthday Problem

Probabilities of having a pair of birthdays on the same day in the group

. ——
0.8 r,.rrrr‘

0.5

0.4 |- .

Probability of a pair

0.3 —

wl S

0 10 20 30 40 50 60 70 80 90 100

Number of people

Birthday Attack

* Alice prepares two versions of a contract for Bob: M
which is favourable to Bob and M’ which is not

* Alice makes many subtly difference versions of M
and M’ (adding whitespace etc.) and computes h
for each, until h for both is equal

== * Alice gets Bob to sign M and then copies the
signature to M’

Birthday Attack

If h is 64 bits long, then we only require 232 versions of M
and M’ on average

We need to use 128 bit h values to guard against birthday
attacks

We use the same operations that are used in symmetric
cryptography, although they no longer need to be
reversible

Common algorithms

— MD5: 4 rounds of 4 functions on 16 32-bit segments of 512-
bit blocks to produce 128-bit digest

— SHA-1: 160 bit digest

Case Study: Java

* Some Java code is automatically downloaded
across the network and runs on your machine

* This makes it very important to limit the sorts of
things that Web-based Java programs can do

* Simply put, a hostile Java program could trash your
machine

Case Study: Java

* Java security is essential to developers as well. As a
platform, Java has much to offer in terms of
security:

— Java has advanced cryptography Application Program
Interfaces (APls) and class libraries.

— Java includes language-level security mechanisms
that can help make developing secure code easier

— Some aspects of Java make it more difficult to write
insecure (unsafe) code

Case Study: Java

Threat Explanation & consequence Java
Defence

System The most severe class of attacks. Applets that implement Strong
Modification such attacks are attack applets. Consequences of these

attacks: severe.
Invasion of If you value your privacy, this attack class may be Strong
Privacy particularly odious. They are implemented by malicious

applets. Include mail forging. Consequences of these

attacks: moderate.
Denial of Also serious but not severely so, these attacks can bring a | Weak
Service machine to a standstill. Also implemented by malicious

applets. May require reboot. Consequences of these

attacks: moderate.
Antagonism Merely annoying, this attack class is the most commonly Weak

encountered. Implemented by malicious applets. May
require restart of browser. Consequences of these attacks:
light to moderate.

Trust

* Trusted -v- Untrusted code has .. S R RN
been replaced by levels of IKTRISTED s

JUK 122

trust

* Trusted code can do anything,
untrusted code is limited

* With the introduction of Java 2,
Java includes the ability to
create and manage security
policies that treat programs
according to their trust level

ONO U1 B e

What untrusted code can’t do (l)

Read files on the client file system.
Write files to the client file system.

Delete files on the client file system, using the
File.delete() method

Rename files on the client file system, using the
File.renameTo() method

Create a directory on the client file system, using the
File.mkdirs()

List the contents of a directory
Check to see whether a file exists.

Obtain information about a file, including size, type,
and modification timestamp.

What untrusted code can’t do (Il)

9.

10.
11.
12.

13.
14.

Create a network connection to any computer other
than the host from which it originated

Listen for or accept network connections on any port
on the client system

Create a top-level window without an untrusted
window banner

Obtajn the user's username or home directory name
through any means, including trying to read the
system properties: user.name, user.nome,
user.dir, java.home, and java.classpath.

Define any system properties

Run any program gn the client system using the
Runtime.exec() methods

What untrusted code can’t do (lll)

15.
16.

17.

18.
—19.
20.

21.

Make the Java interpreter exit, using either
System.exit() or Runtime.exit().

Load dynamic libraries on the client s¥stem using the
load() or loadLibrary() methods of the Runtime or
System classes.

Create or maniRuIate any thread that is not part of
the same ThreadGroup as the applet.

Create a ClassLoader
Create a SecurityManager

Specify any network control functions, including
ContentHandlerFactory, SocketimplFactory, or
URLStreamHandlerFactory.

Define classes that are part of packages on the client
system

Java Sandbox

* The Verifier helps ensure type safety
* [s an object really of the right class?

* The Class Loader loads and unloads classes
dynamically from the Java runtime environment

— ®* The Security Manager acts as a security gatekeeper
guarding potentially dangerous functionality

The Verifier

* When Java code arrives at the VM and is formed into a
Class by the Class Loader, the Verifier examines it to
— Make sure that the format of a code fragment is correct

— Make sure that byte code does not forge pointers, violate
access restrictions, or access objects using incorrect type
information

* |f the Verifier discovers a problem with a class file, it
throws an exception, loading ceases, and the class file
never executes

The Verifier

* Once byte code passes through verification,
the following things are guaranteed:
1. The class file has the correct format
2. Stacks will not be overflowed or underflowed

3. Byte code instructions all have parameters of the
correct type

4. No illegal data conversions (casts) occur

5. Private, public, protected, and default accesses are
legal

6. All register accesses and stores are valid

The Class Loader

* Every mobile code system requires the ability to
load code from outside a system into the system
dynamically

* Class loaders determine when and how classes can
be added to a running Java environment

* A fake Security Manager must not be allowed to
load into the Java environment and replacing the
real Security Manager. This is known as class
spoofing.

The Class Loader

* (lass loading proceeds according to the following
general algorithm:

1. Determine whether the class has been loaded before. If
so, return the previously loaded class.

2. Attempt to load the class from the local CLASSPATH.
This prevents external classes from spoofing trusted
Java classes.

3. See whether the Class Loader is allowed to create the
class being loaded. The Security Manager makes this
decision. If not, throw a security exception.

4. Read the class file into an array of bytes and construct a
Class object and its methods from the class file.

5. Resolve any static classes referenced by the class before
it is used.

6. Check the class file with the Verifier.

The Security Manager

The job of the Security Manager is to keep track of who is
allowed to do which dangerous operations

A standard Security Manager will disallow most
operations when they are requested by untrusted
code, and will allow trusted code to do whatever it

wants

Java’s Security Manager works as follows:

1. A Java program makes a call to a potentially dangerous
operation in the Java API.

2. The Java APl code asks the Security Manager whether the
operation should be allowed

3. The Security Manager throws a SecurityException if the
operation is denied.

Signing Code and Granting Permissions

* Example: Susan sending to Ray

Count. java

ONEN'

| Javac I

Count . class @

_ Keytool -genkey
Ol Lo)
* alias signFiles

| jarsigner I- 4 private key ’

public key certificate

Keytool -export

sCount . jar Susanlones. cer

Signing Code and Granting Permissions

* Steps on receiving side

sCount. jar from Susan

(1) '

Java

security manager

data file

Exception:
Count program doesnt have
permiszion to read the data file. @

Policy Tool
Susan]nnfs .cer from Susan

policy file raypalicy

granting code signed
by "susan” persmission

to readthe data file

SD:runt jar from Susan
EI|IEIS SUsan
security manager
susan's public key certificate Java data file

Heytool -1mport

References

* Distributed Systems, Concepts and Design (4th
Edition), by George Coulouris, Jean Dollimore and
Tim Kindberg

— Chapter 7

